We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
建议:
建议第一章和第二章合起来作为课程的prerequisite knowledge 抛开上述所有内容,如果我来设计:
3.规则介绍:
另外,整体上用到了tushare, akshare, baoshare建议统一主要用其中一个,方便上手
The text was updated successfully, but these errors were encountered:
请问有什么比较好的自学材料推荐吗?我也觉得在金融相关的知识太广了,很难把握重点。
Sorry, something went wrong.
先分清楚是去pquant还是qquant, pquant更前台,qquant主要是风控 假设目前教程是pquant
个人研究
少数人是先有策略再做量化,量化只是将主观的东西给自动化,直接找个人合作写代码就可以了 多数人是没有策略,一般根据业界经验,follow主流策略框架,建议先打牢基础,再了解各种策略,最后选择一个方向去仔细钻研; 上述只是个人观点,如果following 其他大纲的话 CQF, AQF这种证书对应的知识体系应该是对口的,可以参考这些大佬们设计的体系 AQF: https://www.aqfi.org/uploadfile/loginfile/AQF%20Study%20Guide.pdf 最后一句,遇事不决大模型来写,
No branches or pull requests
建议:
另外最重要删除的原因:不要想着把大学一年学习的东西四天内容让别人都学会,尽量简化做到只保留最相关的
建议第一章和第二章合起来作为课程的prerequisite knowledge
抛开上述所有内容,如果我来设计:
*(可选) 机器学习基本概念(lasso, ridge, decision tree) 深度学习,
3.规则介绍:
基本信息,日线,龙虎榜,融资融券,北向数据,资金流,订单流,ST,流通股本,停复牌,财务报表
另外,整体上用到了tushare, akshare, baoshare建议统一主要用其中一个,方便上手
The text was updated successfully, but these errors were encountered: