-
Notifications
You must be signed in to change notification settings - Fork 0
/
schema.fbs
1354 lines (1148 loc) · 32.5 KB
/
schema.fbs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2017 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Revision History
// Version 0: Initial version.
// Version 1: Add subgraphs to schema.
// Version 2: Rename operators to conform to NN API.
// Version 3: Move buffer data from Model.Subgraph.Tensors to Model.Buffers.
// Version 3a: Add new builtin op code field. Has backward compatibility with
// version 3.
// Version 3b: Rename fields in SignatureDef. Has backward compatibility with
// version 3 and 3a.
namespace tflite;
// This corresponds to the version.
file_identifier "TFL3";
// File extension of any written files.
file_extension "tflite";
// IMPORTANT: All new members of tables, enums and unions must be added at the
// end to ensure backwards compatibility.
// The type of data stored in a tensor.
enum TensorType : byte {
FLOAT32 = 0,
FLOAT16 = 1,
INT32 = 2,
UINT8 = 3,
INT64 = 4,
STRING = 5,
BOOL = 6,
INT16 = 7,
COMPLEX64 = 8,
INT8 = 9,
FLOAT64 = 10,
COMPLEX128 = 11,
UINT64 = 12,
// Experimental: Resource and variant types are experimental, that are subject
// to change. Do not implement custom kernels using resource & variant types
// now.
RESOURCE = 13,
VARIANT = 14,
UINT32 = 15,
UINT16 = 16,
INT4 = 17,
}
// Custom quantization parameters for experimenting with new quantization
// techniques.
table CustomQuantization {
custom:[ubyte] (force_align: 16);
}
// Represents a specific quantization technique's parameters.
union QuantizationDetails {
CustomQuantization,
}
// Parameters for converting a quantized tensor back to float.
table QuantizationParameters {
// These four parameters are the asymmetric linear quantization parameters.
// Given a quantized value q, the corresponding float value f should be:
// f = scale * (q - zero_point)
// For other quantization types, the QuantizationDetails below is used.
min:[float]; // For importing back into tensorflow.
max:[float]; // For importing back into tensorflow.
scale:[float]; // For dequantizing the tensor's values.
zero_point:[long];
// If this is not none, the other quantization parameters (i.e. min, max,
// scale, zero_point fields above) are ignored and the value of the
// QuantizationDetails union should be used.
details:QuantizationDetails;
// Specifies the dimension of the Tensor's shape that the scales and
// zero_points correspond to. For example, a tensor t, with dims=[4, 3, 2, 1]
// with quantization params:
// scale=[1.0, 2.0, 3.0], zero_point=[1, 2, 3], quantization_dimension=1
// will be quantized across the second dimension of t.
// t[:, 0, :, :] will have scale[0]=1.0, zero_point[0]=1
// t[:, 1, :, :] will have scale[1]=2.0, zero_point[0]=2
// t[:, 2, :, :] will have scale[2]=3.0, zero_point[0]=3
quantized_dimension:int;
}
// Sparse tensors.
// We use a modification of the TACO format.
// Reference: http://tensor-compiler.org/kjolstad-oopsla17-tensor-compiler.pdf
//
// To encode a conceptual n-dimensional dense tensor with dims (d0, ..., dn-1),
// potentially with a k-dimensional block (0 <= k <= n) with dims
// (dn, ..., dn+k-1), the format needs to specify:
// 1. In what order to traverse these dimensions. For example, to store a 2-D
// matrix in row major order, the traversal order would be (d0, d1),
// whereas to store it in column major order, the traversal order would be
// (d1, d0). If the 2-D matrix has a 2-D inner block, the traversal order
// could be (d0, d1, d2, d3).
// 2. How each block dimension in (dn, ..., dn+k-1) maps to the original
// tensor dimension in (d0, ..., dn-1).
// 3. In the traversal order defined above, the format (dense vs. sparse) and
// index metadata for each dimension. For a dense dimension, this is just
// the size of that dimension. For a sparse dimension, it's the same as
// the compressed index defined in the Compressed Sparse Row (CSR) format.
