-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
318 lines (265 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import tweepy
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import re
import time
from datetime import date
from textblob import TextBlob
from feel_it import EmotionClassifier, SentimentClassifier
from wordcloud import WordCloud, STOPWORDS
from PIL import Image
from config import DefaultConfig
CONFIG = DefaultConfig()
def percentage(part, total):
return 100 * float(part)/float(total)
def clean_tweet(text):
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z'àèìòùé?!,&.:;%€()<>=$\" \t])| (\w+:\ / \ / \S+)", " ", text)
.split())
def searchTweets(path):
#authentication
consumerKey = CONFIG.CONS_KEY
consumerSecret = CONFIG.CONS_SECR
accessToken = CONFIG.ACCESS_TOKEN
accessTokenSecret = CONFIG.ACCESS_TOKEN_SECRET
auth = tweepy.OAuthHandler(consumerKey, consumerSecret)
auth.set_access_token(accessToken, accessTokenSecret)
api = tweepy.API(auth)
keywords = ['#greenpass', '#supergreenpass', '#terzadose', '#quartadose', '#vaccino', '#vaccinatevi_e_basta',
'#vaccini', '#dittaturasanitaria', '#vaccinoobbligatorio', '#Covid19', '#omicron',
'#nessunacorrelazione', '#pandemia', '#lockdown', '#terzadoseoniente',
'#obbligovaccinale', '#quartaondata', '#vaccinokiller', '#RestiamoUmani', '#covid', '#greenpasspremium',
'#greenpassobbligatorio', "#iostoconlascienza", '#novax', '#sivax', '#booster']
noOfTweet = 100
dataOggi = date.today().strftime("%d/%m/%Y")
listOfLists =[[]]
for keyword in keywords:
tweets = tweepy.Cursor(api.search_tweets, q=keyword, tweet_mode='extended', lang='it').items(noOfTweet)
for tweet in tweets:
# check per controllare se è un retweet ed eventualmente accedere al
# full_text dello stesso per evitare troncamenti
if 'retweeted_status' in dir(tweet):
text = tweet.retweeted_status.full_text
else:
text = tweet.full_text
listOfLists.append([tweet.id_str, clean_tweet(text), tweet.user.location, tweet.user.id_str, dataOggi])
df = pd.DataFrame(listOfLists, columns=['id', 'text', 'location', 'idUser', 'date'])
df.drop_duplicates(inplace=True, subset=['text'])
df.to_csv(path_or_buf=path, sep='^', encoding='utf-8', mode='a', index=False, header=False)
def sentimentAndEmotionAnalysis():
dfIta = pd.read_csv(filepath_or_buffer='Tweets/TweetsSett3.csv', sep='^', encoding='utf-8')
dfEng = pd.read_csv(filepath_or_buffer='Tweets/TweetsSett3-en.csv', sep='^', encoding='utf-8')
emotionIta = EmotionClassifier()
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
dfIta.drop_duplicates(inplace=True, subset=['text'])
dfEng.drop_duplicates(inplace=True, subset=[' text '])
positive = 0; negative = 0; neutral = 0
tweet_list_ita = []; tweet_list_eng = []; neutral_list = []; negative_list = []; positive_list = []
for i in range(dfIta.shape[0]):
if dfIta.loc[i]['text'] != '^^^^':
tweet_list_ita.append(dfIta.loc[i]['text'])
for i in range(dfEng.shape[0]):
if dfEng.loc[i][' text '] != '^^^^':
tweet_list_eng.append(dfEng.loc[i][' text '])
print('1. Liste ita ed eng aggiornate: ')
# formattazione cella [nome_regione, #negativi, #neutrali, #positivi]
regioni = [['Abruzzo',0,0,0],
['Basilicata',0,0,0],
