From d6434e3db6ee5d7048ad0b36c9d9bea3194853c4 Mon Sep 17 00:00:00 2001 From: Rob Harrison <48765695+robjharrison@users.noreply.github.com> Date: Mon, 13 May 2024 12:45:44 +0000 Subject: [PATCH] Data refresh 130524 --- index.html | 2 +- ofsted_childrens_services_overview.xlsx | Bin 45356 -> 45272 bytes output.log | 4082 +++++++++++++++++++++++ 3 files changed, 4083 insertions(+), 1 deletion(-) diff --git a/index.html b/index.html index def80be..32eada1 100644 --- a/index.html +++ b/index.html @@ -26,7 +26,7 @@

Ofsted ILACS Summary

Summarised outcomes of published short and standard ILACS inspection reports by Ofsted, refreshed daily.
An expanded version of the shown summary sheet, refreshed concurrently, is available to download here as an .xlsx file.
Data summary is based on the original ILACS Outcomes Summary published periodically by the ADCS:https://adcs.org.uk/inspection/article/ilacs-outcomes-summary.

Disclaimer: This summary is built from scraped data direct from https://reports.ofsted.gov.uk/ and the published PDF inspection report files. As a result of the nuances|variance within the inspection report content or pdf encoding, we're noting some problematic data extraction for a small number of LA's*.
Feedback on specific problems|inaccuracies|suggestions welcomed.
**LA reports with issues: southend-on-sea, [overall, help_and_protection_grade,care_leavers_grade], nottingham,[inspection_framework, inspection_date], redcar and cleveland,[inspection_framework, inspection_date], knowsley,[inspector_name], stoke-on-trent,[inspector_name]

-

Last updated: 09 05 2024 08:28

+

Last updated: 13 05 2024 12:45

diff --git a/ofsted_childrens_services_overview.xlsx b/ofsted_childrens_services_overview.xlsx index fb3357e8c6664b44ce82240485bae5360e65611d..76f66ce831e6ad32f71fbbf3527d0ff202c84865 100644 GIT binary patch delta 21175 zcmV(=K-s^n;sV&=0h2L#y=V*?i$W9`Riu*1NbypsdYiwP z-N*fpdD}nHm#n)-1nF+)SVR_@$A0sVe|_Aqe?GRy)2=)G_Er34 z^lH@}*4<`z`0(3T|Kq2B`gQecbviePO|$O~?QdUwYEQ5J@pu2_H>cBiWq$Q=`t7Uj z`TX?XUcWxAx9wwd`m%d!59X8i-SM$Go0rEAuTM|Mw%MGvZF_#)zfPj4c>UPy4zE`0 z?s7Q)_Enl@@vGJ4f3W+@rTw~pD=y;v)$e|D+Wqb~=igOPmK48veg55VUfVbNH`6kb zZ~fbM@||y^Dl-4Y0wv_bT^)wfy~e&GB&B zx1Z$ub~8?9H{S2|ty%p0)4APz`Jwyx<>le^$Jo97I**bxf6fyS|3lYp^`=S?E!>| zzKqM9y;eZob zH>dG+`KwoZe{;Od86Mv$e)Z~kci!3)c75aN*sRaHbvwS5|LWCO!!z{WI<<#gcl6${ zyEVQvVm$4e!^wO7zIoj3KfU_)VO6H)0w}95R&`vM|I6*A5Sd$`PVF5LrS|{Kr&W=ge=0cZ@0#;=Wp2pT z!KmtX)i&m8Javy|&stEHW!FPo#d!qZV}AByyV`fppz=xeI!df!!`h)$;ymw~o{pr2@);tLB<=_7Oe|fKx>Z$>`)Bse?@-@Cf>`n`7QsBJhtoB{sPz53f{y+ z_pPF=Ih>@*>0}jKWv%W1S&glXp{^41f3-E}b!LC0urE`%D&DmlUp? zrFD<+Z$38156!VXuijmb4``qJ4Su-!&!|8HVt&ckt`^MfPr|s_P6zB%r^-1BM`2GQ@HdbgsDMcxW9*9FPz9J8A zjvVf#uexJ*`LOjRHV=o{uklK$0~yU%o-R*M=8|YP6Jm;Qg&m$1TW+oWBb&?GJqCY= zhvjf}1y46k!MOhXgW_i=ps#6Vt*KSoe>Ac-G_n7eTaUZ8es-GLe~evClgR!b`04L< z$43*3Y@5eBJ?%J)V_3kSyX|4+cH!I|K>wn_nu7moOlfaT(Y3CeHO1esItY4ft!4?D z2^UMRnaPxSA`YcI?Qo%+_pH;s_uaLxuG{P#l=JZtSWu$6&69ca>9{jq!u9Y6e`Y?8 zP(mgV3Sgv4{lhKp7yp~RTW5EAnAV7^<4nyz6IWQ-U{?zK4z}fVhi4Xewcb=uQ7Nkm zRQE^C369|KrPk|p%9=V0>om5qDw;d**hRsaRol#IEa>UJSw9#6fDh*Idt!zAVcvLb zUBEZU3YQ-FRupY|(+jd?|bG?P(L-~#r$Q?oi<9&P9X+F<-wMXL(!6QiJ36N!~H zo;8?$^KJ_F6#Nu%U*#okUyDopt8u$DH&Ka%;=+5eHr{;@JAs!s`e@uV#-UiXIKUMV zQxOYq4r2LOO2%K#xiz+le_O>Eb&KsF^Kxa}Kx{t|jOVUo#5}k$Tpi)`855_ttr493 z)JB+|B}|ji99HRI3HxlZ%@G@$2UBJzI?ANsmvn; z`$|%P;u(JB7AGQ^sbi2~zEa6|oX*G2*a;d(fp3Psa3~pZhJzd=e^Xatsz|DpxV=d_ zcLjyQ)v&EnRw4?Mc-XSr8*kdDbNl$N^;0yerX+cqBo$^eQ8eUFt1KUq zsC5!wlQS-pnqN~g@cZvNW02d&?sDFKv08793x8g3FUR$E^>@wV(?6{2B?IY`rLJU| zVGe0`Xg006GSBc=f1}ZKVd|w+Kk1Dc)4&`o-7h>nAntDxRhVb^wYN1vcH+8y)0e$H z1D>h{s+5s*sym+4aw*A0v_igl5usUJPC2%Jw9njo{ayFme!QJ%EB?hDab9^*wiLF6 z?6R+vnGhuN#m>SdWw62igW)C$oSCWsO?;!}M#*m{R?Cuff2d)&1nI4Yk>;+3QIFLO ztckue8}x86>tDU^%&y#Byr_#34!+q1mnSv%8B{YLZT@ui*!eQ< z-#C(Q7UJW#e_-`bmP3}f&4CkK$UO}uCAnv@h4Z&1`Yd9h>W*_oMVps__6%y7!O`#S zV`{4vQ9Kw)=SEh!eOcOY&y^sprKD=Pb9qWvW88Kh@3e(coW%wF@pE%*Rv+5-h_~p-?s@BENGf{>xc(*Q7wH`{|wBOe<%8qRCnBj&J(G1$rSr{UEqz% zcw<08@RJPgDGJS`lIkNCfI6fk4(fKJ;L^u#6`!r&|${Y7@d98Oh;ds(N2?_O5uV!gYpANu0QX}d#HfAbl^9AsJ!yY+)bD6SEUXY?S8;TLRN zhDA=UEn%&hY`Sq>KY1^Qpu~#-!iCd7BK6{=v`@pGyw_6U%v+mwZxxK+@3|C%KuvV9 z%(tC;_)qX=7&)1@zG>I3SZfd(i7@K)*m%KYCIyy8FbEEHVT-A)*J|`LYjsbQs}LNL ze-ul*V@46Pk2a%dLZfS1#HveeO;hG-;I6>tY5?|w5)=HFF2{iDZuu zciQiR8{4RkqGl;mNgHB0zb_hc_DBCZ5`SXkXy{MR^fnO>fgZ?u-Yxa@gnt6sZTmWQ6533;obPF?z@BRfTmn z#eii~h2B!$pCx1pFvTVEfslnGf7m~A;Cknh`e7m%v@d<3NSQG3REg~a9Eey0W-_GV z$|f@xb@&%+h_=M02lAIfet0M-U@>R8NJbu&Y$&6#+`lzY`2cUeX^rF-NRyOOWL$4HoRjnX7pg1io!jv8qIfE6=nq!5*yT@#5k*pl{Xrf;VNoeQ&+ z3VI1J87TF1L*0zNRcMt+VI4Xg!~=nZE8G;lFH6-8Yg>3Vk46hY$If2GV^2;WU)fwn zRYYS#W0AT&x2Ll!aM^dxm>*y0B$io?3$pd)PpgBiiWm={gmwcCf0(IXqJ0vX-^mp> z5$hBVJIsB>5I8gk@aLL?;kZ;KV@`tX7z1DFZI}bZ3G#MQG?DdVUt)X54q>3BHo~#X zz!w*?k{1ux4;@WY*F$#eVw?N|bsGaw$r?fW@z&%@i3#dT121AwR8_Ury=&vm4ZOGz z%YSTM&?J{cMTRi>f5+y0ULDPr6X!8joX14N5vRSw$&4IH3EA``_6##5mW&b5clm1A zno0AAI4F76<}%ZM>LE$yWRzNnZ2~B@zo@_c$A5a?9k#&Rd_#9RtarX%`xUzcya%by zA~~6O|NldKK6X!?*{z0ksDl*71(O}7l!&ppx zl2I4aD7jK#P6hBanaMGPzKzlyMq&=>nF*Ij_9)+u0_!l50C$ zZ?J(f2Qnw9e-w(Oigt(1?&EHA5kW7QzmWMMu<%^P2(TVZ!)V7C!;1xIj6^MIJ^7++Fv?PfLX0^j|G+{YE` zllpnw81FrKeNyZnJM$C4A!(|C;|<^>ahyR`WK~&`e?BG4(=dQE-s2g`3jeUOy~6o~ z@2351xX!6tFW6nGjhNU+wBZoyA#S42Pxk4Re9W<2la%wJ-ly*PaHk?xNmij-SE|$| zmG+6vN9J0?=aN*uJ)l1{9sr-58FsEPlPr=bq=QRn&cB)c^Iis!S_mO$+Bg*{<;rG6 z0QjVjf7-alH;Z_NsEC0$?E6?U7fO&e8a_5V(Mdys=$kd>+5;L@f6huxjsltqk~cdZn?p}*H04?XTfzWj zrP^m-2@|&DVqaicK@6ZoAj>g3x!rx(?t}cKzqjBA01|f=Pq*7+BOOEmc8K ziwuL4Q3cW1S^Q$%!>g`jUrrAlOt|ml996Kw_-1!9Dz@t0uTCZ!-rvjomlOr&S8Wej zf5|bvsrE^dTdX}#f+((GCJ*Wxw-WCt{EJ*IYx)Bay(oPWN%SeBeZ^G(qu;Mf1@q6-ivFjZKhHFuEPVrYY&IriBtRVma%Bm zK=dXPr)SJ(ENQZ_C=^dJm5IEshxJd`9uZDyJW}2TI?!c#eofFIOp|6#V9;7wD|3ugUd|bdteo`B7{6f5dD= zk1D=qN7DM59dW4QEV&^a?Mtu=o94JT!rsqSVD=TU${&pmep)@Y=WToB zOrm@;)B`A(1j9o{Yd3$O$$g7nBum?UbKS_9_~c*L=Pt}rPh``v7>I<)rh{a=Idz->4g2f|XcuJ;J`js0Gw>RbrUsWHG(dz-e~g5rn9Q=^ zmyjJ@)Lp%djZf)irD|9pwgfruMuakfh*@rt=*9?JjhPikq*cdPL`qGQlTPVg0GUkE zGQw8obhL7;bu(6)Iuln2U@89^VO>g!QaC!_Tvs=7-7;f^mo#*0MY=0Av^EZBQ?zs= zS_Gw(*pL*{?I{`tQGv9te|;AB)N;+W76}w|*>$Jggk3}D5v66-j`6Qf+brk-mCq*i zce&5}QXRsUX>3CtbqGG_QzL1Z8iB;5j`H8MA74yaqNAe`7bpd%bQ>%p(D1@lL)dJwFd;KGFGP@zT;M+9w_4U zSt6V6U>0yU=rOM12<^qWdt5b#^R_#HGa0LdsMhIIs2eLjF2HtE$CQ0e>+J;cE0N;( zX50<`j5xxHnSK|)e;1po11jC4`4R8sPmbDGB^qBKs5AhxGLbBxdAD;Dd5pjAy_fhC zGawE_7?#jGDlMZ&mOHKF@v&eTXEQ6%{lA`t4m0-HA+);C|N2N7a4*(GwMWOO3X~l0kF==8tj@TX6`-@<6e@Xmaex-=^>nnHa>^^G%j{S$Y2-0wYtjv6wFkWkjTj*jk`M;mT8a%R+<4_%lbg zFKWH8V;VuhV-lZGJzh~(j+4M;DdKChv@l`BdR;d6&%uhaj8G-0DZp3-3)?ywg9MWf z7sh7$ja!6%e|t(yD_n27nyAR{+dB?qOpl2KVSftMpN8ve8^0asjO}#e!ZImhLC_bzryt zIov|;6Ar{7A=o$(Xz3J8`6o)?e@2*LvS$o+S1Ua+)wa}I$cRkRniP-`UP$Vyy9-~I2^nELZCXNW~y_}l<$8|XYsUbE*e>uZ^JNBi> z=P~U9P+NEWLfD93>N!jEA09h%>=S*I5XjRGVDBA zY9Xw0=w{-0-naLUku@hH!`ZaM;FHJpyl(dIk!n6w#|f3{CzUp6D2Xsb!^p9*c8|IP z2cT_^!GV-S(~`&xvk)oCnWx~5O;Wds zLSHeXpNw7{L~cHq4cBZ9+7HG@)0d+-#Ha_EmjP5(!5M)Lwa50Q)Vy^ZpBd*2hkxlfiRXqt1+u8-gu* zI+^?nm@DL3r^K*I^s$UGonNR-ZcGICsoa@p7*9=@1y~O14TbelB(C zJAXlnE0wb@p(O(t13ceY-Bi^tx%IWrGRufdpRNMMCW-=Ze+bz;f%tXL8sXhEGa--) znlVBB=8;TnC4=h8h3Ru8iHSkz=LkVUB!w-~4ow@;2z$M;$+$Upx8cjkA8Pq5EG*)g zH3lv%)8+*^_Nm(3)R$>##RwZxSaTEY92LpsTr|u~a{b)i6WtJU5b%HZpJ~VdlK@8_ z61;p)gv9;1f7JW`pMCSEv?N=?2?aQWjl`I*gK3TK@9AbK08n7Me_{yB1Q|T0$f`=s zRO8QP*J%o_Aut;$s)yR^Z74a%4?VPpyN4i`IqQW@5`?=l+CFoe{lUXTl6zOMvMSsV z^F7q|?@T2Oe8)nC!}zk!CtZc;ObC*L@Kd!jAZaRQe;kTQb}+?!S&ay#@b{m!-lZYO#GMJ8by!Wd7M+?qwWv$ZovZJMp@k(TfGKqnSs0$w z?=Dc&fArlkY%Wp>9f(Y!+y#7Fuvz%+w^k-vS(!wMbDaU-A;nQmBZ2_CB^+ae(~s&p zFgOhc$Mt;a&ey`M*~9Mmuy0$a^e@br)m4JwQ9Ph-$Vh@%`y_IVU=$^gBknT1R zKm$Cr#$q3AQY$$9a2~;b0QO_}0re!PgA9p+f6p^%((l1#;W3mvl9)gf%z)68w_uX} zZ2Uhjl(9dT{Tant5|fk&#$jy{m4?_JbI(JGG9C>Ph@;*_Hvu=J^j{7J?-8^(jG ze=TxST*`PkiSpzN660ON8B!GA7fccdV@u?mlM3}yOiJwu3vUvTWk3#2=WoCm-B=(k z+Cd=P&4S%pCLHkeHucoCOemvI&0egVm!#98yvBZyq*5KbTAS}-!Kli7j{`g~#irQ`yxubc|jOW?Eh+31gafZ@1yz>_Jjs`N%qc z3QVn5Y0b-8=^CHTm)gfRk+33JPEr|x*qFuaayra}p_!5hK_}G9gHbuMxgaBhe}FT# zOzz?lD8%>E?wg=L@i`Qj#>xt_zQtT62-rp)0YGwZ^+;`J^9pHv9Vg`|lU)zF<9oH4 zwG;<>?AzV?1=HQ)lC=;V+TDKjWH#cNw7uHqR)vE>^#F%q-7I@Y(6FSMLx5tw+dzm( zzaKY74;5G&OcIc9$s2Sy8>&A9e_vXHdoxWOA(aX9deDU{$RTr&e0FxGsxMo~#h)9L z2zw-#;5(de+NX2RHO5s5kvhmvK00gIM|2ycah>-2IlVzwReA}SAc;w~@u4}lE1TSE z8G&-z>k~;br~?C{OdAVetdr6a1Tm3tIcDSNdxj<|GZC?D5yTnsOb&8Ee}lz57b_YH z)_JQ8f?M1?KC#KlLU?P)^u9C6Coypd(Ww(v)22{6HX`baqtYDle@b#HFoZhv?Y z&Y&(44sH9qGu{DSX`fi;u7UB~|S~U}AngZWknxc^Pswg~rTQth?ib$~=w-J4J@J zF|UVS;+5&dPwtKA(zK4hmajp)bwaivLIMVRBiwjgL63d+=soTnDF(yZ{Dc>C7( z;{r7sgjFWIJE4V(%)BM$Xxkhg^#)LpQUGMXG9AM|okpRaxdO_?G5f7#&+W{X`nF!S{QKo)SDDqpSSB7wFn-b^oB~FE0ROM23 z$q-PbXgS_BPS4%A?2W}2-pwSGBxQ_#?4j8m&dsq|J#4$vzG0;)Wh9L{#>Ng_tGVGK z8^kgcv@0BkqiEv>e{XNWY;*`xI49%xZak}ZID8V5&uiRZQUEC*lVOgYhn?ZCn!zei zLrd~?(mB0jOGU0I_Mt)F3@6sVE5-^lS2oOadA&l6c|ry` z18Sy71xXJ%`?%jks#=JfKn)sI3wtM$WJq76@kkKV(??pZ>d|&pGGOc~v@`G8zuwOr zY00=WvL9lAf7m#f`6AI*PD1aE$L3*f0HvhN78zTXah3qP1kxXnr;28z5auRa2*zc^ zkkEB-wqZaWPCHY7Z>{ zhntP&iiAluv`V8QVUXhza8btHx}<+u4=DoT(XEf&r_Bpy9Yu(_u-tD6r_;&QPYOQk ze~9S}Ys2YRp+7OwS)+cvC>dG)nVx^fQeqUIjRx)GZWEYI+{WpiZppub`vqO*mwk{OhYA~1Vm%Y9vD~BE zlA_TWlnh(;(#XX~&LoYQ20zJ=4Ar4t-H4JM-tXG|z4WDJl%n28L;aL!OFs2Uf5y|$ z#0ymXI+C*WEdY!!2m^NB5cF-oKi)eG$s)7Wl2i>?>StQK6_z@gs|7AnlvZe`%fldBQW9U&-EhNs0r8Zc5Sjo zf=P9s8T3G`j6}pqEHnkpgjww=-Yv;-DJ>M%^&8?3_Gk83T=iqnal9bBUXi=M`X84KyWCW>Fd=QSAd)dCvCUfG1iyJWj*F!iliJC;m^jvaH@5#(wXuP!a z-nMysG~zv)e=!ypq@~IB8FBP?tm48gkz#4Nfii9F6JZ+m}VCDkAI<)-H?BqgW=h`o5+EZE2 z>|mCf02h#ZZqPImoe7JV4Q6k##XFjN;eO~sTHrjQIQ>lM0z@0af5Ln>2&q4g=@ivm zzrg~&9U%gvm0wW#B-0r@8AJ*|Z820&zuc$!p?FiJ?99iTE0}mvFw*%LYD~&8I-r`f zEP4q%4FcyS@bH#4C;iwxzaY^K5?x)py&cl9-$54rIvI~fK-ggJ@(YU6Otult$3@T~ z^qt#|iI9ZzCx|0^e_C%XqM7?>DWL2mUAs7)0Yxvz5+E^=LNgK?JzuvG{5QF=Y=p{T zH_1kvll_*UZJo%4=}sPDu8mEfta-O<>Rhor_UGT-MkLR}+qRAI7Vl1fCuvMy4d0m-u}m)DC&5f3(3Od>XmbZJ)*sVK#cyDN>NR20zY23)9p=f41}5#$d%JS)*vxy=F1#O5I^K3e{rToCD^t(Ak?tyAnD($uQ*Q*rarXK_t*37 z+_*&pc1RHMqx<3s=YnG{C{jRwiG9>>kclmt1~4$u7ePj+@>G~RN-?!N>I*5Qup z9@jQqr^PS>u_|oU5eH=-ckAtAe|OmQ!+Op}?e85zVwpIRPGblW=un=7G_n0cg25O( z);|qWd*>2R8#BEgcss>gtRG?OhnI_viIn?~n zb_ixoQtmr<&+Tz#yr+G8zI%vUmgC8OY>w+)yE-?Y_8rzS5|y?ue@57(l4)HqB)|?y zR?h)O@}C{H6C;wqoHkYopQ^GDNeM%Yk9;JjGW7rZBgsP}*rp{0NyOEY#BR5@pb452 zuW>cO2m;-qQB5#c<*{BUjAqF-2}QEE&o;f-Jg(k%W=Z!lVis|dA|*`K#~HM3KT;Yf zV_Pui>Vq@vh>amre>!B3U0HFpFE`T?G-jEopPH8E=CCVQJe^a<7=Xlqe*^9nunY?ZJpp-5IpgLN zb0ZZ4TNr0KcjjiS6G=+%q%-GLz$}?xI5N~y{U8HoHPm8Cis8vsHOAgyK}qI!FT$yO zHkRaZcX+`}DBGw=dO~6x{-$Wa0$Mon)Bx1u0POyKbnJ8zk~F-|%*)fmZoi*u&?Ako zAcOR{q0}WDe-9AS{zXrypKnjb7q#y!+}_#jOn`Cr-thN3#qFJI z3qhZ$!WecKf<{b&bEB$goCbI;Sof3AT$%bh4lTvj^8MxhIJ~x_WSA#Za;m*V`^1il zu6cwWqrLfsP~4NW&s0)J@kgNJXWoo_e+eU3$$yeDe=)tU41Ry1s}GDw5b#b@r$Lqt z6-RECY^9ZAOOZr0B0Q#WpA|DPSs6qPF}FJ^O{K8#yJ57h0NziMiN_fi`E_)R8>ZQh z4}=qFG=9B($>_i;tq5IstdUg4%0x}pR>%^GEUO+cO%bp6hwB>kTYIxRHShMpqy3>d zuKkM}f4mYgoG@kI#Cp`_m=##md<)2e8PuT@NC(46+^v00mmt!+Okh|QyOlsl&C9$# z4z4mdMhRzGjCKZ-!)f9Z>$_=XuIVr>lc4j^j#4M>hmY;XEcMQ?BPmPDi>wWPskBe5 zabkmC7?P^CfFCQg_XaY;$?<*HyM_Yu68kI-t-L-EcOQ^#VFc{) zl4xy|QZCqRgci<_8kVFBrDRZj0Pk8FXR0tbQj>Lk6nv~w6^*he9DY9=pA9H&+ksr^Ee_l8m&WJUUkX=DekdUCX(u*otH> z4J6$BKRD3?E!l^GLqIe=H(5(@T?7%3e^BRKih+>%9Qs4lK_V0}u+pA=7k~6qE3Z+9HnsB5KChe8 zdEX8IE3+*xD4=5^x*n3XtlOf{;JU!|DDSTyN2w>hSG;QBUS*WT{t#{~x#?3-f1C>< z+O$!qib%fLZy{J?74=CcHJHGGscY>~5U4ykAmB@F*_^+^~?8jal z?+k=f30VNk@A-hHljsHBcZ};4f8a?%z!}b*f=pFh0RE=nTe55{UF7mw5vN*+&lBY! zvh+7u0VAFq$=vKuonjks3=ymB6$0>S9p?NEt?#wE3DmfBJ9DPIxbs zA>&JUp^zD0OYU+q>v>{se|?-()Hicj<@f6kxl;|V?+O5vN(+kkMv7KZ4J{_tFv-9u zBEIe}hqWF3LKO-k*NT+_3r=5JrK3W*%#|}BbuwnIs`{F_s;3m{<+_y6uH9Je8c%YL z+O?&SjN`Bph}uK+5Ig+Ee|S!AuU&U)69k0e^~WQN4p#!-nzA1-C?yXXH^MCyMr-`F7gKeadHD+Q{z0f!zC^ErOt+>5L_HUMvm+6pf!%F8&Rb7-Bu2Q`(j(iz6z9Q#HpHaf514dyPeaWsy#1p&JOm6eVEt0*0` ztabrVkx%H`sj~#zfA>xUPvRme;V;_)NzVDQDy)Mt6(KOAH-n(wTZq`gf+UHBLazi> z3h=E#WDVsK)Pp(r4XfG7^C=VJWcf-iTs9$%Aw-7?pjtJ#WA-SOciPFYeA9HyNT$?NQqTAPon*HNWb;H#OmPw0Rz zK=_&0|28h2yY=#>%&k*(d#okLtq^>Nyl>g}F6bhMl#?f`lCla+2NYChI#-CLfG`J^ zLexgkl!j9C0mM1N8EZ5jgBOJr^4?ZBrEsB34^FYhf5AbyuAz%F7!?-6on|QzKJVWdy1Q{~}vPcGedP{k6aS2c5hzg)ufi{47P=&(Wd&4%S@rXOgLu_L@fo(i= z=QAHsfBzY%V35iv*r(NVL!c}+MyCXCWvTS$!ef;;{*TusXkNL^J&T7JH^(I^}c*SCNZ>(N}FzQC-0J`IQ`sR3y%lDSF=x}#D-#P=5CR`{k5 z0)K)^hDnTlA(Nkc#H3*DZbZW4$*Fl2=^3@7gG@Bbv~=&eW`S>1V;lQuQ?Q;8MFTI2 zPpLI#dwU3^4cW&;FKE_Z&DL&S60>J%e}SP%oDB1 zf4!|wcfm#JpJ7LCQRmWlW_osxjA1Z15n4eOf(3LGEcQo!P*BV@a-wZ0tVxE8GTjWO z^g%D^Kt^Aozow`zVKE=w`?2|i^mdK5$ql=z%6bfEoNcDwf4zSkDdCT{cp zA0p07TmT87LL=HA<6Ox=Ps=LAKv9`2a}4yb{X*8s$&8qds!9!1hIZ>l5$PCa^}~6$E8xkf5TrQv6=VG18YTPA`w=EnIcoc`T|h&~9NUe#e}q=eVY6EA+mG!F zYM*tMqI}lfV_Yt*ZIbXTBGPcC;U)K{`*HiR?hdD&S;OHRJmueCf?Ir~rP4Z!5ojXw z1U{`crU3rrHhx|#=vw)Dd`zlI1o}v^ixeiKeEl3mA(IkjV!WdCS%-CVRX_k(PSOH> z@|q;NuPJK>^mh(gf8R@)jv>#`T~E^j$8Npd5J2%#0A-vav?m&~Xq2xa)u5FMc&w6s zIZ2K#@O;S4OLEMjQBXOdS%{Ab(gKxCP!ZWk-JKXLBFt3ABJ=Zrv;;o}OJgoAuo~9f z-6v|vH;HUG>BIcfaQ>9|Z(K9i9AX$Wm?Z%TltFilvmajLf7xui*|D=N^Dn>%Lt_`jj=xfxUt+K*e;Q?57-r+q8lz*d4f-WVzyKx39a}A)6%n(x5H-sh;p`fGkU)q4 zg?tLgM@Xf__u&Sh1YdIa4+7ItD`3*k_FlxFRW` z>VpxjpM}~xe^lFce`=e1LzW`NLq5z4dN#grO9(2Gi7BFjPI$VwUCMa_jMb5a5gZQ; z82sBy$L#0@^J1j!w7mnViUqTa7$rpa-uUNks>n&o<{dofONP)WVOL(Y_n;k~Je;D>sfdUZeL@Z3=ZC`fD>qTi9!(%78 zu!HeI(*;W@ZZ&C_6>-G(12dV=o{-)4lq(9>Q}8^Gd1TCug|+@$ng2FEE6uABsE^Lt z^X{-Ye|5*z-!+d<|FC*&cANIFHClhCvSbCxi^u6uivj7AZ0eJQfSHx%ug@csGw)nZ z{sRg#oXSH-XG8j9*LuN{d=_!9Fn}2U;{0(8aJ~*86Eb8|I(c3+BG#182qjG`Vn-z5 za*(r1ML$b=qp`oeGg*Vd_NNLF`y*%>fA*#}f46oQ7v0DCRe`QeE(n%6Ud}JbW92Nl z;7Gd_8xhag2pKg_&p`V;a(CaVC`|J@Kjh5Bsp+A1Y!tOBGl#|_w`zzwX56Y`ZwZFq zTM_XW{Z&|~*a3M7k&J3)LQsYgH3Ff=ycG^66+~b+4zQksT%k z7d@FhZD2VWLtr=QPGeA&c|nOJmW^;Af4BdeK_Km^Eh$<3biAB=-($VCj%^TSU&MsC zpc^HZLK2~7WSpl3W)4v@H#knB9FehTjv-Ypg_b9UP6zv`p?xBz4)nz5m|4OE?U;>) z*gJIyty|}NuK-~q<5bi8seOO{5Qi!$u&8g&yEb?MS+eEx**EJcVm4}Wb50h=e>#Pr zS_{Mm881ixu89lBzVmPY@t@u+LAbSeHH1rSq_kXi_>~M?WeB;iE_lEzZGQkJT zB9#f;A_A_AAERji+K0Xa<%$rgQXh!r5R5%cWT;Gl25imUvupQv`$TbtlT6I6ZrlCp z!*OT+_IZn4D9JE-mjSV?H${CZfBYT-n0Ett$2DoDWtRM)SO%{m*mS>EFu|f4F9DGf zZtatD9z57=KJHF|^@3aaYt^QljV*A(Pjb?@;d; zlWO01Qe`*(RGnPtv^7rXOZpfq7W2eIV-{t+vvqM^^iy~uGU*l19Jx2wHF*yO5r5f} z-mj1D$R&yHd_OJ8exg(;x%gHh7oO0oCWOEajZ<9ZTP1_Q{v(;4D7D+KV;%35pJi=(4xttlpu_fkF8GC4(8_6uVq(kfCLqz%O{S zmuZX{cRdY{vj38dy;8fcZ|}(d*?)N&ut|~mMT*z_DVT~P&?urBAVq|xG@L1dLe4YH z$aSz15bSaA1SWgi5fPPQyZabU6W1yZvZ^-{p~^v{u4RdVNeIq)x8H3q_lDDsS)1in zW8|JAC*2xt&q=jzk$)lDOK1?!dmN%^kU&*M+tKdBVfTKwZVr=S2Hfv}c7O8S=?Wwj z6CpUo2^#|>R+uknF6@Vp(4fNZp@`4~ZgKt#Sqh23Z1EQ1eo&vYrbizRNlh|ILklh( z-MT0K3F+i-o>1b(ReA0Z9{raPEXH+GVF+Z7KC+{bz#qLYA#}5cX>1;}K`>vT;Nr`{`v^^pTnu-nXAm4$ z^_PoPEJ#(wkxIRrm29RoPb4LUy!n0_)}mc?&Wj3L;#iiE8GYdw(5xd-u=*Nv0?{qR z$U-u?7}_!dEfo2jkbhfa4ru(ZGV&tHaoDOS1r-^Dj0wVeE9%K0Y^F|)Q=Td|Cbvg4 z5ek#AGd7MOE9>>hBCWhrrJmFKPCZJpl0*;rfD^|Si$eQk7zwJRlR}?{D$C0E?%$;zDy#7_?N>%Gk@3)+g@=wAPh?7-G&Mt z3QOz?L}b2Ji~1f)NFI*;5v!qGb+D-%*>uM25*a^I4*^H-iX}HjxskwRh&l>h(6Bqw z9yY)34!^!1QEmhy!=&?`o0kA)3-y!Ivi9Qp=Wcau|8g-N;%PN(xxLSr39FVco{Sh0 z$=ftL#dcXs>VKkf%V0dN$r*}j<)9ZxZswUD!%22hxE|?k?q_VE|IZZUn-rT~zsBWFXp{QQ!eNLzIYTNGH!<~rrBq?L< z+`}Vz;|~Z3#u_S9XD6;o0rvdPts%IsgSxIdrl*p>%YS^wb8xO8ViEa)+XS2fa$?9j z6cis}h#koGMvdoZvGDla!81_3Uw&$_#TyUun72Y7P0*2Ev$Z`P>2-jWHjd|XZr;C? zJkFv7+2ov}QnFWJ!bL)%DXl?RNp(lb6MQ-jUWkJT<}Ha1Zy@IYzFUdHT>z8IIN2^; z*&^KbuzyJ$(Grt<8`?^|*=c+StDUcj0$M*@C)W+q^G!xc_t;rX1>{%K_mHKx>g##g z7ye8HrW@V*!RGDmEpDe}fh~ts&-YH8t;z-UN|PRNfyfLmTIn~V{NB?Ho5#>)m`Cm< z{?N-wH6aXfQ@M* z7sxDdFbjZ#w~;w2aL}&N1YI`DIJfuq4?;}R+c!TGN{Wfz7%nXo zvwsjS7!pzlp>TIUqXiKK%IRLmK6Gb_92>7{lBOC@zP+(>drwfL9ZBht26@C^5T*r)2Qan> zC7EFhDsXkojaw3-3g`%-?fN{v224_eSbtJ_Q(xsBM8MLR(K6Xfed4r zd2fX_DGwv>bh2t%HWwvuVUZhwIYEo|Q#>=7B7DEJi;Bv}~R!z;?KU~Yk9`{_>A zDl5{?ZdEJhgjKbQX)m#g#E3^E{A)h$u4tZ&I1FwdbY+72N60k@U_wa*KR@0laNm{A zc4-|J6!`-=qsdW{#D7}=T%YfqK`RdR{F#b95{^`8mBz9o>WC{lio}?$IDfjNu{Y9P z;j%ti5|aC?^<_zigk+WCea-s+vg4o^Ph4>`hY1Hu%kgP`%Yk4<52t>{IUe^=rcojE zb0-64s7Z$KsUk${25aPfPU-B;A+`}&6hNlLA7v0GeTyDE18T!hH-V=UmXJR8%UKI= z)VIBZ6_3?CkN>vj)x5Lio`1R@)RopGcOCb9pY+(*3d%8^4ADz+1g6Lh=Er{009Ovy znCT9h(N%=q!y5R=1z!f708MXL?vL0OT^_8H4HmKzZcf~Be>em{9Qot;X*h6nUzvVj zCpNjH$9xr5#&3k4*NeYr^}NkA=t*%4t{<)AiWnHEo{#Or?%u9)JAW3Jh7T3*Do-XU zb;uK(Wf!NYE!p`Y3n#P&7C7SR6t5zgIIxT|Q6XKP5)~Yaakc6I(mC=K#u|*y8wm1Q zv_Qd@QVqb$InG@g{T~d$qja2K7+;6r*i2RL`ZzVHMhzgUb>151xLeCCMA5fkPABDBeGNzmfLI(PeEZ3%2s7 z;mObJCfO<&*((=1MU{hLDw)bOUie6xb{+TBr(>NjrlX3duh?X}sHrqQoYnM0VTy{9l%2>4UM-yC9V*bASE7LOUm@lx#sNQ((b? zYU6#kz67cr1mSZ9?@+=3%Y>Q-=an3CkWcLDbVn2RLZpaHAKiY$-CoIO`|MB15ZDva zrrFTTTE*aCoR2*w<=z5ZkzsAwHZd)ZYJVC8(4s&J(U~XBAZ~;S6(@0l-?Z!2!Aq&9 z451^JeKxTx7k`JKQPw91F7?bjjwvp~0tF`>e2b=q23u+qy4~?1Xu-JcDLwk6d0S%& z#C(o7;o>@!*?BR2@j31LE_7a;=VpIu?xsR3lL~v!*34;ywpqD;?Jy?lGFG znUEFRhDvpskp|~OVgi?@?BRSxG~Dfkoxt+q_XPZRo^j(jqCQ5I)(8>TQ=hOF3FhhZ z8&H&r{H$6=`2A!WlOIEZPld=aK=@>zDJh8nQE5>KsYHN|!aCHj1H2@*Xv8P%AxH{) zGvA0Vo`2Is_7l4}$%!88Ul<1q4iBd#VRyGv6$gJMcnqT|&%5=*OPHO?q9j$YWT1}4 zd`~(IL1t7pDBv%gv-oFE?&)JG&*2Oe`I2J_=i%1%&q)Yf1{Xga}t{OXLhuE$-)9~arnS^C@#m0!o`PH}*Z~x=WJ20`20*8wa z4%^RdKuK#IW5I|v5wlj|@0VOWVG<#kC6y*vfe5h`Bcyk!`tmK?O{Z}x=Nb#OebRm0 zbbpT=7qlZO(vt9y*ND#<^aE>G{czSQXidF!7xl)ZDD++mrymD%8xFm@FX=a;(=UNEv z{!qJ8hXKsQHDa|u07Wi%5P|ewWwnIy_Qove7iZ?t)L`w4G`)p_$}gQIvzQ-K9q`fD zx|aPA)F!Z1W0ud7Y!F$|lI&?egMb}ota1?ozLDb?yLjAP?VNhSaqKQ^cUSkl2^GJq zcl+~;x})<1{VYpl%=y5RTKmMr$A30NX7z;Su$W z7u0=X4IP0{L?^;!DA5bqC(j3a4C^Vu2qmgC==Za^**zl~Vezw?+g|n$D(3 z?w*_NI<09lC??9(x`X4qQh#qMj;mM#a1ci&0Qs|Gn5gd-la64)5q}FHAy8Ki1oKB) zO?AF#6U2zaIx8m$G*E2rq;h;O>+2bwGS>lwV~{?ap(c$+#&Xhltbo_4T&^75a{=bb z7uO+Or~~_tZn*gUynqgS#3JQN<5mW?CAh0t8;Xqoe98S|B8NxOIDc=N+wb;{y<;`5 zKO#64su=&ww8{$CNoFerC6cnz8D4aP6xT#1DECF^S)^`a4j*MnQ8Gyw{*oYK%p~E@ zUi+oJ}MK>~L)R5zgxtEh9O%O|K8UAt}h-91~)AE%g$+Tiz<~r@+x&{UF7e4vS zW1swyT$VPmQYalVA%CI|SS$!=eLK}xD)TX%MnOx_T9SKzilq( zZFe-ciTrqXI6d{q=C}LZ0g&F-Q!y^(+w09^X~5rpI5sGs_kWk(ADhS47QmFB>5gv? z<|iipf?3q@{B~oG$ixq|hYkIar^~zju74Qx^L|V0a^If2w|05AKMMQTJ4|o8_iu+2 z#8hu5Hs>TR7$)x=+mad{n>ZWPGxnB^7;pT6cIGUN`vk_OadU8ncs& zf5F>?x3+T|C>~n8KXrM0Y>sf49vibd?*W~=r`_7y(buQb`FH;hvn!n&4h6SlzndnL zORFA#&2GXl5QOi2ipclGaROCqB|&N{PDQFzs-oU3djYHQk8HPrx33c*fW)cC^~`=d zyK*(#sW$lq=cUm#B3X_S(A)^AH#PcL&eI2!_`tMatrC5Wee)Ni~U7diBSNMZnbhJQv%kUllZSW0V|U-us{L~rIUT7C6k%35FEE;zndlj002+|000pH0000000000 a004l22fBMvRr|t3Zn>X>- z(VJC!SRWs^hmXH`^WT2{$6r-%R;P1wcx-mZL;IUIpWD-$zyIxj`t|8_UYUP-IQ{0$ z=6rtsuW#R;)|+2 zA1{aVZ{DP77Qb0te-7I}U)pc`x8fqs-~9I1r|oZleg16~Wl8btx98vf`mKGVe={v3 z`PRRGFW>oHR7K{$nEdPbt5uan=6`Ww{uh;BtQ!W4fL(?5j zyY{nu-)_dq?8b-ft~HDQa5}e-Uw=G)`ug(p_EYTMew#;0e;Vfri2w0;e3b8B&`-^S5fe7|e|eA#yGX|>%ycgIidzCD02 z(bsXAvo~w}8u`XM^Y^y)kFE~w<=izp`3t}NP4smXSAYBFumADC-mL!1%DjrozkRba z$H|;o@0~;2e?DGc7k~Tao8kF*Z#{R-`n+AY<6HUPzIoZ6H})L%Z)E0ocFp1Bz5es1 z*=^6Cy?5f+dvQ5fF|2yL`J1m+PSz}twL-~+?1hwqODflsqpYX)uswE~sP?gsLMCY- zWG#fO*am};L?Uxio{xue|Goz&ENcYc_8dnP~w}QOYi=O zS3zN~f&>m>Ri@?wD66klbzGRAa(gL6<`$?^dq+g6{mFb<6}kCe1!w)CId4|x2&@i9 zRX3})F<0a1xHsF^g0d{T9^xv_BlsTkyPw+C?)U;KpHy$7#40wdEy~_TDg7j_-m%|LOAhQB(dZg}(u!J2kfF%sX{f{mlL4y$lXvhG)l| z+Mnzed#}yCWPZncBdNR>nfLRLO}F;{W&3zpH+Gp-Za;jm zd-Y7Pgfaw=KHR#$8LlU3Nt*y$=UKh@Tr*O~p5!oE!5rg&%{jbj2niyuYUr^P@YTiaj>-Lo-N{i}d@SJ>1gqid z3XX1?f^GfdkBXa}fWD@cHKtZ+)5x08f5iTjTZg;0Zg!g5{~5EICXxLK-1LWSw>P24 zrrF==XvbL`!vg+v+#FW!_??dj(7$Lfrr^FBOWGS#^sFmqOz~e>9RxkLMzaLXgo~y3 zeL*vWgHhta5$EdMT>|Su&dfL0P4-WYG+pNKG+oymdPl(5kkOtjc7dhHL?*Ece=1`0 zZ2sYMw>2(`_ij3~i1shfZMQW+ZhPYD8Ye>Hn*5;(ZW|P_5W8<*n`mdJI`Mof{AE(5 zMGdVg(Bq#phd6?hm|73mX>RJwtyAC1>TB*iWfu`=R);gEzM!BsS1!4a7B4&hY6=&e z3+oSp3ilj^A`ZJ<`@v|bD!L|yf8W7k`tUkYv=i?Css@D}brICIDy@ebf7!@0whHMo zR#6e8t!k^4g|n>a@LE})k4MO?EVQ3dQQ!i0+f%bTUG_G{1YcxQKGGp zVk@?eeYfy+S_|1f7umoZ;E!)m%AczD>1T+qd^>=BoofBd2n1K;Q$(or?|8c z9RAcspPpe%lhHa>>0lW9M6yjE8xsi{dE61Nb9vr4hC9Nk<4dzUZJ3#&whR6IUr2~0 zT{rs#o%FgFB>fqtFYIv1)S*3t=k9pBsk5u|H0EoPseBC)JrJ#we@iL+d?~RMIaQU> zNZnq(YoE{U{-Ny@C5cc;LP4ZUkCu*UgODQJJIxWeUPGWINuDN2g^AV_&dr#r!8}hC z4QbUX%ZJ=*oy6CqjZ3iR*HjJs`-h{kuR-Fmb7&&~e%?^gC2 zfwam}ud>WAx3oQ&e=x?}+PN&8XA4lL$0_)pJ+VNk<8?hFD14It0_jVC+{T_)H+?342=%ykQ;&b`g9uJ+Ae?C}I8 zOWzvZq|RokeUj8~qmpM)qXKRr`z}VfzmPnKwJ75rdGGm$3r`=ZA^1*=dHIiSx5Kme zY5N%5_Uv*uf7-#d75*lv7@&@jZ-v!n+zAyrj->;UKT06dWBV#SFSW1Q*BP( zv3m@CI;@2;@AM@+C>AG$D@1_M=rg|QY;n1cUU6R-NSC7%Z--7z2C(yKN8{Z7B=zWbcMK^e|1{;?q-E9*TZG~)E81tn=RU$F9`7< z_j1^-pDdhljleyl2w4pOz(#9W66NX=%b+NTp!@@JxVQv?Za!>4>4y{Hj)dBA?$J8_ zCBJV1W6>WUZjEyFujjVRefT{0Wm0rl+ie$8Zx_tZ-6);0NkIBq4BUUnaw)Z_Go`fBiocqXJRk&PO3Y(Am_66U#fpK|(c7=I}Mb zhWLA(hYQHrBKcN6w!20XIU9G9su|qYMs*Z5OPNaAILkSG(U8G+y4JgYSA}zGMo#6r z*%>4M*xZ|gjEs500MV$0(-{&rrP?QPZMBI8R5hAF7CIGhCz1>A+v|e8H+|Pdf3pxG zGGQr#b<<%qb2C{`QJ+UH)QbH^w2n$eBp-C7d!M4F}vt6Q3U^Ws2{94*C zi0c$0E-_shWXy3db+XiwFyRkH`JiIDadLp*}#- zdO%i2SX;BO5d9OQcFbH=SaehDe^>bhp+OZs+G_Mc!jDyG7)g4S5NQ`Pss0M8Y$DWgw&ucqlD>Hji1y3MYu&Jo(Q%ugDclClPSbozrwhDEUU39fHhC~ z0E50MT9xP5ZUs-pgFe<{Tw>0xs8 z#d8j?b!$TUo$?;+50EVU#@j_{XjJPZ52QG+Qfq~VftKbzuL*5?JPLDf9yC zPQj3X9btLOCANRvoZ1NpvbY|EPR#{dg-lhVD!|bP39(Bc`Tuw`a5tDiMKHM@uI&oE zr0RxcF1(^g^o;ne~~Zr70ax~1=))8 z=hea18@7j!B)}V>!c6@V?UTs-n_Tf0u~gyU#frn_dph^pkb@E!a&3A{s z$vccK>>s-2z5!77h0?M#$5s3QNe{IIgj*PM7rdSVl+E=Q5o;#@JdxAx?7^JZPqy(n zh>}5k`j95G_L!)ye>7MlMo3jvTMfLn>)c?C3qk)~^NQBGBq}n*)0?w(UUlXn5LYr* zT**WO8K=Gb$xIzd57|^CHX5^*9MXa_1E;VFe(&eM{*V9T2l>a#VZHTpG3$-3ifmXIB% zN`*Eo!Rz{;en2&=74)$4D{a9!u|Fji*`GKRe{A(CuFOk|>`&s97RPqS!{hO=S|2-O z*WJ~7uh&`ESbK;D`$gQuV(OEOI+jMMmmsGkZd``&we+Pb1vHM39^vN6P=38@8$b1d z9vTr%%{AC4e>4=7e8qy6O|@mm)Ayc?LCw+3v=2z3z*XgF;aONDk<@5^)5A~{{UZ2! zumhvfVjM6QmN8Pfr1dnP3mC|k=BfR#ZFhG!gl9EEmOgFQ=VP~RR-0pY;(tD>)Y4e3 zePY~4z5AOLt_ysZG{so;`s26_-VqXaCVFm25%QB|e~9r4sVqVP71i56)Up&pj4&rB zWy#4Z5%atx7A583Al*~Vc)VnnK(dm2FYYG7!*OS%eT{2H4>6gKD8nJHLzqOLls%V zv6p&Gg%H*uTL??X_L$1@jJfuh+5+`!OJ`EmE}8HChpCWbcX(+K62DMwk|e4jylMCQ z&#Uuse`?Q=%#5=h=Rpf$$|pSnge5(a49ki(f7_4ka=(l=!1uHOQNeCYG*Ec5H`|Y! zFpEHNv*ffxAAev1gtTF!S^{z?`~nC~o@EaZt|WAU1*`K6mM<+-R!~|Y8Iyk|EnM)O zW(*0#BjPFuYLQ_eGO8e2IEzuNdl=P~{mbd0!vgpHo1+R=7|U!=M#Wag537?2A9wds ze*q>%ff-cWJyvocZ>oKgztAZvI z`vdM(dP8wDDQ?34ihVa&L=9zhvL+O{9EH)B5XU?NV^zu*!75cCxs{0sLAHb#M+xk8 z>DM4eLy(JY!&Wp3V=PQWk90ryySMzIe?w6@W-f=Mw`i*oKR;4yGNWb_qj%#MYnw%s z|JGrCAKJrVd*Wn2yiF_`H4t6M#OWDx6ib>&EDG*EVsc#8f4&{|!+Q%VIv8Qdn|2^m z3=gjN5}Snq&@{=7SEHchoU&3>_{|_Hv2YUH6tn^ePZDugQe&mq`J4nw3(fEUeT_i1Nvh>!+|0j0u1Fa?*g(vBM1eG3i}{b^OEWw4aIX!l(gcAUf4c0p?dr+Zw26Kx84>GH zDp{0R%atTC8ao%*DV2cfnkynTzO!579~WUC@GO7Ywl5R#Sj5i;d}~w_e=C$@u0;#w z5}M1&>_~0$k3N>WXgR;=XW-M(ZD$o(_@%Qfb_JqEkl1d79uv@)Wf6&P zoUqlHNpXx>b$rE`)HDO>RPGgE$RsTz>{CuhtH$~0(6BmcfUp0<)aN-{+ee4vhC-$NmOf4a7nuB+AJe zGsUhdP5>~DMcxaM)6t<>c<~aJ(NTfmgFX+EhItUkLh9K4$M(}JYS9@QK^vOIwBnq` z+9&al_b0lOD0GdptmMEB1O3QLx?b=!27$Wk*l!yjUDX;d=Xx9?e{cmSTdS$tClFrW z*#{P`LN08#{j?1N8L2^1X_A?}1U<%Wu{ch#OVdL7EJkXR>a}NpDh^_WN-gIRgXQUK z&}lMOo*i)GR(>8>;Pgo%kH>>q^W7N6xQZh*7U$!B)f~>7;{p80SfxO<{+>e6Sn**2 zwmmwg1an%$W-ZV0e}aGjT%hm9E%V;{UY=aiWnm<@`^Wa7yEM0!)1;7MgPge0LZ|}vl<^*9-V2b7UPECGLSdf6 zTs?NOjHV1U>Xy>?ndiR1lpS9&x}!`86_DlSs5z>m(%Pp7er6#*Emp%j5m?u%av@ObBY` zFIMrtwmimAf4;2VC3)U$Snn1w;n72@1iSQPXwPfPi1HBGY#_Fol~#0dE4l(ubBOc~ z{%8&gpuH_yZNr?FR^Jz~djyUGLoKMG48~s#Yvy``P0yKDMaFhB=l?k(0m!&tlkJoK z-=({IyoKd%!o11uc-fxX)#kX{ZP$RSvW;Ll_x~d8e-n#6XbZ6$uaEi_|mIm0PROM*P@ z3y1^!p=IX${9!8?{urF@x#`Y_(B=7;=HLe|0zEq~8Fp?$rW!;G(raS)S_-K*N+is9 z5f^NlP&$xoRv7OV^8#G1aOmM7yT=ei5ruPHf222zVl@(X_kmPD9`PDTDGGPGoKEdu z?oFuIF^Xj!Kdvlsu6<$~R1%(0FELb86lSJOEVSXBTlmDWBxZ@T%Wn_s-9>PL3Wg4_ z1Ol58d=cS8oE5epV&Gxr@}uDb(8~;ZMQrUrMC{8pNjajymq{)oRul;#8iZ$RP$a^f ze>id=_Jye%xj>W-mdhEfo*0KH(koOb$x9^Zd1?=jU9);1blOQVprMd0E7CrRV-;u(}{>q4wRW~LQ&{YP7`_vC^Dk(f5o_8w-q9kB)_eI>l^klvw=x{OV~s>HlU!A zVM5Zv!QLP3z}t=4^ZRrzGKLe22Y+e~tM>7w=^lZ4D(UC&GW2}fhhqeBA6sqYWCB>s zuu7-dxk8>321F+l!7wPFnGXuE?!LSg7&SX#T&kAJVbA);I4WP&MxnbX0ca;oe+v~< zQ~;9%DUt3MySQe$H%agqE}TgE;kdpi>Q;ho)ui)lFmDQR{dIzN?<_iN=cba)4$uB* zqNcT@@OTXqRTbsfVPmeGu6;4_*ySS*Mk=S~0P0i9lp)jSxtBkab`G^I+gyT+{#(8NE{|RL!_i3CtMmXEuF&hVRvkW zy&j{5Kne|KAsiWo9Un`LgVhS%LUiX{d;io}6IWz7iguW3vTx7pX7>S!8SACY!pwk)MOLaY9@Y?zV>+~~?CN?>_1GG1RqSJWfOK8VCJA%mVkVF!z4W(yp;QD_ zC>7tMH=5LTaWW-te-;cq>4MT$05bVYBA8vGOJXl!uRX8_RVFxxHR{ahvmw@^=Z?w0 zf|)_Cfl3UfMEA-l)A^OkbVwp#|pAoa^KnCkb`^| zc>N6NEkkOE{C!zTvVxrnaUCQ1E$d1Ok83KyY3X&WBuk&}&_@4R2Mnj5l$ zAALme#2PjgKj?D+Q67Z<*P*7j9DpNbsqm=U0eUApR`~L4{25-Dn0f4aJ@0 zD!=pBajs!Yp-DR&5LjVy(hk761R6CzSt>wAV&eGLVpNQi7}XpUCq}vm-b!+^h_81D zF+z}$e-I8H4O~KTNsvdxCEqQFgvbTqcjp{OKeKW#?4zm!o2d5_0 zbuw@o42kRc(4FUnIkcy3_q1zUsP`|-pw(4^p;A1caLC|+So&BE7AxYT84F43LS7y(g%!dEHbfySjsp*UJG+%j=|I zO!MySKHQr?ND3?;S!YjysMRWmd08uP8#sY8Q;&X_pD)F-2a?ERHq-mi9@-Dvf3u<~ zl@Nr%{$)oU%s3_vs7%`WJ)~Lik0%wGh$m1mGf?(yVu$k(&X!Z)o$q>5oghFPmGGbB z-|CU!&gK--_&OuXaV5Jha!2%Pvui01?%1{4^(zLq#U<+_IJDc{>e)Q@7t;1>n_CqM z2G!pirg5_j9)ZI489ZPP5OsUsf3tC?WY`Gp;)Ir1^h&}2yYO2_Exz-bnvSGszAPx| ztY`(%F%cE{bD=^p2hfhLKVP_SxGk)8N>;%@rl9L~dpJF}c9@H1R}iIxjO3$NhFwIr zc^TJ9zF*QAbk(8PzzC9GKZt08Ml{$y7abPY6}HYo8Vj#$mjC z)a*{>@er6(C#sfBVRdZS(-%dpxe~;XS|jVuTqDQb;Z^8@xQJ~fxd8-D$0fw*^*2PH`vqX&Cv zwuf`mHLIu1@w97Le+fz%KckMUv6IzmZnnq3Nd(kOn2?O|n9Vmw$UBi29z|6E+k`{v2t zd`Lc-_lnT|jF&UicxOsL-?;6Y(Vv-ut~^fUUM>`j1>WsTFun zmp0k0zAD!YCVY z$uHW*xrv@~%Yt3b#!+KS)dYEUQr2c#b0UJ?4%|jRUk5(-ojYkZjDAl0A<$rR9=hZH zenVgff3AQ^uXoM1YgZ5L`bn8HrZ**&+9$4?6t>0Xu9wh$SZC#%eyN&+fL*90x`l>1 zVE%w2Kf5^PL>BCo6T;4E2#=P8dE~=mcF)_O_Z*?!z-%?QwV2ABAAly82m1(}-AZD6 z5S6MLqRI4lhQ&UE9ZLGhrnWy7_J8G&I&kq!e`2GZ1Z$J)X8+jU%lT0mi-gh-%pSbe zRQaSwsnUTF+T`a*nt*TJQYL&kqB>+4%9!E_yl%`D@v&SL&#sa>TIPG8Bfu787OP z_N&z0dEt`G`%^=U+@sPtgq{*KF@+)lfSY=kLQJ%cYShGac^;bwWRKz-0daR>-lzZxL%oPY$B&TRscIMi(VTBQxk1_Tr_He+!D7 z2^!N2er6#V>Oj4w5&b%R*tWZSX-Uf{MU{_+Iw?_;>u(;wmrOT*I-qaI&*1>6O_ib1)?;m z_KD@TiYY;&5nXA|%ct^pSfF9NgA=8RAcMpTA#yYbgy?gAlO!6P=_Zs=H($P-kp2?W z8PsZK=|d-qGb9c3h3GtP+xtavMZv}yHIrTJ~U!c{D}YH0!6sf89NIXx<%w&NYfd97j+LI$uD(P%rpyA7wT|5A~Spw5tywD&1kqRn%>8KA3EWw zKElaK)SNjc;*x73Pv-DKf19Nx@;1$WZ`QXri*gX450~Bj)5GF|v@6*jB98BlRphrN z^obOwFjo?LfbW)`3&VR)S9{n%xq{~KSRMqAj^t!aC!MW&k;p_CTnNYpxdi0Xzhc`uEcR(BLk1Bw2!LQuWU6Qcq=2+?gQAhpOc=gwf3SXw4PR%jg!^F% zX@L`m;&d9OFpVOqE%j|Lly9Fzu~s-&)4i>9NEfk8;lLqiq?TflRKpC$R2)U1Pvsun z?PZebB=$tQxdIS&3d-+iEsg>ZkE)`>vujMpF`A#6Qz&|=I}P&YrS9;WHfOy%zPuu@ z4H8{_yq%rCu-ih?fBZW2jz&J%Ebh_^irP$K!)EX_^H7=Z-R5{tG3?Lb$Y#;J>FzcLc^=ZXX^huk=V(Hri1@KgvWqe`Uz=_k(brf(Yv@?T7*@ zV;oHjpa6nuG|00u77;6;keOM!1ubbz=FE|T++GA@g4OyZ7Zf*_3ntGs+sHW9b~X1U zCYltuYFs%mfrhDqQ8_sHU}#w=gQ8G~qgKt!c4u?*cb86+G)*vFxZW5a;B3o7Pwjz# zwWE=&hoME4e@|>0fzyj5u`+IJ5$VW$dxCu6-(UC4d&)k5^xWRY`DQ_@5XI31lR<#U zL;9Hl5QxH%3&R)4o>=eaLM+siJ8V>##-clCZiy&lZ+*$a>*(Ls=VRCdj*i>dyF_&h ztF9QfkGe%dn&hfhW7W0lL35<)N_6XZIh=O)I&Vpuf2Bx$7f>6`J!gAjOT z@6wrL$nrhk59{|2A|!<8-5_fR0`0o;pwWXVWR*=447wzLZ#+8HR_ zszb1K*%iv8>Q6PHI_=B$bbs@9YJ5Ww)|i^7?aKUB@CU7W@MJ<7I|KsOflPFRuy6Y= ze|o%1%ma*UHxqeqB+&2=V`#b}3l1X%%WrE?wl$|73J|00L@4|8OKD|erFKjBu zJRyVTNOMnwWK|o~p2@^F)hU8|!+iCqQ>18fjfR}V7ACTTj&0|}$$!6ZyZfCt%eBa2 z{2Hn9ej(Q~-eEsFX~fYC>H$6@4tOVFe|JnqdVVob{jurR8=kBpoNA$fbDRo1Jtj&u zVWE;%{alh-9Y!Kd*{q1bqa&yhr!-GK0^Q3Z2sAPzdpOplJ`?lCgQS12zCu4awEED# z++XCkgW{9`94aMq?9$jKzXT0M{Mnz}ij<2d0}lx2qJ)2dR4Bdx2cyLwJp3lue=cn% z3NeAOaM@)(kNYO+Uu^ylhUd*>hY4y7lfdKQCZ!Y1VD)^Uj@9Ox#?mraUHkaZZ680r zX67z3Rv$0hQ@h$6T^}fktO@_Aoy&uNslV#WsjHq89 zT>uPTHBHqlR>u%hBHasevc=r?e_)iA*D=&lY6I(Sn^FI(-;B*I(#P~ zJ#4J%m_Z!e>LE+i3nvJ zgLqfl8Dhtzd`g@wgt+=dCWy1=%6s{hJOzyvr92W6vhC+e}rdjc0^;pom45X zdZD7WQcNw`ZpxwNho(cYYLar_`S{XyD`Vbv?fLFOZCQ?Idf#;GZM!-*pLa*BVI(SZ zUyMjfHvM*C-2K=8_@5KcdVZ!WbNd5`p}d&Ey;{&lNZfzn_$^?Sl$+rT2@tMa8ag4R zw{4`^hb0k>D)Ae~P`#`?WqVMzsWE2y})=(`gY=vz8>_gz}5Pe;wOi`rwMI4f^&f>JblT z?{Q_t)xzA2OVF-mLVs#pUYf(>>BSiRyQ||_hQLr+f20zgT$N<(F&5-xes?3B&lh7>_S?fN#zEOeM$$48MQ!%><#>>p)lSzOdt^n$WOvw2S9i9+9^5{TSe;COQ^UsKJa6VNPjgtVc)#`o- znyXP?C!wX-g1)=lAC1>`pbT@1N=~|$XrI{8&^3?KW3)WXm16V|c%jbp{>@OH{%{FH zVmkLE;mIM*VPDW(HCOiw#G=^+K(>VWHYmO_@QLu{e3_*H%t~=E)a{L+=VX$@SfFmhON{g%we5tfgtTAE(Uw+|`pC6sjinFiRul+*+JrN5g>+x$oXq1BC z=Ao!HYowHrLKGeuU_pF_3g+FrQ>?CpS_RgC^3V>(DTi|2hQ~_Wfk&ib-5v!WrBsCj zf5|EbKgry%=4>=7wJVl58v|On-#$JXg?Q+Wmyh=b>2@+1nYI$=2%Tl22RSbSy9q>i z#GU!kU&zGq=D~yc#=yXYY!4XLYTrh~)OqYu4_WklISJ;~(1wg19P$QB;IZ0*W^)cW zmU(JsU+$)iaXlb2Rx~}xP!DcpL5Co*e-%MzKGG^3o7ac3AU7J@opB{sPwnT!{Ya9G zw4Ll78Gm!$P*|=dUDa#^%u@JQC!GFpespWlZy?d-$$)ooGO>!4D+etXY~12+14cDm z4Y@z(_)t_?RTz1=LHu-kFF`_o{_=vFJ?B5kmE(_o5Ypuju?2}k#9T^y=v|c2e-Ed; z#unOe%0v6IZcgW2I{>Q8!e3D*$DDILl0aEM@CYc490^N7U< zc&dNu#ql0MI2)4Ix)<>6GD;^pjf(J>R5BwV3S%g#aT$S|!cthVy12>Mav zcKe;#F5MgQix0UNpUvY~KFXLdg8K54!;3mEWI@tGS?9lW2OF&GV3N6H#k}D3auR#^ zlc*ZvC^dEXV~&XQiWU0`e@q5I?eI~w%!C{;3$|9un=Eer~>2hbF8J!S`}Ne z`W!EZ^>(M!ItnQ#`RiiOV5@~bpv1vaGng!(4pt3SRx<=`AMwO`)Iy&EcFSKm#O#QfBN=k{Zz!6a%7jwSS}IB6C#I>Rp|yI z_FV9>LY8_$RCxoSe{A@5({x&dNP@!mHERTCq+)aN3f?g8!Wc){SX+#*8$nswh`)-` zLA7cZ?iBfilAVs0Q~Ta|-$`5~CH!Su1IaldR)zIVHoJ?K&dBD5H9B&DL?uGw^b8Nge_k9J@R|`S%KvU-$<@TXZKP%Mp!aJ2oD7GeyTbeq6DZcI3)| zeIPgjZ%m9~?Bl3Royl=k5t}Eg6WcD5r9%Kz^}JZ_Jxq)_<*@m%)AsS+kSAvo#1Gq# z?QZqlbWfOYwhDp+>=lNQiK~fbAZ0xP9sXdfO(wA9X*lOQg{v55i%e%(mrzFeUr3Z& zV%;e)P)J$Gf8;f0u%_KX+%_OZ<~)zLjSJS1-rx#M4Y2d0BBUZi`U@i#H=MY3SuSfM zTy@%e?|GN{e(T3jPje7ieaplz+e2jCshr!1~y)*=|VgqwZ*jAQ{M(_|`K?&vi>AEEU!4T9OJU!vW2c+waqWxbk z9!V4=S*4sPmxAUC0IwLiicmrX=HG^jB6S+me;V?_XUx4z8sb4vF=i`gJCK3EZaG|0 zFt8>C_`$&bYQc*>>DKY`h?Eln>QhH<0jxjh41{T3^BW06uB29@#8B-tuba6x=xJO# zf5G5liEhNT_ciV?3ugQJ?++23e>byDbZEp8h ze>xIOR}!mzx3SiD+s_Kt^ava;e;|)=5$y40Q)vk&IT=%ejC8V`Mv}%8W8IZ+CdYSb zLNV)cnr&0(b3y{zdEmVhO}}%jcWiYSfA6Cp+rx)rw};VS8WStmEbxeGY)&7I3YHF{ zXrMXqsj|i#Z;x@b0sENV1crH zPb~8#=J@^FZGGOUW8DwpU}By&_MIF_n!*dy%RDnxOi`y7$8jF*NTE7}X5k;(e}^vM z)|x|Kf4TU$WkmBSciDO!{!&26%QXrs_vqS>y(OeyYqU^qs8vtckIxsBtv;J&q(+9f z3VA}t0wZG0(t5y24oZ{xN>fzoms-d={H|CZ`wN7#FvT2IK z06ydQgV_4X-)h!b;{E)sn0iOH8K}aiS{4!KLWuvz?h_1wZW%K7Kc^vO4PCu`^CH6U zt?r&)qa#UNBPppp?>VoZ)Y>OQHHMb#5y-|y_F{(l_t(`;gbp^W{S~RXlQRoIs6~S^ zAXNqP7Bvx2i*Q9GbcYfNe+;mOg&qAq-_i5r+W%!+I4gfn#G9)cO|{@K9mCXARccr= zv{*OxM@LBHRIbl8IL-+Rzx3MY8OL_>c=vSDIIasU!<@|qw4Ya}^$}-U#f3H~-uQaj zCzUorJ}xt*ml6tfA!vi;fQc_8lBpCFMQ&sfv_NWVoEfNfCIY|&e*?1_`y~o15Qc!r zP+;^ZOP2&lO9q7jpO<_jLTbv6%=VFL6&#ETp^0PvFa{B>DYEabA3-veqpuGe1T=h1 z*FKsZT{VZt)p}=+&?_pSb(W%h*3V=7EbQ=8FbS3kASoP1vWd@tDtmX=$HQrBE$#`FL*ACe4Jhi@gG94qGp@*Jk2D;;V^GHC%OYxI&iU^-*Os7#s zic~{Za^RRKVMi3<$kV4X%#fXX`ZJzQvWg2kfL9hWikK6vf1+z5Rzr~%$daK!kyNQd zTp7;N;|?Wsf{K28Qp`fLLj?T8a18ZT1#9PuM685{xFnE)GH8x*#>DG8o9#C1j<#3+ z6^MbTKr>~1u0n(IS4!^-9>710vT66ZjZBBW4^;^uE)}_6iN5@?J)02yXr6uJhqpdD zAObHCBt>(8f8Q)R?!`(7bQEUa21{e)6hM3ff)Z%ML~fjUPg1JHhr;0|d^2RzxGvyP zV%}BFyN-cBHTJ0?142m3pZa9h){k)QJ*-W;JGITdAxx3tK_7+$y)<3d5_XDYVxGg~ zpx9Z0Mq=K>0R-9Dy31U3KL}Ns*F8JpqqS0y4yiUme^Fps@S?s-R&;cfk%2k+U}SgG zTNVNxxETcTSkN~+N6D9tLdS)?RAI=72jYd*3Xg?T7&+J>pc!_Hv@Azn>(LV zCO(}Of3hn|O|sH+MNp0w_(E=}VoBk3e)ld1t2bva3bGjN zY0iF*l^m7S31yiQ9=;PRMN(+=$mo?YQM|!csR~j4BgPqj_oh0xE*X~%i1VuwU3+5? zWz${GugH4kEE(ZwyA_j>Ne_Bv{(w)2jtH*#(Id0z<2-1%Qk@uS%EY}q0hnhvNzPq* ze-P|-Vwzr9O^v7Ata;|B1(5zg92%)G9^0PXfSz*~mD8u$QlsXmMEng%ix#i6$cu`sIq-R=0I3TpWh^R=`iL z+}y5|U-S(2w8iCQ?tUxoo%erL<^|=K(B?KI^4fYg2%!7ClPxXO#0PbPpSw%IWmNmd z{}Mo?=BH_k<3A0|8k7hGk~G*3jo5o=OSz^qZJe`*4nhQ3kd3LdFaAFt(LjXi>7C{%zZYylV(=j@Eu zZrk16eo$QDcNo6Kg9?VeEDZG>CE=i7|-~WSu`C|vczcdG5$T^HIBBoMoj2~lZ;(uJlK^FDK zHB>q1)U^~b5DvkCKkl}h%e}F*quFM;)EKGh6!Hh(S1rS_2{_@todm41 zn%4H?Vf$gbZnWsaitPz%RaFQo#-`0kNqqYv6l2PRV_C1seMLm$+;CyCjbfLX8Ni*r z?gKyia7b#BMjCo`;po;qIe$>dEq`-{5;w5Q^N8^1zlMJ?u9FIbAanGQJmnVx_MA@{ ziR3qy_R`msR}`_$cyPZ>y)B@Cn|+ljLJXn)M%+D*E9MNANt zS&gYOJB$k1@~-*R@KPg)8)S)>HHPW2(%OtQ;T&xb;qM55b_|C-bg3$!MhHD6B>0rs zSb{|-ob!Ax=t+^&zQhd{=3#n&dGT##gTuVuJJ;;Q&pr~uu^_lom=&+IqEK2Z$NoRp zMWI#I+}VE}!Kh>31%Ju9_Mu&`o7JB$R;eIg6-O#LZ&tEF(h95`05>w%@$;~@;2sQH z&z6!x39IiHB6izP;f3vUE+#+^9Y{bDpi=1E>j%HRl?O)<{0))+ht{LpvN_Eh8AeJr z6WcW2iOxitSY~@3`wN1046jp)>Jc`Xv+1}!iivQYge|mj1b=y1ubCF9=A9n(eBXB} zQIeG;ddLUhIJRIE+9$(MP$i=TeddJetUCtB{@rbD-s#D`pM9zU4vK{qZV8AAMnnPR zPu|BwB%YBZm$L(}A6jK85>6Bs-ivW>Xo6UG-4uiMg?o-xJCIG*zLi05*zr&y#m<;g zBBMv@A-L%Mt$*akGdJ>?3=u}b%NKT8?cwoP$HTAghmsq?$h_#hr|Tuy*h2lJv_!u6 z{`t7-+CN{68+cj`&&FO~%vMzjp99z>2|Q3H>ada)INX?LndjLKD~}n8bs)DzXuTGR zyr|7k7*kTd-kvvGvJGmKPpHap0T_)@gc&XqDz_ltyMN(uqYQEfAbj{D}Da2FJpbMKB(5TqAEaoM*NZ@WfDVZgK*s*gN0r3WkdI$a{KR zvC$h(@PC+}LSIY}lwPy4JwfSpaFsTS=X7p9yp~PQVgT9HoT6IP9w84GITDIri=|UU zVnVirKmz?e@c(guE3ITfcxKQBzwOvE)bF1!f@wRT&d-qwfIZ1-2PhJ@q^Bvnm(3 zD~)-xQv)&A`)-tf!hHZ*H`z;;RFkR`9yif1h$U*G5VKM;sYpR_rxy~&PAQdnbY>72 z**B1yNhxFyZFq#9ULTX27Z@^N^VvuTGK&+;0-WG&W{!#zw97RilMOG$ZB>1^&{^umpfMU-0)tQ0Y7(r#;EO>*7S$JohXs==&2IhN1~Ib;G~W&T zI;mqp7B*y0U6y186ksS;u~3fbcI~)a2#%*B&-7@J3ayYB9Yb8@@O-#_A^96RW@Dv< zAQhdTb(_Z<4Luk==gurww$ZPr)+tvY# z1vz6DAPNIF1`*e2$YrN+RNd!Qfw%?TU>?|ub>+8V*|&G>bK#nW&?{`p8*C97nkdK; z5@bvm`n)SjmSC=yuKj$cR+Sa$OSf7Tb84zu#jBTCGGbK^=BtSdbG{j&_kY>d>vS&g z2YSsIsvHQ=oq>TbF{ZRiGfROLrt-r4qnP?8sp^+OjYGS_Ef_{jw-+-^@5mccp(z@x zi>Mv0x+s!hwy@~(!`|d}g~$42xkTjuzAN2AlXT6#o5dfHP zNTWhg3eS5j4^hB`5Hl%#v42oOVG6U1Q@#o31LSNW$NjB}KAmQ-=i~uwK)4=Oy2Hta zM14p8IeyRy_?&Ql^eJCXQh1}i?H#OmEZ%wCw>2-`oh`A{{dldkCMoNgyy?{cUNK?=mwzWpmzs+r3h}f3 zu?zn!$bQ|CDVZTfJ@rJCiU>Ablk0j+Q(+zaM&Efg0X>K3ZL&enh+A;=XdN-cKq>Xo zwNKl7o5$^3TpB%8ym?#@ux9kipFQwmTpMaX zs}}@?u;U=HMwok+Y=7u%`AA?281*0$u}xq*uuHGPsY|0Dgz)0Ecr|MlG zrv%k_{)u9pHzrItuJ24)#c5vA1TE&Cm71S8N|ac8;xy9-K&RWQ36hj~LV!#85;<8! zFH>PGpG2}fKM#*5_?N(7l~3(zK1Wy1zXl|pJ@=&gHx0wZn17XwWEyXNBtyH-dg}AC z&L?sR+^b_WI{*CUKXwnzz45Uvgp>ZgB-WS=CLfWxihg#|OkAq63!@EY2QTEC#bX!* zk&~@fOvt%>B{^!6>;ou}{kCnGZjK$~;) zhZyuR1VGg7m49WnPX~qEe?9YTnhjm6RSe$7x$D6#_ZH!b3=7P*Pe}=O(G1HV?dL%t z@40;$+Y)tr(9!Xg#48P`ROFL=;RVXg4U$kzycR{X1(>UMLs55#d4Wc2hN44CN$dUu z*){JtvJvcSEx&`aE=iSmIP;j_@rGPn2Q)ixrmsAweSd3(PJZ*!>`u+yRA*&UVSD*6 z_%!V9?^TM28{-k$5ou&cL6@cyzy`A z^U(vKr`|$R+JPN55`FoGiZB~jN?LdM(qJuK(-S@5*cnu+8rE^7z@m{2J- z*)xNlqhU7W#uuJ4q1*ye=Vw2Wm}Xv1*h}eeiGCus+b8*koOWRU!uC-$1Z1)}>d8-;k!&!-& z+!IfnP#MgnVipj^qt6oP3+nWYWq-G7R0Kn^=Y4j=m-m^3)z5_JJ$kokbXHJ!P;7YNJ-1^5DA z%iAdetHLy9dKFnsA^G2}h$lAi<=6?zvp|SILX@882~abVA}tBMc#RO9K{v2`)sJSa zf_~InTTyRKibC(AaJq3gc4OD=YZ{H{7=LpYTrZ`=@gG!aXSauPdCzMa>O-st!&msu zwtv}$!{u<8=z$B-MxoF}mZkNztxxwK|U}Vm0=?v8X zrxA~y6{Iw$U^vRII1BZfmk(8_9DK*jA0d6Y9I4Nrjk9c?_`=K?^h-^X~0`i*p`0JS;VG{N0tvt7$IZ3@MVnS#B5E>KGALv2BDJ&z0Vk4hOl zr6Dh_o-9U542@)ylZlG?L0nuC)|o)DvDi{E7SKysXPj?-kU1>OG=B>cH5uE7>tIl; zY0wd3>&T?6u`G?|#WK=(+<(`>TdpGAGydhtSJydQc=mUn+zj#i+5a5&h(*nn#-JR_ z$F!tM@JC-#KcbYQuki`WXN*v>Z^JpHlH+I=)VyT4FkJxk+$UKs6vxE=iqd_vbdVnv zuo(ZeZxkiV73p1)Q-8i}o`5_8t`ZnsV8Ae@k??n~ozh-PRc4T)8@V#7ME7bgm8MwT!%VQ^h(Su@l2%Gbq6pc^`{+`P=sq!XBCNY<9tg9F~=Ma7kzLLWO3QA9G{?7mwyg!_g(XTeZ)STuKj4# zmVUH5@0uiC18(nhZqDxy?e^p5;dtqQxn_4<#x z+k#$<%l`g)V_Bx}_aD0k<@5g1hpySTwg9C3&ar!cFuyVJ7tEr%^ZQ4$!4tpK9v3pO7l(Qg0V^kdxy zyApDfyzhC=dk!g9d)Y?6V4cvaL}@}$1d3@cR8yk&dL1uO>%b6+B&U=$%?AQ(@bxCljAa1pl)PIMoZLp#2n>K(mLhi8yPdW7z z_rTc9L^L5en~~o!^8NZw2tjL(s3hO@oYez@rc# zALAaCk0-^`bG=4YMzY(O+{NUfCd)hvC;jSMUeup}a%%E#;t??BzWfB$AG0{D4g(3i zCu&};Pyhh8lTWWx4J(}h0C;RKb98xZWpk78uN0FxpAZWG000000001hfq;|VuRsA| zlOM1)97DW$x+MVs08jz|01*HH00000000000DyrwtCMlCJpqi9udpKqMXmq<007Xi BOz!{y diff --git a/output.log b/output.log index fabf8de..d3ac45b 100644 --- a/output.log +++ b/output.log @@ -244760,3 +244760,4085 @@ WARNING: Using fallback font 'LiberationSans' for 'TimesNewRomanPSMT' 2024-05-09 08:28:21,710 - Index(['judgement', 'grade'], dtype='object') 2024-05-09 08:28:21,710 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. 2024-05-09 08:28:21,710 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:09,724 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:09,733 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions) +2024-05-13 12:38:09,738 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-05-13T12:38:09.734325', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:09,739 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:09,739 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:09,739 - using serial LDA version on this node +2024-05-13 12:38:09,740 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:09,740 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:09,747 - -8.112 per-word bound, 276.7 perplexity estimate based on a held-out corpus of 1 documents with 2696 words +2024-05-13 12:38:09,747 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:09,750 - topic #0 (0.333): 0.024*"’" + 0.008*"needs" + 0.007*"leaders" + 0.006*"within" + 0.006*"practice" + 0.005*"Barnsley" + 0.005*"senior" + 0.005*"2023" + 0.004*"plans" + 0.004*"family" +2024-05-13 12:38:09,750 - topic #1 (0.333): 0.016*"’" + 0.008*"leaders" + 0.008*"needs" + 0.007*"within" + 0.006*"Barnsley" + 0.006*"practice" + 0.005*"response" + 0.005*"plans" + 0.004*"experiences" + 0.004*"quality" +2024-05-13 12:38:09,750 - topic #2 (0.333): 0.017*"’" + 0.008*"needs" + 0.006*"leaders" + 0.006*"within" + 0.005*"Barnsley" + 0.005*"practice" + 0.005*"11" + 0.005*"15" + 0.004*"progress" + 0.004*"plans" +2024-05-13 12:38:09,750 - topic diff=0.795439, rho=1.000000 +2024-05-13 12:38:09,751 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:09.751093', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:09,754 - Error importing jpype dependencies. Fallback to subprocess. +2024-05-13 12:38:09,754 - No module named 'jpype' +2024-05-13 12:38:13,159 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:13,160 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:13,160 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:13,160 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:13,160 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:13,160 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:13,161 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:13,161 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:13,161 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:13,161 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:13,161 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:13,162 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:15,182 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:15,186 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions) +2024-05-13 12:38:15,186 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-05-13T12:38:15.186545', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:15,188 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:15,188 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:15,188 - using serial LDA version on this node +2024-05-13 12:38:15,189 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:15,189 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:15,196 - -8.019 per-word bound, 259.5 perplexity estimate based on a held-out corpus of 1 documents with 2085 words +2024-05-13 12:38:15,196 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:15,198 - topic #0 (0.333): 0.018*"’" + 0.009*"well" + 0.005*"practice" + 0.005*"4" + 0.005*"plans" + 0.005*"impact" + 0.004*"good" + 0.004*"East" + 0.004*"‘" + 0.004*"28" +2024-05-13 12:38:15,198 - topic #1 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"needs" + 0.005*"leaders" + 0.005*"North" + 0.005*"practice" + 0.005*"Somerset" + 0.005*"plans" + 0.004*"effective" + 0.004*"Bath" +2024-05-13 12:38:15,199 - topic #2 (0.333): 0.020*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"practice" + 0.006*"plans" + 0.006*"leaders" + 0.005*"effective" + 0.005*"2022" + 0.005*"clear" + 0.005*"receive" +2024-05-13 12:38:15,199 - topic diff=0.747880, rho=1.000000 +2024-05-13 12:38:15,199 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:15.199381', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:16,411 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:16,411 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:16,412 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:16,412 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:16,412 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:16,412 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:16,413 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:16,413 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:16,413 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:16,413 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:16,413 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:16,414 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:18,593 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:18,595 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions) +2024-05-13 12:38:18,596 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-05-13T12:38:18.596091', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:18,597 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:18,597 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:18,597 - using serial LDA version on this node +2024-05-13 12:38:18,598 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:18,598 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:18,602 - -8.113 per-word bound, 276.9 perplexity estimate based on a held-out corpus of 1 documents with 2585 words +2024-05-13 12:38:18,602 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:18,603 - topic #0 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"ensure" + 0.005*"plans" + 0.005*"relationships" + 0.005*"progress" + 0.004*"26" + 0.004*"Bedford" + 0.004*"family" +2024-05-13 12:38:18,603 - topic #1 (0.333): 0.020*"’" + 0.007*"ensure" + 0.006*"needs" + 0.006*"plans" + 0.006*"Bedford" + 0.005*"good" + 0.005*"well" + 0.005*"Borough" + 0.004*"2021" + 0.004*"progress" +2024-05-13 12:38:18,604 - topic #2 (0.333): 0.019*"’" + 0.006*"supported" + 0.006*"needs" + 0.006*"well" + 0.005*"ensure" + 0.005*"Bedford" + 0.005*"good" + 0.005*"progress" + 0.005*"education" + 0.004*"Borough" +2024-05-13 12:38:18,604 - topic diff=0.784765, rho=1.000000 +2024-05-13 12:38:18,604 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:18.604318', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:19,661 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:19,661 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:19,661 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:19,662 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:19,662 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:19,662 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:19,662 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:19,662 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:19,662 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:19,662 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:19,663 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:19,663 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:21,259 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:21,262 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions) +2024-05-13 12:38:21,262 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-05-13T12:38:21.262461', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:21,263 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:21,263 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:21,264 - using serial LDA version on this node +2024-05-13 