We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
看nfsp里,第2个player是random agent, 产生random动作,能像第一个agent一样也用nfsp agent吗,是因为random探索更好更全吗,看训练时只用nfsp agent产生的数据,如果两个player同样用一种 agent, 是不是数据搜集速度翻倍啊。想用在近似无限回合的game, 如果用random探索会不会太慢啊。
非常感谢,
ant
The text was updated successfully, but these errors were encountered:
@ant3001 这个是可以的 example里面只是示例。https://github.com/datamllab/rlcard/blob/master/examples/run_dmc.py 这个例子就是所有玩家都用RL
Sorry, something went wrong.
@daochenzha 多谢,多谢,越看觉得很多才看明白,每个play可以不同的agent,这种架构很强啊。
No branches or pull requests
看nfsp里,第2个player是random agent, 产生random动作,能像第一个agent一样也用nfsp agent吗,是因为random探索更好更全吗,看训练时只用nfsp agent产生的数据,如果两个player同样用一种 agent, 是不是数据搜集速度翻倍啊。想用在近似无限回合的game, 如果用random探索会不会太慢啊。
非常感谢,
ant
The text was updated successfully, but these errors were encountered: