-
Notifications
You must be signed in to change notification settings - Fork 11
/
linux_code.c
334 lines (287 loc) · 9.65 KB
/
linux_code.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include "types.h"
#include "linux_code.h"
#include "darwin_code.h"
// Descriptor table base addresses & limits for Linux startup.
dt_addr_t gdt_addr = { 0x800, 0x94000 };
dt_addr_t idt_addr = { 0, 0 };
// Initial GDT layout for Linux startup.
uint16_t init_gdt[] = {
/* gdt[0]: (0x00) dummy */
0, 0, 0, 0,
/* gdt[1]: (0x08) unused */
0, 0, 0, 0,
/* Documented linux kernel segments */
/* gdt[2]: (0x10) flat code segment */
0xFFFF, /* 4Gb - (0x100000*0x1000 = 4Gb) */
0x0000, /* base address=0 */
0x9A00, /* code read/exec */
0x00CF, /* granularity=4096, 386 (+5th nibble of limit) */
/* gdt[3]: (0x18) flat data segment */
0xFFFF, /* 4Gb - (0x100000*0x1000 = 4Gb) */
0x0000, /* base address=0 */
0x9200, /* data read/write */
0x00CF, /* granularity=4096, 386 (+5th nibble of limit) */
/* gdt[4]: (0x20) unused */
0, 0, 0, 0,
/* gdt[5]: (0x28) unused */
0, 0, 0, 0,
/* gdt[6]: (0x30) unused */
0, 0, 0, 0,
/* gdt[7]: (0x38) unused */
0, 0, 0, 0,
/* gdt[8]: (0x40) unused */
0, 0, 0, 0,
/* gdt[9]: (0x48) unused */
0, 0, 0, 0,
/* gdt[10]:(0x50) unused */
0, 0, 0, 0,
/* gdt[11]:(0x58) unused */
0, 0, 0, 0,
/* Segments used by the 2.5.x kernel */
/* gdt[12]:(0x60) flat code segment */
0xFFFF, /* 4Gb - (0x100000*0x1000 = 4Gb) */
0x0000, /* base address=0 */
0x9A00, /* code read/exec */
0x00CF, /* granularity=4096, 386 (+5th nibble of limit) */
/* gdt[13]:(0x68) flat data segment */
0xFFFF, /* 4Gb - (0x100000*0x1000 = 4Gb) */
0x0000, /* base address=0 */
0x9200, /* data read/write */
0x00CF, /* granularity=4096, 386 (+5th nibble of limit) */
};
uint32_t init_gdt_size = sizeof(init_gdt);
/*------------------------------------------------------------------------------*/
/*------------------------------------------------------------------------------*/
/* Convert EFI memory map to E820 map for the operating system
* This code is based on a Linux kernel patch submitted by Edgar Hucek
*/
/* Add a memory region to the e820 map */
static void add_memory_region(struct e820entry *e820_map,
int *e820_nr_map,
UINT64 start,
UINT64 size,
UINT32 type)
{
int x = *e820_nr_map;
if (x == E820MAX) {
printk(L"ATV: Too many entries in the memory map!\n");
return;
}
if ((x > 0) && e820_map[x-1].addr + e820_map[x-1].size == start
&& e820_map[x-1].type == type)
e820_map[x-1].size += size;
else {
e820_map[x].addr = start;
e820_map[x].size = size;
e820_map[x].type = type;
(*e820_nr_map)++;
}
}
/*------------------------------------------------------------------------------*/
void fill_e820map(boot_params_t *bp)
{
int nr_map, e820_nr_map = 0, i;
UINT64 start, end, size;
efi_memory_desc_t *md, *p;
struct e820entry *e820_map;
nr_map = bp->s.efi_mem_map_size/bp->s.efi_mem_desc_size;
e820_map = (struct e820entry *)bp->s.e820_map;
for (i = 0, p = (efi_memory_desc_t*)bp->s.efi_mem_map; i < nr_map; i++) {
md = p;
switch (md->type) {
// ACPI tables -- to be preserved by loader/OS until ACPI is enable
// once enabled, can be treated as conventional memory
case EFI_ACPI_RECLAIM_MEMORY:
add_memory_region(e820_map, &e820_nr_map,
md->phys_addr,
md->num_pages << EFI_PAGE_SHIFT,
E820_ACPI);
break;
// must be preserved by loader/OS in working an ACPI S1-S3 states
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
case EFI_RESERVED_TYPE:
case EFI_MEMORY_MAPPED_IO:
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
case EFI_UNUSABLE_MEMORY:
case EFI_PAL_CODE:
add_memory_region(e820_map, &e820_nr_map,
md->phys_addr,
md->num_pages << EFI_PAGE_SHIFT,
E820_RESERVED);
break;
// can be treaded as conventional memory by loader/OS
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
start = md->phys_addr;
size = md->num_pages << EFI_PAGE_SHIFT;
end = start + size;
/* Fix up for BIOS that claims RAM in 640K-1MB region */
if (start < 0x100000ULL && end > 0xA0000ULL) {
if (start < 0xA0000ULL) {
/* start < 640K
* set memory map from start to 640K
*/
add_memory_region(e820_map,
&e820_nr_map,
start,
0xA0000ULL-start,
E820_RAM);
}
if (end <= 0x100000ULL) {
continue;
}
// end > 1MB, set memory map avoiding 640K to 1MB hole
start = 0x100000ULL;
size = end - start;
}
add_memory_region(e820_map, &e820_nr_map,
start, size, E820_RAM);
break;
// ACPI working memory --- should be preserved by loader/OS in the working
// and ACPI S1-S3 states
case EFI_ACPI_MEMORY_NVS:
add_memory_region(e820_map, &e820_nr_map,
md->phys_addr,