12:38:21,264 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:21,264 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:21,268 - -7.966 per-word bound, 250.0 perplexity estimate based on a held-out corpus of 1 documents with 2378 words +2024-05-13 12:38:21,268 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:21,270 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.008*"needs" + 0.007*"plans" + 0.006*"effective" + 0.006*"timely" + 0.005*"Birmingham" + 0.004*"trust" + 0.004*"progress" + 0.004*"appropriate" +2024-05-13 12:38:21,270 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"effective" + 0.006*"Birmingham" + 0.005*"3" + 0.005*"plans" + 0.005*"appropriate" + 0.005*"risk" + 0.005*"progress" + 0.005*"response" +2024-05-13 12:38:21,270 - topic #2 (0.333): 0.015*"’" + 0.010*"needs" + 0.007*"well" + 0.007*"trust" + 0.006*"progress" + 0.006*"effective" + 0.005*"Birmingham" + 0.005*"3" + 0.005*"plans" + 0.005*"practice" +2024-05-13 12:38:21,270 - topic diff=0.786390, rho=1.000000 +2024-05-13 12:38:21,271 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:21.271019', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:22,289 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:22,289 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:22,290 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:22,290 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:22,290 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:22,290 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:22,290 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:22,290 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:22,291 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:22,291 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:22,291 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:22,291 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:23,799 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:23,801 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions) +2024-05-13 12:38:23,801 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-05-13T12:38:23.801610', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:23,802 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:23,802 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:23,803 - using serial LDA version on this node +2024-05-13 12:38:23,803 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:23,803 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:23,807 - -7.966 per-word bound, 250.0 perplexity estimate based on a held-out corpus of 1 documents with 2353 words +2024-05-13 12:38:23,807 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:23,808 - topic #0 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"Darwen" + 0.007*"practice" + 0.006*"quality" + 0.005*"well" + 0.005*"impact" + 0.005*"Blackburn" + 0.005*"need" + 0.005*"4" +2024-05-13 12:38:23,808 - topic #1 (0.333): 0.011*"’" + 0.008*"Blackburn" + 0.007*"needs" + 0.007*"quality" + 0.007*"practice" + 0.007*"well" + 0.006*"impact" + 0.006*"planning" + 0.005*"Darwen" + 0.005*"means" +2024-05-13 12:38:23,808 - topic #2 (0.333): 0.012*"’" + 0.008*"practice" + 0.007*"quality" + 0.007*"needs" + 0.007*"Darwen" + 0.006*"Blackburn" + 0.006*"impact" + 0.005*"well" + 0.005*"result" + 0.005*"4" +2024-05-13 12:38:23,808 - topic diff=0.814794, rho=1.000000 +2024-05-13 12:38:23,809 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:23.809109', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:24,975 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:24,975 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:24,976 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:24,976 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:24,976 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:24,976 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:24,977 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:24,977 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:24,977 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:24,977 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:24,977 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:24,977 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:26,889 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:26,892 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions) +2024-05-13 12:38:26,892 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-05-13T12:38:26.892450', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:26,893 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:26,893 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:26,893 - using serial LDA version on this node +2024-05-13 12:38:26,894 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:26,894 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:26,897 - -7.924 per-word bound, 242.8 perplexity estimate based on a held-out corpus of 1 documents with 2392 words +2024-05-13 12:38:26,897 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:26,899 - topic #0 (0.333): 0.017*"’" + 0.010*"needs" + 0.010*"well" + 0.007*"Blackpool" + 0.006*"plans" + 0.005*"effective" + 0.005*"16" + 0.005*"carers" + 0.005*"supported" + 0.005*"good" +2024-05-13 12:38:26,899 - topic #1 (0.333): 0.018*"’" + 0.011*"well" + 0.009*"needs" + 0.008*"Blackpool" + 0.005*"effective" + 0.005*"quality" + 0.005*"progress" + 0.005*"practice" + 0.005*"16" + 0.005*"team" +2024-05-13 12:38:26,899 - topic #2 (0.333): 0.015*"’" + 0.011*"needs" + 0.007*"Blackpool" + 0.006*"supported" + 0.006*"well" + 0.006*"effective" + 0.006*"practice" + 0.005*"experiences" + 0.004*"plans" + 0.004*"timely" +2024-05-13 12:38:26,899 - topic diff=0.825911, rho=1.000000 +2024-05-13 12:38:26,899 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:26.899933', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:27,928 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:27,928 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:27,929 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:27,929 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:27,929 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:27,929 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:27,929 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:27,929 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:27,929 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:27,929 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:27,930 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:27,930 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:29,466 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:29,469 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions) +2024-05-13 12:38:29,469 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-05-13T12:38:29.469304', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:29,470 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:29,470 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:29,470 - using serial LDA version on this node +2024-05-13 12:38:29,471 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:29,471 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:29,474 - -7.913 per-word bound, 240.9 perplexity estimate based on a held-out corpus of 1 documents with 2055 words +2024-05-13 12:38:29,474 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:29,476 - topic #0 (0.333): 0.013*"’" + 0.009*"plans" + 0.008*"needs" + 0.006*"well" + 0.006*"Bolton" + 0.006*"need" + 0.006*"supported" + 0.004*"response" + 0.004*"effective" + 0.004*"strong" +2024-05-13 12:38:29,476 - topic #1 (0.333): 0.019*"’" + 0.010*"needs" + 0.008*"well" + 0.008*"Bolton" + 0.007*"plans" + 0.006*"11" + 0.005*"supported" + 0.005*"planning" + 0.005*"response" + 0.005*"appropriate" +2024-05-13 12:38:29,476 - topic #2 (0.333): 0.023*"’" + 0.010*"needs" + 0.010*"Bolton" + 0.009*"well" + 0.006*"plans" + 0.006*"planning" + 0.005*"supported" + 0.005*"strong" + 0.005*"September" + 0.005*"timely" +2024-05-13 12:38:29,476 - topic diff=0.778573, rho=1.000000 +2024-05-13 12:38:29,476 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:29.476734', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:30,593 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:30,593 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:30,593 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:30,593 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:30,593 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:30,593 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:30,594 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:30,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:30,594 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:30,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:30,594 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:30,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:32,214 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:32,217 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions) +2024-05-13 12:38:32,217 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-05-13T12:38:32.217218', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:32,218 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:32,218 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:32,218 - using serial LDA version on this node +2024-05-13 12:38:32,218 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:32,219 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:32,222 - -8.033 per-word bound, 261.9 perplexity estimate based on a held-out corpus of 1 documents with 2004 words +2024-05-13 12:38:32,222 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:32,223 - topic #0 (0.333): 0.019*"’" + 0.006*"quality" + 0.006*"progress" + 0.005*"Christchurch" + 0.005*"Bournemouth" + 0.005*"practice" + 0.005*"time" + 0.004*"needs" + 0.004*"impact" + 0.004*"well" +2024-05-13 12:38:32,224 - topic #1 (0.333): 0.018*"’" + 0.006*"practice" + 0.006*"quality" + 0.005*"6" + 0.005*"risk" + 0.005*"17" + 0.005*"impact" + 0.005*"Poole" + 0.005*"However" + 0.004*"number" +2024-05-13 12:38:32,224 - topic #2 (0.333): 0.016*"’" + 0.006*"quality" + 0.006*"practice" + 0.005*"progress" + 0.005*"well" + 0.004*"Poole" + 0.004*"17" + 0.004*"risk" + 0.004*"time" + 0.004*"Bournemouth" +2024-05-13 12:38:32,224 - topic diff=0.751827, rho=1.000000 +2024-05-13 12:38:32,224 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:32.224504', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:34,561 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:34,561 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:34,561 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:34,561 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:34,561 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:34,561 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:34,562 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:34,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:34,562 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:34,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:34,562 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:34,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:36,094 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:36,096 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions) +2024-05-13 12:38:36,096 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-05-13T12:38:36.096780', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:36,097 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:36,097 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:36,098 - using serial LDA version on this node +2024-05-13 12:38:36,098 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:36,098 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:36,101 - -7.854 per-word bound, 231.3 perplexity estimate based on a held-out corpus of 1 documents with 1846 words +2024-05-13 12:38:36,101 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:36,103 - topic #0 (0.333): 0.018*"’" + 0.007*"needs" + 0.007*"risk" + 0.006*"provided" + 0.006*"good" + 0.006*"Bracknell" + 0.006*"effective" + 0.006*"need" + 0.006*"quality" + 0.006*"impact" +2024-05-13 12:38:36,103 - topic #1 (0.333): 0.015*"’" + 0.008*"Forest" + 0.008*"Bracknell" + 0.006*"risk" + 0.006*"quality" + 0.006*"leaders" + 0.006*"needs" + 0.005*"plans" + 0.005*"effective" + 0.005*"good" +2024-05-13 12:38:36,103 - topic #2 (0.333): 0.016*"’" + 0.007*"Forest" + 0.007*"needs" + 0.006*"good" + 0.006*"quality" + 0.006*"progress" + 0.006*"well" + 0.006*"risk" + 0.006*"effective" + 0.006*"need" +2024-05-13 12:38:36,103 - topic diff=0.760511, rho=1.000000 +2024-05-13 12:38:36,103 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:36.103911', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:37,255 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:37,255 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:37,255 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:37,256 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:37,256 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:37,256 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:37,256 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:37,256 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:37,256 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:37,257 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:37,257 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:37,257 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:38,643 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:38,646 - built Dictionary<902 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 1873 corpus positions) +2024-05-13 12:38:38,646 - Dictionary lifecycle event {'msg': 'built Dictionary<902 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 1873 corpus positions)', 'datetime': '2024-05-13T12:38:38.646664', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:38,648 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:38,648 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:38,648 - using serial LDA version on this node +2024-05-13 12:38:38,649 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:38,649 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:38,655 - -7.847 per-word bound, 230.2 perplexity estimate based on a held-out corpus of 1 documents with 1873 words +2024-05-13 12:38:38,655 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:38,657 - topic #0 (0.333): 0.009*"’" + 0.009*"good" + 0.007*"needs" + 0.006*"well" + 0.005*"recording" + 0.005*"leaders" + 0.005*"ensure" + 0.005*"Hove" + 0.004*"plans" + 0.004*"improve" +2024-05-13 12:38:38,657 - topic #1 (0.333): 0.016*"’" + 0.010*"needs" + 0.009*"good" + 0.007*"recording" + 0.005*"plans" + 0.005*"well" + 0.005*"leaders" + 0.005*"However" + 0.005*"need" + 0.005*"Brighton" +2024-05-13 12:38:38,658 - topic #2 (0.333): 0.015*"’" + 0.009*"needs" + 0.007*"good" + 0.006*"leaders" + 0.005*"well" + 0.005*"recording" + 0.005*"need" + 0.005*"supported" + 0.005*"Senior" + 0.005*"quality" +2024-05-13 12:38:38,658 - topic diff=0.756131, rho=1.000000 +2024-05-13 12:38:38,658 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:38.658313', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:39,637 - Inspection date 2018-07-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:39,638 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:39,638 - Inspection date 2018-07-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:39,638 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:39,638 - Inspection date 2018-07-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:39,638 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:39,639 - Inspection date 2018-07-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:39,639 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:39,639 - Inspection date 2018-07-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:39,639 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:39,639 - Inspection date 2018-07-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:39,639 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:40,975 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:40,977 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions) +2024-05-13 12:38:40,978 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-05-13T12:38:40.977975', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:40,979 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:40,979 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:40,979 - using serial LDA version on this node +2024-05-13 12:38:40,980 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:40,980 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:40,983 - -8.026 per-word bound, 260.7 perplexity estimate based on a held-out corpus of 1 documents with 2647 words +2024-05-13 12:38:40,984 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:40,985 - topic #0 (0.333): 0.019*"’" + 0.010*"well" + 0.008*"good" + 0.008*"Bristol" + 0.006*"progress" + 0.006*"needs" + 0.005*"always" + 0.005*"health" + 0.005*"16" + 0.005*"need" +2024-05-13 12:38:40,985 - topic #1 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"good" + 0.006*"Bristol" + 0.006*"needs" + 0.005*"need" + 0.005*"health" + 0.005*"leaders" + 0.004*"risk" + 0.004*"plans" +2024-05-13 12:38:40,985 - topic #2 (0.333): 0.019*"’" + 0.010*"needs" + 0.008*"well" + 0.008*"good" + 0.008*"Bristol" + 0.005*"health" + 0.005*"leaders" + 0.005*"information" + 0.004*"plans" + 0.004*"progress" +2024-05-13 12:38:40,986 - topic diff=0.816315, rho=1.000000 +2024-05-13 12:38:40,986 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:40.986177', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:41,931 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:41,932 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:41,932 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:41,932 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:41,932 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:41,933 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:41,933 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:41,933 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:41,933 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:41,933 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:41,933 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:41,934 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:43,880 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:43,883 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions) +2024-05-13 12:38:43,883 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-05-13T12:38:43.883360', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:43,884 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:43,884 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:43,884 - using serial LDA version on this node +2024-05-13 12:38:43,885 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:43,885 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:43,890 - -8.239 per-word bound, 302.2 perplexity estimate based on a held-out corpus of 1 documents with 2404 words +2024-05-13 12:38:43,890 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:43,891 - topic #0 (0.333): 0.010*"’" + 0.004*"plans" + 0.004*"many" + 0.004*"number" + 0.004*"Buckinghamshire" + 0.004*"17" + 0.003*"6" + 0.003*"teams" + 0.003*"progress" + 0.003*"delays" +2024-05-13 12:38:43,891 - topic #1 (0.333): 0.015*"’" + 0.005*"number" + 0.005*"plans" + 0.004*"Buckinghamshire" + 0.004*"protection" + 0.004*"practice" + 0.004*"December" + 0.004*"17" + 0.004*"well" + 0.004*"small" +2024-05-13 12:38:43,892 - topic #2 (0.333): 0.014*"’" + 0.005*"plans" + 0.005*"17" + 0.005*"Buckinghamshire" + 0.004*"6" + 0.004*"number" + 0.004*"2021" + 0.004*"progress" + 0.004*"protection" + 0.004*"many" +2024-05-13 12:38:43,892 - topic diff=0.732361, rho=1.000000 +2024-05-13 12:38:43,892 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:43.892376', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:44,968 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:44,968 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:44,969 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:44,969 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:44,969 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:44,970 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:44,970 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:44,970 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:44,970 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:44,971 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:44,971 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:44,971 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:47,191 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:47,194 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions) +2024-05-13 12:38:47,194 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-05-13T12:38:47.194172', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:47,195 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:47,195 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:47,195 - using serial LDA version on this node +2024-05-13 12:38:47,196 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:47,196 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:47,199 - -7.976 per-word bound, 251.8 perplexity estimate based on a held-out corpus of 1 documents with 2427 words +2024-05-13 12:38:47,199 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:47,201 - topic #0 (0.333): 0.012*"’" + 0.009*"protection" + 0.007*"2021" + 0.005*"needs" + 0.005*"team" + 0.005*"practice" + 0.005*"need" + 0.004*"quality" + 0.004*"drift" + 0.004*"progress" +2024-05-13 12:38:47,201 - topic #1 (0.333): 0.011*"’" + 0.006*"needs" + 0.006*"2021" + 0.006*"team" + 0.005*"protection" + 0.005*"impact" + 0.005*"practice" + 0.005*"need" + 0.005*"risk" + 0.004*"quality" +2024-05-13 12:38:47,201 - topic #2 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"2021" + 0.006*"Bury" + 0.006*"practice" + 0.005*"impact" + 0.005*"team" + 0.005*"risk" + 0.005*"need" + 0.005*"quality" +2024-05-13 12:38:47,201 - topic diff=0.803517, rho=1.000000 +2024-05-13 12:38:47,201 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:47.201846', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:48,481 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:48,481 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:48,481 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:48,482 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:48,482 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:48,482 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:48,482 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:48,482 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:48,482 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:48,482 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:48,483 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:48,483 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:49,903 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:49,907 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2497 corpus positions) +2024-05-13 12:38:49,907 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2497 corpus positions)", 'datetime': '2024-05-13T12:38:49.907403', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:49,908 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:49,909 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:49,909 - using serial LDA version on this node +2024-05-13 12:38:49,909 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:49,909 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:49,913 - -8.136 per-word bound, 281.2 perplexity estimate based on a held-out corpus of 1 documents with 2497 words +2024-05-13 12:38:49,913 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:49,915 - topic #0 (0.333): 0.012*"’" + 0.006*"well" + 0.006*"Calderdale" + 0.005*"effective" + 0.005*"practice" + 0.005*"good" + 0.005*"protection" + 0.004*"education" + 0.004*"‘" + 0.004*"inform" +2024-05-13 12:38:49,915 - topic #1 (0.333): 0.016*"’" + 0.009*"well" + 0.006*"practice" + 0.005*"Calderdale" + 0.005*"‘" + 0.004*"good" + 0.004*"protection" + 0.004*"inform" + 0.004*"making" + 0.004*"risk" +2024-05-13 12:38:49,915 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"good" + 0.005*"practice" + 0.005*"effective" + 0.005*"protection" + 0.005*"carers" + 0.005*"need" + 0.004*"Calderdale" + 0.004*"education" +2024-05-13 12:38:49,915 - topic diff=0.762214, rho=1.000000 +2024-05-13 12:38:49,915 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:49.915816', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:51,003 - Inspection date 2018-11-12 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:51,004 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:51,004 - Inspection date 2018-11-12 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:51,004 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:51,004 - Inspection date 2018-11-12 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:51,004 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:51,005 - Inspection date 2018-11-12 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:51,005 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:51,005 - Inspection date 2018-11-12 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:51,005 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:51,005 - Inspection date 2018-11-12 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:51,005 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:52,433 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:52,437 - built Dictionary<966 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1985 corpus positions) +2024-05-13 12:38:52,437 - Dictionary lifecycle event {'msg': "built Dictionary<966 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1985 corpus positions)", 'datetime': '2024-05-13T12:38:52.437847', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:52,439 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:52,444 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:52,444 - using serial LDA version on this node +2024-05-13 12:38:52,445 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:52,445 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:52,450 - -7.929 per-word bound, 243.7 perplexity estimate based on a held-out corpus of 1 documents with 1985 words +2024-05-13 12:38:52,450 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:52,453 - topic #0 (0.333): 0.014*"’" + 0.011*"well" + 0.007*"impact" + 0.007*"good" + 0.007*"quality" + 0.006*"need" + 0.006*"needs" + 0.005*"progress" + 0.005*"effective" + 0.005*"teams" +2024-05-13 12:38:52,454 - topic #1 (0.333): 0.014*"’" + 0.010*"well" + 0.010*"good" + 0.009*"plans" + 0.008*"teams" + 0.006*"needs" + 0.006*"impact" + 0.006*"need" + 0.006*"However" + 0.005*"quality" +2024-05-13 12:38:52,454 - topic #2 (0.333): 0.014*"’" + 0.009*"needs" + 0.009*"need" + 0.009*"good" + 0.008*"well" + 0.007*"plans" + 0.007*"teams" + 0.007*"impact" + 0.006*"However" + 0.006*"quality" +2024-05-13 12:38:52,454 - topic diff=0.758873, rho=1.000000 +2024-05-13 12:38:52,454 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:52.454750', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:53,492 - Inspection date 2019-01-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:53,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:53,493 - Inspection date 2019-01-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:53,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:53,493 - Inspection date 2019-01-14 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:53,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:53,493 - Inspection date 2019-01-14 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:53,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:53,494 - Inspection date 2019-01-14 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:53,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:53,494 - Inspection date 2019-01-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:53,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:55,025 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:55,029 - built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) +2024-05-13 12:38:55,029 - Dictionary lifecycle event {'msg': "built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-05-13T12:38:55.029626', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:55,030 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:55,030 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:55,031 - using serial LDA version on this node +2024-05-13 12:38:55,031 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:55,031 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:55,034 - -7.963 per-word bound, 249.6 perplexity estimate based on a held-out corpus of 1 documents with 2199 words +2024-05-13 12:38:55,035 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:55,036 - topic #0 (0.333): 0.013*"’" + 0.009*"well" + 0.006*"need" + 0.006*"needs" + 0.006*"carers" + 0.005*"good" + 0.005*"effective" + 0.005*"plans" + 0.005*"Central" + 0.004*"progress" +2024-05-13 12:38:55,036 - topic #1 (0.333): 0.017*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"plans" + 0.006*"need" + 0.006*"good" + 0.005*"Bedfordshire" + 0.005*"carers" + 0.005*"supported" + 0.005*"progress" +2024-05-13 12:38:55,036 - topic #2 (0.333): 0.018*"’" + 0.009*"well" + 0.008*"needs" + 0.007*"carers" + 0.007*"good" + 0.007*"progress" + 0.006*"need" + 0.005*"plans" + 0.005*"2022" + 0.005*"education" +2024-05-13 12:38:55,036 - topic diff=0.779791, rho=1.000000 +2024-05-13 12:38:55,036 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:55.036912', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:56,068 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:56,069 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:56,069 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:56,069 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:56,069 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:56,069 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:56,070 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:56,070 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:56,070 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:56,070 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:56,070 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:56,070 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:57,522 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:38:57,524 - built Dictionary<926 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions) +2024-05-13 12:38:57,524 - Dictionary lifecycle event {'msg': "built Dictionary<926 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions)", 'datetime': '2024-05-13T12:38:57.524477', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:57,526 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:38:57,526 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:38:57,526 - using serial LDA version on this node +2024-05-13 12:38:57,527 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:38:57,527 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:38:57,531 - -7.891 per-word bound, 237.3 perplexity estimate based on a held-out corpus of 1 documents with 1878 words +2024-05-13 12:38:57,531 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:38:57,533 - topic #0 (0.333): 0.011*"’" + 0.006*"needs" + 0.006*"good" + 0.006*"well" + 0.005*"However" + 0.005*"supported" + 0.005*"plans" + 0.005*"practice" + 0.005*"timely" + 0.004*"always" +2024-05-13 12:38:57,533 - topic #1 (0.333): 0.011*"’" + 0.010*"good" + 0.008*"well" + 0.007*"needs" + 0.007*"need" + 0.006*"always" + 0.006*"supported" + 0.006*"plans" + 0.006*"practice" + 0.005*"quality" +2024-05-13 12:38:57,533 - topic #2 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"needs" + 0.008*"plans" + 0.007*"practice" + 0.006*"ensure" + 0.006*"good" + 0.006*"always" + 0.005*"carers" + 0.005*"risk" +2024-05-13 12:38:57,533 - topic diff=0.772968, rho=1.000000 +2024-05-13 12:38:57,533 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:38:57.533904', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:38:58,838 - Inspection date 2019-11-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:38:58,838 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:58,838 - Inspection date 2019-11-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:38:58,838 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:58,838 - Inspection date 2019-11-18 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:38:58,839 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:58,839 - Inspection date 2019-11-18 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:38:58,839 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:58,839 - Inspection date 2019-11-18 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:38:58,839 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:38:58,839 - Inspection date 2019-11-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:38:58,839 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:00,503 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:00,507 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions) +2024-05-13 12:39:00,507 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions)", 'datetime': '2024-05-13T12:39:00.507546', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:00,509 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:00,509 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:00,510 - using serial LDA version on this node +2024-05-13 12:39:00,510 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:00,510 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:00,517 - -8.001 per-word bound, 256.2 perplexity estimate based on a held-out corpus of 1 documents with 2186 words +2024-05-13 12:39:00,517 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:00,520 - topic #0 (0.333): 0.023*"’" + 0.008*"well" + 0.008*"needs" + 0.005*"practice" + 0.005*"impact" + 0.005*"timely" + 0.004*"order" + 0.004*"effective" + 0.004*"progress" + 0.004*"plans" +2024-05-13 12:39:00,520 - topic #1 (0.333): 0.024*"’" + 0.005*"needs" + 0.005*"well" + 0.004*"effective" + 0.004*"learning" + 0.004*"plans" + 0.004*"effectively" + 0.004*"always" + 0.004*"practice" + 0.004*"use" +2024-05-13 12:39:00,520 - topic #2 (0.333): 0.017*"’" + 0.007*"well" + 0.007*"needs" + 0.004*"receive" + 0.004*"practice" + 0.004*"order" + 0.004*"effectively" + 0.004*"learning" + 0.004*"always" + 0.004*"However" +2024-05-13 12:39:00,520 - topic diff=0.770563, rho=1.000000 +2024-05-13 12:39:00,521 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:00.521218', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:01,493 - Inspection date 2019-03-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:01,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:01,493 - Inspection date 2019-03-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:01,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:01,494 - Inspection date 2019-03-18 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:01,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:01,494 - Inspection date 2019-03-18 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:01,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:01,494 - Inspection date 2019-03-18 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:01,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:01,494 - Inspection date 2019-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:01,495 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:03,262 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:03,264 - built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions) +2024-05-13 12:39:03,264 - Dictionary lifecycle event {'msg': "built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions)", 'datetime': '2024-05-13T12:39:03.264949', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:03,266 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:03,266 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:03,266 - using serial LDA version on this node +2024-05-13 12:39:03,266 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:03,267 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:03,270 - -8.047 per-word bound, 264.6 perplexity estimate based on a held-out corpus of 1 documents with 2639 words +2024-05-13 12:39:03,270 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:03,272 - topic #0 (0.333): 0.019*"’" + 0.007*"plans" + 0.005*"2022" + 0.005*"Bradford" + 0.005*"However" + 0.005*"quality" + 0.005*"needs" + 0.004*"21" + 0.004*"progress" + 0.004*"risk" +2024-05-13 12:39:03,272 - topic #1 (0.333): 0.022*"’" + 0.007*"plans" + 0.005*"needs" + 0.005*"impact" + 0.005*"Bradford" + 0.005*"2" + 0.005*"◼" + 0.004*"senior" + 0.004*"Council" + 0.004*"need" +2024-05-13 12:39:03,272 - topic #2 (0.333): 0.021*"’" + 0.006*"plans" + 0.004*"risk" + 0.004*"2" + 0.004*"Metropolitan" + 0.004*"Borough" + 0.004*"needs" + 0.004*"Bradford" + 0.004*"November" + 0.004*"practice" +2024-05-13 12:39:03,272 - topic diff=0.806681, rho=1.000000 +2024-05-13 12:39:03,273 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:03.273110', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:04,300 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:04,300 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:04,301 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:04,301 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:04,301 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:04,301 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:04,301 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:04,301 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:04,302 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:04,302 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:04,302 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:04,302 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:06,017 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:06,019 - built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions) +2024-05-13 12:39:06,020 - Dictionary lifecycle event {'msg': "built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions)", 'datetime': '2024-05-13T12:39:06.020058', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:06,021 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:06,021 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:06,021 - using serial LDA version on this node +2024-05-13 12:39:06,021 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:06,021 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:06,024 - -7.839 per-word bound, 229.0 perplexity estimate based on a held-out corpus of 1 documents with 1767 words +2024-05-13 12:39:06,025 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:06,026 - topic #0 (0.333): 0.013*"needs" + 0.012*"’" + 0.010*"well" + 0.010*"ensure" + 0.007*"effective" + 0.006*"progress" + 0.006*"plans" + 0.006*"good" + 0.006*"clear" + 0.005*"practice" +2024-05-13 12:39:06,026 - topic #1 (0.333): 0.012*"’" + 0.011*"needs" + 0.011*"well" + 0.008*"ensure" + 0.007*"effective" + 0.006*"clear" + 0.006*"good" + 0.005*"plans" + 0.005*"supported" + 0.005*"progress" +2024-05-13 12:39:06,026 - topic #2 (0.333): 0.012*"’" + 0.010*"needs" + 0.009*"well" + 0.008*"ensure" + 0.007*"clear" + 0.006*"progress" + 0.005*"individual" + 0.004*"practice" + 0.004*"within" + 0.004*"effective" +2024-05-13 12:39:06,026 - topic diff=0.745113, rho=1.000000 +2024-05-13 12:39:06,026 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:06.026967', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:07,229 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:07,229 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:07,229 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:07,230 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:07,230 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:07,230 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:07,230 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:07,231 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:07,231 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:07,231 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:07,231 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:07,232 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:08,779 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:08,782 - built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions) +2024-05-13 12:39:08,782 - Dictionary lifecycle event {'msg': "built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions)", 'datetime': '2024-05-13T12:39:08.782344', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:08,783 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:08,783 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:08,783 - using serial LDA version on this node +2024-05-13 12:39:08,784 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:08,784 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:08,787 - -7.905 per-word bound, 239.6 perplexity estimate based on a held-out corpus of 1 documents with 2281 words +2024-05-13 12:39:08,787 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:08,789 - topic #0 (0.333): 0.021*"’" + 0.008*"quality" + 0.007*"Wakefield" + 0.007*"November" + 0.006*"leaders" + 0.006*"effective" + 0.006*"good" + 0.006*"well" + 0.006*"plans" + 0.005*"progress" +2024-05-13 12:39:08,789 - topic #1 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"Wakefield" + 0.008*"leaders" + 0.007*"good" + 0.007*"quality" + 0.006*"November" + 0.006*"effective" + 0.006*"needs" + 0.006*"practice" +2024-05-13 12:39:08,789 - topic #2 (0.333): 0.014*"’" + 0.008*"November" + 0.007*"Wakefield" + 0.007*"well" + 0.007*"effective" + 0.007*"quality" + 0.007*"leaders" + 0.007*"plans" + 0.006*"good" + 0.005*"progress" +2024-05-13 12:39:08,789 - topic diff=0.799084, rho=1.000000 +2024-05-13 12:39:08,789 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:08.789907', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:09,768 - Inspection date 2021-11-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:09,768 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:09,769 - Inspection date 2021-11-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:09,769 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:09,769 - Inspection date 2021-11-08 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:09,770 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:09,770 - Inspection date 2021-11-08 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:09,770 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:09,770 - Inspection date 2021-11-08 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:09,770 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:09,771 - Inspection date 2021-11-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:09,771 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:11,470 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:11,471 - built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions) +2024-05-13 12:39:11,472 - Dictionary lifecycle event {'msg': "built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions)", 'datetime': '2024-05-13T12:39:11.472138', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:11,473 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:11,473 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:11,473 - using serial LDA version on this node +2024-05-13 12:39:11,473 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:11,474 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:11,477 - -7.872 per-word bound, 234.3 perplexity estimate based on a held-out corpus of 1 documents with 1855 words +2024-05-13 12:39:11,477 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:11,478 - topic #0 (0.333): 0.014*"’" + 0.009*"March" + 0.006*"needs" + 0.006*"effective" + 0.006*"However" + 0.006*"well" + 0.005*"quality" + 0.005*"plans" + 0.005*"York" + 0.005*"good" +2024-05-13 12:39:11,478 - topic #1 (0.333): 0.013*"’" + 0.008*"needs" + 0.007*"quality" + 0.006*"effective" + 0.006*"March" + 0.006*"plans" + 0.005*"York" + 0.005*"ensure" + 0.005*"7" + 0.005*"However" +2024-05-13 12:39:11,478 - topic #2 (0.333): 0.017*"’" + 0.008*"needs" + 0.007*"quality" + 0.006*"March" + 0.005*"ensure" + 0.005*"effective" + 0.005*"education" + 0.005*"training" + 0.005*"practice" + 0.005*"supported" +2024-05-13 12:39:11,479 - topic diff=0.765947, rho=1.000000 +2024-05-13 12:39:11,479 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:11.479264', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:12,396 - Inspection date 2022-03-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:12,397 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:12,397 - Inspection date 2022-03-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:12,397 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:12,397 - Inspection date 2022-03-07 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:12,398 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:12,398 - Inspection date 2022-03-07 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:12,398 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:12,398 - Inspection date 2022-03-07 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:12,398 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:12,398 - Inspection date 2022-03-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:12,398 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:13,891 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:13,893 - built Dictionary<1014 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2157 corpus positions) +2024-05-13 12:39:13,893 - Dictionary lifecycle event {'msg': "built Dictionary<1014 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2157 corpus positions)", 'datetime': '2024-05-13T12:39:13.893615', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:13,894 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:13,894 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:13,895 - using serial LDA version on this node +2024-05-13 12:39:13,895 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:13,895 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:13,900 - -7.950 per-word bound, 247.3 perplexity estimate based on a held-out corpus of 1 documents with 2157 words +2024-05-13 12:39:13,900 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:13,903 - topic #0 (0.333): 0.014*"well" + 0.011*"’" + 0.010*"quality" + 0.009*"effective" + 0.008*"leaders" + 0.006*"good" + 0.006*"arrangements" + 0.006*"plans" + 0.006*"timely" + 0.005*"Senior" +2024-05-13 12:39:13,903 - topic #1 (0.333): 0.013*"’" + 0.013*"well" + 0.008*"quality" + 0.007*"leaders" + 0.007*"effective" + 0.006*"good" + 0.006*"timely" + 0.005*"plans" + 0.005*"arrangements" + 0.004*"highly" +2024-05-13 12:39:13,903 - topic #2 (0.333): 0.017*"well" + 0.012*"’" + 0.011*"quality" + 0.009*"leaders" + 0.009*"effective" + 0.006*"plans" + 0.005*"arrangements" + 0.005*"good" + 0.005*"timely" + 0.005*"highly" +2024-05-13 12:39:13,903 - topic diff=0.780289, rho=1.000000 +2024-05-13 12:39:13,903 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:13.903870', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:15,098 - Inspection date 2019-10-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:15,099 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:15,099 - Inspection date 2019-10-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:15,099 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:15,099 - Inspection date 2019-10-14 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:15,099 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:15,100 - Inspection date 2019-10-14 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:15,100 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:15,100 - Inspection date 2019-10-14 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:15,100 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:15,101 - Inspection date 2019-10-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:15,101 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:16,308 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:16,309 - built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions) +2024-05-13 12:39:16,309 - Dictionary lifecycle event {'msg': "built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions)", 'datetime': '2024-05-13T12:39:16.309962', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:16,310 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:16,310 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:16,311 - using serial LDA version on this node +2024-05-13 12:39:16,311 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:16,311 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:16,314 - -7.682 per-word bound, 205.4 perplexity estimate based on a held-out corpus of 1 documents with 1521 words +2024-05-13 12:39:16,314 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:16,315 - topic #0 (0.333): 0.024*"’" + 0.013*"Scilly" + 0.012*"Isles" + 0.009*"practice" + 0.009*"need" + 0.007*"information" + 0.007*"needs" + 0.007*"protection" + 0.006*"quality" + 0.006*"place" +2024-05-13 12:39:16,315 - topic #1 (0.333): 0.018*"’" + 0.013*"Isles" + 0.011*"Scilly" + 0.011*"information" + 0.008*"practice" + 0.007*"need" + 0.007*"needs" + 0.006*"protection" + 0.006*"quality" + 0.006*"13" +2024-05-13 12:39:16,315 - topic #2 (0.333): 0.020*"’" + 0.011*"Scilly" + 0.010*"Isles" + 0.008*"information" + 0.007*"need" + 0.007*"practice" + 0.006*"protection" + 0.006*"needs" + 0.006*"risks" + 0.006*"11" +2024-05-13 12:39:16,316 - topic diff=0.747071, rho=1.000000 +2024-05-13 12:39:16,316 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-05-13T12:39:16.316222', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:17,192 - Inspection date 2023-07-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:17,192 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:17,192 - Inspection date 2023-07-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:17,192 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:17,193 - Inspection date 2023-07-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:17,193 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:17,193 - Inspection date 2023-07-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:17,193 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:17,193 - Inspection date 2023-07-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:17,193 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:17,193 - Inspection date 2023-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:17,193 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:18,800 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:18,802 - built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions) +2024-05-13 12:39:18,802 - Dictionary lifecycle event {'msg': "built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions)", 'datetime': '2024-05-13T12:39:18.802644', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:18,803 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:18,803 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:18,804 - using serial LDA version on this node +2024-05-13 12:39:18,804 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:18,804 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:18,807 - -7.850 per-word bound, 230.7 perplexity estimate based on a held-out corpus of 1 documents with 2074 words +2024-05-13 12:39:18,808 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:18,809 - topic #0 (0.333): 0.013*"’" + 0.007*"Coventry" + 0.006*"plans" + 0.006*"well" + 0.006*"supported" + 0.006*"need" + 0.005*"family" + 0.005*"strong" + 0.004*"needs" + 0.004*"1" +2024-05-13 12:39:18,809 - topic #1 (0.333): 0.021*"’" + 0.009*"well" + 0.008*"needs" + 0.007*"supported" + 0.007*"plans" + 0.006*"family" + 0.005*"strong" + 0.005*"Coventry" + 0.005*"need" + 0.005*"understand" +2024-05-13 12:39:18,809 - topic #2 (0.333): 0.022*"’" + 0.011*"Coventry" + 0.008*"needs" + 0.008*"well" + 0.007*"supported" + 0.006*"plans" + 0.006*"family" + 0.005*"strong" + 0.005*"need" + 0.004*"training" +2024-05-13 12:39:18,809 - topic diff=0.807106, rho=1.000000 +2024-05-13 12:39:18,810 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:18.810002', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:19,794 - Inspection date 2022-06-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:19,794 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:19,794 - Inspection date 2022-06-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:19,794 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:19,794 - Inspection date 2022-06-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:19,794 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:19,795 - Inspection date 2022-06-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:19,795 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:19,795 - Inspection date 2022-06-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:19,795 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:19,795 - Inspection date 2022-06-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:19,795 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:22,095 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:22,098 - built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions) +2024-05-13 12:39:22,098 - Dictionary lifecycle event {'msg': "built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions)", 'datetime': '2024-05-13T12:39:22.098221', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:22,099 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:22,099 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:22,099 - using serial LDA version on this node +2024-05-13 12:39:22,100 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:22,100 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:22,104 - -8.084 per-word bound, 271.4 perplexity estimate based on a held-out corpus of 1 documents with 2653 words +2024-05-13 12:39:22,104 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:22,105 - topic #0 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"needs" + 0.007*"practice" + 0.006*"leaders" + 0.006*"supported" + 0.005*"Darlington" + 0.005*"effective" + 0.005*"October" + 0.004*"need" +2024-05-13 12:39:22,106 - topic #1 (0.333): 0.021*"’" + 0.008*"well" + 0.008*"leaders" + 0.008*"October" + 0.006*"needs" + 0.006*"Darlington" + 0.006*"practice" + 0.005*"quality" + 0.004*"family" + 0.004*"effective" +2024-05-13 12:39:22,106 - topic #2 (0.333): 0.016*"’" + 0.007*"October" + 0.006*"Darlington" + 0.006*"leaders" + 0.005*"needs" + 0.005*"well" + 0.005*"practice" + 0.005*"education" + 0.005*"effective" + 0.004*"quality" +2024-05-13 12:39:22,106 - topic diff=0.795962, rho=1.000000 +2024-05-13 12:39:22,106 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:22.106553', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:23,011 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:23,011 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:23,011 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:23,011 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:23,011 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:23,012 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:23,012 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:23,012 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:23,012 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:23,012 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:23,012 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:23,013 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:24,982 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:24,984 - built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions) +2024-05-13 12:39:24,984 - Dictionary lifecycle event {'msg': "built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions)", 'datetime': '2024-05-13T12:39:24.984811', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:24,985 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:24,986 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:24,986 - using serial LDA version on this node +2024-05-13 12:39:24,986 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:24,986 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:24,990 - -8.048 per-word bound, 264.7 perplexity estimate based on a held-out corpus of 1 documents with 2396 words +2024-05-13 12:39:24,990 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:24,992 - topic #0 (0.333): 0.014*"’" + 0.011*"needs" + 0.006*"quality" + 0.006*"Derby" + 0.006*"receive" + 0.005*"need" + 0.005*"progress" + 0.005*"appropriate" + 0.005*"good" + 0.004*"well" +2024-05-13 12:39:24,992 - topic #1 (0.333): 0.021*"’" + 0.009*"needs" + 0.009*"Derby" + 0.007*"quality" + 0.006*"leaders" + 0.006*"plans" + 0.006*"receive" + 0.005*"well" + 0.005*"good" + 0.005*"appropriate" +2024-05-13 12:39:24,992 - topic #2 (0.333): 0.026*"’" + 0.008*"needs" + 0.006*"receive" + 0.006*"Derby" + 0.006*"quality" + 0.006*"progress" + 0.006*"plans" + 0.005*"appropriate" + 0.005*"well" + 0.005*"leaders" +2024-05-13 12:39:24,992 - topic diff=0.773881, rho=1.000000 +2024-05-13 12:39:24,992 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:24.992662', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:25,870 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:25,870 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:25,870 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:25,871 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:25,871 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:25,871 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:25,871 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:25,871 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:25,871 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:25,872 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:25,872 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:25,872 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:27,253 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:27,256 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions) +2024-05-13 12:39:27,256 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions)", 'datetime': '2024-05-13T12:39:27.256541', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:27,257 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:27,257 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:27,258 - using serial LDA version on this node +2024-05-13 12:39:27,258 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:27,258 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:27,262 - -8.035 per-word bound, 262.2 perplexity estimate based on a held-out corpus of 1 documents with 2035 words +2024-05-13 12:39:27,262 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:27,264 - topic #0 (0.333): 0.014*"’" + 0.009*"well" + 0.007*"Derbyshire" + 0.005*"needs" + 0.005*"effective" + 0.005*"leaders" + 0.005*"plans" + 0.005*"10" + 0.005*"need" + 0.004*"health" +2024-05-13 12:39:27,264 - topic #1 (0.333): 0.009*"’" + 0.005*"well" + 0.004*"Derbyshire" + 0.004*"plans" + 0.003*"November" + 0.003*"practice" + 0.003*"needs" + 0.003*"2023" + 0.003*"meetings" + 0.003*"positive" +2024-05-13 12:39:27,264 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.007*"Derbyshire" + 0.006*"plans" + 0.005*"positive" + 0.005*"education" + 0.005*"health" + 0.005*"needs" + 0.005*"30" + 0.005*"good" +2024-05-13 12:39:27,264 - topic diff=0.768982, rho=1.000000 +2024-05-13 12:39:27,265 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:27.265035', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:28,304 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:28,304 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:28,304 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:28,304 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:28,305 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:28,305 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:28,305 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:28,305 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:28,305 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:28,305 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:28,305 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:28,306 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:30,026 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:30,028 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions) +2024-05-13 12:39:30,029 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions)", 'datetime': '2024-05-13T12:39:30.029059', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:30,030 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:30,030 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:30,030 - using serial LDA version on this node +2024-05-13 12:39:30,031 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:30,031 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:30,035 - -8.150 per-word bound, 284.0 perplexity estimate based on a held-out corpus of 1 documents with 2313 words +2024-05-13 12:39:30,035 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:30,036 - topic #0 (0.333): 0.010*"’" + 0.005*"well" + 0.005*"risk" + 0.005*"progress" + 0.004*"leaders" + 0.004*"Devon" + 0.004*"case" + 0.004*"quality" + 0.004*"health" + 0.004*"practice" +2024-05-13 12:39:30,036 - topic #1 (0.333): 0.009*"’" + 0.007*"well" + 0.005*"leaders" + 0.005*"health" + 0.004*"risk" + 0.004*"time" + 0.004*"progress" + 0.004*"need" + 0.004*"protection" + 0.004*"areas" +2024-05-13 12:39:30,036 - topic #2 (0.333): 0.008*"’" + 0.005*"well" + 0.005*"health" + 0.005*"risk" + 0.005*"leaders" + 0.004*"progress" + 0.004*"risks" + 0.004*"case" + 0.004*"living" + 0.004*"protection" +2024-05-13 12:39:30,037 - topic diff=0.735570, rho=1.000000 +2024-05-13 12:39:30,037 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:30.037215', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:31,057 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:31,057 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:31,057 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:31,058 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:31,058 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:31,058 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:31,058 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:31,058 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:31,058 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:31,058 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:31,059 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:31,059 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:32,643 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:32,647 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions) +2024-05-13 12:39:32,648 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions)", 'datetime': '2024-05-13T12:39:32.647970', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:32,649 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:32,649 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:32,649 - using serial LDA version on this node +2024-05-13 12:39:32,650 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:32,650 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:32,654 - -8.115 per-word bound, 277.3 perplexity estimate based on a held-out corpus of 1 documents with 2429 words +2024-05-13 12:39:32,654 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:32,656 - topic #0 (0.333): 0.019*"’" + 0.006*"well" + 0.006*"Doncaster" + 0.005*"records" + 0.005*"progress" + 0.005*"many" + 0.005*"leaders" + 0.005*"quality" + 0.004*"made" + 0.004*"Trust" +2024-05-13 12:39:32,656 - topic #1 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"Doncaster" + 0.005*"plans" + 0.005*"many" + 0.005*"leaders" + 0.005*"information" + 0.005*"oversight" + 0.005*"25" + 0.004*"effective" +2024-05-13 12:39:32,656 - topic #2 (0.333): 0.021*"’" + 0.006*"well" + 0.005*"Doncaster" + 0.005*"progress" + 0.005*"records" + 0.005*"arrangements" + 0.005*"quality" + 0.005*"14" + 0.005*"oversight" + 0.005*"leaders" +2024-05-13 12:39:32,656 - topic diff=0.769976, rho=1.000000 +2024-05-13 12:39:32,656 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:32.656965', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:34,620 - Inspection date 2022-02-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:34,621 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:34,621 - Inspection date 2022-02-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:34,621 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:34,621 - Inspection date 2022-02-14 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:34,621 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:34,621 - Inspection date 2022-02-14 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:34,621 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:34,622 - Inspection date 2022-02-14 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:34,622 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:34,622 - Inspection date 2022-02-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:34,622 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:36,076 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:36,078 - built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions) +2024-05-13 12:39:36,078 - Dictionary lifecycle event {'msg': "built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions)", 'datetime': '2024-05-13T12:39:36.078876', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:36,079 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:36,080 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:36,080 - using serial LDA version on this node +2024-05-13 12:39:36,080 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:36,080 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:36,084 - -8.101 per-word bound, 274.5 perplexity estimate based on a held-out corpus of 1 documents with 1942 words +2024-05-13 12:39:36,084 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:36,086 - topic #0 (0.333): 0.013*"’" + 0.007*"Dorset" + 0.005*"well" + 0.005*"good" + 0.005*"including" + 0.005*"27" + 0.004*"arrangements" + 0.004*"change" + 0.004*"Senior" + 0.004*"needs" +2024-05-13 12:39:36,086 - topic #1 (0.333): 0.008*"’" + 0.007*"Dorset" + 0.004*"good" + 0.004*"well" + 0.004*"arrangements" + 0.003*"needs" + 0.003*"need" + 0.003*"8" + 0.003*"impact" + 0.003*"practice" +2024-05-13 12:39:36,086 - topic #2 (0.333): 0.017*"’" + 0.009*"Dorset" + 0.007*"good" + 0.007*"well" + 0.005*"needs" + 0.005*"arrangements" + 0.005*"8" + 0.004*"leaders" + 0.004*"supported" + 0.004*"impact" +2024-05-13 12:39:36,086 - topic diff=0.744346, rho=1.000000 +2024-05-13 12:39:36,086 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:36.086672', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:37,048 - Inspection date 2021-09-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:37,049 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:37,049 - Inspection date 2021-09-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:37,049 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:37,049 - Inspection date 2021-09-27 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:37,049 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:37,050 - Inspection date 2021-09-27 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:37,050 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:37,050 - Inspection date 2021-09-27 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:37,050 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:37,051 - Inspection date 2021-09-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:37,051 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:38,537 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:38,539 - built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions) +2024-05-13 12:39:38,539 - Dictionary lifecycle event {'msg': "built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions)", 'datetime': '2024-05-13T12:39:38.539706', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:38,540 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:38,540 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:38,541 - using serial LDA version on this node +2024-05-13 12:39:38,541 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:38,541 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:38,545 - -8.012 per-word bound, 258.1 perplexity estimate based on a held-out corpus of 1 documents with 2138 words +2024-05-13 12:39:38,545 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:38,546 - topic #0 (0.333): 0.011*"’" + 0.011*"needs" + 0.007*"Dudley" + 0.006*"well" + 0.005*"plans" + 0.004*"oversight" + 0.004*"arrangements" + 0.004*"always" + 0.004*"However" + 0.004*"2022" +2024-05-13 12:39:38,546 - topic #1 (0.333): 0.017*"’" + 0.012*"needs" + 0.009*"Dudley" + 0.006*"arrangements" + 0.006*"plans" + 0.006*"always" + 0.005*"well" + 0.005*"ensure" + 0.005*"oversight" + 0.005*"enough" +2024-05-13 12:39:38,547 - topic #2 (0.333): 0.016*"’" + 0.009*"needs" + 0.007*"Dudley" + 0.005*"well" + 0.005*"management" + 0.005*"quality" + 0.005*"always" + 0.004*"arrangements" + 0.004*"practice" + 0.004*"11" +2024-05-13 12:39:38,547 - topic diff=0.760667, rho=1.000000 +2024-05-13 12:39:38,547 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:38.547328', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:39,501 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:39,501 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:39,501 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:39,502 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:39,502 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:39,502 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:39,502 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:39,502 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:39,503 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:39,503 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:39,503 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:39,503 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:41,538 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:41,540 - built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions) +2024-05-13 12:39:41,540 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-05-13T12:39:41.540844', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:41,541 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:41,542 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:41,542 - using serial LDA version on this node +2024-05-13 12:39:41,542 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:41,542 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:41,549 - -7.977 per-word bound, 252.0 perplexity estimate based on a held-out corpus of 1 documents with 2278 words +2024-05-13 12:39:41,549 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:41,551 - topic #0 (0.333): 0.017*"’" + 0.011*"needs" + 0.008*"May" + 0.007*"well" + 0.007*"plans" + 0.007*"Durham" + 0.006*"practice" + 0.006*"ensure" + 0.005*"leaders" + 0.005*"risks" +2024-05-13 12:39:41,552 - topic #1 (0.333): 0.013*"’" + 0.011*"needs" + 0.006*"Durham" + 0.006*"plans" + 0.005*"well" + 0.004*"May" + 0.004*"practice" + 0.004*"family" + 0.004*"identified" + 0.004*"risks" +2024-05-13 12:39:41,552 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.008*"May" + 0.008*"Durham" + 0.007*"ensure" + 0.007*"well" + 0.006*"plans" + 0.005*"practice" + 0.005*"making" + 0.005*"family" +2024-05-13 12:39:41,552 - topic diff=0.777693, rho=1.000000 +2024-05-13 12:39:41,552 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:41.552893', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:42,561 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:42,561 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:42,561 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:42,561 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:42,561 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:42,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:42,562 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:42,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:42,562 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:42,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:42,562 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:42,562 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:44,054 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:44,057 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions) +2024-05-13 12:39:44,057 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions)", 'datetime': '2024-05-13T12:39:44.057163', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:44,058 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:44,058 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:44,058 - using serial LDA version on this node +2024-05-13 12:39:44,059 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:44,059 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:44,062 - -7.922 per-word bound, 242.6 perplexity estimate based on a held-out corpus of 1 documents with 2014 words +2024-05-13 12:39:44,062 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:44,063 - topic #0 (0.333): 0.018*"’" + 0.010*"well" + 0.009*"needs" + 0.007*"progress" + 0.007*"Riding" + 0.005*"East" + 0.005*"education" + 0.005*"plans" + 0.005*"February" + 0.005*"good" +2024-05-13 12:39:44,064 - topic #1 (0.333): 0.013*"’" + 0.009*"plans" + 0.007*"needs" + 0.007*"well" + 0.006*"progress" + 0.005*"East" + 0.005*"partners" + 0.005*"Riding" + 0.004*"30" + 0.004*"January" +2024-05-13 12:39:44,064 - topic #2 (0.333): 0.016*"’" + 0.010*"plans" + 0.010*"needs" + 0.008*"well" + 0.007*"progress" + 0.007*"East" + 0.006*"Riding" + 0.005*"10" + 0.005*"partners" + 0.005*"supported" +2024-05-13 12:39:44,064 - topic diff=0.778182, rho=1.000000 +2024-05-13 12:39:44,064 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:44.064454', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:45,135 - Inspection date 2023-01-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:45,135 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:45,136 - Inspection date 2023-01-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:45,136 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:45,136 - Inspection date 2023-01-30 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:45,136 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:45,137 - Inspection date 2023-01-30 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:45,137 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:45,137 - Inspection date 2023-01-30 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:45,137 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:45,138 - Inspection date 2023-01-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:45,138 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:46,924 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:46,928 - built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions) +2024-05-13 12:39:46,928 - Dictionary lifecycle event {'msg': "built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions)", 'datetime': '2024-05-13T12:39:46.928433', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:46,930 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:46,930 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:46,930 - using serial LDA version on this node +2024-05-13 12:39:46,931 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:46,931 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:46,935 - -8.081 per-word bound, 270.7 perplexity estimate based on a held-out corpus of 1 documents with 2220 words +2024-05-13 12:39:46,935 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:46,936 - topic #0 (0.333): 0.015*"’" + 0.008*"well" + 0.006*"impact" + 0.006*"plans" + 0.006*"needs" + 0.006*"progress" + 0.006*"East" + 0.006*"Sussex" + 0.005*"11" + 0.005*"including" +2024-05-13 12:39:46,937 - topic #1 (0.333): 0.018*"’" + 0.010*"well" + 0.009*"needs" + 0.009*"plans" + 0.008*"East" + 0.006*"Sussex" + 0.006*"progress" + 0.005*"11" + 0.005*"including" + 0.005*"relationships" +2024-05-13 12:39:46,937 - topic #2 (0.333): 0.015*"’" + 0.010*"well" + 0.007*"plans" + 0.007*"needs" + 0.007*"including" + 0.006*"progress" + 0.006*"Sussex" + 0.005*"effective" + 0.005*"East" + 0.005*"experiences" +2024-05-13 12:39:46,937 - topic diff=0.758318, rho=1.000000 +2024-05-13 12:39:46,937 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:46.937473', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:47,898 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:47,899 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:47,899 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:47,899 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:47,899 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:47,899 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:47,899 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:47,899 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:47,900 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:47,900 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:47,900 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:47,900 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:49,655 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:49,658 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions) +2024-05-13 12:39:49,658 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions)", 'datetime': '2024-05-13T12:39:49.658630', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:49,659 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:49,659 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:49,660 - using serial LDA version on this node +2024-05-13 12:39:49,660 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:49,660 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:49,664 - -8.012 per-word bound, 258.2 perplexity estimate based on a held-out corpus of 1 documents with 2686 words +2024-05-13 12:39:49,664 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:49,666 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.006*"progress" + 0.006*"plans" + 0.005*"‘" + 0.005*"experiences" + 0.005*"family" + 0.005*"understand" + 0.005*"helped" + 0.004*"well" +2024-05-13 12:39:49,666 - topic #1 (0.333): 0.018*"’" + 0.008*"well" + 0.006*"family" + 0.006*"needs" + 0.006*"progress" + 0.005*"plans" + 0.005*"26" + 0.004*"‘" + 0.004*"parents" + 0.004*"Essex" +2024-05-13 12:39:49,666 - topic #2 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"progress" + 0.007*"plans" + 0.006*"risk" + 0.006*"Essex" + 0.006*"need" + 0.006*"advisers" + 0.005*"understand" + 0.005*"needs" +2024-05-13 12:39:49,666 - topic diff=0.811191, rho=1.000000 +2024-05-13 12:39:49,666 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:49.666757', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:50,793 - Inspection date 2023-06-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:50,793 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:50,793 - Inspection date 2023-06-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:50,793 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:50,794 - Inspection date 2023-06-26 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:50,794 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:50,794 - Inspection date 2023-06-26 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:50,794 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:50,794 - Inspection date 2023-06-26 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:50,794 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:50,795 - Inspection date 2023-06-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:50,795 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:52,456 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:52,458 - built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions) +2024-05-13 12:39:52,459 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions)", 'datetime': '2024-05-13T12:39:52.459083', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:52,460 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:52,460 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:52,460 - using serial LDA version on this node +2024-05-13 12:39:52,461 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:52,461 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:52,464 - -8.046 per-word bound, 264.4 perplexity estimate based on a held-out corpus of 1 documents with 2356 words +2024-05-13 12:39:52,464 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:52,466 - topic #0 (0.333): 0.010*"’" + 0.009*"effective" + 0.006*"good" + 0.006*"quality" + 0.005*"needs" + 0.005*"practice" + 0.005*"well" + 0.004*"improve" + 0.004*"team" + 0.004*"education" +2024-05-13 12:39:52,466 - topic #1 (0.333): 0.018*"’" + 0.008*"effective" + 0.007*"good" + 0.007*"practice" + 0.007*"quality" + 0.006*"timely" + 0.006*"well" + 0.005*"needs" + 0.005*"plans" + 0.005*"home" +2024-05-13 12:39:52,466 - topic #2 (0.333): 0.010*"’" + 0.009*"effective" + 0.006*"needs" + 0.006*"practice" + 0.006*"good" + 0.005*"need" + 0.005*"quality" + 0.005*"impact" + 0.005*"timely" + 0.005*"well" +2024-05-13 12:39:52,466 - topic diff=0.780831, rho=1.000000 +2024-05-13 12:39:52,466 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:52.466922', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:53,502 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:53,502 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:53,502 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:53,502 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:53,503 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:53,503 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:53,503 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:53,503 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:53,503 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:53,503 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:53,503 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:53,504 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:54,953 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:54,955 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions) +2024-05-13 12:39:54,956 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions)", 'datetime': '2024-05-13T12:39:54.956160', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:54,957 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:54,957 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:54,957 - using serial LDA version on this node +2024-05-13 12:39:54,958 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:54,958 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:54,962 - -8.061 per-word bound, 267.0 perplexity estimate based on a held-out corpus of 1 documents with 2579 words +2024-05-13 12:39:54,962 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:54,963 - topic #0 (0.333): 0.020*"’" + 0.009*"needs" + 0.007*"2022" + 0.006*"plans" + 0.006*"progress" + 0.006*"family" + 0.005*"Gloucestershire" + 0.005*"appropriate" + 0.005*"February" + 0.005*"timely" +2024-05-13 12:39:54,963 - topic #1 (0.333): 0.015*"’" + 0.010*"needs" + 0.007*"February" + 0.007*"2022" + 0.005*"plans" + 0.005*"well" + 0.005*"progress" + 0.005*"experienced" + 0.005*"good" + 0.005*"7" +2024-05-13 12:39:54,964 - topic #2 (0.333): 0.017*"’" + 0.008*"February" + 0.007*"plans" + 0.007*"well" + 0.006*"needs" + 0.006*"2022" + 0.005*"Gloucestershire" + 0.005*"protection" + 0.004*"effective" + 0.004*"18" +2024-05-13 12:39:54,964 - topic diff=0.820534, rho=1.000000 +2024-05-13 12:39:54,964 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:54.964257', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:56,149 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:56,149 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:56,150 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:56,150 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:56,150 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:56,150 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:56,150 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:56,151 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:56,151 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:56,151 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:56,151 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:56,151 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:57,229 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:57,232 - built Dictionary<815 unique tokens: ["'s", '0161', '02', '0300', '1']...