diff --git a/.vscode/settings.json b/.vscode/settings.json index 0917d251..e1160fae 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -4,9 +4,9 @@ "editor.rulers": [ 88 ], - "python.formatting.provider": "none", + "python.formatting.provider": "black", "[python]": { - "editor.defaultFormatter": "ms-python.black-formatter" + "editor.defaultFormatter": null }, "[markdown]": { "editor.defaultFormatter": "disable" diff --git a/element_calcium_imaging/imaging_no_curation.py b/element_calcium_imaging/imaging_no_curation.py index dbb89f2f..07060447 100644 --- a/element_calcium_imaging/imaging_no_curation.py +++ b/element_calcium_imaging/imaging_no_curation.py @@ -356,8 +356,19 @@ class Processing(dj.Computed): def key_source(self): """Limit the Processing to Scans that have their metadata ingested to the database.""" - - return ProcessingTask & scan.ScanInfo + ks = ProcessingTask & scan.ScanInfo + per_plane_proc = ( + ProcessingTask.aggr( + PerPlaneProcessingTask.proj(), task_count="count(*)", keep_all_rows=True + ) + * ProcessingTask.aggr( + PerPlaneProcessing.proj(), + finished_task_count="count(*)", + keep_all_rows=True, + ) + & "task_count = finished_task_count" + ) + return ks & per_plane_proc def make(self, key): """Execute the calcium imaging analysis defined by the ProcessingTask.""" @@ -365,7 +376,6 @@ def make(self, key): task_mode, output_dir = (ProcessingTask & key).fetch1( "task_mode", "processing_output_dir" ) - acq_software = (scan.Scan & key).fetch1("acq_software") if not output_dir: output_dir = ProcessingTask.infer_output_dir(key, relative=True, mkdir=True) @@ -398,6 +408,7 @@ def make(self, key): method = (ProcessingParamSet * ProcessingTask & key).fetch1( "processing_method" ) + acq_software = (scan.Scan & key).fetch1("acq_software") image_files = (scan.ScanInfo.ScanFile & key).fetch("file_path") image_files = [ @@ -425,6 +436,7 @@ def make(self, key): "data_path": [image_files[0].parent.as_posix()], "tiff_list": [f.as_posix() for f in image_files], } + suite2p_params["force_sktiff"] = True suite2p.run_s2p(ops=suite2p_params, db=suite2p_paths) # Run suite2p @@ -443,33 +455,104 @@ def make(self, key): "fps", "ndepths", "nchannels" ) - is3D = bool(ndepths > 1) + is3D = caiman_params.get("is3D", False) if is3D: raise NotImplementedError( - "Caiman pipeline is not yet capable of analyzing 3D scans." + "Analyzing 3D scans using CaImAn is not yet supported in this pipeline." ) - if acq_software == "ScanImage" and nchannels > 1: - # handle multi-channel tiff image before running CaImAn - channel_idx = caiman_params.get("channel_to_process", 0) - tmp_dir = pathlib.Path(output_dir) / "channel_separated_tif" - tmp_dir.mkdir(exist_ok=True) - _process_scanimage_tiff( - [f.as_posix() for f in image_files], output_dir=tmp_dir + channel = caiman_params.get("channel_to_process", 0) + + if ndepths == 1: # single-plane processing + if acq_software == "ScanImage": + if nchannels > 1: + # handle multi-channel tiff image before running CaImAn + tmp_dir = pathlib.Path(output_dir) / "channel_separated_tif" + tmp_dir.mkdir(exist_ok=True) + _process_scanimage_tiff( + [f.as_posix() for f in image_files], output_dir=tmp_dir + ) + image_files = tmp_dir.glob(f"*_chn{channel}.tif") + elif acq_software == "PrairieView": + from element_interface.prairie_view_loader import ( + PrairieViewMeta, + ) + + pv_dir = pathlib.Path(image_files[0]).parent + PVmeta = PrairieViewMeta(pv_dir) + channel = ( + channel + if PVmeta.meta["num_channels"] > 1 + else PVmeta.meta["channels"][0] + ) + image_files = [ + PVmeta.write_single_bigtiff( + channel=channel, + output_dir=output_dir, + caiman_compatible=True, + ) + ] + + run_caiman( + file_paths=[f.as_posix() for f in image_files], + parameters=caiman_params, + sampling_rate=sampling_rate, + output_dir=output_dir, + is3D=is3D, ) - image_files = tmp_dir.glob(f"*_chn{channel_idx}.tif") - - run_caiman( - file_paths=[f.as_posix() for f in image_files], - parameters=caiman_params, - sampling_rate=sampling_rate, - output_dir=output_dir, - is3D=is3D, - ) - _, imaging_dataset = get_loader_result(key, ProcessingTask) - caiman_dataset = imaging_dataset - key["processing_time"] = caiman_dataset.creation_time + _, imaging_dataset = get_loader_result(key, ProcessingTask) + caiman_dataset = imaging_dataset + key["processing_time"] = caiman_dataset.creation_time + else: # multi-plane processing + # per-plane processing with CaImAn + if acq_software == "ScanImage": + raise NotImplementedError( + "Multi-plane processing using CaImAn for ScanImage scans is not yet supported in this pipeline." + ) + elif acq_software == "PrairieView": + # Generate separate processing task for each plane - in `PerPlaneProcessingTask` + # if all `PerPlaneProcessingTask` for this key are done - ingest the results + from element_interface.prairie_view_loader import ( + PrairieViewMeta, + ) + + pv_dir = pathlib.Path(image_files[0]).parent + PVmeta = PrairieViewMeta(pv_dir) + + channel = ( + channel + if PVmeta.meta["num_channels"] > 1 + else PVmeta.meta["channels"][0] + ) + + plane_processing_tasks = [] + for plane_idx in PVmeta.meta["plane_indices"]: + pln_output_dir = ( + pathlib.Path(output_dir) + / f"pln{plane_idx}_chn{channel}" + ) + + pln_output_dir.mkdir(parents=True, exist_ok=True) + plane_processing_tasks.append( + { + **key, + "plane_idx": plane_idx, + "processing_output_dir": pln_output_dir, + } + ) + + if len( + PerPlaneProcessing.proj() & plane_processing_tasks + ) == len(plane_processing_tasks): + _, imaging_dataset = get_loader_result(key, ProcessingTask) + caiman_dataset = imaging_dataset + key["processing_time"] = caiman_dataset.creation_time + else: + PerPlaneProcessingTask.insert( + plane_processing_tasks, skip_duplicates=True + ) + return elif method == "extract": import suite2p @@ -632,7 +715,7 @@ class Block(dj.Part): block_z : longblob # (z_start, z_end) in pixel of this block y_shifts : longblob # (pixels) y motion correction shifts for every frame x_shifts : longblob # (pixels) x motion correction shifts for every frame - z_shifts=null : longblob # (pixels) x motion correction shifts for every frame + z_shifts=null : longblob # (pixels) z motion correction shifts for every frame y_std : float # (pixels) standard deviation of y shifts across all frames x_std : float # (pixels) standard deviation of x shifts across all frames z_std=null : float # (pixels) standard deviation of z shifts across all frames @@ -798,150 +881,21 @@ def make(self, key): } ) - is3D = caiman_dataset.params.motion["is3D"] - if not caiman_dataset.params.motion["pw_rigid"]: - # -- rigid motion correction -- - rigid_correction = { - **key, - "x_shifts": caiman_dataset.motion_correction["shifts_rig"][:, 0], - "y_shifts": caiman_dataset.motion_correction["shifts_rig"][:, 1], - "z_shifts": ( - caiman_dataset.motion_correction["shifts_rig"][:, 2] - if is3D - else np.full_like( - caiman_dataset.motion_correction["shifts_rig"][:, 0], - 0, - ) - ), - "x_std": np.nanstd( - caiman_dataset.motion_correction["shifts_rig"][:, 0] - ), - "y_std": np.nanstd( - caiman_dataset.motion_correction["shifts_rig"][:, 1] - ), - "z_std": ( - np.nanstd(caiman_dataset.motion_correction["shifts_rig"][:, 2]) - if is3D - else np.nan - ), - "outlier_frames": None, - } - - self.RigidMotionCorrection.insert1(rigid_correction) - else: + if caiman_dataset.is_pw_rigid: # -- non-rigid motion correction -- - nonrigid_correction = { - **key, - "block_height": ( - caiman_dataset.params.motion["strides"][0] - + caiman_dataset.params.motion["overlaps"][0] - ), - "block_width": ( - caiman_dataset.params.motion["strides"][1] - + caiman_dataset.params.motion["overlaps"][1] - ), - "block_depth": ( - caiman_dataset.params.motion["strides"][2] - + caiman_dataset.params.motion["overlaps"][2] - if is3D - else 1 - ), - "block_count_x": len( - set(caiman_dataset.motion_correction["coord_shifts_els"][:, 0]) - ), - "block_count_y": len( - set(caiman_dataset.motion_correction["coord_shifts_els"][:, 2]) - ), - "block_count_z": ( - len( - set( - caiman_dataset.motion_correction["coord_shifts_els"][ - :, 4 - ] - ) - ) - if is3D - else 1 - ), - "outlier_frames": None, - } - - nonrigid_blocks = [] - for b_id in range( - len(caiman_dataset.motion_correction["x_shifts_els"][0, :]) - ): - nonrigid_blocks.append( - { - **key, - "block_id": b_id, - "block_x": np.arange( - *caiman_dataset.motion_correction["coord_shifts_els"][ - b_id, 0:2 - ] - ), - "block_y": np.arange( - *caiman_dataset.motion_correction["coord_shifts_els"][ - b_id, 2:4 - ] - ), - "block_z": ( - np.arange( - *caiman_dataset.motion_correction[ - "coord_shifts_els" - ][b_id, 4:6] - ) - if is3D - else np.full_like( - np.arange( - *caiman_dataset.motion_correction[ - "coord_shifts_els" - ][b_id, 0:2] - ), - 0, - ) - ), - "x_shifts": caiman_dataset.motion_correction[ - "x_shifts_els" - ][:, b_id], - "y_shifts": caiman_dataset.motion_correction[ - "y_shifts_els" - ][:, b_id], - "z_shifts": ( - caiman_dataset.motion_correction["z_shifts_els"][ - :, b_id - ] - if is3D - else np.full_like( - caiman_dataset.motion_correction["x_shifts_els"][ - :, b_id - ], - 0, - ) - ), - "x_std": np.nanstd( - caiman_dataset.motion_correction["x_shifts_els"][ - :, b_id - ] - ), - "y_std": np.nanstd( - caiman_dataset.motion_correction["y_shifts_els"][ - :, b_id - ] - ), - "z_std": ( - np.nanstd( - caiman_dataset.motion_correction["z_shifts_els"][ - :, b_id - ] - ) - if is3D - else np.nan - ), - } - ) - + ( + nonrigid_correction, + nonrigid_blocks, + ) = caiman_dataset.extract_pw_rigid_mc() + nonrigid_correction.update(**key) + nonrigid_blocks.update(**key) self.NonRigidMotionCorrection.insert1(nonrigid_correction) self.Block.insert(nonrigid_blocks) + else: + # -- rigid motion correction -- + rigid_correction = caiman_dataset.extract_rigid_mc() + rigid_correction.update(**key) + self.RigidMotionCorrection.insert1(rigid_correction) # -- summary images -- summary_images = [ @@ -955,40 +909,10 @@ def make(self, key): } for fkey, ref_image, ave_img, corr_img, max_img in zip( field_keys, - ( - caiman_dataset.motion_correction["reference_image"].transpose( - 2, 0, 1 - ) - if is3D - else caiman_dataset.motion_correction["reference_image"][...][ - np.newaxis, ... - ] - ), - ( - caiman_dataset.motion_correction["average_image"].transpose( - 2, 0, 1 - ) - if is3D - else caiman_dataset.motion_correction["average_image"][...][ - np.newaxis, ... - ] - ), - ( - caiman_dataset.motion_correction["correlation_image"].transpose( - 2, 0, 1 - ) - if is3D - else caiman_dataset.motion_correction["correlation_image"][...][ - np.newaxis, ... - ] - ), - ( - caiman_dataset.motion_correction["max_image"].transpose(2, 0, 1) - if is3D - else caiman_dataset.motion_correction["max_image"][...][ - np.newaxis, ... - ] - ), + caiman_dataset.ref_image.transpose(2, 0, 1), + caiman_dataset.mean_image.transpose(2, 0, 1), + caiman_dataset.correlation_map.transpose(2, 0, 1), + caiman_dataset.max_proj_image.transpose(2, 0, 1), ) ] self.Summary.insert(summary_images) @@ -1128,16 +1052,15 @@ def make(self, key): "mask_weights": mask["mask_weights"], } ) - if caiman_dataset.cnmf.estimates.idx_components is not None: - if mask["mask_id"] in caiman_dataset.cnmf.estimates.idx_components: - cells.append( - { - **key, - "mask_classification_method": "caiman_default_classifier", - "mask": mask["mask_id"], - "mask_type": "soma", - } - ) + if