// (http://scipy-lectures.org/advanced/scipy_sparse/csr_matrix.html)
// The storage type for a dimension. Currently we support:
// 1. DENSE: each coordinate in this dimension is stored implicitly.
// 2. SPARSE_CSR: only the coordinates with non-zero elements are stored. The
// compression technique is the same what CSR uses.
// More types like a sparse dimension with a different compression technique
// could be added to the list in the future.
enum DimensionType : byte {
DENSE = 0,
SPARSE_CSR = 1,
}
table Int32Vector {
values:[int];
}
table Uint16Vector {
values:[ushort] (force_align: 4);
}
table Uint8Vector {
values:[ubyte] (force_align: 4);
}
// Variable-typed buffer to store the index metadata for a sparse dimension.
// The widest type is Int32 instead of UInt32 because tensor's shape is a int32
// vector. We don't want the per-dimensional index to overflow that range.
union SparseIndexVector {
Int32Vector,
Uint16Vector,
Uint8Vector
}
table DimensionMetadata {
// Whether a dimension is dense or sparse.
format:DimensionType;
// Index metadata used for a dimension.
// - If format is DimensionType.DENSE then we use the dense_size field to
// store the size of that dimension. Each index in that dimension is
// stored implicitly.
// - If format is DimensionType.SPARSE_CSR then we use array_segments and
// array_indices to encode that dimension. array_segments represents how
// to segment the indices array, each segment corresponds to one element
// in the previous dimension. array_indices represents the index of the
// non-zero elements within this dimension (as those in the CSR matrix
// format, where the first array is row pointers and the second array is
// column indices).
dense_size:int;
array_segments:SparseIndexVector;
array_indices:SparseIndexVector;
}
// Parameters to encode a sparse TfLite tensor.
table SparsityParameters {
// The traversal order of the dimensions defined in the `shape` field of the
// conceptual dense tensor. For a n-dimensional tensors with dims (d0, d1,
// ..., dn-1),
// - if not block sparse, the traversal_order is just a permutation of (d0,
// ..., dn-1). For example, a 2-D matrix stored in row-major order would
// have traversal_order = (d0, d1).
// - if block sparse with a k-dimensional block (0 <= k <= n), the
// traversal_order has n + k elements. The first n elements are still a
// permutation of (d0, ..., dn-1). The lask k elements are a permutation
// of (dn, ..., dn+k-1), defining how to traverse a block internally. For
// example, a 2-D matrix with 2-D blocks, both stored in row-major order
// would have traversal_order = (d0, d1, d2, d3).
traversal_order:[int];
// For an n-dimensional tensor with a k-dimensional block (0 <= k <= n),
// stores how a block dimension in (dn, ..., dn+k-1) maps to the original
// tensor dimension in (d0, ..., dn).
// It's stored in the order of (dn, ..., dn+k-1).
// If not block-sparse, this field is NULL.
block_map:[int];
// In the traversal order defined above, the metadata needed for
// each dimension to locate the non-zero values in the original dense tensor.
// The size of the dim_metadata array = the size of the traversal_order array
// = n + k.
dim_metadata:[DimensionMetadata];
}
// The nested tensor type for VARIANT type.
table VariantSubType {
// The tensor shape.
shape:[int];
type:TensorType;
// If false, the rank or the number of tensor dimensions is unknown.
// If false, "shape" must be [].
has_rank: bool = false;
}
table Tensor {
// The tensor shape. The meaning of each entry is operator-specific but
// builtin ops use: [batch size, height, width, number of channels] (That's
// Tensorflow's NHWC).
shape:[int];
type:TensorType;
// An index that refers to the buffers table at the root of the model. Or,
// if there is no data buffer associated (i.e. intermediate results), then
// this is 0 (which refers to an always existent empty buffer).
//
// The data_buffer itself is an opaque container, with the assumption that the
// target device is little-endian. In addition, all builtin operators assume
// the memory is ordered such that if `shape` is [4, 3, 2], then index
// [i, j, k] maps to data_buffer[i*3*2 + j*2 + k].
buffer:uint;
name:string; // For debugging and importing back into tensorflow.
quantization:QuantizationParameters; // Optional.
is_variable:bool = false;
// Parameters to encode a sparse tensor. See the example in
// tensorflow/lite/testdata/sparse_tensor.json.
sparsity:SparsityParameters; // Optional.
// Encodes `shape` with unknown dimensions. Unknown dimensions are
// represented with -1.
shape_signature:[int]; // Optional.
// If false, the rank or the number of tensor dimensions is unknown.
// If false, "shape" must be [].
has_rank: bool = false;
// The nested Tensor types for VARIANT type. This is always empty for
// non-VARIANT types. This is optional because the nested type can be omitted.
// Currently only 1 subtype is supported. The field is defined as an array for
// flexibility of supporting multiple subtypes in the future.
variant_tensors:[VariantSubType];
}
// A list of builtin operators. Builtin operators are slightly faster than custom
// ones, but not by much. Moreover, while custom operators accept an opaque
// object containing configuration parameters, builtins have a predetermined
// set of acceptable options.
// LINT.IfChange
enum BuiltinOperator : int32 {
ADD = 0,
AVERAGE_POOL_2D = 1,
CONCATENATION = 2,
CONV_2D = 3,
DEPTHWISE_CONV_2D = 4,
DEPTH_TO_SPACE = 5,
DEQUANTIZE = 6,
EMBEDDING_LOOKUP = 7,
FLOOR = 8,
FULLY_CONNECTED = 9,
HASHTABLE_LOOKUP = 10,
L2_NORMALIZATION = 11,
L2_POOL_2D = 12,
LOCAL_RESPONSE_NORMALIZATION = 13,
LOGISTIC = 14,
LSH_PROJECTION = 15,
LSTM = 16,
MAX_POOL_2D = 17,
MUL = 18,
RELU = 19,
// NOTE(aselle): RELU_N1_TO_1 used to be called RELU1, but it was renamed
// since different model developers use RELU1 in different ways. Never
// create another op called RELU1.
RELU_N1_TO_1 = 20,
RELU6 = 21,
RESHAPE = 22,
RESIZE_BILINEAR = 23,
RNN = 24,
SOFTMAX = 25,
SPACE_TO_DEPTH = 26,
SVDF = 27,
TANH = 28,
CONCAT_EMBEDDINGS = 29,
SKIP_GRAM = 30,
CALL = 31,
CUSTOM = 32,
EMBEDDING_LOOKUP_SPARSE = 33,
PAD = 34,
UNIDIRECTIONAL_SEQUENCE_RNN = 35,
GATHER = 36,
BATCH_TO_SPACE_ND = 37,
SPACE_TO_BATCH_ND = 38,
TRANSPOSE = 39,
MEAN = 40,
SUB = 41,
DIV = 42,
SQUEEZE = 43,
UNIDIRECTIONAL_SEQUENCE_LSTM = 44,
STRIDED_SLICE = 45,
BIDIRECTIONAL_SEQUENCE_RNN = 46,
EXP = 47,
TOPK_V2 = 48,
SPLIT = 49,
LOG_SOFTMAX = 50,
// DELEGATE is a special op type for the operations which are delegated to
// other backends.
// WARNING: Experimental interface, subject to change
DELEGATE = 51,
BIDIRECTIONAL_SEQUENCE_LSTM = 52,
CAST = 53,
PRELU = 54,
MAXIMUM = 55,
ARG_MAX = 56,
MINIMUM = 57,
LESS = 58,
NEG = 59,
PADV2 = 60,
GREATER = 61,
GREATER_EQUAL = 62,
LESS_EQUAL = 63,
SELECT = 64,
SLICE = 65,
SIN = 66,
TRANSPOSE_CONV = 67,
SPARSE_TO_DENSE = 68,
TILE = 69,
EXPAND_DIMS = 70,
EQUAL = 71,
NOT_EQUAL = 72,
LOG = 73,
SUM = 74,
SQRT = 75,
RSQRT = 76,
SHAPE = 77,
POW = 78,
ARG_MIN = 79,
FAKE_QUANT = 80,
REDUCE_PROD = 81,
REDUCE_MAX = 82,
PACK = 83,
LOGICAL_OR = 84,
ONE_HOT = 85,
LOGICAL_AND = 86,
LOGICAL_NOT = 87,
UNPACK = 88,
REDUCE_MIN = 89,
FLOOR_DIV = 90,
REDUCE_ANY = 91,
SQUARE = 92,
ZEROS_LIKE = 93,
FILL = 94,
FLOOR_MOD = 95,
RANGE = 96,
RESIZE_NEAREST_NEIGHBOR = 97,
LEAKY_RELU = 98,
SQUARED_DIFFERENCE = 99,
MIRROR_PAD = 100,
ABS = 101,
SPLIT_V = 102,
UNIQUE = 103,
CEIL = 104,
REVERSE_V2 = 105,
ADD_N = 106,
GATHER_ND = 107,
COS = 108,
WHERE = 109,
RANK = 110,
ELU = 111,
REVERSE_SEQUENCE = 112,
MATRIX_DIAG = 113,
QUANTIZE = 114,
MATRIX_SET_DIAG = 115,
ROUND = 116,
HARD_SWISH = 117,
IF = 118,
WHILE = 119,
NON_MAX_SUPPRESSION_V4 = 120,
NON_MAX_SUPPRESSION_V5 = 121,
SCATTER_ND = 122,
SELECT_V2 = 123,
DENSIFY = 124,
SEGMENT_SUM = 125,
BATCH_MATMUL = 126,
PLACEHOLDER_FOR_GREATER_OP_CODES = 127,
CUMSUM = 128,
CALL_ONCE = 129,
BROADCAST_TO = 130,
RFFT2D = 131,
CONV_3D = 132,
IMAG=133,
REAL=134,
COMPLEX_ABS=135,
HASHTABLE = 136,
HASHTABLE_FIND = 137,
HASHTABLE_IMPORT = 138,
HASHTABLE_SIZE = 139,
REDUCE_ALL = 140,
CONV_3D_TRANSPOSE = 141,
VAR_HANDLE = 142,
READ_VARIABLE = 143,
ASSIGN_VARIABLE = 144,
BROADCAST_ARGS = 145,
RANDOM_STANDARD_NORMAL = 146,
BUCKETIZE = 147,
RANDOM_UNIFORM = 148,
MULTINOMIAL = 149,
GELU = 150,
DYNAMIC_UPDATE_SLICE = 151,
RELU_0_TO_1 = 152,
UNSORTED_SEGMENT_PROD = 153,
UNSORTED_SEGMENT_MAX = 154,
UNSORTED_SEGMENT_SUM = 155,
ATAN2 = 156,
UNSORTED_SEGMENT_MIN = 157,
SIGN = 158,
BITCAST = 159,
BITWISE_XOR = 160,
RIGHT_SHIFT = 161,
}
// LINT.ThenChange(nnapi_linter/linter.proto)
// Options for the builtin operators.