> from 1 documents (total 1700 corpus positions) +2024-05-13 12:39:57,232 - Dictionary lifecycle event {'msg': 'built Dictionary<815 unique tokens: ["\'s", \'0161\', \'02\', \'0300\', \'1\']...> from 1 documents (total 1700 corpus positions)', 'datetime': '2024-05-13T12:39:57.232639', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:57,233 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:57,234 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:57,234 - using serial LDA version on this node +2024-05-13 12:39:57,235 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:57,235 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:57,240 - -7.747 per-word bound, 214.8 perplexity estimate based on a held-out corpus of 1 documents with 1700 words +2024-05-13 12:39:57,241 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:57,243 - topic #0 (0.333): 0.009*"’" + 0.007*"well" + 0.007*"good" + 0.007*"practice" + 0.007*"effective" + 0.006*"planning" + 0.006*"needs" + 0.006*"plans" + 0.006*"need" + 0.006*"risk" +2024-05-13 12:39:57,243 - topic #1 (0.333): 0.010*"well" + 0.010*"’" + 0.009*"plans" + 0.008*"practice" + 0.007*"risk" + 0.007*"needs" + 0.006*"planning" + 0.006*"need" + 0.006*"effective" + 0.005*"quality" +2024-05-13 12:39:57,243 - topic #2 (0.333): 0.015*"’" + 0.012*"well" + 0.010*"needs" + 0.009*"practice" + 0.007*"always" + 0.007*"need" + 0.007*"good" + 0.007*"plans" + 0.006*"risk" + 0.006*"quality" +2024-05-13 12:39:57,244 - topic diff=0.781495, rho=1.000000 +2024-05-13 12:39:57,244 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:57.244219', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:58,245 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:39:58,245 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:58,245 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:39:58,246 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:58,246 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:39:58,246 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:58,246 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:39:58,246 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:58,247 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:39:58,247 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:58,247 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:39:58,247 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:39:59,818 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:39:59,821 - built Dictionary<1182 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2382 corpus positions) +2024-05-13 12:39:59,821 - Dictionary lifecycle event {'msg': "built Dictionary<1182 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2382 corpus positions)", 'datetime': '2024-05-13T12:39:59.821923', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:39:59,823 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:39:59,823 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:39:59,823 - using serial LDA version on this node +2024-05-13 12:39:59,823 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:39:59,823 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:39:59,827 - -8.139 per-word bound, 282.0 perplexity estimate based on a held-out corpus of 1 documents with 2382 words +2024-05-13 12:39:59,828 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:39:59,829 - topic #0 (0.333): 0.023*"’" + 0.008*"needs" + 0.006*"well" + 0.006*"plans" + 0.005*"quality" + 0.005*"leaders" + 0.004*"strong" + 0.004*"home" + 0.004*"progress" + 0.004*"improve" +2024-05-13 12:39:59,829 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.006*"well" + 0.006*"plans" + 0.004*"leaders" + 0.004*"Hampshire" + 0.004*"highly" + 0.004*"health" + 0.004*"home" + 0.004*"strong" +2024-05-13 12:39:59,829 - topic #2 (0.333): 0.014*"’" + 0.005*"plans" + 0.005*"needs" + 0.004*"well" + 0.004*"strong" + 0.004*"quality" + 0.004*"need" + 0.003*"carers" + 0.003*"Hampshire" + 0.003*"leaders" +2024-05-13 12:39:59,830 - topic diff=0.754511, rho=1.000000 +2024-05-13 12:39:59,830 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:39:59.830156', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:00,851 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:00,851 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:00,851 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:00,851 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:00,852 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:00,852 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:00,852 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:00,852 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:00,852 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:00,852 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:00,853 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:00,853 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:02,405 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:02,407 - built Dictionary<1152 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2392 corpus positions) +2024-05-13 12:40:02,408 - Dictionary lifecycle event {'msg': 'built Dictionary<1152 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2392 corpus positions)', 'datetime': '2024-05-13T12:40:02.408112', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:02,409 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:02,409 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:02,409 - using serial LDA version on this node +2024-05-13 12:40:02,410 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:02,410 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:02,413 - -8.088 per-word bound, 272.2 perplexity estimate based on a held-out corpus of 1 documents with 2392 words +2024-05-13 12:40:02,413 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:02,415 - topic #0 (0.333): 0.012*"’" + 0.007*"well" + 0.005*"quality" + 0.005*"strong" + 0.004*"early" + 0.004*"good" + 0.004*"plans" + 0.004*"experiences" + 0.003*"education" + 0.003*"timely" +2024-05-13 12:40:02,415 - topic #1 (0.333): 0.013*"’" + 0.008*"well" + 0.007*"quality" + 0.006*"progress" + 0.006*"strong" + 0.005*"practice" + 0.004*"good" + 0.004*"impact" + 0.004*"early" + 0.004*"‘" +2024-05-13 12:40:02,415 - topic #2 (0.333): 0.020*"’" + 0.010*"well" + 0.007*"quality" + 0.006*"strong" + 0.006*"good" + 0.005*"plans" + 0.005*"needs" + 0.004*"education" + 0.004*"impact" + 0.004*"agency" +2024-05-13 12:40:02,415 - topic diff=0.765242, rho=1.000000 +2024-05-13 12:40:02,416 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:02.416049', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:03,341 - Inspection date 2018-07-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:03,341 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:03,342 - Inspection date 2018-07-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:03,342 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:03,342 - Inspection date 2018-07-23 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:03,342 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:03,342 - Inspection date 2018-07-23 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:03,342 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:03,342 - Inspection date 2018-07-23 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:03,342 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:03,342 - Inspection date 2018-07-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:03,343 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:05,172 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:05,176 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) +2024-05-13 12:40:05,177 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-05-13T12:40:05.176972', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:05,178 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:05,179 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:05,179 - using serial LDA version on this node +2024-05-13 12:40:05,179 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:05,180 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:05,186 - -8.044 per-word bound, 263.8 perplexity estimate based on a held-out corpus of 1 documents with 2531 words +2024-05-13 12:40:05,187 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:05,189 - topic #0 (0.333): 0.019*"’" + 0.007*"practice" + 0.006*"lack" + 0.005*"Herefordshire" + 0.005*"many" + 0.004*"need" + 0.004*"impact" + 0.004*"18" + 0.004*"oversight" + 0.004*"plans" +2024-05-13 12:40:05,189 - topic #1 (0.333): 0.018*"’" + 0.005*"needs" + 0.005*"Herefordshire" + 0.005*"impact" + 0.005*"lack" + 0.005*"practice" + 0.004*"July" + 0.004*"plans" + 0.004*"agency" + 0.004*"risk" +2024-05-13 12:40:05,190 - topic #2 (0.333): 0.014*"’" + 0.005*"practice" + 0.005*"needs" + 0.005*"Herefordshire" + 0.005*"progress" + 0.005*"impact" + 0.005*"many" + 0.004*"lack" + 0.004*"quality" + 0.004*"across" +2024-05-13 12:40:05,190 - topic diff=0.786958, rho=1.000000 +2024-05-13 12:40:05,190 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:05.190364', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:06,229 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:06,229 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:06,229 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:06,230 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:06,230 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:06,230 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:06,230 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:06,230 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:06,230 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:06,231 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:06,231 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:06,231 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:07,706 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:07,709 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions) +2024-05-13 12:40:07,709 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions)", 'datetime': '2024-05-13T12:40:07.709540', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:07,710 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:07,710 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:07,711 - using serial LDA version on this node +2024-05-13 12:40:07,711 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:07,711 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:07,715 - -8.132 per-word bound, 280.6 perplexity estimate based on a held-out corpus of 1 documents with 2456 words +2024-05-13 12:40:07,715 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:07,717 - topic #0 (0.333): 0.025*"’" + 0.007*"Hertfordshire" + 0.006*"well" + 0.005*"receive" + 0.005*"plans" + 0.005*"effective" + 0.005*"27" + 0.004*"January" + 0.004*"need" + 0.004*"23" +2024-05-13 12:40:07,717 - topic #1 (0.333): 0.023*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"Hertfordshire" + 0.005*"receive" + 0.004*"plans" + 0.004*"family" + 0.004*"positive" + 0.004*"risk" + 0.004*"‘" +2024-05-13 12:40:07,717 - topic #2 (0.333): 0.019*"’" + 0.007*"needs" + 0.006*"well" + 0.005*"Hertfordshire" + 0.004*"receive" + 0.004*"2023" + 0.004*"27" + 0.004*"supported" + 0.004*"plans" + 0.004*"need" +2024-05-13 12:40:07,717 - topic diff=0.789793, rho=1.000000 +2024-05-13 12:40:07,717 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:07.717719', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:09,618 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:09,618 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:09,618 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:09,618 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:09,619 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:09,619 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:09,619 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:09,619 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:09,619 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:09,619 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:09,619 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:09,619 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:11,126 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:11,128 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions) +2024-05-13 12:40:11,129 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions)", 'datetime': '2024-05-13T12:40:11.129062', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:11,130 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:11,130 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:11,130 - using serial LDA version on this node +2024-05-13 12:40:11,130 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:11,130 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:11,134 - -7.956 per-word bound, 248.3 perplexity estimate based on a held-out corpus of 1 documents with 1934 words +2024-05-13 12:40:11,134 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:11,135 - topic #0 (0.333): 0.014*"’" + 0.006*"leaders" + 0.005*"improve" + 0.005*"30" + 0.005*"practice" + 0.005*"supported" + 0.005*"time" + 0.004*"well" + 0.004*"PAs" + 0.004*"Senior" +2024-05-13 12:40:11,135 - topic #1 (0.333): 0.022*"’" + 0.010*"leaders" + 0.007*"needs" + 0.006*"well" + 0.006*"plans" + 0.006*"progress" + 0.006*"3" + 0.006*"Wight" + 0.006*"supported" + 0.005*"Isle" +2024-05-13 12:40:11,135 - topic #2 (0.333): 0.012*"’" + 0.008*"leaders" + 0.005*"well" + 0.005*"Senior" + 0.005*"Isle" + 0.005*"needs" + 0.005*"30" + 0.004*"improve" + 0.004*"protection" + 0.004*"information" +2024-05-13 12:40:11,135 - topic diff=0.792032, rho=1.000000 +2024-05-13 12:40:11,135 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:11.135959', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:12,284 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:12,284 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:12,284 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:12,284 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:12,284 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:12,285 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:12,285 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:12,285 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:12,285 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:12,285 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:12,285 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:12,285 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:14,713 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:14,716 - built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions) +2024-05-13 12:40:14,716 - Dictionary lifecycle event {'msg': "built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions)", 'datetime': '2024-05-13T12:40:14.716563', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:14,717 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:14,718 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:14,718 - using serial LDA version on this node +2024-05-13 12:40:14,718 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:14,718 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:14,723 - -8.166 per-word bound, 287.3 perplexity estimate based on a held-out corpus of 1 documents with 2888 words +2024-05-13 12:40:14,723 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:14,725 - topic #0 (0.333): 0.021*"’" + 0.009*"Kent" + 0.008*"needs" + 0.007*"Council" + 0.006*"supported" + 0.006*"well" + 0.005*"practice" + 0.005*"County" + 0.005*"leaders" + 0.005*"progress" +2024-05-13 12:40:14,725 - topic #1 (0.333): 0.016*"’" + 0.010*"Kent" + 0.007*"well" + 0.006*"needs" + 0.006*"Council" + 0.005*"County" + 0.005*"progress" + 0.004*"2022" + 0.004*"supported" + 0.004*"impact" +2024-05-13 12:40:14,725 - topic #2 (0.333): 0.016*"’" + 0.011*"Kent" + 0.006*"needs" + 0.006*"supported" + 0.005*"well" + 0.005*"County" + 0.004*"ensure" + 0.004*"progress" + 0.004*"Council" + 0.004*"impact" +2024-05-13 12:40:14,725 - topic diff=0.795965, rho=1.000000 +2024-05-13 12:40:14,725 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:14.725853', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:15,775 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:15,776 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:15,780 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:15,780 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:15,780 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:15,780 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:15,781 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:15,781 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:15,781 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:15,781 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:15,782 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:15,782 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:17,488 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:17,490 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions) +2024-05-13 12:40:17,490 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions)", 'datetime': '2024-05-13T12:40:17.490566', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:17,491 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:17,491 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:17,491 - using serial LDA version on this node +2024-05-13 12:40:17,492 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:17,492 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:17,498 - -7.946 per-word bound, 246.5 perplexity estimate based on a held-out corpus of 1 documents with 1970 words +2024-05-13 12:40:17,498 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:17,500 - topic #0 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"practice" + 0.006*"management" + 0.006*"need" + 0.006*"oversight" + 0.006*"risks" + 0.006*"small" + 0.006*"protection" + 0.006*"number" +2024-05-13 12:40:17,500 - topic #1 (0.333): 0.015*"’" + 0.008*"number" + 0.007*"planning" + 0.007*"protection" + 0.007*"practice" + 0.005*"well" + 0.005*"Hull" + 0.005*"need" + 0.005*"right" + 0.005*"25" +2024-05-13 12:40:17,500 - topic #2 (0.333): 0.016*"’" + 0.007*"planning" + 0.007*"number" + 0.006*"Hull" + 0.005*"risks" + 0.005*"need" + 0.005*"25" + 0.005*"protection" + 0.005*"well" + 0.005*"management" +2024-05-13 12:40:17,500 - topic diff=0.751328, rho=1.000000 +2024-05-13 12:40:17,500 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:17.500922', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:18,492 - Inspection date 2022-11-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:18,492 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:18,493 - Inspection date 2022-11-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:18,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:18,493 - Inspection date 2022-11-14 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:18,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:18,493 - Inspection date 2022-11-14 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:18,493 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:18,494 - Inspection date 2022-11-14 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:18,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:18,494 - Inspection date 2022-11-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:18,494 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:20,206 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:20,209 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2489 corpus positions) +2024-05-13 12:40:20,209 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2489 corpus positions)", 'datetime': '2024-05-13T12:40:20.209736', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:20,210 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:20,211 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:20,211 - using serial LDA version on this node +2024-05-13 12:40:20,211 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:20,211 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:20,215 - -8.059 per-word bound, 266.7 perplexity estimate based on a held-out corpus of 1 documents with 2489 words +2024-05-13 12:40:20,215 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:20,217 - topic #0 (0.333): 0.013*"’" + 0.007*"quality" + 0.006*"good" + 0.006*"permanence" + 0.006*"practice" + 0.005*"Senior" + 0.005*"plans" + 0.005*"senior" + 0.005*"protection" + 0.005*"well" +2024-05-13 12:40:20,217 - topic #1 (0.333): 0.010*"’" + 0.007*"practice" + 0.006*"quality" + 0.005*"plans" + 0.005*"protection" + 0.005*"permanence" + 0.005*"well" + 0.005*"training" + 0.004*"good" + 0.004*"Senior" +2024-05-13 12:40:20,217 - topic #2 (0.333): 0.011*"’" + 0.006*"good" + 0.006*"quality" + 0.006*"practice" + 0.005*"needs" + 0.005*"well" + 0.005*"training" + 0.004*"result" + 0.004*"Senior" + 0.004*"need" +2024-05-13 12:40:20,217 - topic diff=0.787923, rho=1.000000 +2024-05-13 12:40:20,217 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:20.217727', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:21,244 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:21,244 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:21,244 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:21,244 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:21,245 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:21,245 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:21,245 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:21,245 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:21,245 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:21,245 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:21,245 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:21,246 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:22,713 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:22,717 - built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions) +2024-05-13 12:40:22,717 - Dictionary lifecycle event {'msg': "built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions)", 'datetime': '2024-05-13T12:40:22.717640', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:22,719 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:22,719 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:22,719 - using serial LDA version on this node +2024-05-13 12:40:22,720 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:22,720 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:22,727 - -7.830 per-word bound, 227.5 perplexity estimate based on a held-out corpus of 1 documents with 1837 words +2024-05-13 12:40:22,727 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:22,729 - topic #0 (0.333): 0.010*"’" + 0.008*"progress" + 0.007*"needs" + 0.006*"Knowsley" + 0.005*"plans" + 0.005*"quality" + 0.005*"education" + 0.004*"need" + 0.004*"experiences" + 0.004*"2021" +2024-05-13 12:40:22,729 - topic #1 (0.333): 0.017*"’" + 0.009*"progress" + 0.008*"quality" + 0.007*"plans" + 0.007*"needs" + 0.006*"Knowsley" + 0.005*"2021" + 0.005*"22" + 0.005*"experiences" + 0.005*"need" +2024-05-13 12:40:22,730 - topic #2 (0.333): 0.015*"’" + 0.008*"progress" + 0.008*"plans" + 0.007*"needs" + 0.006*"quality" + 0.006*"2021" + 0.006*"place" + 0.005*"Knowsley" + 0.005*"impact" + 0.005*"good" +2024-05-13 12:40:22,730 - topic diff=0.748823, rho=1.000000 +2024-05-13 12:40:22,730 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:22.730370', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:23,681 - Inspection date 2021-10-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:23,681 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:23,681 - Inspection date 2021-10-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:23,681 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:23,682 - Inspection date 2021-10-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:23,682 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:23,682 - Inspection date 2021-10-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:23,682 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:23,682 - Inspection date 2021-10-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:23,682 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:23,682 - Inspection date 2021-10-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:23,683 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:25,065 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:25,067 - built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions) +2024-05-13 12:40:25,068 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions)", 'datetime': '2024-05-13T12:40:25.068073', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:25,069 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:25,069 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:25,069 - using serial LDA version on this node +2024-05-13 12:40:25,069 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:25,070 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:25,073 - -7.973 per-word bound, 251.2 perplexity estimate based on a held-out corpus of 1 documents with 2263 words +2024-05-13 12:40:25,073 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:25,075 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"health" + 0.005*"plans" + 0.005*"Lancashire" + 0.005*"need" + 0.005*"supported" + 0.005*"9" + 0.005*"practice" +2024-05-13 12:40:25,075 - topic #1 (0.333): 0.018*"’" + 0.008*"well" + 0.008*"need" + 0.007*"needs" + 0.006*"Lancashire" + 0.005*"supported" + 0.005*"positive" + 0.005*"practice" + 0.005*"progress" + 0.005*"information" +2024-05-13 12:40:25,075 - topic #2 (0.333): 0.016*"’" + 0.010*"well" + 0.008*"need" + 0.008*"needs" + 0.007*"Lancashire" + 0.006*"plans" + 0.005*"number" + 0.005*"supported" + 0.005*"health" + 0.005*"positive" +2024-05-13 12:40:25,075 - topic diff=0.777439, rho=1.000000 +2024-05-13 12:40:25,075 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:25.075688', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:26,172 - Inspection date 2022-11-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:26,173 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:26,173 - Inspection date 2022-11-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:26,173 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:26,173 - Inspection date 2022-11-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:26,173 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:26,174 - Inspection date 2022-11-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:26,174 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:26,174 - Inspection date 2022-11-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:26,174 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:26,174 - Inspection date 2022-11-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:26,174 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:27,957 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:27,961 - built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions) +2024-05-13 12:40:27,961 - Dictionary lifecycle event {'msg': "built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions)", 'datetime': '2024-05-13T12:40:27.961855', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:27,963 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:27,963 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:27,964 - using serial LDA version on this node +2024-05-13 12:40:27,964 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:27,965 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:27,985 - -8.012 per-word bound, 258.2 perplexity estimate based on a held-out corpus of 1 documents with 2261 words +2024-05-13 12:40:27,988 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:27,990 - topic #0 (0.333): 0.019*"’" + 0.007*"needs" + 0.007*"Leeds" + 0.006*"well" + 0.004*"plans" + 0.004*"practice" + 0.004*"ensure" + 0.004*"supported" + 0.004*"risk" + 0.004*"21" +2024-05-13 12:40:27,994 - topic #1 (0.333): 0.017*"’" + 0.009*"Leeds" + 0.006*"well" + 0.006*"risk" + 0.006*"protection" + 0.005*"needs" + 0.005*"including" + 0.004*"making" + 0.004*"4" + 0.004*"practice" +2024-05-13 12:40:27,994 - topic #2 (0.333): 0.011*"’" + 0.009*"needs" + 0.006*"Leeds" + 0.005*"well" + 0.005*"risk" + 0.005*"4" + 0.005*"practice" + 0.005*"plans" + 0.004*"ensure" + 0.004*"supported" +2024-05-13 12:40:27,994 - topic diff=0.774616, rho=1.000000 +2024-05-13 12:40:27,994 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.03s', 'datetime': '2024-05-13T12:40:27.994812', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:29,035 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:29,035 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:29,035 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:29,036 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:29,036 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:29,036 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:29,036 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:29,037 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:29,037 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:29,037 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:29,038 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:29,038 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:30,820 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:30,822 - built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions) +2024-05-13 12:40:30,822 - Dictionary lifecycle event {'msg': "built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions)", 'datetime': '2024-05-13T12:40:30.822575', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:30,823 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:30,823 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:30,823 - using serial LDA version on this node +2024-05-13 12:40:30,824 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:30,824 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:30,827 - -7.874 per-word bound, 234.5 perplexity estimate based on a held-out corpus of 1 documents with 1950 words +2024-05-13 12:40:30,828 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:30,829 - topic #0 (0.333): 0.025*"’" + 0.010*"well" + 0.010*"2021" + 0.008*"needs" + 0.008*"Leicester" + 0.006*"good" + 0.006*"including" + 0.006*"20" + 0.005*"number" + 0.005*"ensure" +2024-05-13 12:40:30,829 - topic #1 (0.333): 0.015*"’" + 0.008*"Leicester" + 0.007*"2021" + 0.006*"well" + 0.005*"good" + 0.005*"needs" + 0.005*"Council" + 0.005*"ensure" + 0.005*"October" + 0.005*"1" +2024-05-13 12:40:30,829 - topic #2 (0.333): 0.017*"’" + 0.009*"well" + 0.007*"2021" + 0.007*"Leicester" + 0.007*"ensure" + 0.006*"good" + 0.006*"number" + 0.005*"needs" + 0.005*"1" + 0.005*"September" +2024-05-13 12:40:30,829 - topic diff=0.785306, rho=1.000000 +2024-05-13 12:40:30,829 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:30.829952', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:31,867 - Inspection date 2021-09-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:31,867 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:31,867 - Inspection date 2021-09-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:31,868 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:31,868 - Inspection date 2021-09-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:31,868 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:31,868 - Inspection date 2021-09-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:31,868 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:31,868 - Inspection date 2021-09-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:31,868 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:31,869 - Inspection date 2021-09-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:31,869 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:33,906 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:33,909 - built Dictionary<1187 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2587 corpus positions) +2024-05-13 12:40:33,909 - Dictionary lifecycle event {'msg': "built Dictionary<1187 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2587 corpus positions)", 'datetime': '2024-05-13T12:40:33.909722', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:33,910 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:33,911 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:33,911 - using serial LDA version on this node +2024-05-13 12:40:33,911 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:33,911 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:33,915 - -8.088 per-word bound, 272.1 perplexity estimate based on a held-out corpus of 1 documents with 2587 words +2024-05-13 12:40:33,915 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:33,917 - topic #0 (0.333): 0.010*"’" + 0.008*"well" + 0.008*"good" + 0.006*"quality" + 0.006*"needs" + 0.005*"practice" + 0.005*"impact" + 0.005*"effective" + 0.004*"protection" + 0.004*"need" +2024-05-13 12:40:33,917 - topic #1 (0.333): 0.011*"’" + 0.007*"well" + 0.007*"effective" + 0.006*"good" + 0.006*"practice" + 0.005*"quality" + 0.005*"risk" + 0.005*"education" + 0.005*"needs" + 0.005*"impact" +2024-05-13 12:40:33,917 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"good" + 0.007*"effective" + 0.006*"quality" + 0.005*"need" + 0.005*"practice" + 0.005*"education" + 0.005*"leaders" +2024-05-13 12:40:33,918 - topic diff=0.779191, rho=1.000000 +2024-05-13 12:40:33,918 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:33.918222', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:35,034 - Inspection date 2019-09-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:35,034 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:35,034 - Inspection date 2019-09-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:35,034 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:35,035 - Inspection date 2019-09-23 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:35,035 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:35,035 - Inspection date 2019-09-23 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:35,035 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:35,035 - Inspection date 2019-09-23 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:35,035 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:35,036 - Inspection date 2019-09-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:35,036 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:36,845 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:36,848 - built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions) +2024-05-13 12:40:36,848 - Dictionary lifecycle event {'msg': "built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions)", 'datetime': '2024-05-13T12:40:36.848498', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:36,849 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:36,849 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:36,850 - using serial LDA version on this node +2024-05-13 12:40:36,850 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:36,850 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:36,855 - -8.195 per-word bound, 293.0 perplexity estimate based on a held-out corpus of 1 documents with 2927 words +2024-05-13 12:40:36,855 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:36,856 - topic #0 (0.333): 0.022*"’" + 0.007*"Lincolnshire" + 0.005*"plans" + 0.005*"needs" + 0.005*"well" + 0.005*"progress" + 0.004*"education" + 0.004*"2023" + 0.004*"need" + 0.004*"24" +2024-05-13 12:40:36,856 - topic #1 (0.333): 0.024*"’" + 0.007*"Lincolnshire" + 0.007*"needs" + 0.006*"well" + 0.005*"progress" + 0.005*"24" + 0.005*"28" + 0.004*"family" + 0.004*"offer" + 0.004*"effective" +2024-05-13 12:40:36,857 - topic #2 (0.333): 0.017*"’" + 0.008*"Lincolnshire" + 0.008*"needs" + 0.006*"well" + 0.006*"plans" + 0.005*"family" + 0.004*"need" + 0.004*"effective" + 0.004*"number" + 0.004*"working" +2024-05-13 12:40:36,857 - topic diff=0.788901, rho=1.000000 +2024-05-13 12:40:36,857 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:36.857293', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:37,859 - Inspection date 2023-04-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:37,859 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:37,860 - Inspection date 2023-04-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:37,860 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:37,860 - Inspection date 2023-04-24 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:37,860 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:37,860 - Inspection date 2023-04-24 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:37,860 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:37,861 - Inspection date 2023-04-24 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:37,861 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:37,861 - Inspection date 2023-04-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:37,861 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:40,101 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:40,104 - built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) +2024-05-13 12:40:40,104 - Dictionary lifecycle event {'msg': "built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-05-13T12:40:40.104333', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:40,105 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:40,105 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:40,105 - using serial LDA version on this node +2024-05-13 12:40:40,106 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:40,106 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:40,110 - -7.990 per-word bound, 254.3 perplexity estimate based on a held-out corpus of 1 documents with 2720 words +2024-05-13 12:40:40,110 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:40,111 - topic #0 (0.333): 0.015*"’" + 0.006*"practice" + 0.006*"Liverpool" + 0.006*"needs" + 0.006*"need" + 0.006*"quality" + 0.005*"timely" + 0.005*"always" + 0.004*"protection" + 0.004*"harm" +2024-05-13 12:40:40,111 - topic #1 (0.333): 0.019*"’" + 0.008*"need" + 0.007*"always" + 0.007*"practice" + 0.007*"needs" + 0.005*"response" + 0.004*"Liverpool" + 0.004*"13" + 0.004*"protection" + 0.004*"quality" +2024-05-13 12:40:40,112 - topic #2 (0.333): 0.022*"’" + 0.008*"needs" + 0.006*"Liverpool" + 0.006*"always" + 0.006*"quality" + 0.006*"practice" + 0.006*"need" + 0.005*"protection" + 0.004*"timely" + 0.004*"13" +2024-05-13 12:40:40,112 - topic diff=0.836126, rho=1.000000 +2024-05-13 12:40:40,112 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:40.112311', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:41,039 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:41,039 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:41,040 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:41,040 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:41,040 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:41,040 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:41,040 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:41,040 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:41,041 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:41,041 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:41,041 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:41,041 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:42,765 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:42,768 - built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions) +2024-05-13 12:40:42,768 - Dictionary lifecycle event {'msg': "built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions)", 'datetime': '2024-05-13T12:40:42.768250', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:42,769 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:42,769 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:42,769 - using serial LDA version on this node +2024-05-13 12:40:42,770 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:42,770 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:42,774 - -8.098 per-word bound, 274.0 perplexity estimate based on a held-out corpus of 1 documents with 2610 words +2024-05-13 12:40:42,774 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:42,775 - topic #0 (0.333): 0.019*"’" + 0.008*"needs" + 0.006*"practice" + 0.006*"plans" + 0.005*"progress" + 0.005*"carers" + 0.005*"ensure" + 0.005*"information" + 0.005*"London" + 0.004*"good" +2024-05-13 12:40:42,775 - topic #1 (0.333): 0.023*"’" + 