forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhgt_trainer.py
166 lines (146 loc) · 6.62 KB
/
hgt_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# !/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File : hgt_trainer.py
@Time : 2022/7/1 8:05:55
@Author : Zhang Zhongjian
"""
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import tensorlayerx as tlx
import os.path as osp
import argparse
from gammagl.datasets import HGBDataset, IMDB
from gammagl.models import HGTModel
import gammagl.transforms as T
from tensorlayerx.model import TrainOneStep, WithLoss
from gammagl.utils import mask_to_index
if tlx.BACKEND == 'torch': # when the backend is torch and you want to use GPU
try:
tlx.set_device(device='GPU', id=1)
except:
print("GPU is not available")
def calculate_acc(logits, y, metrics):
"""
Args:
logits: node logits
y: node labels
metrics: tensorlayerx.metrics
Returns:
rst
"""
metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, y):
logits = self.backbone_network(data['x_dict'], data['edge_index_dict'])
train_logits = tlx.gather(logits, data['train_idx'])
train_y = tlx.gather(data['y'], data['train_idx'])
loss = self._loss_fn(train_logits, train_y)
return loss
def main(args):
if (str.lower(args.dataset) not in ['imdb', 'dblp_hgb']):
raise ValueError('Unknown dataset: {}'.format(args.dataset))
if str.lower(args.dataset) == 'imdb':
targetType = {
'imdb': 'movie',
}
path = osp.join(osp.dirname(osp.realpath(__file__)), '../IMDB')
metapaths = [[('movie', 'actor'), ('actor', 'movie')],
[('movie', 'director'), ('director', 'movie')]]
transform = T.AddMetaPaths(metapaths=metapaths, drop_orig_edges=True,
drop_unconnected_nodes=True)
dataset = IMDB(path, transform=transform)
heterograph = dataset[0]
y = heterograph[targetType[str.lower(args.dataset)]].y
num_classes = max(y) + 1
else:
targetType = {
'dblp_hgb': 'author',
}
dataset = HGBDataset(args.dataset_path, args.dataset)
heterograph = dataset[0]
y = heterograph[targetType[str.lower(args.dataset)]].y
num_classes = (max(y) - min(y)) + 1
edge_index_dict = {heterograph.edge_types[i]: heterograph.edge_stores[i]['edge_index'] for i in
range(len(heterograph.edge_stores))}
x_dict = {node_type: heterograph[node_type].x for node_type in heterograph.node_types}
val_ratio = 0.2
train = mask_to_index(heterograph[targetType[str.lower(args.dataset)]].train_mask)
split = int(train.shape[0] * val_ratio)
train_idx = train[split:]
val_idx = train[:split]
test_idx = mask_to_index(heterograph[targetType[str.lower(args.dataset)]].test_mask)
data = {
'x_dict': x_dict,
'y': y,
'edge_index_dict': edge_index_dict,
'train_idx': train_idx,
'val_idx': val_idx,
'test_idx': test_idx
}
net = HGTModel(data=heterograph, hidden_channels=args.hidden_dim, out_channels=num_classes,
num_heads=args.heads, num_layers=args.num_layers,
target_node_type=targetType[str.lower(args.dataset)], drop_rate=args.drop_rate)
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.l2_coef)
metrics = tlx.metrics.Accuracy()
train_weights = net.trainable_weights
loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
best_val_acc = 0
for epoch in range(args.n_epoch):
net.set_train()
train_loss = train_one_step(data, data['y'])
net.set_eval()
logits = net(data['x_dict'], data['edge_index_dict'])
val_logits = tlx.gather(logits, data['val_idx'])
val_y = tlx.gather(data['y'], data['val_idx'])
val_acc = calculate_acc(val_logits, val_y, metrics)
train_logits = tlx.gather(logits, data['train_idx'])
train_y = tlx.gather(data['y'], data['train_idx'])
train_acc = calculate_acc(train_logits, train_y, metrics)
test_logits = tlx.gather(logits, data['test_idx'])
test_y = tlx.gather(data['y'], data['test_idx'])
test_acc = calculate_acc(test_logits, test_y, metrics)
print("Epoch [{:0>3d}] ".format(epoch + 1) \
+ " train loss: {:.4f}".format(train_loss.item()) \
+ " train acc: {:.4f}".format(train_acc) \
+ " val acc: {:.4f}".format(val_acc) \
+ " Test acc: {:.4f}".format(test_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
net.save_weights(args.best_model_path + "HGT_" + args.dataset + ".npz", format='npz_dict')
net.load_weights(args.best_model_path + "HGT_" + args.dataset + ".npz", format='npz_dict')
net.set_eval()
logits = net(data['x_dict'], data['edge_index_dict'])
test_logits = tlx.gather(logits, data['test_idx'])
test_y = tlx.gather(data['y'], data['test_idx'])
test_acc = calculate_acc(test_logits, test_y, metrics)
print("Test acc: {:.4f}".format(test_acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.0001, help="learnin rate")
parser.add_argument("--n_epoch", type=int, default=200, help="number of epoch")
parser.add_argument("--hidden_dim", type=int, default=1024, help="dimention of hidden layers")
parser.add_argument("--l2_coef", type=float, default=1e-6, help="l2 loss coeficient")
parser.add_argument("--heads", type=int, default=4, help="number of heads for stablization")
parser.add_argument("--num_layers", type=int, default=2, help="number of hgt layers")
parser.add_argument("--drop_rate", type=float, default=0.5, help="drop_rate")
parser.add_argument('--dataset', type=str, default='IMDB', help='dataset, not work')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset, not work")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)