['Calabria',0,0,0],
['Campania',0,0,0],
['Emilia Romagna',0,0,0],
['Friuli Venezia Giulia',0,0,0],
['Lazio',0,0,0],
['Liguria',0,0,0],
['Lombardia',0,0,0],
['Marche',0,0,0],
['Molise',0,0,0],
['Piemonte',0,0,0],
['Puglia',0,0,0],
['Sardegna',0,0,0],
['Sicilia',0,0,0],
['Toscana',0,0,0],
['Trentino Alto Adige',0,0,0],
['Umbria',0,0,0],
["Valle d'Aosta",0,0,0],
['Veneto',0,0,0]]
start = time.time()
emotionList = emotionIta.predict(tweet_list_ita)
end = time.time()
print('2. Predict effettuata: ' + str(end-start))
start = time.time()
j = int(0)
for single_tweet in tweet_list_eng:
analysis = TextBlob(single_tweet)
tweetLocation = dfIta.loc[j]['location']
if analysis.sentiment.polarity < 0:
negative_list.append(single_tweet)
negative += 1
if type(tweetLocation) is str:
if 'Rome' in tweetLocation or 'Roma' in tweetLocation:
regioni[6][1] = regioni[6][1] + 1
elif 'Naples' in tweetLocation or 'Napoli' in tweetLocation:
regioni[3][1] = regioni[3][1] + 1
elif 'Milan' in tweetLocation or 'Milano' in tweetLocation:
regioni[8][1] = regioni[8][1] + 1
elif 'Turin' in tweetLocation or 'Torino' in tweetLocation:
regioni[11][1] = regioni[11][1] + 1
else:
for loc in regioni:
if loc[0] in tweetLocation:
loc[1] += 1
elif analysis.sentiment.polarity > 0:
positive_list.append(single_tweet)
positive += 1
if type(tweetLocation) is str:
if 'Rome' in tweetLocation or 'Roma' in tweetLocation:
regioni[6][3] = regioni[6][3] + 1
elif 'Naples' in tweetLocation or 'Napoli' in tweetLocation:
regioni[3][3] = regioni[3][3] + 1
elif 'Milan' in tweetLocation or 'Milano' in tweetLocation:
regioni[8][3] = regioni[8][3] + 1
elif 'Turin' in tweetLocation or 'Torino' in tweetLocation:
regioni[11][3] = regioni[11][3] + 1
else:
for loc in regioni:
if loc[0] in tweetLocation:
loc[3] += 1
else:
if emotionList[j] == 'joy':
emotionList[j] = 'neutral'
neutral_list.append(single_tweet)
neutral += 1
pos = 2
else:
negative_list.append(single_tweet)
negative += 1
pos = 1
if type(tweetLocation) is str:
if 'Rome' in tweetLocation or 'Roma' in tweetLocation:
regioni[6][pos] = regioni[6][pos] + 1
elif 'Naples' in tweetLocation or 'Napoli' in tweetLocation:
regioni[3][pos] = regioni[3][pos] + 1
elif 'Milan' in tweetLocation or 'Milano' in tweetLocation:
regioni[8][pos] = regioni[8][pos] + 1
elif 'Turin' in tweetLocation or 'Torino' in tweetLocation:
regioni[11][pos] = regioni[11][pos] + 1
else:
for loc in regioni:
if loc[0] in tweetLocation:
loc[pos] += 1
j = j + 1
end = time.time()
print('3. for effettuato: ' + str(end - start))
print('total number: ', len(tweet_list_eng))
print('positive number: ', len(positive_list))
print('negative number: ', len(negative_list))
print('neutral number: ', len(neutral_list))
#print(positive_list)
#print(neutral_list)
#print(negative_list)
createSentimentPiecart(percentage(len(positive_list), len(tweet_list_eng)),
percentage(len(neutral_list), len(tweet_list_eng)),
percentage(len(negative_list), len(tweet_list_eng)))
createEmotionPiecart(emotionList)
for i in range(len(regioni)):
print('Regione ' + str(regioni[i][0]) + ' = negativi: ' + str(regioni[i][1]) + ', neutrali: ' + str(regioni[i][2]) + ', positivi: ' + str(regioni[i][3]))