0.008*"needs" + 0.006*"well" + 0.005*"carers" + 0.005*"good" + 0.005*"information" + 0.005*"plans" + 0.005*"practice" + 0.004*"timely" + 0.004*"Barking" +2024-05-13 12:40:42,776 - topic #2 (0.333): 0.024*"’" + 0.008*"needs" + 0.007*"good" + 0.006*"plans" + 0.005*"progress" + 0.005*"carers" + 0.005*"well" + 0.004*"10" + 0.004*"Dagenham" + 0.004*"planning" +2024-05-13 12:40:42,776 - topic diff=0.799363, rho=1.000000 +2024-05-13 12:40:42,776 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:42.776296', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:43,892 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:43,893 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:43,893 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:43,893 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:43,893 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:43,893 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:43,894 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:43,894 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:43,894 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:43,894 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:43,894 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:43,894 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:45,505 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:45,507 - built Dictionary<978 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1956 corpus positions) +2024-05-13 12:40:45,508 - Dictionary lifecycle event {'msg': "built Dictionary<978 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1956 corpus positions)", 'datetime': '2024-05-13T12:40:45.508085', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:45,509 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:45,509 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:45,509 - using serial LDA version on this node +2024-05-13 12:40:45,509 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:45,509 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:45,513 - -7.957 per-word bound, 248.4 perplexity estimate based on a held-out corpus of 1 documents with 1956 words +2024-05-13 12:40:45,513 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:45,514 - topic #0 (0.333): 0.014*"’" + 0.012*"needs" + 0.010*"good" + 0.009*"well" + 0.008*"need" + 0.006*"clear" + 0.006*"progress" + 0.006*"plans" + 0.005*"ensure" + 0.005*"risk" +2024-05-13 12:40:45,514 - topic #1 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"needs" + 0.008*"good" + 0.008*"need" + 0.005*"quality" + 0.005*"progress" + 0.005*"effective" + 0.005*"plans" + 0.005*"ensure" +2024-05-13 12:40:45,515 - topic #2 (0.333): 0.012*"’" + 0.010*"good" + 0.008*"well" + 0.007*"progress" + 0.007*"need" + 0.007*"plans" + 0.007*"needs" + 0.006*"ensure" + 0.006*"clear" + 0.005*"risk" +2024-05-13 12:40:45,515 - topic diff=0.767547, rho=1.000000 +2024-05-13 12:40:45,515 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:45.515303', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:46,583 - Inspection date 2019-05-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:46,583 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:46,584 - Inspection date 2019-05-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:46,584 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:46,584 - Inspection date 2019-05-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:46,585 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:46,585 - Inspection date 2019-05-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:46,585 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:46,585 - Inspection date 2019-05-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:46,585 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:46,586 - Inspection date 2019-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:46,586 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:48,254 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:48,257 - built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions) +2024-05-13 12:40:48,257 - Dictionary lifecycle event {'msg': "built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions)", 'datetime': '2024-05-13T12:40:48.257691', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:48,258 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:48,259 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:48,259 - using serial LDA version on this node +2024-05-13 12:40:48,259 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:48,259 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:48,263 - -8.100 per-word bound, 274.5 perplexity estimate based on a held-out corpus of 1 documents with 2563 words +2024-05-13 12:40:48,263 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:48,265 - topic #0 (0.333): 0.017*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"Bexley" + 0.005*"make" + 0.005*"effective" + 0.005*"need" + 0.004*"plans" + 0.004*"including" + 0.004*"progress" +2024-05-13 12:40:48,265 - topic #1 (0.333): 0.020*"’" + 0.008*"needs" + 0.005*"10" + 0.005*"effective" + 0.005*"well" + 0.005*"Bexley" + 0.004*"2023" + 0.004*"practice" + 0.004*"need" + 0.004*"plans" +2024-05-13 12:40:48,265 - topic #2 (0.333): 0.021*"’" + 0.007*"well" + 0.007*"need" + 0.007*"plans" + 0.006*"effective" + 0.005*"Bexley" + 0.005*"needs" + 0.005*"6" + 0.004*"practice" + 0.004*"clear" +2024-05-13 12:40:48,265 - topic diff=0.778256, rho=1.000000 +2024-05-13 12:40:48,265 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:48.265930', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:49,603 - Inspection date 2023-02-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:49,605 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:49,606 - Inspection date 2023-02-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:49,606 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:49,608 - Inspection date 2023-02-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:49,612 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:49,612 - Inspection date 2023-02-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:49,612 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:49,613 - Inspection date 2023-02-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:49,613 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:49,613 - Inspection date 2023-02-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:49,614 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:51,202 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:51,204 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions) +2024-05-13 12:40:51,204 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions)", 'datetime': '2024-05-13T12:40:51.204967', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:51,206 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:51,206 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:51,206 - using serial LDA version on this node +2024-05-13 12:40:51,206 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:51,206 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:51,210 - -7.926 per-word bound, 243.1 perplexity estimate based on a held-out corpus of 1 documents with 2371 words +2024-05-13 12:40:51,210 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:51,211 - topic #0 (0.333): 0.020*"’" + 0.009*"leaders" + 0.008*"well" + 0.007*"plans" + 0.007*"progress" + 0.006*"quality" + 0.006*"good" + 0.005*"needs" + 0.005*"senior" + 0.005*"However" +2024-05-13 12:40:51,212 - topic #1 (0.333): 0.014*"’" + 0.009*"well" + 0.006*"plans" + 0.006*"leaders" + 0.006*"Brent" + 0.005*"progress" + 0.005*"timely" + 0.005*"practice" + 0.005*"information" + 0.005*"good" +2024-05-13 12:40:51,212 - topic #2 (0.333): 0.017*"’" + 0.008*"well" + 0.006*"number" + 0.006*"plans" + 0.006*"progress" + 0.006*"good" + 0.006*"leaders" + 0.006*"quality" + 0.005*"senior" + 0.005*"Brent" +2024-05-13 12:40:51,212 - topic diff=0.820560, rho=1.000000 +2024-05-13 12:40:51,212 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:51.212472', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:52,157 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:52,158 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:52,158 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:52,158 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:52,158 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:52,158 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:52,158 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:52,159 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:52,159 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:52,159 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:52,159 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:52,159 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:53,981 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:53,985 - built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions) +2024-05-13 12:40:53,985 - Dictionary lifecycle event {'msg': "built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions)", 'datetime': '2024-05-13T12:40:53.985330', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:53,987 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:53,987 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:53,988 - using serial LDA version on this node +2024-05-13 12:40:53,988 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:53,988 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:53,993 - -8.181 per-word bound, 290.2 perplexity estimate based on a held-out corpus of 1 documents with 2640 words +2024-05-13 12:40:53,993 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:53,994 - topic #0 (0.333): 0.021*"’" + 0.008*"Bromley" + 0.006*"well" + 0.005*"education" + 0.005*"needs" + 0.005*"health" + 0.004*"plans" + 0.004*"practice" + 0.004*"leaders" + 0.004*"relationships" +2024-05-13 12:40:53,995 - topic #1 (0.333): 0.023*"’" + 0.010*"Bromley" + 0.009*"needs" + 0.007*"well" + 0.006*"leaders" + 0.006*"plans" + 0.005*"health" + 0.005*"practice" + 0.005*"education" + 0.005*"17" +2024-05-13 12:40:53,995 - topic #2 (0.333): 0.014*"’" + 0.008*"Bromley" + 0.007*"well" + 0.006*"needs" + 0.006*"practice" + 0.005*"plans" + 0.005*"progress" + 0.004*"leaders" + 0.004*"training" + 0.004*"13" +2024-05-13 12:40:53,995 - topic diff=0.768135, rho=1.000000 +2024-05-13 12:40:53,995 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:53.995536', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:55,194 - Inspection date 2023-11-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:55,197 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:55,197 - Inspection date 2023-11-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:55,198 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:55,198 - Inspection date 2023-11-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:55,198 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:55,199 - Inspection date 2023-11-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:55,199 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:55,199 - Inspection date 2023-11-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:55,199 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:55,200 - Inspection date 2023-11-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:55,200 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:56,717 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:56,721 - built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions) +2024-05-13 12:40:56,721 - Dictionary lifecycle event {'msg': "built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions)", 'datetime': '2024-05-13T12:40:56.721593', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:56,723 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:56,723 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:56,723 - using serial LDA version on this node +2024-05-13 12:40:56,724 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:56,724 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:56,730 - -8.060 per-word bound, 266.8 perplexity estimate based on a held-out corpus of 1 documents with 1735 words +2024-05-13 12:40:56,730 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:56,732 - topic #0 (0.333): 0.010*"’" + 0.008*"Camden" + 0.005*"protection" + 0.005*"leaders" + 0.005*"well" + 0.005*"2022" + 0.005*"practice" + 0.004*"appropriate" + 0.004*"29" + 0.004*"response" +2024-05-13 12:40:56,732 - topic #1 (0.333): 0.009*"’" + 0.007*"Camden" + 0.005*"leaders" + 0.005*"practice" + 0.004*"well" + 0.004*"protection" + 0.004*"appropriate" + 0.004*"needs" + 0.004*"health" + 0.003*"April" +2024-05-13 12:40:56,732 - topic #2 (0.333): 0.012*"’" + 0.008*"leaders" + 0.007*"practice" + 0.007*"Camden" + 0.006*"needs" + 0.006*"well" + 0.005*"response" + 0.005*"protection" + 0.005*"25" + 0.005*"29" +2024-05-13 12:40:56,733 - topic diff=0.714940, rho=1.000000 +2024-05-13 12:40:56,733 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:56.733193', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:57,778 - Inspection date 2022-04-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:40:57,779 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:57,779 - Inspection date 2022-04-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:40:57,779 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:57,779 - Inspection date 2022-04-25 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:40:57,779 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:57,780 - Inspection date 2022-04-25 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:40:57,780 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:57,780 - Inspection date 2022-04-25 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:40:57,780 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:57,780 - Inspection date 2022-04-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:40:57,780 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:40:59,462 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:40:59,464 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions) +2024-05-13 12:40:59,465 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions)", 'datetime': '2024-05-13T12:40:59.465100', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:40:59,466 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:40:59,466 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:40:59,466 - using serial LDA version on this node +2024-05-13 12:40:59,466 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:40:59,467 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:40:59,470 - -7.985 per-word bound, 253.3 perplexity estimate based on a held-out corpus of 1 documents with 2209 words +2024-05-13 12:40:59,470 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:40:59,471 - topic #0 (0.333): 0.010*"’" + 0.006*"needs" + 0.006*"Croydon" + 0.006*"well" + 0.005*"good" + 0.005*"Senior" + 0.005*"ensure" + 0.005*"need" + 0.005*"quality" + 0.005*"plans" +2024-05-13 12:40:59,472 - topic #1 (0.333): 0.014*"’" + 0.010*"well" + 0.009*"needs" + 0.007*"Senior" + 0.006*"Croydon" + 0.006*"quality" + 0.006*"health" + 0.005*"need" + 0.005*"education" + 0.005*"effective" +2024-05-13 12:40:59,472 - topic #2 (0.333): 0.011*"’" + 0.006*"needs" + 0.005*"ensure" + 0.005*"need" + 0.005*"well" + 0.005*"quality" + 0.004*"Croydon" + 0.004*"arrangements" + 0.004*"However" + 0.004*"health" +2024-05-13 12:40:59,472 - topic diff=0.776042, rho=1.000000 +2024-05-13 12:40:59,472 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:40:59.472598', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:01,014 - Inspection date 2020-02-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:01,015 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:01,015 - Inspection date 2020-02-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:01,015 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:01,015 - Inspection date 2020-02-03 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:01,015 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:01,016 - Inspection date 2020-02-03 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:01,016 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:01,016 - Inspection date 2020-02-03 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:01,016 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:01,016 - Inspection date 2020-02-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:01,016 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:02,427 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:02,430 - built Dictionary<1012 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2046 corpus positions) +2024-05-13 12:41:02,430 - Dictionary lifecycle event {'msg': "built Dictionary<1012 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2046 corpus positions)", 'datetime': '2024-05-13T12:41:02.430220', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:02,431 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:02,431 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:02,431 - using serial LDA version on this node +2024-05-13 12:41:02,432 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:02,432 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:02,435 - -7.978 per-word bound, 252.2 perplexity estimate based on a held-out corpus of 1 documents with 2046 words +2024-05-13 12:41:02,435 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:02,437 - topic #0 (0.333): 0.011*"’" + 0.009*"quality" + 0.008*"needs" + 0.006*"good" + 0.005*"plans" + 0.005*"management" + 0.005*"progress" + 0.004*"risk" + 0.004*"well" + 0.004*"experiences" +2024-05-13 12:41:02,437 - topic #1 (0.333): 0.013*"’" + 0.010*"quality" + 0.007*"good" + 0.006*"needs" + 0.005*"risk" + 0.005*"progress" + 0.005*"plans" + 0.005*"experiences" + 0.005*"well" + 0.004*"provide" +2024-05-13 12:41:02,437 - topic #2 (0.333): 0.009*"quality" + 0.008*"’" + 0.007*"needs" + 0.006*"good" + 0.004*"progress" + 0.004*"plans" + 0.004*"fully" + 0.004*"always" + 0.004*"family" + 0.004*"appropriately" +2024-05-13 12:41:02,437 - topic diff=0.757534, rho=1.000000 +2024-05-13 12:41:02,437 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:02.437801', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:03,661 - Inspection date 2019-11-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:03,662 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:03,662 - Inspection date 2019-11-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:03,662 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:03,662 - Inspection date 2019-11-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:03,663 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:03,663 - Inspection date 2019-11-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:03,663 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:03,663 - Inspection date 2019-11-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:03,663 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:03,663 - Inspection date 2019-11-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:03,663 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:04,968 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:04,970 - built Dictionary<999 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2104 corpus positions) +2024-05-13 12:41:04,971 - Dictionary lifecycle event {'msg': "built Dictionary<999 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2104 corpus positions)", 'datetime': '2024-05-13T12:41:04.971052', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:04,972 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:04,972 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:04,972 - using serial LDA version on this node +2024-05-13 12:41:04,972 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:04,972 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:04,976 - -7.941 per-word bound, 245.8 perplexity estimate based on a held-out corpus of 1 documents with 2104 words +2024-05-13 12:41:04,976 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:04,977 - topic #0 (0.333): 0.010*"’" + 0.008*"good" + 0.008*"needs" + 0.007*"ensure" + 0.007*"timely" + 0.007*"practice" + 0.006*"Enfield" + 0.006*"effective" + 0.006*"clear" + 0.006*"quality" +2024-05-13 12:41:04,977 - topic #1 (0.333): 0.013*"’" + 0.009*"leaders" + 0.007*"needs" + 0.007*"practice" + 0.007*"ensure" + 0.006*"timely" + 0.006*"Enfield" + 0.006*"good" + 0.006*"clear" + 0.005*"quality" +2024-05-13 12:41:04,978 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.008*"practice" + 0.008*"ensure" + 0.008*"effective" + 0.008*"good" + 0.007*"clear" + 0.006*"quality" + 0.006*"Enfield" + 0.006*"improve" +2024-05-13 12:41:04,978 - topic diff=0.777545, rho=1.000000 +2024-05-13 12:41:04,978 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:04.978446', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:06,176 - Inspection date 2019-03-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:06,181 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:06,181 - Inspection date 2019-03-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:06,181 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:06,181 - Inspection date 2019-03-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:06,182 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:06,182 - Inspection date 2019-03-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:06,182 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:06,182 - Inspection date 2019-03-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:06,183 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:06,183 - Inspection date 2019-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:06,183 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:07,605 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:07,607 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1898 corpus positions) +2024-05-13 12:41:07,608 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1898 corpus positions)", 'datetime': '2024-05-13T12:41:07.608026', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:07,608 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:07,609 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:07,609 - using serial LDA version on this node +2024-05-13 12:41:07,609 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:07,609 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:07,613 - -7.916 per-word bound, 241.4 perplexity estimate based on a held-out corpus of 1 documents with 1898 words +2024-05-13 12:41:07,613 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:07,614 - topic #0 (0.333): 0.013*"’" + 0.008*"well" + 0.007*"good" + 0.006*"needs" + 0.006*"need" + 0.006*"range" + 0.006*"progress" + 0.005*"quality" + 0.005*"plans" + 0.004*"information" +2024-05-13 12:41:07,614 - topic #1 (0.333): 0.010*"’" + 0.008*"good" + 0.007*"needs" + 0.007*"well" + 0.005*"plans" + 0.005*"risk" + 0.005*"ensure" + 0.004*"effective" + 0.004*"need" + 0.004*"timely" +2024-05-13 12:41:07,614 - topic #2 (0.333): 0.013*"’" + 0.012*"well" + 0.011*"plans" + 0.008*"good" + 0.008*"needs" + 0.007*"need" + 0.007*"range" + 0.006*"ensure" + 0.005*"consistently" + 0.005*"development" +2024-05-13 12:41:07,615 - topic diff=0.752809, rho=1.000000 +2024-05-13 12:41:07,615 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:07.615165', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:08,798 - Inspection date 2019-12-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:08,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:08,799 - Inspection date 2019-12-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:08,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:08,799 - Inspection date 2019-12-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:08,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:08,800 - Inspection date 2019-12-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:08,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:08,800 - Inspection date 2019-12-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:08,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:08,800 - Inspection date 2019-12-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:08,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:10,599 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:10,603 - built Dictionary<1122 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2603 corpus positions) +2024-05-13 12:41:10,603 - Dictionary lifecycle event {'msg': "built Dictionary<1122 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2603 corpus positions)", 'datetime': '2024-05-13T12:41:10.603849', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:10,605 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:10,605 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:10,606 - using serial LDA version on this node +2024-05-13 12:41:10,606 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:10,607 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:10,614 - -7.998 per-word bound, 255.6 perplexity estimate based on a held-out corpus of 1 documents with 2603 words +2024-05-13 12:41:10,614 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:10,616 - topic #0 (0.333): 0.010*"’" + 0.009*"practice" + 0.006*"number" + 0.006*"plans" + 0.006*"quality" + 0.006*"needs" + 0.005*"However" + 0.005*"effective" + 0.005*"making" + 0.005*"small" +2024-05-13 12:41:10,616 - topic #1 (0.333): 0.014*"’" + 0.011*"practice" + 0.006*"number" + 0.006*"need" + 0.006*"planning" + 0.006*"within" + 0.006*"needs" + 0.006*"quality" + 0.006*"plans" + 0.005*"effective" +2024-05-13 12:41:10,617 - topic #2 (0.333): 0.014*"’" + 0.009*"practice" + 0.007*"planning" + 0.006*"number" + 0.006*"within" + 0.006*"effective" + 0.006*"small" + 0.006*"leaders" + 0.005*"including" + 0.005*"oversight" +2024-05-13 12:41:10,617 - topic diff=0.840399, rho=1.000000 +2024-05-13 12:41:10,617 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:10.617369', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:12,144 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:12,144 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:12,145 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:12,145 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:12,145 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:12,145 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:12,146 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:12,146 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:12,146 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:12,146 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:12,147 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:12,147 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:13,474 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:13,476 - built Dictionary<885 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1806 corpus positions) +2024-05-13 12:41:13,476 - Dictionary lifecycle event {'msg': "built Dictionary<885 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1806 corpus positions)", 'datetime': '2024-05-13T12:41:13.476301', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:13,477 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:13,477 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:13,477 - using serial LDA version on this node +2024-05-13 12:41:13,477 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:13,478 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:13,481 - -7.843 per-word bound, 229.6 perplexity estimate based on a held-out corpus of 1 documents with 1806 words +2024-05-13 12:41:13,481 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:13,482 - topic #0 (0.333): 0.013*"’" + 0.010*"effective" + 0.009*"needs" + 0.007*"well" + 0.007*"good" + 0.006*"timely" + 0.006*"education" + 0.005*"arrangements" + 0.005*"improve" + 0.005*"leaders" +2024-05-13 12:41:13,482 - topic #1 (0.333): 0.009*"’" + 0.009*"well" + 0.009*"needs" + 0.007*"appropriate" + 0.007*"effective" + 0.005*"good" + 0.005*"arrangements" + 0.005*"risk" + 0.004*"shared" + 0.004*"need" +2024-05-13 12:41:13,482 - topic #2 (0.333): 0.013*"’" + 0.007*"needs" + 0.007*"well" + 0.007*"appropriate" + 0.007*"effective" + 0.007*"ensure" + 0.006*"good" + 0.005*"leaders" + 0.005*"arrangements" + 0.005*"experiences" +2024-05-13 12:41:13,482 - topic diff=0.753017, rho=1.000000 +2024-05-13 12:41:13,483 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:13.483119', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:14,700 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:14,701 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:14,701 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:14,701 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:14,701 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:14,701 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:14,701 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:14,701 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:14,702 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:14,702 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:14,702 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:14,702 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:16,277 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:16,281 - built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions) +2024-05-13 12:41:16,281 - Dictionary lifecycle event {'msg': "built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions)", 'datetime': '2024-05-13T12:41:16.281836', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:16,283 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:16,283 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:16,283 - using serial LDA version on this node +2024-05-13 12:41:16,283 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:16,284 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:16,289 - -8.171 per-word bound, 288.1 perplexity estimate based on a held-out corpus of 1 documents with 2620 words +2024-05-13 12:41:16,289 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:16,290 - topic #0 (0.333): 0.017*"’" + 0.007*"needs" + 0.007*"plans" + 0.006*"Haringey" + 0.006*"good" + 0.005*"need" + 0.005*"well" + 0.005*"risk" + 0.005*"education" + 0.004*"impact" +2024-05-13 12:41:16,291 - topic #1 (0.333): 0.016*"’" + 0.011*"Haringey" + 0.010*"needs" + 0.007*"plans" + 0.006*"progress" + 0.006*"well" + 0.005*"need" + 0.004*"good" + 0.004*"supported" + 0.004*"risk" +2024-05-13 12:41:16,291 - topic #2 (0.333): 0.013*"’" + 0.007*"Haringey" + 0.007*"well" + 0.006*"plans" + 0.005*"good" + 0.005*"needs" + 0.004*"24" + 0.004*"education" + 0.004*"training" + 0.004*"need" +2024-05-13 12:41:16,291 - topic diff=0.774351, rho=1.000000 +2024-05-13 12:41:16,291 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:16.291471', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:17,413 - Inspection date 2023-02-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:17,414 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:17,414 - Inspection date 2023-02-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:17,414 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:17,414 - Inspection date 2023-02-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:17,415 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:17,415 - Inspection date 2023-02-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:17,415 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:17,415 - Inspection date 2023-02-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:17,416 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:17,417 - Inspection date 2023-02-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:17,417 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:18,912 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:18,914 - built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions) +2024-05-13 12:41:18,914 - Dictionary lifecycle event {'msg': "built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions)", 'datetime': '2024-05-13T12:41:18.914753', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:18,916 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:18,916 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:18,916 - using serial LDA version on this node +2024-05-13 12:41:18,916 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:18,917 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:18,921 - -7.976 per-word bound, 251.8 perplexity estimate based on a held-out corpus of 1 documents with 1732 words +2024-05-13 12:41:18,921 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:18,923 - topic #0 (0.333): 0.010*"’" + 0.008*"well" + 0.007*"good" + 0.006*"needs" + 0.006*"impact" + 0.005*"Harrow" + 0.005*"plans" + 0.005*"experiences" + 0.004*"need" + 0.004*"school" +2024-05-13 12:41:18,923 - topic #1 (0.333): 0.014*"’" + 0.013*"good" + 0.009*"needs" + 0.009*"well" + 0.006*"early" + 0.006*"plans" + 0.006*"protection" + 0.006*"practice" + 0.005*"need" + 0.005*"impact" +2024-05-13 12:41:18,923 - topic #2 (0.333): 0.010*"good" + 0.009*"’" + 0.008*"well" + 0.007*"needs" + 0.005*"planning" + 0.005*"practice" + 0.005*"impact" + 0.005*"need" + 0.005*"plans" + 0.005*"protection" +2024-05-13 12:41:18,923 - topic diff=0.708652, rho=1.000000 +2024-05-13 12:41:18,923 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:18.923762', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:20,994 - Inspection date 2020-02-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:20,995 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:20,995 - Inspection date 2020-02-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:20,995 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:20,995 - Inspection date 2020-02-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:20,995 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:20,996 - Inspection date 2020-02-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:20,996 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:20,996 - Inspection date 2020-02-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:20,996 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:20,996 - Inspection date 2020-02-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:20,996 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:22,475 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:22,478 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions) +2024-05-13 12:41:22,478 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions)", 'datetime': '2024-05-13T12:41:22.478329', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:22,479 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:22,479 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:22,479 - using serial LDA version on this node +2024-05-13 12:41:22,480 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:22,480 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:22,483 - -8.009 per-word bound, 257.6 perplexity estimate based on a held-out corpus of 1 documents with 2243 words +2024-05-13 12:41:22,483 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:22,485 - topic #0 (0.333): 0.017*"’" + 0.012*"Havering" + 0.008*"quality" + 0.007*"plans" + 0.006*"effective" + 0.006*"oversight" + 0.005*"11" + 0.005*"well" + 0.004*"December" + 0.004*"many" +2024-05-13 12:41:22,485 - topic #1 (0.333): 0.020*"’" + 0.010*"Havering" + 0.010*"quality" + 0.007*"plans" + 0.005*"needs" + 0.005*"oversight" + 0.004*"11" + 0.004*"progress" + 0.004*"22" + 0.004*"practice" +2024-05-13 12:41:22,485 - topic #2 (0.333): 0.016*"’" + 0.011*"Havering" + 0.008*"quality" + 0.007*"plans" + 0.005*"effective" + 0.005*"oversight" + 0.005*"needs" + 0.004*"practice" + 0.004*"22" + 0.004*"leaders" +2024-05-13 12:41:22,485 - topic diff=0.765724, rho=1.000000 +2024-05-13 12:41:22,485 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:22.485907', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:23,716 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:23,717 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:23,717 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:23,717 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:23,717 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:23,717 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:23,717 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:23,717 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:23,718 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:23,718 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:23,718 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:23,718 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:25,549 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:25,551 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions) +2024-05-13 12:41:25,552 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions)", 'datetime': '2024-05-13T12:41:25.552022', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:25,553 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:25,553 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:25,553 - using serial LDA version on this node +2024-05-13 12:41:25,553 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:25,554 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:25,557 - -8.075 per-word bound, 269.7 perplexity estimate based on a held-out corpus of 1 documents with 2511 words +2024-05-13 12:41:25,557 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:25,559 - topic #0 (0.333): 0.019*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"Hillingdon" + 0.006*"plans" + 0.005*"need" + 0.004*"team" + 0.004*"family" + 0.004*"leaders" + 0.003*"6" +2024-05-13 12:41:25,559 - topic #1 (0.333): 0.019*"’" + 0.009*"needs" + 0.007*"Hillingdon" + 0.006*"plans" + 0.006*"well" + 0.005*"team" + 0.004*"6" + 0.004*"need" + 0.004*"leaders" + 0.004*"good" +2024-05-13 12:41:25,559 - topic #2 (0.333): 0.016*"’" + 0.010*"needs" + 0.009*"plans" + 0.008*"well" + 0.008*"Hillingdon" + 0.006*"2" + 0.005*"team" + 0.005*"2023" + 0.004*"need" + 0.004*"PAs" +2024-05-13 12:41:25,559 - topic diff=0.801202, rho=1.000000 +2024-05-13 12:41:25,559 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:25.559952', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:26,590 - Inspection date 2023-10-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:26,591 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:26,591 - Inspection date 2023-10-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:26,591 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:26,591 - Inspection date 2023-10-02 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:26,591 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:26,591 - Inspection date 2023-10-02 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:26,591 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:26,591 - Inspection date 2023-10-02 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:26,592 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:26,592 - Inspection date 2023-10-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:26,592 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:28,702 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:28,705 - built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions) +2024-05-13 12:41:28,706 - Dictionary lifecycle event {'msg': "built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions)", 'datetime': '2024-05-13T12:41:28.706230', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:28,708 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:28,708 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:28,708 - using serial LDA version on this node +2024-05-13 12:41:28,709 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:28,709 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:28,715 - -8.007 per-word bound, 257.3 perplexity estimate based on a held-out corpus of 1 documents with 2271 words +2024-05-13 12:41:28,715 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:28,717 - topic #0 (0.333): 0.024*"’" + 0.011*"needs" + 0.009*"well" + 0.007*"Hounslow" + 0.007*"effective" + 0.007*"timely" + 0.005*"plans" + 0.005*"16" + 0.005*"progress" + 0.004*"October" +2024-05-13 12:41:28,717 - topic #1 (0.333): 0.019*"’" + 0.010*"well" + 0.009*"needs" + 0.008*"effective" + 0.007*"Hounslow" + 0.005*"plans" + 0.005*"timely" + 0.005*"training" + 0.005*"oversight" + 0.005*"experiences" +2024-05-13 12:41:28,717 - topic #2 (0.333): 0.016*"’" + 0.012*"needs" + 0.011*"well" + 0.006*"effective" + 0.006*"Hounslow" + 0.006*"timely" + 0.005*"plans" + 0.005*"20" + 0.004*"experiences" + 0.004*"strong" +2024-05-13 12:41:28,718 - topic diff=0.779475, rho=1.000000 +2024-05-13 12:41:28,718 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:28.718343', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:29,859 - Inspection date 2023-10-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:29,860 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:29,860 - Inspection date 2023-10-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:29,860 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:29,860 - Inspection date 2023-10-16 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:29,860 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:29,860 - Inspection date 2023-10-16 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:29,861 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:29,861 - Inspection date 2023-10-16 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:29,861 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:29,861 - Inspection date 2023-10-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:29,861 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:31,294 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:31,296 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions) +2024-05-13 12:41:31,296 