mask["accepted"]: + cells.append( + { + **key, + "mask_classification_method": "caiman_default_classifier", + "mask": mask["mask_id"], + "mask_type": "soma", + } + ) self.insert1(key) self.Mask.insert(masks, ignore_extra_fields=True) @@ -1584,12 +1507,106 @@ def make(self, key): ) +# ---------------- Multi-plane Processing (per-plane basis) ---------------- + + +@schema +class PerPlaneProcessingTask(dj.Manual): + definition = """ + -> ProcessingTask + plane_idx: int + --- + processing_output_dir: varchar(255) # Output directory of the processed scan relative to root data directory + """ + + +@schema +class PerPlaneProcessing(dj.Computed): + definition = """ + -> PerPlaneProcessingTask + --- + processing_time : datetime # Time of generation of this set of processed, segmented results + package_version='' : varchar(16) + channel=null : int # Channel used for this processing + """ + + def make(self, key): + output_dir = (PerPlaneProcessingTask & key).fetch1("processing_output_dir") + output_dir = find_full_path(get_imaging_root_data_dir(), output_dir) + + plane_idx = key["plane_idx"] + acq_software = (scan.Scan & key).fetch1("acq_software") + params, method = (ProcessingParamSet * ProcessingTask & key).fetch1( + "params", "processing_method" + ) + caiman_params = params + sampling_rate = (scan.ScanInfo & key).fetch1("fps") + channel = params.get("channel_to_process", 0) + + if acq_software == "PrairieView": + from element_interface.prairie_view_loader import PrairieViewMeta + + image_file = (scan.ScanInfo.ScanFile & key).fetch("file_path", limit=1)[0] + image_file = find_full_path(get_imaging_root_data_dir(), image_file) + pv_dir = pathlib.Path(image_file).parent + PVmeta = PrairieViewMeta(pv_dir) + + channel = ( + channel + if PVmeta.meta["num_channels"] > 1 + else PVmeta.meta["channels"][0] + ) + if method == "caiman": + image_files = [ + PVmeta.write_single_bigtiff( + plane_idx=plane_idx, + channel=channel, + output_dir=output_dir.parent, + caiman_compatible=True, + ) + ] + else: + image_files = [ + pv_dir / f + for f in PVmeta.get_prairieview_filenames( + plane_idx=plane_idx, + channel=channel, + ) + ] + else: + raise NotImplementedError( + f"Per-plane processing for {acq_software} scans is not yet supported in this pipeline." + ) + + if method == "caiman": + from element_interface.run_caiman import run_caiman + + run_caiman( + file_paths=[f.as_posix() for f in image_files], + parameters=caiman_params, + sampling_rate=sampling_rate, + output_dir=output_dir.as_posix(), + is3D=False, + ) + else: + raise NotImplementedError( + f"Per-plane processing using {method} is not yet supported in this pipeline." + ) + + _, imaging_dataset = get_loader_result(key, PerPlaneProcessingTask) + caiman_dataset = imaging_dataset + key["processing_time"] = caiman_dataset.creation_time + + self.insert1({**key, "package_version": "", "channel": channel}) + + # ---------------- HELPER FUNCTIONS ---------------- _table_attribute_mapper = { "ProcessingTask": "processing_output_dir", "Curation": "curation_output_dir", + "PerPlaneProcessingTask": "processing_output_dir", } diff --git a/element_calcium_imaging/scan.py b/element_calcium_imaging/scan.py index db1b651a..539c7093 100644 --- a/element_calcium_imaging/scan.py +++ b/element_calcium_imaging/scan.py @@ -530,11 +530,12 @@ def estimate_nd2_scan_duration(nd2_scan_obj): ] ) elif acq_software == "PrairieView": - from element_interface import prairie_view_loader + from element_interface.prairie_view_loader import PrairieViewMeta + + pv_dir = pathlib.Path(scan_filepaths[0]).parent + PVmeta = PrairieViewMeta(pv_dir) + PVScan_info = PVmeta.meta - PVScan_info = prairie_view_loader.get_prairieview_metadata( - scan_filepaths[0] - ) self.insert1( dict( key,