union BuiltinOptions {
Conv2DOptions,
DepthwiseConv2DOptions,
ConcatEmbeddingsOptions,
LSHProjectionOptions,
Pool2DOptions,
SVDFOptions,
RNNOptions,
FullyConnectedOptions,
SoftmaxOptions,
ConcatenationOptions,
AddOptions,
L2NormOptions,
LocalResponseNormalizationOptions,
LSTMOptions,
ResizeBilinearOptions,
CallOptions,
ReshapeOptions,
SkipGramOptions,
SpaceToDepthOptions,
EmbeddingLookupSparseOptions,
MulOptions,
PadOptions,
GatherOptions,
BatchToSpaceNDOptions,
SpaceToBatchNDOptions,
TransposeOptions,
ReducerOptions,
SubOptions,
DivOptions,
SqueezeOptions,
SequenceRNNOptions,
StridedSliceOptions,
ExpOptions,
TopKV2Options,
SplitOptions,
LogSoftmaxOptions,
CastOptions,
DequantizeOptions,
MaximumMinimumOptions,
ArgMaxOptions,
LessOptions,
NegOptions,
PadV2Options,
GreaterOptions,
GreaterEqualOptions,
LessEqualOptions,
SelectOptions,
SliceOptions,
TransposeConvOptions,
SparseToDenseOptions,
TileOptions,
ExpandDimsOptions,
EqualOptions,
NotEqualOptions,
ShapeOptions,
PowOptions,
ArgMinOptions,
FakeQuantOptions,
PackOptions,
LogicalOrOptions,
OneHotOptions,
LogicalAndOptions,
LogicalNotOptions,
UnpackOptions,
FloorDivOptions,
SquareOptions,
ZerosLikeOptions,
FillOptions,
BidirectionalSequenceLSTMOptions,
BidirectionalSequenceRNNOptions,
UnidirectionalSequenceLSTMOptions,
FloorModOptions,
RangeOptions,
ResizeNearestNeighborOptions,
LeakyReluOptions,
SquaredDifferenceOptions,
MirrorPadOptions,
AbsOptions,
SplitVOptions,
UniqueOptions,
ReverseV2Options,
AddNOptions,
GatherNdOptions,
CosOptions,
WhereOptions,
RankOptions,
ReverseSequenceOptions,
MatrixDiagOptions,
QuantizeOptions,
MatrixSetDiagOptions,
HardSwishOptions,
IfOptions,
WhileOptions,
DepthToSpaceOptions,
NonMaxSuppressionV4Options,
NonMaxSuppressionV5Options,
ScatterNdOptions,
SelectV2Options,
DensifyOptions,
SegmentSumOptions,
BatchMatMulOptions,
CumsumOptions,
CallOnceOptions,
BroadcastToOptions,
Rfft2dOptions,
Conv3DOptions,
HashtableOptions,
HashtableFindOptions,
HashtableImportOptions,
HashtableSizeOptions,
VarHandleOptions,
ReadVariableOptions,
AssignVariableOptions,
RandomOptions,
BucketizeOptions,
GeluOptions,
DynamicUpdateSliceOptions,
UnsortedSegmentProdOptions,
UnsortedSegmentMaxOptions,
UnsortedSegmentMinOptions,
UnsortedSegmentSumOptions,
ATan2Options,
SignOptions,
BitcastOptions,
BitwiseXorOptions,
RightShiftOptions,
}
// LINT.IfChange
enum Padding : byte { SAME, VALID }
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
// LINT.IfChange
enum ActivationFunctionType : byte {
NONE = 0,
RELU = 1,
RELU_N1_TO_1 = 2,
RELU6 = 3,
TANH = 4,
SIGN_BIT = 5,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
table Conv2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
fused_activation_function:ActivationFunctionType;
dilation_w_factor:int = 1;
dilation_h_factor:int = 1;
}
// Options for both Conv3D and Conv3DTranspose.
table Conv3DOptions {
padding:Padding;
stride_d:int;
stride_w:int;
stride_h:int;
fused_activation_function:ActivationFunctionType;
dilation_d_factor:int = 1;
dilation_w_factor:int = 1;
dilation_h_factor:int = 1;
}
table Pool2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
filter_width:int;
filter_height:int;
fused_activation_function:ActivationFunctionType;
}
table DepthwiseConv2DOptions {
// Parameters for DepthwiseConv version 1 or above.
padding:Padding;
stride_w:int;
stride_h:int;
// `depth_multiplier` is redundant. It's used by CPU kernels in
// TensorFlow 2.0 or below, but ignored in versions above.