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions)", 'datetime': '2024-05-13T12:41:31.296575', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:31,297 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:31,297 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:31,297 - using serial LDA version on this node +2024-05-13 12:41:31,298 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:31,298 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:31,301 - -7.927 per-word bound, 243.4 perplexity estimate based on a held-out corpus of 1 documents with 1982 words +2024-05-13 12:41:31,301 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:31,303 - topic #0 (0.333): 0.009*"well" + 0.008*"needs" + 0.008*"’" + 0.007*"plans" + 0.005*"good" + 0.005*"highly" + 0.005*"quality" + 0.004*"leaders" + 0.004*"practice" + 0.004*"Islington" +2024-05-13 12:41:31,303 - topic #1 (0.333): 0.013*"’" + 0.012*"needs" + 0.008*"well" + 0.006*"highly" + 0.006*"leaders" + 0.006*"effective" + 0.006*"quality" + 0.006*"good" + 0.005*"Islington" + 0.005*"plans" +2024-05-13 12:41:31,303 - topic #2 (0.333): 0.015*"’" + 0.012*"well" + 0.011*"needs" + 0.007*"plans" + 0.006*"good" + 0.006*"highly" + 0.005*"quality" + 0.005*"effective" + 0.005*"risk" + 0.005*"Islington" +2024-05-13 12:41:31,303 - topic diff=0.748875, rho=1.000000 +2024-05-13 12:41:31,303 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:31.303714', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:33,219 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:33,219 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:33,220 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:33,220 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:33,220 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:33,220 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:33,220 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:33,220 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:33,220 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:33,221 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:33,221 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:33,221 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:34,808 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:34,812 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions) +2024-05-13 12:41:34,812 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions)", 'datetime': '2024-05-13T12:41:34.812797', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:34,814 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:34,814 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:34,815 - using serial LDA version on this node +2024-05-13 12:41:34,815 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:34,815 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:34,822 - -7.908 per-word bound, 240.1 perplexity estimate based on a held-out corpus of 1 documents with 2090 words +2024-05-13 12:41:34,822 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:34,824 - topic #0 (0.333): 0.012*"’" + 0.007*"good" + 0.007*"plans" + 0.007*"well" + 0.007*"progress" + 0.006*"needs" + 0.006*"need" + 0.006*"leaders" + 0.005*"Lambeth" + 0.005*"impact" +2024-05-13 12:41:34,824 - topic #1 (0.333): 0.014*"’" + 0.009*"well" + 0.008*"needs" + 0.006*"plans" + 0.006*"good" + 0.006*"Lambeth" + 0.005*"need" + 0.005*"4" + 0.005*"progress" + 0.005*"impact" +2024-05-13 12:41:34,825 - topic #2 (0.333): 0.018*"’" + 0.012*"needs" + 0.009*"well" + 0.008*"plans" + 0.007*"Lambeth" + 0.007*"good" + 0.006*"impact" + 0.006*"need" + 0.005*"progress" + 0.005*"2022" +2024-05-13 12:41:34,825 - topic diff=0.802016, rho=1.000000 +2024-05-13 12:41:34,825 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:34.825627', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:35,954 - Inspection date 2022-10-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:35,954 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:35,954 - Inspection date 2022-10-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:35,954 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:35,955 - Inspection date 2022-10-24 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:35,955 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:35,955 - Inspection date 2022-10-24 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:35,955 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:35,955 - Inspection date 2022-10-24 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:35,955 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:35,955 - Inspection date 2022-10-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:35,956 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:37,354 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:37,356 - built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions) +2024-05-13 12:41:37,356 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-05-13T12:41:37.356789', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:37,357 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:37,358 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:37,358 - using serial LDA version on this node +2024-05-13 12:41:37,358 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:37,358 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:37,362 - -8.048 per-word bound, 264.7 perplexity estimate based on a held-out corpus of 1 documents with 2352 words +2024-05-13 12:41:37,362 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:37,364 - topic #0 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"plans" + 0.005*"needs" + 0.005*"effective" + 0.004*"good" + 0.004*"receive" + 0.004*"leaders" + 0.004*"practice" + 0.004*"appropriate" +2024-05-13 12:41:37,364 - topic #1 (0.333): 0.017*"’" + 0.008*"well" + 0.006*"plans" + 0.005*"needs" + 0.005*"progress" + 0.005*"effective" + 0.004*"leaders" + 0.004*"good" + 0.004*"15" + 0.004*"4" +2024-05-13 12:41:37,364 - topic #2 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"Lewisham" + 0.007*"plans" + 0.007*"effective" + 0.006*"progress" + 0.006*"4" + 0.005*"good" + 0.005*"arrangements" +2024-05-13 12:41:37,364 - topic diff=0.800088, rho=1.000000 +2024-05-13 12:41:37,364 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:37.364858', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:38,370 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:38,370 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:38,370 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:38,371 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:38,371 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:38,371 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:38,371 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:38,372 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:38,372 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:38,372 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:38,372 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:38,372 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:40,093 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:40,098 - built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions) +2024-05-13 12:41:40,098 - Dictionary lifecycle event {'msg': "built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions)", 'datetime': '2024-05-13T12:41:40.098861', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:40,100 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:40,100 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:40,101 - using serial LDA version on this node +2024-05-13 12:41:40,101 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:40,102 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:40,109 - -7.988 per-word bound, 253.9 perplexity estimate based on a held-out corpus of 1 documents with 2032 words +2024-05-13 12:41:40,109 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:40,111 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.006*"Merton" + 0.005*"needs" + 0.005*"helping" + 0.004*"good" + 0.004*"February" + 0.004*"progress" + 0.004*"2022" + 0.004*"health" +2024-05-13 12:41:40,112 - topic #1 (0.333): 0.017*"’" + 0.009*"well" + 0.006*"Merton" + 0.006*"needs" + 0.005*"plans" + 0.004*"ensure" + 0.004*"family" + 0.004*"access" + 0.004*"good" + 0.004*"progress" +2024-05-13 12:41:40,112 - topic #2 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"Merton" + 0.006*"needs" + 0.005*"plans" + 0.005*"progress" + 0.005*"4" + 0.005*"family" + 0.004*"information" + 0.004*"28" +2024-05-13 12:41:40,112 - topic diff=0.751848, rho=1.000000 +2024-05-13 12:41:40,112 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:40.112850', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:40,998 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:40,998 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:40,998 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:40,998 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:40,998 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:40,998 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:40,999 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:40,999 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:40,999 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:40,999 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:40,999 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:40,999 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:42,835 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:42,838 - built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions) +2024-05-13 12:41:42,838 - Dictionary lifecycle event {'msg': "built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions)", 'datetime': '2024-05-13T12:41:42.838594', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:42,839 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:42,839 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:42,840 - using serial LDA version on this node +2024-05-13 12:41:42,840 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:42,840 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:42,844 - -8.063 per-word bound, 267.4 perplexity estimate based on a held-out corpus of 1 documents with 2540 words +2024-05-13 12:41:42,844 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:42,846 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.008*"Newham" + 0.006*"plans" + 0.006*"progress" + 0.006*"practice" + 0.005*"need" + 0.005*"effective" + 0.004*"good" + 0.004*"planning" +2024-05-13 12:41:42,846 - topic #1 (0.333): 0.021*"’" + 0.008*"needs" + 0.007*"Newham" + 0.006*"practice" + 0.006*"plans" + 0.006*"effective" + 0.005*"good" + 0.005*"need" + 0.005*"progress" + 0.005*"Leaders" +2024-05-13 12:41:42,846 - topic #2 (0.333): 0.021*"’" + 0.007*"needs" + 0.007*"progress" + 0.007*"need" + 0.006*"effective" + 0.006*"practice" + 0.005*"plans" + 0.005*"Newham" + 0.005*"good" + 0.004*"receive" +2024-05-13 12:41:42,846 - topic diff=0.776103, rho=1.000000 +2024-05-13 12:41:42,846 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:42.846762', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:43,798 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:43,798 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:43,799 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:43,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:43,799 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:43,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:43,799 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:43,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:43,800 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:43,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:43,800 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:43,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:45,944 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:45,946 - built Dictionary<1149 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2458 corpus positions) +2024-05-13 12:41:45,946 - Dictionary lifecycle event {'msg': "built Dictionary<1149 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2458 corpus positions)", 'datetime': '2024-05-13T12:41:45.946623', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:45,947 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:45,947 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:45,948 - using serial LDA version on this node +2024-05-13 12:41:45,948 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:45,948 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:45,952 - -8.073 per-word bound, 269.3 perplexity estimate based on a held-out corpus of 1 documents with 2458 words +2024-05-13 12:41:45,952 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:45,954 - topic #0 (0.333): 0.008*"well" + 0.007*"’" + 0.007*"practice" + 0.006*"effective" + 0.006*"strong" + 0.006*"needs" + 0.005*"need" + 0.005*"Redbridge" + 0.005*"progress" + 0.005*"risk" +2024-05-13 12:41:45,954 - topic #1 (0.333): 0.008*"’" + 0.007*"practice" + 0.006*"needs" + 0.006*"need" + 0.005*"well" + 0.005*"Redbridge" + 0.005*"team" + 0.005*"including" + 0.005*"strong" + 0.005*"effective" +2024-05-13 12:41:45,954 - topic #2 (0.333): 0.007*"’" + 0.006*"practice" + 0.005*"needs" + 0.005*"need" + 0.005*"well" + 0.005*"risk" + 0.005*"Redbridge" + 0.005*"ensure" + 0.004*"effective" + 0.004*"strong" +2024-05-13 12:41:45,954 - topic diff=0.765949, rho=1.000000 +2024-05-13 12:41:45,954 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:45.954726', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:46,938 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:46,938 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:46,939 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:46,939 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:46,939 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:46,939 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:46,939 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:46,939 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:46,940 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:46,940 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:46,940 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:46,940 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:48,258 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:48,261 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions) +2024-05-13 12:41:48,261 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions)", 'datetime': '2024-05-13T12:41:48.261256', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:48,262 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:48,262 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:48,263 - using serial LDA version on this node +2024-05-13 12:41:48,263 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:48,263 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:48,266 - -7.983 per-word bound, 253.0 perplexity estimate based on a held-out corpus of 1 documents with 1818 words +2024-05-13 12:41:48,266 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:48,268 - topic #0 (0.333): 0.018*"’" + 0.011*"well" + 0.008*"Richmond" + 0.007*"supported" + 0.007*"needs" + 0.006*"good" + 0.005*"team" + 0.005*"need" + 0.005*"ensure" + 0.004*"4" +2024-05-13 12:41:48,268 - topic #1 (0.333): 0.010*"’" + 0.008*"well" + 0.007*"Richmond" + 0.006*"needs" + 0.005*"need" + 0.005*"team" + 0.005*"supported" + 0.004*"2022" + 0.004*"4" + 0.004*"range" +2024-05-13 12:41:48,268 - topic #2 (0.333): 0.016*"’" + 0.013*"well" + 0.008*"needs" + 0.008*"Richmond" + 0.006*"good" + 0.006*"team" + 0.006*"need" + 0.005*"supported" + 0.005*"additional" + 0.005*"strong" +2024-05-13 12:41:48,268 - topic diff=0.731289, rho=1.000000 +2024-05-13 12:41:48,268 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:48.268874', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:49,391 - Inspection date 2022-01-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:49,391 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:49,391 - Inspection date 2022-01-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:49,392 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:49,392 - Inspection date 2022-01-31 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:49,392 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:49,392 - Inspection date 2022-01-31 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:49,392 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:49,392 - Inspection date 2022-01-31 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:49,392 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:49,393 - Inspection date 2022-01-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:49,393 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:50,886 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:50,895 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions) +2024-05-13 12:41:50,896 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions)", 'datetime': '2024-05-13T12:41:50.896064', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:50,897 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:50,901 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:50,901 - using serial LDA version on this node +2024-05-13 12:41:50,902 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:50,902 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:50,907 - -7.929 per-word bound, 243.7 perplexity estimate based on a held-out corpus of 1 documents with 1878 words +2024-05-13 12:41:50,908 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:50,910 - topic #0 (0.333): 0.020*"’" + 0.010*"Southwark" + 0.008*"well" + 0.007*"good" + 0.007*"needs" + 0.006*"need" + 0.006*"Leaders" + 0.006*"plans" + 0.005*"leaders" + 0.005*"progress" +2024-05-13 12:41:50,910 - topic #1 (0.333): 0.014*"’" + 0.009*"good" + 0.009*"Southwark" + 0.007*"needs" + 0.007*"progress" + 0.007*"well" + 0.006*"need" + 0.006*"plans" + 0.005*"effective" + 0.005*"receive" +2024-05-13 12:41:50,910 - topic #2 (0.333): 0.019*"’" + 0.009*"Southwark" + 0.007*"good" + 0.007*"well" + 0.007*"needs" + 0.005*"strong" + 0.005*"progress" + 0.005*"plans" + 0.005*"risks" + 0.005*"need" +2024-05-13 12:41:50,911 - topic diff=0.735005, rho=1.000000 +2024-05-13 12:41:50,911 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:50.911226', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:51,956 - Inspection date 2022-09-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:51,956 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:51,956 - Inspection date 2022-09-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:51,956 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:51,957 - Inspection date 2022-09-26 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:51,957 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:51,957 - Inspection date 2022-09-26 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:51,957 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:51,957 - Inspection date 2022-09-26 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:51,957 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:51,958 - Inspection date 2022-09-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:51,958 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:53,180 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:53,183 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions) +2024-05-13 12:41:53,184 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions)", 'datetime': '2024-05-13T12:41:53.183997', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:53,185 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:53,185 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:53,186 - using serial LDA version on this node +2024-05-13 12:41:53,186 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:53,186 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:53,192 - -7.987 per-word bound, 253.7 perplexity estimate based on a held-out corpus of 1 documents with 1847 words +2024-05-13 12:41:53,193 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:53,195 - topic #0 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"Sutton" + 0.006*"progress" + 0.005*"needs" + 0.005*"effective" + 0.005*"supported" + 0.004*"receive" + 0.004*"December" + 0.004*"home" +2024-05-13 12:41:53,195 - topic #1 (0.333): 0.018*"’" + 0.007*"needs" + 0.006*"well" + 0.005*"Sutton" + 0.005*"good" + 0.005*"receive" + 0.005*"10" + 0.004*"progress" + 0.004*"effective" + 0.004*"6" +2024-05-13 12:41:53,195 - topic #2 (0.333): 0.016*"’" + 0.006*"well" + 0.006*"Sutton" + 0.005*"6" + 0.005*"good" + 0.005*"progress" + 0.005*"need" + 0.005*"receive" + 0.005*"needs" + 0.004*"effective" +2024-05-13 12:41:53,196 - topic diff=0.724328, rho=1.000000 +2024-05-13 12:41:53,196 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:53.196364', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:55,235 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:55,235 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:55,235 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:55,236 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:55,236 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:55,236 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:55,236 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:55,236 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:55,236 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:55,237 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:55,237 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:55,237 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:57,022 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:57,024 - built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions) +2024-05-13 12:41:57,024 - Dictionary lifecycle event {'msg': "built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions)", 'datetime': '2024-05-13T12:41:57.024820', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:57,025 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:57,026 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:57,026 - using serial LDA version on this node +2024-05-13 12:41:57,026 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:57,026 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:57,030 - -8.129 per-word bound, 280.0 perplexity estimate based on a held-out corpus of 1 documents with 2465 words +2024-05-13 12:41:57,030 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:57,032 - topic #0 (0.333): 0.013*"’" + 0.007*"good" + 0.006*"including" + 0.006*"‘" + 0.006*"well" + 0.006*"plans" + 0.006*"practice" + 0.005*"need" + 0.005*"effective" + 0.005*"progress" +2024-05-13 12:41:57,032 - topic #1 (0.333): 0.020*"’" + 0.007*"effective" + 0.007*"good" + 0.007*"plans" + 0.006*"well" + 0.006*"practice" + 0.005*"early" + 0.005*"need" + 0.005*"risk" + 0.005*"needs" +2024-05-13 12:41:57,032 - topic #2 (0.333): 0.008*"’" + 0.006*"‘" + 0.006*"plans" + 0.005*"effective" + 0.005*"good" + 0.004*"including" + 0.004*"progress" + 0.004*"well" + 0.004*"practice" + 0.004*"need" +2024-05-13 12:41:57,032 - topic diff=0.777417, rho=1.000000 +2024-05-13 12:41:57,033 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:57.032982', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:57,974 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:41:57,975 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:57,975 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:41:57,975 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:57,975 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:41:57,975 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:57,975 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:41:57,976 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:57,976 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:41:57,976 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:57,976 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:41:57,976 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:41:59,624 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:41:59,626 - built Dictionary<1036 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) +2024-05-13 12:41:59,627 - Dictionary lifecycle event {'msg': "built Dictionary<1036 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-05-13T12:41:59.627023', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:41:59,628 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:41:59,628 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:41:59,628 - using serial LDA version on this node +2024-05-13 12:41:59,628 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:41:59,629 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:41:59,632 - -7.975 per-word bound, 251.6 perplexity estimate based on a held-out corpus of 1 documents with 2199 words +2024-05-13 12:41:59,632 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:41:59,633 - topic #0 (0.333): 0.016*"’" + 0.010*"well" + 0.010*"needs" + 0.009*"effective" + 0.009*"good" + 0.006*"need" + 0.005*"plans" + 0.005*"risk" + 0.004*"timely" + 0.004*"clear" +2024-05-13 12:41:59,634 - topic #1 (0.333): 0.016*"’" + 0.013*"well" + 0.009*"good" + 0.009*"needs" + 0.007*"need" + 0.006*"effective" + 0.006*"plans" + 0.005*"progress" + 0.005*"ensure" + 0.005*"timely" +2024-05-13 12:41:59,634 - topic #2 (0.333): 0.013*"well" + 0.009*"’" + 0.007*"needs" + 0.006*"good" + 0.005*"effective" + 0.005*"plans" + 0.005*"timely" + 0.004*"need" + 0.004*"risk" + 0.004*"actions" +2024-05-13 12:41:59,634 - topic diff=0.786315, rho=1.000000 +2024-05-13 12:41:59,634 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:41:59.634596', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:00,735 - Inspection date 2019-01-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:00,735 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:00,736 - Inspection date 2019-01-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:00,736 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:00,736 - Inspection date 2019-01-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:00,736 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:00,736 - Inspection date 2019-01-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:00,736 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:00,737 - Inspection date 2019-01-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:00,737 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:00,737 - Inspection date 2019-01-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:00,737 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:02,345 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:02,347 - built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions) +2024-05-13 12:42:02,348 - Dictionary lifecycle event {'msg': "built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions)", 'datetime': '2024-05-13T12:42:02.348098', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:02,349 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:02,349 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:02,349 - using serial LDA version on this node +2024-05-13 12:42:02,349 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:02,349 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:02,352 - -7.853 per-word bound, 231.3 perplexity estimate based on a held-out corpus of 1 documents with 1772 words +2024-05-13 12:42:02,353 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:02,354 - topic #0 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"Wandsworth" + 0.006*"practice" + 0.006*"quality" + 0.006*"progress" + 0.005*"good" + 0.005*"supported" + 0.005*"protection" + 0.005*"timely" +2024-05-13 12:42:02,354 - topic #1 (0.333): 0.011*"’" + 0.006*"well" + 0.006*"protection" + 0.005*"needs" + 0.005*"Senior" + 0.005*"7" + 0.005*"progress" + 0.005*"practice" + 0.005*"ensure" + 0.005*"effective" +2024-05-13 12:42:02,354 - topic #2 (0.333): 0.010*"’" + 0.006*"needs" + 0.006*"well" + 0.005*"Senior" + 0.005*"progress" + 0.005*"7" + 0.004*"supported" + 0.004*"team" + 0.004*"effective" + 0.004*"ensure" +2024-05-13 12:42:02,354 - topic diff=0.756709, rho=1.000000 +2024-05-13 12:42:02,354 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:02.354847', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:03,310 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:03,310 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:03,310 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:03,311 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:03,311 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:03,311 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:03,311 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:03,311 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:03,311 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:03,312 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:03,312 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:03,312 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:05,135 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:05,137 - built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions) +2024-05-13 12:42:05,138 - Dictionary lifecycle event {'msg': "built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions)", 'datetime': '2024-05-13T12:42:05.138055', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:05,139 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:05,139 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:05,139 - using serial LDA version on this node +2024-05-13 12:42:05,139 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:05,140 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:05,143 - -8.155 per-word bound, 285.1 perplexity estimate based on a held-out corpus of 1 documents with 2101 words +2024-05-13 12:42:05,144 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:05,145 - topic #0 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"practice" + 0.005*"well" + 0.005*"highly" + 0.005*"many" + 0.004*"across" + 0.004*"plans" + 0.003*"need" + 0.003*"skilled" +2024-05-13 12:42:05,145 - topic #1 (0.333): 0.013*"’" + 0.007*"practice" + 0.007*"highly" + 0.005*"needs" + 0.004*"family" + 0.004*"well" + 0.004*"across" + 0.004*"high" + 0.003*"Westminster" + 0.003*"shared" +2024-05-13 12:42:05,145 - topic #2 (0.333): 0.012*"’" + 0.006*"practice" + 0.006*"needs" + 0.005*"well" + 0.005*"highly" + 0.003*"skilled" + 0.003*"direct" + 0.003*"many" + 0.003*"plans" + 0.003*"protection" +2024-05-13 12:42:05,146 - topic diff=0.691696, rho=1.000000 +2024-05-13 12:42:05,146 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:05.146184', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:06,486 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:06,487 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:06,487 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:06,487 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:06,488 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:06,488 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:06,488 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:06,488 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:06,488 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:06,488 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:06,489 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:06,489 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:08,524 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:08,526 - built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions) +2024-05-13 12:42:08,526 - Dictionary lifecycle event {'msg': "built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions)", 'datetime': '2024-05-13T12:42:08.526953', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:08,528 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:08,528 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:08,528 - using serial LDA version on this node +2024-05-13 12:42:08,528 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:08,529 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:08,533 - -8.109 per-word bound, 276.0 perplexity estimate based on a held-out corpus of 1 documents with 2593 words +2024-05-13 12:42:08,533 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:08,534 - topic #0 (0.333): 0.023*"’" + 0.007*"needs" + 0.007*"need" + 0.006*"plans" + 0.006*"effective" + 0.006*"impact" + 0.005*"progress" + 0.005*"good" + 0.005*"Luton" + 0.005*"quality" +2024-05-13 12:42:08,534 - topic #1 (0.333): 0.014*"’" + 0.007*"need" + 0.006*"Luton" + 0.006*"plans" + 0.005*"effective" + 0.005*"needs" + 0.005*"receive" + 0.005*"well" + 0.005*"good" + 0.005*"progress" +2024-05-13 12:42:08,534 - topic #2 (0.333): 0.012*"’" + 0.006*"plans" + 0.006*"ensure" + 0.006*"Luton" + 0.006*"needs" + 0.005*"good" + 0.004*"need" + 0.004*"impact" + 0.004*"effective" + 0.004*"receive" +2024-05-13 12:42:08,535 - topic diff=0.792466, rho=1.000000 +2024-05-13 12:42:08,535 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:08.535219', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:09,641 - Inspection date 2022-07-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:09,641 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:09,642 - Inspection date 2022-07-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:09,642 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:09,642 - Inspection date 2022-07-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:09,642 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:09,643 - Inspection date 2022-07-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:09,643 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:09,643 - Inspection date 2022-07-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:09,643 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:09,643 - Inspection date 2022-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:09,644 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:11,171 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:11,173 - built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions) +2024-05-13 12:42:11,173 - Dictionary lifecycle event {'msg': "built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions)", 'datetime': '2024-05-13T12:42:11.173589', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:11,174 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:11,174 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:11,174 - using serial LDA version on this node +2024-05-13 12:42:11,175 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:11,175 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:11,178 - -7.775 per-word bound, 219.0 perplexity estimate based on a held-out corpus of 1 documents with 1938 words +2024-05-13 12:42:11,178 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:11,179 - topic #0 (0.333): 0.010*"’" + 0.007*"needs" + 0.005*"supported" + 0.005*"always" + 0.005*"plans" + 0.005*"Manchester" + 0.004*"well" + 0.004*"disabled" + 0.004*"March" + 0.003*"effective" +2024-05-13 12:42:11,180 - topic #1 (0.333): 0.025*"’" + 0.013*"Manchester" + 0.009*"needs" + 0.007*"always" + 0.006*"supported" + 0.006*"plans" + 0.006*"well" + 0.005*"quality" + 0.005*"education" + 0.005*"protection" +2024-05-13 12:42:11,180 - topic #2 (0.333): 0.022*"’" + 0.011*"needs" + 0.011*"Manchester" + 0.009*"well" + 0.007*"supported" + 0.006*"always" + 0.006*"effective" + 0.006*"education" + 0.006*"protection" + 0.005*"disabled" +2024-05-13 12:42:11,180 - topic diff=0.843169, rho=1.000000 +2024-05-13 12:42:11,180 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:11.180526', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:12,267 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:12,267 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:12,268 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:12,268 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:12,268 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:12,268 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:12,268 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:12,268 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:12,268 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:12,269 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:12,269 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:12,269 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:13,963 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:13,965 - built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions) +2024-05-13 12:42:13,966 - Dictionary lifecycle event {'msg': "built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions)", 'datetime': '2024-05-13T12:42:13.966049', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:13,966 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:13,967 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:13,967 - using serial LDA version on this node +2024-05-13 12:42:13,967 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:13,967 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:13,970 - -7.888 per-word bound, 236.9 perplexity estimate based on a held-out corpus of 1 documents with 1857 words +2024-05-13 12:42:13,971 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:13,972 - topic #0 (0.333): 0.015*"’" + 0.009*"Medway" + 0.009*"quality" + 0.008*"well" + 0.007*"experiences" + 0.006*"impact" + 0.005*"leaders" + 0.005*"practice" + 0.005*"Senior" + 0.005*"progress" +2024-05-13 12:42:13,972 - topic #1 (0.333): 0.009*"’" + 0.007*"Medway" + 0.007*"practice" + 0.006*"leaders" + 0.005*"well" + 0.005*"needs" + 0.005*"quality" + 0.004*"clear" + 0.004*"risk" + 0.004*"oversight" +2024-05-13 12:42:13,972 - topic #2 (0.333): 0.020*"’" + 0.010*"practice" + 0.009*"Medway" + 0.008*"well" + 0.008*"quality" + 0.008*"needs" + 0.007*"oversight" + 0.007*"leaders" + 0.006*"impact" + 0.006*"17" +2024-05-13 12:42:13,972 - topic diff=0.792363, rho=1.000000 +2024-05-13 12:42:13,973 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:13.973106', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:14,944 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:14,944 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:14,944 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:14,944 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:14,945 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:14,945 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:14,945 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:14,945 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:14,945 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:14,945 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:14,946 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:14,946 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:17,043 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:17,046 - built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions) +2024-05-13 12:42:17,046 - Dictionary lifecycle event {'msg': "built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-05-13T12:42:17.046259', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:17,047 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:17,047 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:17,047 - using serial LDA version on this node +2024-05-13 12:42:17,048 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:17,048 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:17,052 - -7.998 per-word bound, 255.7 perplexity estimate based on a held-out corpus of 1 documents with 2278 words +2024-05-13 12:42:17,052 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:17,053 - topic #0 (0.333): 0.012*"’" + 0.007*"effective" + 0.006*"well" + 0.006*"plans" + 0.006*"Middlesbrough" + 0.006*"progress" + 0.006*"needs" + 0.004*"impact" + 0.004*"practice" + 0.004*"place" +2024-05-13 12:42:17,053 - topic #1 (0.333): 0.013*"’" + 0.007*"plans" + 0.007*"effective" + 0.007*"Middlesbrough" + 0.007*"practice" + 0.006*"well" + 0.005*"progress" + 0.005*"needs" + 0.005*"means" + 0.005*"impact" +2024-05-13 12:42:17,054 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"plans" + 0.007*"well" + 0.007*"effective" + 0.007*"Middlesbrough" + 0.005*"24" + 0.005*"practice" + 0.005*"March" + 0.005*"place" +2024-05-13 12:42:17,054 - topic diff=0.779107, rho=1.000000 +2024-05-13 12:42:17,054 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:17.054300', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:18,213 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:18,217 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:18,217 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:18,217 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:18,218 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:18,218 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:18,218 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:18,218 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:18,218 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:18,219 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:18,224 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:18,227 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:20,229 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:20,233 - built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions) +2024-05-13 12:42:20,234 - Dictionary lifecycle event {'msg': "built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions)", 'datetime': '2024-05-13T12:42:20.234161', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:20,235 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:20,236 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:20,236 - using serial LDA version on this node +2024-05-13 12:42:20,237 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:20,237 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:20,244 - -8.030 