Skip to content

Latest commit

 

History

History
 
 

iehgcn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Interpretable and Efficient Heterogeneous Graph Convolutional Network (ieHGCN)

Dataset Statics

Dataset # Nodes # Node Types # Edges # Edge Types Target # Classes
DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 4

DBLP dataset refer to HGBDataset.

IMDBdataset refer to IMDB.

Performance

For the DBLP dataset: train test val = 974, 1420, 243 about 37% for training.

For the IMDB dataset: train test val = 400, 3478, 400, about 9% for training.

Dataset Paper(80% training) Paper(60% training) Paper(40% training) Paper(20% training) Our(tf) Our(th) Our(pd)
DBLP 96.29 95.25 93.83 93.85 92.30±0.49% 90.90±0.74% 91.18±0.66%
IMDB 58.35 60.84 59.81 56.60 58.10±0.42% 55.22±1.21% 56.08±2.13%
TL_BACKEND="tensorflow" python3 iehgcn_trainer.py --dataset DBLP --n_epoch 30 --lr 0.01 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2
TL_BACKEND="torch" python3 iehgcn_trainer.py --dataset DBLP --n_epoch 30 --lr 0.005 --num_layers 4 --hidden_channels [64, 32, 16] --l2_coef 0.0005 --drop_rate 0.0
TL_BACKEND="paddle" python3 iehgcn_trainer.py --dataset DBLP --n_epoch 30 --lr 0.01 --num_layers 4 --hidden_channels [64, 32, 16] --l2_coef 0.0005 --drop_rate 0.1

TL_BACKEND="torch" python3 iehgcn_trainer.py --dataset IMDB --n_epoch 25 --lr 0.01 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2
TL_BACKEND="tensorflow" python3 iehgcn_trainer.py --dataset IMDB --n_epoch 25 --lr 0.005 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2
TL_BACKEND="paddle" python3 iehgcn_trainer.py --dataset IMDB --n_epoch 25 --lr 0.005 --num_layers 3 --hidden_channels [64, 32] --l2_coef 0.0005 --drop_rate 0.2