def createSentimentPiecart(positive, neutral, negative):
labels = ['Positive['+str(positive)[0:4] +' %]', 'Neutral['+str(neutral)[0:4] +' %]', 'Negative['+str(negative)[0:4] +' %]']
sizes = [positive, neutral, negative]
colors = ['orange', 'blue', 'red']
patches, texts = plt.pie(sizes, colors=colors, startangle=90)
plt.style.use('default')
plt.legend(labels)
plt.title('Sentiment Analysis Result')
plt.axis('equal')
plt.show()
def createEmotionPiecart(emotions):
joy = 0; fear = 0; neutral = 0; sadness = 0; anger = 0;
for i in range(len(emotions)):
if emotions[i] == 'joy':
joy+=1
elif emotions[i] == 'fear':
fear+=1
elif emotions[i] == 'sadness':
sadness+=1
elif emotions[i] == 'anger':
anger+=1
else:
neutral+=1
labels = ['Joy['+str(joy) + ']', 'Neutral['+str(neutral) + ']', 'Fear['+str(fear) + ']', 'Sadness['+str(sadness) + ']', 'Anger['+str(anger) + ']']
sizes = [joy, neutral, fear, sadness, anger]
colors = ['orange', 'blue', 'red', 'green', 'yellow']
patches, texts = plt.pie(sizes, colors=colors, startangle=90)
plt.style.use('default')
plt.legend(labels)
plt.title('Emotion Analysis Result')
plt.axis('equal')
plt.show()
def create_wordtweet(list):
text = ''
for t in list:
text += (' ' + t)
mask = np.array(Image.open('wordcloud/twitter_mask.png'))
stopwords = set(STOPWORDS)
wc = WordCloud(background_color='white',
mask=mask,
max_words=3000,
stopwords=stopwords,
contour_width=2,
contour_color='blue',
colormap='gist_ncar',
repeat=True).generate(text)
plt.figure()
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
# store to file
plt.savefig("wordcloud/twitter.png", format="png")
def test_accuracy():
dfIta = pd.read_csv(filepath_or_buffer='Tweets/prova.csv', sep='^', encoding='utf-8')
dfEng = pd.read_csv(filepath_or_buffer='Tweets/prova-en.csv', sep='^', encoding='utf-8')
emotionIta = EmotionClassifier()
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
contatoreTotale = 0; contatoreCorretti = 0
positive = 0;
negative = 0;
neutral = 0
tweet_list_ita = [];
tweet_list_eng = [];
neutral_list = [];
negative_list = [];
positive_list = []
for i in range(dfIta.shape[0]):
if dfIta.loc[i]['text'] != '^^^^':
tweet_list_ita.append(dfIta.loc[i]['text'])
for i in range(dfEng.shape[0]):
if dfEng.loc[i][' text '] != '^^^^':
tweet_list_eng.append(dfEng.loc[i][' text '])
emotionList = emotionIta.predict(tweet_list_ita)
j = int(0)
for single_tweet in tweet_list_eng:
analysis = TextBlob(single_tweet)
if analysis.sentiment.polarity < 0:
negative_list.append(single_tweet)
negative += 1
elif analysis.sentiment.polarity > 0:
positive_list.append(single_tweet)
positive += 1
else:
if emotionList[j] == 'joy':
emotionList[j] = 'neutral'
neutral_list.append(single_tweet)
neutral += 1
else:
negative_list.append(single_tweet)
negative += 1
print(tweet_list_ita[j] + '\n||| emozione: ' + str(emotionList[j]) + '||| sentimento: ' + str(analysis.sentiment.polarity))
if input('inserire si per conteggiare come corretto, no altrimenti') == 'si':
contatoreCorretti += 1
contatoreTotale += 1;
j = j + 1
print(contatoreCorretti)
print(contatoreTotale)
if __name__ == '__main__':
print("replace this instruction to run your script")