per-word bound, 261.3 perplexity estimate based on a held-out corpus of 1 documents with 2328 words +2024-05-13 12:42:20,244 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:20,246 - topic #0 (0.333): 0.021*"’" + 0.006*"well" + 0.006*"need" + 0.006*"Keynes" + 0.006*"Milton" + 0.005*"25" + 0.005*"plans" + 0.005*"practice" + 0.005*"education" + 0.005*"leaders" +2024-05-13 12:42:20,250 - topic #1 (0.333): 0.012*"’" + 0.005*"Keynes" + 0.005*"good" + 0.005*"Milton" + 0.005*"well" + 0.005*"practice" + 0.004*"October" + 0.004*"need" + 0.004*"family" + 0.004*"team" +2024-05-13 12:42:20,251 - topic #2 (0.333): 0.008*"’" + 0.007*"Milton" + 0.006*"Keynes" + 0.005*"well" + 0.004*"need" + 0.004*"leaders" + 0.004*"practice" + 0.004*"plans" + 0.004*"25" + 0.004*"2021" +2024-05-13 12:42:20,251 - topic diff=0.792331, rho=1.000000 +2024-05-13 12:42:20,251 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:20.251569', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:21,209 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:21,209 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:21,210 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:21,210 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:21,210 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:21,210 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:21,211 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:21,211 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:21,211 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:21,211 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:21,212 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:21,212 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:22,618 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:22,621 - built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions) +2024-05-13 12:42:22,621 - Dictionary lifecycle event {'msg': "built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions)", 'datetime': '2024-05-13T12:42:22.621514', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:22,622 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:22,623 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:22,623 - using serial LDA version on this node +2024-05-13 12:42:22,623 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:22,623 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:22,630 - -7.880 per-word bound, 235.5 perplexity estimate based on a held-out corpus of 1 documents with 2076 words +2024-05-13 12:42:22,630 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:22,632 - topic #0 (0.333): 0.013*"’" + 0.008*"plans" + 0.007*"Newcastle" + 0.006*"protection" + 0.006*"well" + 0.005*"needs" + 0.005*"management" + 0.005*"2021" + 0.005*"need" + 0.005*"good" +2024-05-13 12:42:22,632 - topic #1 (0.333): 0.017*"’" + 0.010*"plans" + 0.008*"protection" + 0.008*"Newcastle" + 0.007*"needs" + 0.007*"progress" + 0.007*"good" + 0.007*"well" + 0.006*"ensure" + 0.005*"need" +2024-05-13 12:42:22,632 - topic #2 (0.333): 0.017*"’" + 0.012*"plans" + 0.009*"needs" + 0.008*"good" + 0.006*"well" + 0.006*"response" + 0.006*"making" + 0.006*"ensure" + 0.006*"Newcastle" + 0.006*"protection" +2024-05-13 12:42:22,633 - topic diff=0.789929, rho=1.000000 +2024-05-13 12:42:22,633 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:22.633170', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:23,776 - Inspection date 2021-11-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:23,776 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:23,777 - Inspection date 2021-11-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:23,777 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:23,777 - Inspection date 2021-11-29 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:23,777 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:23,777 - Inspection date 2021-11-29 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:23,777 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:23,777 - Inspection date 2021-11-29 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:23,777 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:23,778 - Inspection date 2021-11-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:23,778 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:25,589 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:25,592 - built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions) +2024-05-13 12:42:25,592 - Dictionary lifecycle event {'msg': "built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions)", 'datetime': '2024-05-13T12:42:25.592348', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:25,593 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:25,593 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:25,593 - using serial LDA version on this node +2024-05-13 12:42:25,594 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:25,594 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:25,598 - -8.123 per-word bound, 278.8 perplexity estimate based on a held-out corpus of 1 documents with 2655 words +2024-05-13 12:42:25,598 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:25,600 - topic #0 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"Norfolk" + 0.007*"carers" + 0.006*"supported" + 0.005*"practice" + 0.005*"range" + 0.005*"needs" + 0.005*"leaders" + 0.004*"information" +2024-05-13 12:42:25,600 - topic #1 (0.333): 0.019*"’" + 0.009*"Norfolk" + 0.008*"well" + 0.007*"needs" + 0.006*"carers" + 0.005*"practice" + 0.005*"plans" + 0.005*"including" + 0.005*"supported" + 0.005*"effective" +2024-05-13 12:42:25,600 - topic #2 (0.333): 0.015*"’" + 0.008*"well" + 0.006*"Norfolk" + 0.006*"practice" + 0.005*"carers" + 0.005*"needs" + 0.004*"supported" + 0.004*"18" + 0.004*"family" + 0.004*"also" +2024-05-13 12:42:25,600 - topic diff=0.780077, rho=1.000000 +2024-05-13 12:42:25,600 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:25.600841', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:26,665 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:26,665 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:26,666 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:26,666 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:26,666 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:26,666 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:26,666 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:26,667 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:26,667 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:26,667 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:26,667 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:26,667 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:28,510 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:28,514 - built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions) +2024-05-13 12:42:28,514 - Dictionary lifecycle event {'msg': "built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions)", 'datetime': '2024-05-13T12:42:28.514857', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:28,515 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:28,516 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:28,516 - using serial LDA version on this node +2024-05-13 12:42:28,516 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:28,516 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:28,520 - -7.894 per-word bound, 237.9 perplexity estimate based on a held-out corpus of 1 documents with 2045 words +2024-05-13 12:42:28,520 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:28,522 - topic #0 (0.333): 0.014*"’" + 0.007*"risk" + 0.006*"leaders" + 0.006*"practice" + 0.005*"East" + 0.005*"Lincolnshire" + 0.005*"needs" + 0.005*"planning" + 0.005*"plans" + 0.005*"many" +2024-05-13 12:42:28,522 - topic #1 (0.333): 0.014*"’" + 0.008*"practice" + 0.008*"leaders" + 0.007*"needs" + 0.007*"risk" + 0.007*"planning" + 0.006*"2021" + 0.006*"need" + 0.005*"many" + 0.005*"North" +2024-05-13 12:42:28,522 - topic #2 (0.333): 0.014*"’" + 0.009*"practice" + 0.006*"planning" + 0.006*"risk" + 0.005*"needs" + 0.005*"need" + 0.005*"quality" + 0.005*"leaders" + 0.005*"oversight" + 0.005*"Council" +2024-05-13 12:42:28,523 - topic diff=0.767941, rho=1.000000 +2024-05-13 12:42:28,523 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:28.523436', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:29,728 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:29,728 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:29,728 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:29,728 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:29,728 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:29,728 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:29,729 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:29,729 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:29,729 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:29,729 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:29,729 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:29,729 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:31,361 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:31,364 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions) +2024-05-13 12:42:31,364 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions)", 'datetime': '2024-05-13T12:42:31.364223', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:31,365 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:31,365 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:31,365 - using serial LDA version on this node +2024-05-13 12:42:31,366 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:31,366 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:31,369 - -8.065 per-word bound, 267.8 perplexity estimate based on a held-out corpus of 1 documents with 2174 words +2024-05-13 12:42:31,370 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:31,371 - topic #0 (0.333): 0.022*"’" + 0.007*"‘" + 0.006*"Lincolnshire" + 0.006*"North" + 0.006*"approach" + 0.005*"family" + 0.005*"well" + 0.005*"need" + 0.004*"leaders" + 0.004*"10" +2024-05-13 12:42:31,371 - topic #1 (0.333): 0.016*"’" + 0.009*"‘" + 0.007*"family" + 0.005*"leaders" + 0.005*"team" + 0.005*"approach" + 0.005*"10" + 0.005*"Lincolnshire" + 0.005*"well" + 0.005*"North" +2024-05-13 12:42:31,371 - topic #2 (0.333): 0.023*"’" + 0.006*"‘" + 0.005*"family" + 0.005*"North" + 0.005*"leaders" + 0.005*"well" + 0.005*"10" + 0.005*"Lincolnshire" + 0.005*"protection" + 0.004*"October" +2024-05-13 12:42:31,371 - topic diff=0.747076, rho=1.000000 +2024-05-13 12:42:31,372 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:31.371992', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:32,466 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:32,467 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:32,467 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:32,467 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:32,467 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:32,467 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:32,467 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:32,467 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:32,468 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:32,468 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:32,468 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:32,468 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:33,977 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:33,980 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions) +2024-05-13 12:42:33,980 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions)", 'datetime': '2024-05-13T12:42:33.980683', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:33,981 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:33,981 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:33,982 - using serial LDA version on this node +2024-05-13 12:42:33,982 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:33,982 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:33,986 - -8.031 per-word bound, 261.6 perplexity estimate based on a held-out corpus of 1 documents with 2204 words +2024-05-13 12:42:33,986 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:33,987 - topic #0 (0.333): 0.013*"’" + 0.007*"Northamptonshire" + 0.007*"well" + 0.006*"NCT" + 0.005*"North" + 0.005*"practice" + 0.005*"need" + 0.004*"October" + 0.004*"quality" + 0.004*"3" +2024-05-13 12:42:33,987 - topic #1 (0.333): 0.014*"’" + 0.007*"Northamptonshire" + 0.007*"quality" + 0.007*"well" + 0.005*"North" + 0.005*"However" + 0.005*"practice" + 0.005*"e" + 0.004*"plans" + 0.004*"Leaders" +2024-05-13 12:42:33,988 - topic #2 (0.333): 0.021*"’" + 0.009*"Northamptonshire" + 0.008*"North" + 0.006*"impact" + 0.005*"needs" + 0.005*"well" + 0.005*"quality" + 0.005*"Leaders" + 0.005*"need" + 0.005*"experiences" +2024-05-13 12:42:33,988 - topic diff=0.747328, rho=1.000000 +2024-05-13 12:42:33,988 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:33.988293', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:35,099 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:35,099 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:35,100 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:35,100 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:35,100 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:35,101 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:35,101 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:35,101 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:35,101 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:35,101 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:35,102 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:35,102 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:36,634 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:36,639 - built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions) +2024-05-13 12:42:36,639 - Dictionary lifecycle event {'msg': "built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions)", 'datetime': '2024-05-13T12:42:36.639721', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:36,641 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:36,641 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:36,642 - using serial LDA version on this node +2024-05-13 12:42:36,642 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:36,642 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:36,650 - -8.065 per-word bound, 267.8 perplexity estimate based on a held-out corpus of 1 documents with 2902 words +2024-05-13 12:42:36,650 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:36,652 - topic #0 (0.333): 0.013*"’" + 0.006*"needs" + 0.006*"Somerset" + 0.006*"quality" + 0.006*"always" + 0.005*"practice" + 0.005*"risk" + 0.005*"North" + 0.005*"progress" + 0.004*"need" +2024-05-13 12:42:36,653 - topic #1 (0.333): 0.019*"’" + 0.007*"quality" + 0.007*"needs" + 0.006*"practice" + 0.006*"always" + 0.006*"North" + 0.006*"plans" + 0.006*"Somerset" + 0.006*"progress" + 0.006*"need" +2024-05-13 12:42:36,653 - topic #2 (0.333): 0.017*"’" + 0.009*"quality" + 0.007*"needs" + 0.006*"number" + 0.006*"North" + 0.006*"always" + 0.005*"well" + 0.005*"experienced" + 0.005*"Somerset" + 0.004*"practice" +2024-05-13 12:42:36,653 - topic diff=0.832780, rho=1.000000 +2024-05-13 12:42:36,653 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:36.653797', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:38,450 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:38,450 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:38,451 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:38,451 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:38,451 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:38,451 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:38,451 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:38,451 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:38,452 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:38,452 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:38,452 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:38,452 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:40,347 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:40,353 - built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions) +2024-05-13 12:42:40,353 - Dictionary lifecycle event {'msg': "built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions)", 'datetime': '2024-05-13T12:42:40.353467', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:40,355 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:40,355 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:40,356 - using serial LDA version on this node +2024-05-13 12:42:40,356 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:40,356 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:40,365 - -8.220 per-word bound, 298.2 perplexity estimate based on a held-out corpus of 1 documents with 2518 words +2024-05-13 12:42:40,365 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:40,368 - topic #0 (0.333): 0.016*"’" + 0.006*"well" + 0.005*"quality" + 0.005*"need" + 0.004*"leaders" + 0.004*"make" + 0.004*"needs" + 0.004*"impact" + 0.004*"early" + 0.004*"clear" +2024-05-13 12:42:40,368 - topic #1 (0.333): 0.015*"’" + 0.007*"well" + 0.005*"make" + 0.005*"leaders" + 0.005*"need" + 0.004*"needs" + 0.004*"quality" + 0.004*"experiences" + 0.003*"understand" + 0.003*"progress" +2024-05-13 12:42:40,368 - topic #2 (0.333): 0.016*"’" + 0.006*"leaders" + 0.006*"well" + 0.005*"need" + 0.005*"impact" + 0.005*"needs" + 0.004*"quality" + 0.004*"protection" + 0.004*"early" + 0.004*"make" +2024-05-13 12:42:40,369 - topic diff=0.730722, rho=1.000000 +2024-05-13 12:42:40,369 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:40.369305', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:41,959 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:41,960 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:41,960 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:41,960 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:41,960 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:41,961 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:41,961 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:41,961 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:41,961 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:41,961 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:41,961 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:41,961 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:43,678 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:43,681 - built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions) +2024-05-13 12:42:43,681 - Dictionary lifecycle event {'msg': "built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions)", 'datetime': '2024-05-13T12:42:43.681880', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:43,683 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:43,683 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:43,683 - using serial LDA version on this node +2024-05-13 12:42:43,683 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:43,684 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:43,688 - -8.149 per-word bound, 283.8 perplexity estimate based on a held-out corpus of 1 documents with 2759 words +2024-05-13 12:42:43,689 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:43,690 - topic #0 (0.333): 0.018*"’" + 0.008*"well" + 0.006*"family" + 0.006*"practice" + 0.006*"needs" + 0.006*"Yorkshire" + 0.006*"‘" + 0.006*"North" + 0.005*"3" + 0.004*"7" +2024-05-13 12:42:43,690 - topic #1 (0.333): 0.025*"’" + 0.009*"well" + 0.007*"North" + 0.006*"Yorkshire" + 0.006*"practice" + 0.005*"needs" + 0.005*"family" + 0.004*"‘" + 0.004*"supported" + 0.004*"need" +2024-05-13 12:42:43,690 - topic #2 (0.333): 0.018*"’" + 0.007*"well" + 0.006*"practice" + 0.006*"North" + 0.006*"family" + 0.005*"Yorkshire" + 0.005*"needs" + 0.004*"2023" + 0.004*"‘" + 0.004*"3" +2024-05-13 12:42:43,690 - topic diff=0.799460, rho=1.000000 +2024-05-13 12:42:43,691 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:43.691101', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:44,696 - Inspection date 2023-07-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:44,696 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:44,696 - Inspection date 2023-07-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:44,696 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:44,696 - Inspection date 2023-07-03 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:44,696 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:44,697 - Inspection date 2023-07-03 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:44,697 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:44,697 - Inspection date 2023-07-03 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:44,697 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:44,697 - Inspection date 2023-07-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:44,697 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:46,264 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:46,267 - built Dictionary<889 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1709 corpus positions) +2024-05-13 12:42:46,267 - Dictionary lifecycle event {'msg': "built Dictionary<889 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1709 corpus positions)", 'datetime': '2024-05-13T12:42:46.267320', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:46,268 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:46,269 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:46,269 - using serial LDA version on this node +2024-05-13 12:42:46,269 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:46,269 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:46,275 - -7.884 per-word bound, 236.2 perplexity estimate based on a held-out corpus of 1 documents with 1709 words +2024-05-13 12:42:46,275 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:46,277 - topic #0 (0.333): 0.022*"’" + 0.010*"needs" + 0.008*"well" + 0.007*"good" + 0.006*"need" + 0.005*"experiences" + 0.005*"impact" + 0.005*"quality" + 0.005*"leaders" + 0.005*"plans" +2024-05-13 12:42:46,277 - topic #1 (0.333): 0.029*"’" + 0.012*"well" + 0.012*"needs" + 0.007*"education" + 0.006*"practice" + 0.006*"good" + 0.006*"experiences" + 0.005*"need" + 0.005*"impact" + 0.004*"quality" +2024-05-13 12:42:46,277 - topic #2 (0.333): 0.011*"’" + 0.009*"good" + 0.008*"needs" + 0.007*"well" + 0.007*"need" + 0.005*"experiences" + 0.004*"practice" + 0.004*"quality" + 0.004*"leaders" + 0.004*"impact" +2024-05-13 12:42:46,277 - topic diff=0.733865, rho=1.000000 +2024-05-13 12:42:46,278 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:46.278092', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:47,740 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:47,740 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:47,741 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:47,741 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:47,741 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:47,741 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:47,741 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:47,741 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:47,742 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:47,742 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:47,742 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:47,742 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:49,359 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:49,362 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) +2024-05-13 12:42:49,362 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-05-13T12:42:49.362225', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:49,363 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:49,363 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:49,363 - using serial LDA version on this node +2024-05-13 12:42:49,364 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:49,364 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:49,368 - -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 1 documents with 2316 words +2024-05-13 12:42:49,368 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:49,369 - topic #0 (0.333): 0.011*"’" + 0.009*"needs" + 0.006*"Nottingham" + 0.006*"plans" + 0.005*"City" + 0.005*"effective" + 0.005*"11" + 0.005*"impact" + 0.005*"However" + 0.004*"2022" +2024-05-13 12:42:49,369 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.006*"Nottingham" + 0.005*"impact" + 0.004*"effective" + 0.004*"plans" + 0.004*"11" + 0.004*"protection" + 0.004*"oversight" + 0.004*"practice" +2024-05-13 12:42:49,369 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.006*"effective" + 0.006*"plans" + 0.006*"Nottingham" + 0.005*"risk" + 0.005*"oversight" + 0.005*"need" + 0.005*"practice" + 0.004*"However" +2024-05-13 12:42:49,370 - topic diff=0.765958, rho=1.000000 +2024-05-13 12:42:49,370 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:49.370192', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:50,429 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:50,429 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:50,429 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:50,430 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:50,430 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:50,430 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:50,430 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:50,430 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:50,430 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:50,430 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:50,431 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:50,431 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:52,598 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:52,601 - built Dictionary<1167 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions) +2024-05-13 12:42:52,601 - Dictionary lifecycle event {'msg': "built Dictionary<1167 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions)", 'datetime': '2024-05-13T12:42:52.601603', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:52,602 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:52,602 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:52,603 - using serial LDA version on this node +2024-05-13 12:42:52,603 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:52,603 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:52,607 - -8.098 per-word bound, 274.0 perplexity estimate based on a held-out corpus of 1 documents with 2465 words +2024-05-13 12:42:52,607 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:52,608 - topic #0 (0.333): 0.009*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"practice" + 0.005*"e" + 0.004*"receive" + 0.004*"ensure" + 0.003*"plans" + 0.003*"quality" + 0.003*"areas" +2024-05-13 12:42:52,609 - topic #1 (0.333): 0.014*"’" + 0.008*"well" + 0.008*"practice" + 0.006*"plans" + 0.006*"made" + 0.005*"ensure" + 0.005*"needs" + 0.005*"receive" + 0.005*"progress" + 0.004*"quality" +2024-05-13 12:42:52,609 - topic #2 (0.333): 0.012*"’" + 0.009*"practice" + 0.008*"well" + 0.006*"needs" + 0.006*"receive" + 0.006*"areas" + 0.006*"progress" + 0.006*"quality" + 0.005*"ensure" + 0.005*"carers" +2024-05-13 12:42:52,609 - topic diff=0.802177, rho=1.000000 +2024-05-13 12:42:52,609 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:52.609531', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:53,689 - Inspection date 2019-10-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:53,689 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:53,689 - Inspection date 2019-10-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:53,689 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:53,689 - Inspection date 2019-10-07 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:53,690 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:53,690 - Inspection date 2019-10-07 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:53,690 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:53,690 - Inspection date 2019-10-07 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:53,690 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:53,690 - Inspection date 2019-10-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:53,690 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:55,248 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:55,250 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2364 corpus positions) +2024-05-13 12:42:55,251 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2364 corpus positions)", 'datetime': '2024-05-13T12:42:55.251149', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:55,252 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:55,252 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:55,252 - using serial LDA version on this node +2024-05-13 12:42:55,253 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:55,253 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:55,256 - -7.910 per-word bound, 240.6 perplexity estimate based on a held-out corpus of 1 documents with 2364 words +2024-05-13 12:42:55,256 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:55,258 - topic #0 (0.333): 0.010*"’" + 0.009*"needs" + 0.009*"effective" + 0.008*"practice" + 0.008*"good" + 0.007*"planning" + 0.006*"plans" + 0.006*"progress" + 0.005*"quality" + 0.005*"risk" +2024-05-13 12:42:55,258 - topic #1 (0.333): 0.012*"’" + 0.009*"needs" + 0.009*"practice" + 0.008*"good" + 0.007*"progress" + 0.007*"effective" + 0.006*"well" + 0.006*"quality" + 0.005*"information" + 0.005*"plans" +2024-05-13 12:42:55,258 - topic #2 (0.333): 0.011*"good" + 0.010*"’" + 0.009*"needs" + 0.009*"practice" + 0.008*"well" + 0.008*"quality" + 0.007*"effective" + 0.006*"planning" + 0.006*"plans" + 0.006*"progress" +2024-05-13 12:42:55,258 - topic diff=0.790411, rho=1.000000 +2024-05-13 12:42:55,258 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:55.258667', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:56,375 - Inspection date 2019-01-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:56,375 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:56,375 - Inspection date 2019-01-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:56,376 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:56,376 - Inspection date 2019-01-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:56,376 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:56,376 - Inspection date 2019-01-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:56,376 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:56,376 - Inspection date 2019-01-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:56,377 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:56,377 - Inspection date 2019-01-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:56,377 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:58,134 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:42:58,136 - built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions) +2024-05-13 12:42:58,137 - Dictionary lifecycle event {'msg': "built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions)", 'datetime': '2024-05-13T12:42:58.136986', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:58,138 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:42:58,138 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:42:58,138 - using serial LDA version on this node +2024-05-13 12:42:58,138 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:42:58,138 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:42:58,142 - -7.989 per-word bound, 254.0 perplexity estimate based on a held-out corpus of 1 documents with 2294 words +2024-05-13 12:42:58,142 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:42:58,143 - topic #0 (0.333): 0.019*"’" + 0.008*"needs" + 0.008*"Oxfordshire" + 0.007*"well" + 0.007*"risk" + 0.006*"supported" + 0.005*"23" + 0.005*"quality" + 0.005*"leaders" + 0.005*"practice" +2024-05-13 12:42:58,144 - topic #1 (0.333): 0.016*"’" + 0.012*"needs" + 0.006*"good" + 0.006*"well" + 0.006*"Oxfordshire" + 0.006*"risk" + 0.005*"quality" + 0.005*"12" + 0.005*"supported" + 0.005*"education" +2024-05-13 12:42:58,144 - topic #2 (0.333): 0.022*"’" + 0.009*"needs" + 0.007*"Oxfordshire" + 0.006*"well" + 0.005*"good" + 0.005*"supported" + 0.005*"progress" + 0.005*"practice" + 0.005*"receive" + 0.004*"risk" +2024-05-13 12:42:58,144 - topic diff=0.774380, rho=1.000000 +2024-05-13 12:42:58,144 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:42:58.144571', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:42:59,137 - Inspection date 2024-02-12 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:42:59,138 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:59,138 - Inspection date 2024-02-12 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:42:59,138 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:59,138 - Inspection date 2024-02-12 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:42:59,138 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:59,138 - Inspection date 2024-02-12 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:42:59,139 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:59,139 - Inspection date 2024-02-12 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:42:59,139 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:42:59,139 - Inspection date 2024-02-12 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:42:59,139 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:00,515 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:00,517 - built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions) +2024-05-13 12:43:00,517 - Dictionary lifecycle event {'msg': "built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions)", 'datetime': '2024-05-13T12:43:00.517320', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:00,518 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:00,518 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:00,518 - using serial LDA version on this node +2024-05-13 12:43:00,518 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:00,519 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:00,522 - -7.883 per-word bound, 236.1 perplexity estimate based on a held-out corpus of 1 documents with 1737 words +2024-05-13 12:43:00,522 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:00,524 - topic #0 (0.333): 0.016*"’" + 0.014*"needs" + 0.007*"need" + 0.007*"2023" + 0.006*"progress" + 0.006*"Peterborough" + 0.006*"good" + 0.005*"plans" + 0.005*"receive" + 0.005*"well" +2024-05-13 12:43:00,524 - topic #1 (0.333): 0.011*"needs" + 0.010*"’" + 0.007*"Peterborough" + 0.006*"well" + 0.006*"need" + 0.005*"supported" + 0.005*"2023" + 0.005*"progress" + 0.004*"education" + 0.004*"plans" +2024-05-13 12:43:00,524 - topic #2 (0.333): 0.016*"’" + 0.014*"needs" + 0.007*"need" + 0.007*"Peterborough" + 0.007*"well" + 0.006*"2023" + 0.006*"progress" + 0.006*"8" + 0.006*"27" + 0.005*"plans" +2024-05-13 12:43:00,524 - topic diff=0.731302, rho=1.000000 +2024-05-13 12:43:00,524 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:00.524798', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:01,593 - Inspection date 2023-11-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:01,593 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:01,593 - Inspection date 2023-11-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:01,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:01,594 - Inspection date 2023-11-27 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:01,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:01,594 - Inspection date 2023-11-27 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:01,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:01,594 - Inspection date 2023-11-27 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:01,594 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:01,595 - Inspection date 2023-11-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:01,595 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:03,902 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:03,905 - built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) +2024-05-13 12:43:03,905 - Dictionary lifecycle event {'msg': "built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-05-13T12:43:03.905626', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:03,906 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:03,907 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:03,907 - using serial LDA version on this node +2024-05-13 12:43:03,907 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:03,907 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:03,911 - -8.084 per-word bound, 271.3 perplexity estimate based on a held-out corpus of 1 documents with 2905 words +2024-05-13 12:43:03,911 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:03,913 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.008*"Plymouth" + 0.007*"well" + 0.006*"practice" + 0.005*"2024" + 0.005*"education" + 0.005*"2" + 0.005*"February" + 0.005*"always" +2024-05-13 12:43:03,913 - topic #1 (0.333): 0.010*"’" + 0.006*"Plymouth" + 0.006*"needs" + 0.005*"well" + 0.004*"plans" + 0.004*"22" + 0.004*"January" + 0.004*"positive" + 0.004*"appropriate" + 0.004*"Council" +2024-05-13 12:43:03,913 - topic #2 (0.333): 0.013*"’" + 0.010*"needs" + 0.008*"well" + 0.006*"practice" + 0.005*"Plymouth" + 0.005*"appropriate" + 0.005*"plans" + 0.005*"education" + 0.005*"timely" + 0.004*"benefit" +2024-05-13 12:43:03,913 - topic diff=0.840455, rho=1.000000 +2024-05-13 12:43:03,913 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:03.913938', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:04,901 - Inspection date 2024-01-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:04,901 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:04,901 - Inspection date 2024-01-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:04,902 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:04,902 - Inspection date 2024-01-22 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:04,902 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:04,902 - Inspection date 2024-01-22 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:04,902 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:04,902 - Inspection date 2024-01-22 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:04,902 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:04,903 - Inspection date 2024-01-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:04,903 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:06,793 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:06,795 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions) +2024-05-13 12:43:06,795 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions)", 'datetime': '2024-05-13T12:43:06.795620', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:06,796 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:06,797 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:06,797 - using serial LDA version on this node +2024-05-13 12:43:06,797 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:06,797 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:06,801 - -8.107 per-word bound, 275.6 perplexity estimate based on a held-out corpus of 1 documents with 2738 words +2024-05-13 12:43:06,801 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:06,803 - topic #0 (0.333): 0.022*"’" + 0.008*"well" + 0.008*"care-experienced" + 0.007*"needs" + 0.007*"Portsmouth" + 0.006*"family" + 0.005*"need" + 0.005*"health" + 0.005*"practice" + 0.005*"plans" +2024-05-13 12:43:06,803 - topic #1 (0.333): 0.016*"’" + 0.008*"care-experienced" + 0.007*"needs" + 0.007*"Portsmouth" + 0.006*"well" + 0.006*"plans" + 0.005*"health" + 0.005*"family" + 0.004*"risk" + 0.004*"15" +2024-05-13 12:43:06,803 - topic #2 (0.333): 0.011*"’" + 0.008*"care-experienced" + 0.007*"well" + 0.006*"Portsmouth" + 0.005*"health" + 0.005*"needs" + 0.005*"plans" + 0.005*"family" + 0.005*"risk" + 0.004*"leaders" +2024-05-13 12:43:06,803 - topic diff=0.794201, rho=1.000000 +2024-05-13 12:43:06,803 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:06.803859', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:07,924 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:07,925 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:07,925 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:07,925 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:07,925 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:07,925 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:07,926 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:07,926 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:07,926 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:07,926 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:07,926 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:07,926 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:09,686 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:09,689 - built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions) +2024-05-13 12:43:09,689 - Dictionary lifecycle event {'msg': "built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)", 'datetime': '2024-05-13T12:43:09.689221', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:09,690 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:09,690 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:09,690 - using serial LDA version on this node +2024-05-13 12:43:09,691 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:09,691 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:09,694 - -8.001 per-word bound, 256.1 perplexity estimate based on a