// See comments in lite/c/builtin_op_data.h for more details.
depth_multiplier:int;
fused_activation_function:ActivationFunctionType;
// Parameters for DepthwiseConv version 2 or above.
dilation_w_factor:int = 1;
dilation_h_factor:int = 1;
}
table ConcatEmbeddingsOptions {
num_channels:int;
num_columns_per_channel:[int];
embedding_dim_per_channel:[int]; // This could be inferred from parameters.
}
enum LSHProjectionType: byte {
UNKNOWN = 0,
SPARSE = 1,
DENSE = 2,
}
table LSHProjectionOptions {
type: LSHProjectionType;
}
table SVDFOptions {
rank:int;
fused_activation_function:ActivationFunctionType;
// For weights-only quantization, use asymmetric quantization for non
// constant inputs at evaluation time.
asymmetric_quantize_inputs:bool;
}
// An implementation of TensorFlow RNNCell.
table RNNOptions {
fused_activation_function:ActivationFunctionType;
asymmetric_quantize_inputs:bool;
}
// An implementation of TensorFlow dynamic_rnn with RNNCell.
table SequenceRNNOptions {
time_major:bool;
fused_activation_function:ActivationFunctionType;
asymmetric_quantize_inputs:bool;
}
// An implementation of TensorFlow bidrectional_dynamic_rnn with RNNCell.
table BidirectionalSequenceRNNOptions {
time_major:bool;
fused_activation_function:ActivationFunctionType;
merge_outputs: bool;
asymmetric_quantize_inputs:bool;
}
// LINT.IfChange
enum FullyConnectedOptionsWeightsFormat: byte {
DEFAULT = 0,
SHUFFLED4x16INT8 = 1,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
// An implementation of TensorFlow fully_connected (a.k.a Dense) layer.
table FullyConnectedOptions {
// Parameters for FullyConnected version 1 or above.
fused_activation_function:ActivationFunctionType;
// Parameters for FullyConnected version 2 or above.
weights_format:FullyConnectedOptionsWeightsFormat = DEFAULT;
// Parameters for FullyConnected version 5 or above.
// If set to true, then the number of dimension is preserved. Furthermore,
// all but the last dimension of the input and output shapes will be equal.
keep_num_dims: bool;
// Parameters for FullyConnected version 7 or above.
// If set to true, then weights-only op will use asymmetric quantization for
// inputs.
asymmetric_quantize_inputs: bool;
}
table SoftmaxOptions {
beta: float;
}
// An implementation of TensorFlow concat.
table ConcatenationOptions {
axis:int;
fused_activation_function:ActivationFunctionType;
}
table AddOptions {
fused_activation_function:ActivationFunctionType;
// Parameters supported by version 3.
pot_scale_int16:bool = true;
}
table MulOptions {
fused_activation_function:ActivationFunctionType;
}
table L2NormOptions {
// This field is currently ignored in the L2 Norm Op.
fused_activation_function:ActivationFunctionType;
}
table LocalResponseNormalizationOptions {
radius:int;
bias:float;
alpha:float;
beta:float;
}
// LINT.IfChange
enum LSTMKernelType : byte {
// Full LSTM kernel which supports peephole and projection.
FULL = 0,
// Basic LSTM kernels. Equivalent to TensorFlow BasicLSTMCell.
BASIC = 1,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
// An implementation of TensorFlow LSTMCell and CoupledInputForgetGateLSTMCell
table LSTMOptions {
// Parameters for LSTM version 1 or above.
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
// Parameters for LSTM version 2 or above.
// Basic kernel is only supported in version 2 or above.
kernel_type: LSTMKernelType = FULL;
// Parameters for LSTM version 4 or above.
asymmetric_quantize_inputs: bool;
}
// An implementation of TensorFlow dynamic_rnn with LSTMCell.
table UnidirectionalSequenceLSTMOptions {
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
// If true then first dimension is sequence, otherwise batch.
time_major:bool;
// Parameter for Unidirectional Sequence LSTM version 3.
asymmetric_quantize_inputs:bool;
// Parameter for unidirectional sequence RNN version 4.
diagonal_recurrent_tensors:bool;
}
table BidirectionalSequenceLSTMOptions {
// Parameters supported by version 1:
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
// If true, store the outputs of both directions into the first output.
merge_outputs: bool;
// Parameters supported by version 2:
// If true then first dimension is sequence, otherwise batch.