md->num_pages << EFI_PAGE_SHIFT,
E820_NVS);
break;
default:
/* We should not hit this case */
printk("ATV: default add_memory_region, should not see this\n");
add_memory_region(e820_map, &e820_nr_map,
md->phys_addr,
md->num_pages << EFI_PAGE_SHIFT,
E820_RESERVED);
break;
}
p = (efi_memory_desc_t*)NextEFIMemoryDescriptor(p, bp->s.efi_mem_desc_size);
}
bp->s.e820_nrmap = e820_nr_map;
}
/*------------------------------------------------------------------------------*/
void print_e820_memory_map(boot_params_t *bp)
{
int i;
struct e820entry *e820_map;
e820_map = (struct e820entry*)bp->s.e820_map;
for (i = 0; i < bp->s.e820_nrmap; i++) {
printk("ATV: %s: 0x%08X%08X - 0x%08X%08X ", "E820 Map",
hi32( e820_map[i].addr ),
lo32( e820_map[i].addr ),
hi32( e820_map[i].addr + e820_map[i].size),
lo32( e820_map[i].addr + e820_map[i].size) );
switch (e820_map[i].type) {
case E820_RAM:
printk("(usable)\n");
break;
case E820_RESERVED:
printk("(reserved)\n");
break;
case E820_ACPI:
printk("(ACPI data)\n");
break;
case E820_NVS:
printk("(ACPI NVS)\n");
break;
default:
printk("type %u\n", e820_map[i].type);
break;
}
}
}
/*------------------------------------------------------------------------------*/
void quirk_fixup_efi_memmap(boot_params_t *bp)
{
/* November 26, 2007 -- Scott Davilla ([email protected])
The appletv efi firmware has a bug that effects linux kernel when
booting from efi. Three EFI RunTime Services Code/Data segments overlap
a declared free ememory segment. This can cause code/data overwrites
and result in unknown crashes/hangs when running linux.
*/
int num_maps, i;
UINT64 bgn, end, bgn_match, end_match;
efi_memory_desc_t *md, *p;
bgn_match = end_match = -1;
num_maps = bp->s.efi_mem_map_size/bp->s.efi_mem_desc_size;
// gather up the offending memory ranges
// these are the two EFI_RUNTIME_SERVICES_CODE and one EFI_RUNTIME_SERVICES_DATA
// memmap sections. This routine assumes that the sections will appear in order
// which they seem to always do for the appleTV
for (i = 0, p = (efi_memory_desc_t*)bp->s.efi_mem_map; i < num_maps; i++) {
md = p;
bgn = md->phys_addr;
end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
//
switch (md->type) {
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
if (bgn_match == -1) {
bgn_match = md->phys_addr;
end_match = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
} else {
if (end_match == md->phys_addr) {
end_match = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
}
}
/*
printk("mem%02d: type=%d, ", i, md->Type );
printk("attr=0x%08X%08X\n", hi32(md->Attribute), lo32(md->Attribute) );
printk(" range=[0x%08X%08X-", hi32(bgn), lo32(bgn) );
printk("0x%08X%08X], ", hi32(end), lo32(end) );
printk("%dMB\n", lo32(md->NumberOfPages >> (20 - EFI_PAGE_SHIFT)) );
*/
break;
}
p = NextEFIMemoryDescriptor(p, bp->s.efi_mem_desc_size);
}
for (i = 0, p = (efi_memory_desc_t*)bp->s.efi_mem_map; i < num_maps; i++) {
md = p;
bgn = md->phys_addr;
end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
/*
printk("mem%02d: type=%d, ", i, md->Type );
printk("attr=0x%08X%08X\n", hi32(md->Attribute), lo32(md->Attribute) );
printk(" range=[0x%08X%08X-", hi32(bgn), lo32(bgn) );
printk("0x%08X%08X], ", hi32(end), lo32(end) );
printk("%dMB\n", lo32(md->NumberOfPages >> (20 - EFI_PAGE_SHIFT)) );
*/
// find problem free memory segment */
if ( (bgn == bgn_match) & (end >= end_match) ) {
UINT64 new_bgn, new_end, new_pages;
//printk(" found memory overlap\n");
//printk(" memory range=[0x%08X%08X-", hi32(bgn), lo32(bgn) );
//printk("0x%08X%08X]\n", hi32(end), lo32(end) );
new_bgn = end_match;
new_pages = (end - new_bgn) / (1 << EFI_PAGE_SHIFT);
new_end = new_bgn + (new_pages << EFI_PAGE_SHIFT);
printk("ATV: fixing memory overlap\n");
printk("ATV: memory range=[0x%08X%08X-", hi32(new_bgn), lo32(new_bgn) );
printk("ATV: 0x%08X%08X]\n", hi32(new_end), lo32(new_end) );
md->phys_addr = new_bgn;
md->num_pages = new_pages;
}
p = NextEFIMemoryDescriptor(p, bp->s.efi_mem_desc_size);
}
for (i = 0, p = (efi_memory_desc_t*)bp->s.efi_mem_map; i < num_maps; i++) {
UINT64 target;
target = 0x025AE000;
md = p;
bgn = md->phys_addr;
end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
if ( (bgn < target) & (end > target) ) {
UINT64 new_bgn, new_end, new_pages;
new_bgn = bgn;
new_pages = (target - new_bgn) / (1 << EFI_PAGE_SHIFT);
new_end = new_bgn + (new_pages << EFI_PAGE_SHIFT);
printk("ATV: fixing memory target\n");
md->phys_addr = new_bgn;
md->num_pages = new_pages;
md->num_pages = new_pages;
}
p = NextEFIMemoryDescriptor(p, bp->s.efi_mem_desc_size);
}
}