forked from yukitsuji/3D_CNN_tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiview_2d.py
91 lines (78 loc) · 2.79 KB
/
multiview_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python
import sys
import os
import rospy
import numpy as np
import cv2
import pcl
import glob
import std_msgs.msg
import sensor_msgs.point_cloud2 as pc2
from sensor_msgs.msg import PointCloud2
from parse_xml import parseXML
from input_velodyne import *
import matplotlib.pyplot as plt
def convert_xyz_to_2d(places):
theta = np.arctan2(places[:, 1], places[:, 0])
ave_theta = np.average(theta)
phi = np.arctan2(places[:, 2], np.sqrt(places[:, 0]**2 + places[:, 1]**2))
ave_phi = np.average(phi)
r = (theta / ave_theta).astype(np.int32)
c = (phi / ave_phi).astype(np.int32)
print "places", places.shape
print np.max(places, axis=0)
print np.min(places, axis=0)
print "theta", theta.shape
print theta.max(axis=0)
print theta.min(axis=0)
print ave_theta
print "phi", phi.shape
print phi.min()
print phi.max()
print ave_phi
print r.max(), r.min(), c.max(), c.min()
plt.hist(phi)
plt.show()
def bird_view(places):
pass
def process(velodyne_path, label_path=None, calib_path=None, dataformat="pcd", label_type="txt", is_velo_cam=False):
p = []
pc = None
bounding_boxes = None
places = None
rotates = None
size = None
proj_velo = None
if dataformat == "bin":
pc = load_pc_from_bin(velodyne_path)
elif dataformat == "pcd":
pc = load_pc_from_pcd(velodyne_path)
if calib_path:
calib = read_calib_file(calib_path)
proj_velo = proj_to_velo(calib)[:, :3]
if label_path:
places, rotates, size = read_labels(label_path, label_type, calib_path=calib_path, is_velo_cam=is_velo_cam, proj_velo=proj_velo)
convert_xyz_to_2d(pc)
# corners = get_boxcorners(places, rotates, size)
# filter_car_data(corners)
#
# pc = filter_camera_angle(pc)
# # obj = []
# # obj = create_publish_obj(obj, places, rotates, size)
#
# p.append((0, 0, 0))
# print 1
# # publish_pc2(pc, obj)
# publish_pc2(pc, corners.reshape(-1, 3))
if __name__ == "__main__":
# pcd_path = "../data/training/velodyne/000012.pcd"
# label_path = "../data/training/label_2/000012.txt"
# calib_path = "../data/training/calib/000012.txt"
# process(pcd_path, label_path, calib_path=calib_path, dataformat="pcd")
# bin_path = "../data/2011_09_26/2011_09_26_drive_0001_sync/velodyne_points/data/0000000030.bin"
# xml_path = "../data/2011_09_26/2011_09_26_drive_0001_sync/tracklet_labels.xml"
# process(bin_path, xml_path, dataformat="bin", label_type="xml")
pcd_path = "/home/katou01/download/training/velodyne/005080.bin"
label_path = "/home/katou01/download/training/label_2/005080.txt"
calib_path = "/home/katou01/download/training/calib/005080.txt"
process(pcd_path, label_path, calib_path=calib_path, dataformat="bin", is_velo_cam=True)