// Version 1 implementations assumed time_major to be true, so this default
// value should never change.
time_major: bool = true;
// Parameters for version 3 or above.
asymmetric_quantize_inputs:bool;
}
table ResizeBilinearOptions {
new_height: int (deprecated);
new_width: int (deprecated);
align_corners: bool;
half_pixel_centers: bool;
}
table ResizeNearestNeighborOptions {
align_corners: bool;
half_pixel_centers: bool;
}
// A call operation options
table CallOptions {
// The subgraph index that needs to be called.
subgraph:uint;
}
table PadOptions {
}
table PadV2Options {
}
table ReshapeOptions {
new_shape:[int];
}
table SpaceToBatchNDOptions {
}
table BatchToSpaceNDOptions {
}
table SkipGramOptions {
ngram_size: int;
max_skip_size: int;
include_all_ngrams: bool;
}
table SpaceToDepthOptions {
block_size: int;
}
table DepthToSpaceOptions {
block_size: int;
}
table SubOptions {
fused_activation_function:ActivationFunctionType;
// Parameters supported by version 5
pot_scale_int16:bool = true;
}
table DivOptions {
fused_activation_function:ActivationFunctionType;
}
table TopKV2Options {
}
enum CombinerType : byte {
SUM = 0,
MEAN = 1,
SQRTN = 2,
}
table EmbeddingLookupSparseOptions {
combiner:CombinerType;
}
table GatherOptions {
axis: int;
// Parameters for Gather version 5 or above.
batch_dims: int = 0;
}
table TransposeOptions {
}
table ExpOptions {
}
table CosOptions {
}
table ReducerOptions {
keep_dims: bool;
}
table SqueezeOptions {
squeeze_dims:[int];
}
table SplitOptions {
num_splits: int;
}
table SplitVOptions {
num_splits: int;
}
table StridedSliceOptions {
begin_mask: int;
end_mask: int;
ellipsis_mask: int;
new_axis_mask: int;
shrink_axis_mask: int;
}
table LogSoftmaxOptions {
}
table CastOptions {
in_data_type: TensorType;
out_data_type: TensorType;
}
table DequantizeOptions {
}
table MaximumMinimumOptions {
}
table TileOptions {
}
table ArgMaxOptions {
output_type : TensorType;
}
table ArgMinOptions {
output_type : TensorType;
}
table GreaterOptions {
}
table GreaterEqualOptions {
}
table LessOptions {
}
table LessEqualOptions {
}
table NegOptions {
}
table SelectOptions {
}
table SliceOptions {
}
table TransposeConvOptions {
// Parameters supported by version 1, 2, 3:
padding:Padding;
stride_w:int;
stride_h:int;
// Parameters supported by version 4:
fused_activation_function:ActivationFunctionType = NONE;
}
table ExpandDimsOptions {
}
table SparseToDenseOptions {
validate_indices:bool;
}
table EqualOptions {
}
table NotEqualOptions {
}
table ShapeOptions {
// Optional output type of the operation (int32 or int64). Defaults to int32.
out_type : TensorType;
}
table RankOptions {
}
table PowOptions {
}
table FakeQuantOptions {
// Parameters supported by version 1:
min:float;
max:float;
num_bits:int;
// Parameters supported by version 2:
narrow_range:bool;
}
table PackOptions {
values_count:int;
axis:int;
}
table LogicalOrOptions {
}
table OneHotOptions {
axis:int;
}
table AbsOptions {
}
table HardSwishOptions {
}
table LogicalAndOptions {
}
table LogicalNotOptions {
}
table UnpackOptions {