held-out corpus of 1 documents with 2272 words +2024-05-13 12:43:09,694 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:09,696 - topic #0 (0.333): 0.020*"’" + 0.008*"number" + 0.007*"quality" + 0.007*"well" + 0.006*"plans" + 0.006*"good" + 0.006*"practice" + 0.006*"effective" + 0.005*"needs" + 0.005*"need" +2024-05-13 12:43:09,696 - topic #1 (0.333): 0.011*"’" + 0.006*"well" + 0.006*"quality" + 0.006*"number" + 0.006*"effective" + 0.006*"plans" + 0.006*"good" + 0.006*"need" + 0.004*"arrangements" + 0.004*"timely" +2024-05-13 12:43:09,696 - topic #2 (0.333): 0.014*"’" + 0.006*"well" + 0.006*"quality" + 0.005*"plans" + 0.005*"timely" + 0.005*"number" + 0.005*"good" + 0.004*"need" + 0.004*"always" + 0.004*"progress" +2024-05-13 12:43:09,696 - topic diff=0.779718, rho=1.000000 +2024-05-13 12:43:09,696 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:09.696832', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:10,908 - Inspection date 2019-09-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:10,909 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:10,909 - Inspection date 2019-09-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:10,909 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:10,909 - Inspection date 2019-09-16 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:10,909 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:10,910 - Inspection date 2019-09-16 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:10,910 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:10,910 - Inspection date 2019-09-16 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:10,910 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:10,910 - Inspection date 2019-09-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:10,910 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:12,783 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:12,786 - built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions) +2024-05-13 12:43:12,787 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions)", 'datetime': '2024-05-13T12:43:12.787286', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:12,789 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:12,789 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:12,789 - using serial LDA version on this node +2024-05-13 12:43:12,790 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:12,790 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:12,796 - -8.007 per-word bound, 257.2 perplexity estimate based on a held-out corpus of 1 documents with 2515 words +2024-05-13 12:43:12,796 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:12,799 - topic #0 (0.333): 0.021*"’" + 0.007*"plans" + 0.006*"However" + 0.005*"needs" + 0.005*"leaders" + 0.005*"20" + 0.005*"practice" + 0.005*"consistently" + 0.005*"July" + 0.004*"ensure" +2024-05-13 12:43:12,799 - topic #1 (0.333): 0.013*"’" + 0.007*"leaders" + 0.006*"needs" + 0.006*"2022" + 0.006*"risk" + 0.005*"Redcar" + 0.005*"consistently" + 0.005*"carers" + 0.005*"Cleveland" + 0.005*"plans" +2024-05-13 12:43:12,799 - topic #2 (0.333): 0.018*"’" + 0.006*"However" + 0.006*"leaders" + 0.006*"consistently" + 0.005*"practice" + 0.005*"needs" + 0.004*"carers" + 0.004*"20" + 0.004*"plans" + 0.004*"Redcar" +2024-05-13 12:43:12,799 - topic diff=0.798088, rho=1.000000 +2024-05-13 12:43:12,800 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:12.800068', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:14,055 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:14,055 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:14,056 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:14,056 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:14,056 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:14,056 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:14,056 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:14,057 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:14,057 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:14,057 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:14,057 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:14,057 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:15,752 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:15,754 - built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions) +2024-05-13 12:43:15,755 - Dictionary lifecycle event {'msg': "built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions)", 'datetime': '2024-05-13T12:43:15.755029', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:15,756 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:15,756 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:15,756 - using serial LDA version on this node +2024-05-13 12:43:15,757 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:15,757 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:15,761 - -8.031 per-word bound, 261.6 perplexity estimate based on a held-out corpus of 1 documents with 2656 words +2024-05-13 12:43:15,761 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:15,762 - topic #0 (0.333): 0.018*"’" + 0.010*"practice" + 0.008*"experienced" + 0.007*"needs" + 0.006*"plans" + 0.006*"quality" + 0.005*"response" + 0.005*"consistently" + 0.004*"3" + 0.004*"well" +2024-05-13 12:43:15,762 - topic #1 (0.333): 0.018*"’" + 0.009*"experienced" + 0.008*"needs" + 0.007*"practice" + 0.006*"response" + 0.005*"good" + 0.005*"plans" + 0.004*"23" + 0.004*"quality" + 0.004*"January" +2024-05-13 12:43:15,763 - topic #2 (0.333): 0.024*"’" + 0.011*"experienced" + 0.008*"needs" + 0.007*"practice" + 0.007*"consistently" + 0.006*"plans" + 0.006*"response" + 0.006*"Rochdale" + 0.005*"well" + 0.005*"good" +2024-05-13 12:43:15,763 - topic diff=0.817524, rho=1.000000 +2024-05-13 12:43:15,763 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:15.763300', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:16,798 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:16,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:16,799 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:16,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:16,799 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:16,799 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:16,800 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:16,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:16,800 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:16,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:16,800 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:16,800 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:18,399 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:18,401 - built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions) +2024-05-13 12:43:18,402 - Dictionary lifecycle event {'msg': "built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions)", 'datetime': '2024-05-13T12:43:18.402052', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:18,403 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:18,403 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:18,403 - using serial LDA version on this node +2024-05-13 12:43:18,403 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:18,404 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:18,407 - -8.063 per-word bound, 267.4 perplexity estimate based on a held-out corpus of 1 documents with 2366 words +2024-05-13 12:43:18,407 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:18,409 - topic #0 (0.333): 0.011*"’" + 0.007*"Rotherham" + 0.006*"needs" + 0.005*"well" + 0.005*"good" + 0.005*"Council" + 0.004*"ensure" + 0.004*"plans" + 0.004*"However" + 0.004*"27" +2024-05-13 12:43:18,409 - topic #1 (0.333): 0.019*"’" + 0.010*"Rotherham" + 0.006*"needs" + 0.006*"well" + 0.005*"plans" + 0.005*"ensure" + 0.005*"good" + 0.005*"Council" + 0.004*"1" + 0.004*"clear" +2024-05-13 12:43:18,409 - topic #2 (0.333): 0.014*"’" + 0.008*"Rotherham" + 0.007*"needs" + 0.005*"good" + 0.005*"However" + 0.004*"Council" + 0.004*"Borough" + 0.004*"well" + 0.004*"Metropolitan" + 0.004*"ensure" +2024-05-13 12:43:18,409 - topic diff=0.772925, rho=1.000000 +2024-05-13 12:43:18,410 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:18.409982', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:19,380 - Inspection date 2022-06-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:19,380 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:19,381 - Inspection date 2022-06-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:19,381 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:19,381 - Inspection date 2022-06-27 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:19,381 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:19,381 - Inspection date 2022-06-27 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:19,381 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:19,381 - Inspection date 2022-06-27 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:19,382 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:19,382 - Inspection date 2022-06-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:19,382 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:21,132 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:21,135 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions) +2024-05-13 12:43:21,135 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions)", 'datetime': '2024-05-13T12:43:21.135423', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:21,136 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:21,136 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:21,136 - using serial LDA version on this node +2024-05-13 12:43:21,137 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:21,137 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:21,141 - -8.049 per-word bound, 264.9 perplexity estimate based on a held-out corpus of 1 documents with 2380 words +2024-05-13 12:43:21,141 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:21,142 - topic #0 (0.333): 0.012*"well" + 0.010*"’" + 0.009*"practice" + 0.007*"strong" + 0.007*"highly" + 0.005*"effective" + 0.005*"leaders" + 0.005*"needs" + 0.004*"need" + 0.004*"high" +2024-05-13 12:43:21,142 - topic #1 (0.333): 0.016*"well" + 0.011*"’" + 0.010*"practice" + 0.007*"highly" + 0.006*"strong" + 0.006*"needs" + 0.005*"leaders" + 0.004*"professionals" + 0.004*"high" + 0.004*"effective" +2024-05-13 12:43:21,143 - topic #2 (0.333): 0.013*"’" + 0.012*"practice" + 0.012*"well" + 0.008*"highly" + 0.006*"effective" + 0.006*"strong" + 0.006*"needs" + 0.005*"leaders" + 0.004*"risk" + 0.004*"high" +2024-05-13 12:43:21,143 - topic diff=0.771913, rho=1.000000 +2024-05-13 12:43:21,143 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:21.143410', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:22,324 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:22,324 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:22,324 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:22,325 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:22,325 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:22,325 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:22,325 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:22,325 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:22,325 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:22,326 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:22,326 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:22,326 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:24,592 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:24,595 - built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions) +2024-05-13 12:43:24,596 - Dictionary lifecycle event {'msg': "built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions)", 'datetime': '2024-05-13T12:43:24.596138', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:24,597 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:24,597 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:24,597 - using serial LDA version on this node +2024-05-13 12:43:24,598 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:24,598 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:24,602 - -8.065 per-word bound, 267.7 perplexity estimate based on a held-out corpus of 1 documents with 2257 words +2024-05-13 12:43:24,602 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:24,604 - topic #0 (0.333): 0.016*"’" + 0.011*"well" + 0.008*"plans" + 0.007*"needs" + 0.005*"supported" + 0.005*"practice" + 0.005*"good" + 0.005*"effective" + 0.005*"parents" + 0.004*"Kingston" +2024-05-13 12:43:24,604 - topic #1 (0.333): 0.012*"’" + 0.008*"plans" + 0.007*"well" + 0.006*"good" + 0.006*"needs" + 0.005*"clear" + 0.004*"effective" + 0.004*"risk" + 0.004*"need" + 0.004*"range" +2024-05-13 12:43:24,604 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.008*"plans" + 0.008*"well" + 0.005*"good" + 0.004*"effective" + 0.004*"need" + 0.004*"clear" + 0.004*"range" + 0.004*"parents" +2024-05-13 12:43:24,605 - topic diff=0.751243, rho=1.000000 +2024-05-13 12:43:24,605 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:24.605235', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:25,884 - Inspection date 2019-10-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:25,885 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:25,885 - Inspection date 2019-10-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:25,885 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:25,886 - Inspection date 2019-10-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:25,886 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:25,886 - Inspection date 2019-10-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:25,886 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:25,886 - Inspection date 2019-10-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:25,887 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:25,887 - Inspection date 2019-10-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:25,887 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:27,445 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:27,448 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions) +2024-05-13 12:43:27,448 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions)", 'datetime': '2024-05-13T12:43:27.448547', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:27,449 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:27,449 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:27,450 - using serial LDA version on this node +2024-05-13 12:43:27,450 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:27,450 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:27,454 - -8.118 per-word bound, 277.9 perplexity estimate based on a held-out corpus of 1 documents with 2088 words +2024-05-13 12:43:27,454 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:27,455 - topic #0 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"needs" + 0.005*"quality" + 0.005*"use" + 0.004*"health" + 0.004*"effective" + 0.004*"However" + 0.004*"plans" + 0.004*"benefit" +2024-05-13 12:43:27,455 - topic #1 (0.333): 0.011*"’" + 0.006*"well" + 0.005*"plans" + 0.005*"quality" + 0.004*"benefit" + 0.004*"effective" + 0.004*"needs" + 0.004*"informed" + 0.004*"timely" + 0.004*"need" +2024-05-13 12:43:27,456 - topic #2 (0.333): 0.010*"’" + 0.005*"needs" + 0.004*"information" + 0.004*"quality" + 0.004*"plans" + 0.004*"well" + 0.004*"always" + 0.003*"early" + 0.003*"actions" + 0.003*"benefit" +2024-05-13 12:43:27,456 - topic diff=0.715434, rho=1.000000 +2024-05-13 12:43:27,456 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:27.456354', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:28,681 - Inspection date 2020-01-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:28,681 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:28,682 - Inspection date 2020-01-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:28,682 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:28,682 - Inspection date 2020-01-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:28,682 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:28,682 - Inspection date 2020-01-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:28,682 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:28,683 - Inspection date 2020-01-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:28,683 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:28,683 - Inspection date 2020-01-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:28,683 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:30,140 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:30,144 - built Dictionary<1018 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2144 corpus positions) +2024-05-13 12:43:30,144 - Dictionary lifecycle event {'msg': "built Dictionary<1018 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2144 corpus positions)", 'datetime': '2024-05-13T12:43:30.144815', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:30,146 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:30,146 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:30,146 - using serial LDA version on this node +2024-05-13 12:43:30,146 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:30,147 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:30,150 - -7.959 per-word bound, 248.9 perplexity estimate based on a held-out corpus of 1 documents with 2144 words +2024-05-13 12:43:30,150 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:30,152 - topic #0 (0.333): 0.011*"’" + 0.011*"well" + 0.008*"needs" + 0.007*"good" + 0.006*"team" + 0.006*"practice" + 0.005*"ensure" + 0.005*"effective" + 0.005*"protection" + 0.005*"need" +2024-05-13 12:43:30,152 - topic #1 (0.333): 0.009*"’" + 0.007*"well" + 0.007*"needs" + 0.005*"good" + 0.005*"team" + 0.005*"plans" + 0.005*"need" + 0.005*"ensure" + 0.004*"practice" + 0.004*"protection" +2024-05-13 12:43:30,153 - topic #2 (0.333): 0.015*"’" + 0.011*"needs" + 0.011*"well" + 0.008*"good" + 0.008*"need" + 0.007*"practice" + 0.007*"team" + 0.007*"enough" + 0.006*"protection" + 0.006*"effective" +2024-05-13 12:43:30,153 - topic diff=0.787973, rho=1.000000 +2024-05-13 12:43:30,153 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:30.153285', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:31,193 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:31,193 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:31,194 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:31,194 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:31,194 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:31,194 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:31,195 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:31,195 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:31,195 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:31,195 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:31,195 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:31,196 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:32,593 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:32,595 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions) +2024-05-13 12:43:32,596 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions)", 'datetime': '2024-05-13T12:43:32.596124', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:32,597 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:32,597 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:32,597 - using serial LDA version on this node +2024-05-13 12:43:32,598 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:32,598 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:32,601 - -8.009 per-word bound, 257.7 perplexity estimate based on a held-out corpus of 1 documents with 2253 words +2024-05-13 12:43:32,601 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:32,603 - topic #0 (0.333): 0.016*"’" + 0.009*"plans" + 0.009*"needs" + 0.007*"well" + 0.007*"effective" + 0.006*"Salford" + 0.006*"planning" + 0.005*"practice" + 0.005*"quality" + 0.005*"experiences" +2024-05-13 12:43:32,603 - topic #1 (0.333): 0.010*"’" + 0.006*"effective" + 0.005*"well" + 0.005*"plans" + 0.005*"needs" + 0.004*"Salford" + 0.004*"leaders" + 0.004*"Council" + 0.004*"planning" + 0.004*"appropriate" +2024-05-13 12:43:32,603 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.007*"plans" + 0.007*"needs" + 0.006*"Salford" + 0.005*"effective" + 0.005*"practice" + 0.005*"progress" + 0.005*"6" + 0.005*"ensure" +2024-05-13 12:43:32,603 - topic diff=0.810498, rho=1.000000 +2024-05-13 12:43:32,603 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:32.603787', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:33,563 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:33,563 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:33,563 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:33,563 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:33,563 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:33,564 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:33,564 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:33,564 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:33,564 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:33,564 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:33,564 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:33,564 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:35,602 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:35,606 - built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions) +2024-05-13 12:43:35,606 - Dictionary lifecycle event {'msg': "built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions)", 'datetime': '2024-05-13T12:43:35.606445', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:35,607 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:35,608 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:35,608 - using serial LDA version on this node +2024-05-13 12:43:35,608 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:35,609 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:35,614 - -7.949 per-word bound, 247.1 perplexity estimate based on a held-out corpus of 1 documents with 2066 words +2024-05-13 12:43:35,614 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:35,615 - topic #0 (0.333): 0.013*"’" + 0.008*"needs" + 0.007*"Sandwell" + 0.007*"plans" + 0.006*"well" + 0.006*"quality" + 0.005*"Trust" + 0.004*"changes" + 0.004*"number" + 0.004*"2022" +2024-05-13 12:43:35,615 - topic #1 (0.333): 0.015*"’" + 0.008*"Sandwell" + 0.007*"well" + 0.007*"plans" + 0.006*"needs" + 0.005*"quality" + 0.004*"effective" + 0.004*"20" + 0.004*"progress" + 0.004*"education" +2024-05-13 12:43:35,615 - topic #2 (0.333): 0.014*"’" + 0.009*"needs" + 0.007*"plans" + 0.007*"Sandwell" + 0.006*"quality" + 0.006*"well" + 0.005*"Trust" + 0.005*"education" + 0.005*"20" + 0.005*"progress" +2024-05-13 12:43:35,616 - topic diff=0.765507, rho=1.000000 +2024-05-13 12:43:35,616 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:35.616208', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:36,545 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:36,545 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:36,546 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:36,546 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:36,546 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:36,546 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:36,546 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:36,547 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:36,547 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:36,547 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:36,547 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:36,547 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:38,403 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:38,406 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions) +2024-05-13 12:43:38,406 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions)", 'datetime': '2024-05-13T12:43:38.406385', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:38,407 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:38,407 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:38,407 - using serial LDA version on this node +2024-05-13 12:43:38,408 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:38,408 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:38,411 - -7.928 per-word bound, 243.5 perplexity estimate based on a held-out corpus of 1 documents with 2300 words +2024-05-13 12:43:38,411 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:38,413 - topic #0 (0.333): 0.015*"’" + 0.009*"needs" + 0.007*"lack" + 0.006*"practice" + 0.006*"protection" + 0.005*"including" + 0.005*"oversight" + 0.005*"timely" + 0.005*"always" + 0.005*"4" +2024-05-13 12:43:38,413 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.006*"practice" + 0.006*"oversight" + 0.005*"◼" + 0.005*"many" + 0.005*"protection" + 0.005*"including" + 0.005*"plans" + 0.005*"management" +2024-05-13 12:43:38,413 - topic #2 (0.333): 0.014*"’" + 0.009*"needs" + 0.005*"oversight" + 0.005*"practice" + 0.005*"management" + 0.005*"Sefton" + 0.005*"lack" + 0.004*"March" + 0.004*"timely" + 0.004*"plans" +2024-05-13 12:43:38,413 - topic diff=0.794699, rho=1.000000 +2024-05-13 12:43:38,413 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:38.413832', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:39,438 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:39,438 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:39,438 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:39,438 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:39,439 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:39,439 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:39,439 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:39,439 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:39,439 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:39,439 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:39,439 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:39,440 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:40,966 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:40,968 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions) +2024-05-13 12:43:40,968 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions)", 'datetime': '2024-05-13T12:43:40.968773', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:40,969 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:40,970 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:40,970 - using serial LDA version on this node +2024-05-13 12:43:40,970 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:40,970 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:40,974 - -8.067 per-word bound, 268.1 perplexity estimate based on a held-out corpus of 1 documents with 2327 words +2024-05-13 12:43:40,974 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:40,975 - topic #0 (0.333): 0.019*"’" + 0.010*"Sheffield" + 0.008*"needs" + 0.006*"leaders" + 0.006*"well" + 0.006*"health" + 0.005*"practice" + 0.005*"quality" + 0.005*"11" + 0.004*"good" +2024-05-13 12:43:40,976 - topic #1 (0.333): 0.017*"’" + 0.011*"Sheffield" + 0.008*"needs" + 0.006*"well" + 0.006*"practice" + 0.005*"adviser" + 0.004*"ensure" + 0.004*"2023" + 0.004*"leaders" + 0.004*"effective" +2024-05-13 12:43:40,976 - topic #2 (0.333): 0.024*"’" + 0.012*"Sheffield" + 0.009*"needs" + 0.007*"well" + 0.006*"leaders" + 0.005*"health" + 0.005*"practice" + 0.005*"plans" + 0.005*"experiences" + 0.004*"22" +2024-05-13 12:43:40,976 - topic diff=0.766779, rho=1.000000 +2024-05-13 12:43:40,976 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:40.976596', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:41,905 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:41,905 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:41,906 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:41,906 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:41,906 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:41,906 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:41,906 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:41,906 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:41,907 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:41,907 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:41,907 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:41,907 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:43,395 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:43,397 - built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions) +2024-05-13 12:43:43,397 - Dictionary lifecycle event {'msg': "built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions)", 'datetime': '2024-05-13T12:43:43.397821', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:43,398 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:43,398 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:43,399 - using serial LDA version on this node +2024-05-13 12:43:43,399 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:43,399 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:43,402 - -7.957 per-word bound, 248.5 perplexity estimate based on a held-out corpus of 1 documents with 1749 words +2024-05-13 12:43:43,403 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:43,404 - topic #0 (0.333): 0.014*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"Shropshire" + 0.005*"7" + 0.005*"plans" + 0.005*"progress" + 0.005*"2022" + 0.005*"making" + 0.004*"practice" +2024-05-13 12:43:43,404 - topic #1 (0.333): 0.015*"’" + 0.009*"needs" + 0.008*"Shropshire" + 0.006*"well" + 0.006*"2022" + 0.005*"progress" + 0.005*"leaders" + 0.005*"effectively" + 0.005*"plans" + 0.005*"practice" +2024-05-13 12:43:43,404 - topic #2 (0.333): 0.021*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"Shropshire" + 0.006*"progress" + 0.006*"plans" + 0.005*"making" + 0.005*"11" + 0.005*"7" + 0.004*"training" +2024-05-13 12:43:43,404 - topic diff=0.716373, rho=1.000000 +2024-05-13 12:43:43,405 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:43.405025', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:44,393 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:44,393 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:44,394 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:44,394 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:44,395 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:44,395 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:44,395 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:44,395 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:44,396 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:44,396 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:44,396 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:44,396 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:46,025 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:46,028 - built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions) +2024-05-13 12:43:46,028 - Dictionary lifecycle event {'msg': "built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-05-13T12:43:46.028447', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:46,029 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:46,029 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:46,030 - using serial LDA version on this node +2024-05-13 12:43:46,030 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:46,030 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:46,034 - -8.044 per-word bound, 263.9 perplexity estimate based on a held-out corpus of 1 documents with 2352 words +2024-05-13 12:43:46,034 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:46,036 - topic #0 (0.333): 0.014*"’" + 0.009*"Slough" + 0.006*"plans" + 0.006*"needs" + 0.005*"3" + 0.005*"2023" + 0.005*"impact" + 0.005*"practice" + 0.004*"However" + 0.004*"quality" +2024-05-13 12:43:46,036 - topic #1 (0.333): 0.013*"’" + 0.006*"needs" + 0.006*"Slough" + 0.006*"plans" + 0.005*"practice" + 0.005*"leaders" + 0.004*"senior" + 0.004*"3" + 0.004*"need" + 0.004*"quality" +2024-05-13 12:43:46,036 - topic #2 (0.333): 0.019*"’" + 0.008*"quality" + 0.008*"Slough" + 0.006*"practice" + 0.006*"needs" + 0.006*"plans" + 0.005*"supported" + 0.005*"impact" + 0.005*"23" + 0.005*"However" +2024-05-13 12:43:46,036 - topic diff=0.782643, rho=1.000000 +2024-05-13 12:43:46,036 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:46.036879', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:46,983 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:46,983 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:46,984 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:46,984 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:46,984 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:46,984 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:46,984 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:46,984 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:46,984 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:46,985 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:46,985 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:46,985 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:48,822 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:48,826 - built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions) +2024-05-13 12:43:48,826 - Dictionary lifecycle event {'msg': "built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions)", 'datetime': '2024-05-13T12:43:48.826463', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:48,828 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:48,828 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:48,828 - using serial LDA version on this node +2024-05-13 12:43:48,829 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:48,829 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:48,835 - -7.918 per-word bound, 241.9 perplexity estimate based on a held-out corpus of 1 documents with 2163 words +2024-05-13 12:43:48,836 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:48,838 - topic #0 (0.333): 0.014*"’" + 0.012*"lack" + 0.010*"2022" + 0.007*"Solihull" + 0.006*"risk" + 0.006*"quality" + 0.006*"need" + 0.005*"significant" + 0.005*"timely" + 0.005*"practice" +2024-05-13 12:43:48,838 - topic #1 (0.333): 0.018*"’" + 0.009*"lack" + 0.008*"2022" + 0.007*"need" + 0.006*"experiences" + 0.005*"practice" + 0.005*"Solihull" + 0.005*"risk" + 0.005*"quality" + 0.005*"means" +2024-05-13 12:43:48,838 - topic #2 (0.333): 0.014*"’" + 0.010*"lack" + 0.006*"2022" + 0.006*"Solihull" + 0.005*"risk" + 0.005*"effective" + 0.005*"quality" + 0.005*"practice" + 0.004*"experiences" + 0.004*"need" +2024-05-13 12:43:48,839 - topic diff=0.791615, rho=1.000000 +2024-05-13 12:43:48,839 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:48.839209', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:49,812 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:49,812 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:49,813 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:49,813 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:49,813 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:49,813 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:49,813 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:49,813 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:49,814 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:49,814 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:49,814 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:49,814 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:51,793 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:51,795 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions) +2024-05-13 12:43:51,795 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions)", 'datetime': '2024-05-13T12:43:51.795816', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:51,796 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:51,796 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:51,797 - using serial LDA version on this node +2024-05-13 12:43:51,797 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:51,797 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:51,804 - -7.921 per-word bound, 242.4 perplexity estimate based on a held-out corpus of 1 documents with 2181 words +2024-05-13 12:43:51,804 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:51,806 - topic #0 (0.333): 0.015*"’" + 0.010*"needs" + 0.008*"well" + 0.007*"plans" + 0.006*"good" + 0.005*"number" + 0.005*"leaders" + 0.005*"Somerset" + 0.005*"supported" + 0.005*"need" +2024-05-13 12:43:51,806 - topic #1 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"needs" + 0.006*"plans" + 0.005*"Somerset" + 0.005*"positive" + 0.005*"need" + 0.004*"progress" + 0.004*"good" + 0.004*"leaders" +2024-05-13 12:43:51,806 - topic #2 (0.333): 0.019*"’" + 0.010*"well" + 0.009*"Somerset" + 0.008*"needs" + 0.006*"good" + 0.006*"plans" + 0.006*"supported" + 0.006*"practice" + 0.006*"including" + 0.006*"progress" +2024-05-13 12:43:51,806 - topic diff=0.807142, rho=1.000000 +2024-05-13 12:43:51,807 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:51.807120', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:52,751 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:52,752 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:52,752 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:52,752 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:52,752 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:52,752 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:52,753 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:52,753 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:52,753 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:52,753 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:52,753 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:52,753 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:54,527 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:54,529 - built Dictionary<1052 unique tokens: ['0', '016', '0161', '0300', '0–25']...> from 1 documents (total 2383 corpus positions) +2024-05-13 12:43:54,529 - Dictionary lifecycle event {'msg': "built Dictionary<1052 unique tokens: ['0', '016', '0161', '0300', '0–25']...> from 1 documents (total 2383 corpus positions)", 'datetime': '2024-05-13T12:43:54.529674', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:54,530 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:54,531 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:54,531 - using serial LDA version on this node +2024-05-13 12:43:54,531 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:54,531 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:54,535 - -7.945 per-word bound, 246.5 perplexity estimate based on a held-out corpus of 1 documents with 2383 words +2024-05-13 12:43:54,535 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:54,536 - topic #0 (0.333): 0.010*"quality" + 0.010*"’" + 0.009*"well" + 0.008*"plans" + 0.008*"good" + 0.008*"leaders" + 0.005*"needs" + 0.005*"practice" + 0.005*"timeliness" + 0.005*"Senior" +2024-05-13 12:43:54,536 - topic #1 (0.333): 0.012*"well" + 0.012*"quality" + 0.010*"leaders" + 0.009*"’" + 0.008*"timely" + 0.008*"plans" + 0.006*"progress" + 0.006*"good" + 0.006*"needs" + 0.005*"practice" +2024-05-13 12:43:54,537 - topic #2 (0.333): 0.010*"well" + 0.009*"quality" + 0.007*"plans" + 0.007*"good" + 0.007*"’" + 0.006*"leaders" + 0.005*"needs" + 0.005*"impact" + 0.005*"progress" + 0.005*"timely" +2024-05-13 12:43:54,537 - topic diff=0.798439, rho=1.000000 +2024-05-13 12:43:54,537 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:54.537398', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:55,929 - Inspection date 2019-03-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:55,930 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:55,930 - Inspection date 2019-03-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:55,930 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:55,930 - Inspection date 2019-03-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:55,930 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:55,930 - Inspection date 2019-03-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:55,931 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:55,931 - Inspection date 2019-03-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:55,931 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:55,931 - Inspection date 2019-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:55,931 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:57,311 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:43:57,313 - built Dictionary<981 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2189 corpus positions) +2024-05-13 12:43:57,314 - Dictionary lifecycle event {'msg': 'built Dictionary<981 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2189 corpus positions)', 'datetime': '2024-05-13T12:43:57.313982', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:57,315 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:43:57,315 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:43:57,315 - using serial LDA version on this node +2024-05-13 12:43:57,315 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:43:57,315 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:43:57,319 - -7.889 per-word bound, 237.1 perplexity estimate based on a held-out corpus of 1 documents with 2189 words +2024-05-13 12:43:57,319 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:43:57,320 - topic #0 (0.333): 0.026*"’" + 0.010*"Tyneside" + 0.008*"needs" + 0.007*"South" + 0.006*"oversight" + 0.005*"effective" + 0.005*"risk" + 0.005*"management" + 0.005*"practice" + 0.005*"9" +2024-05-13 12:43:57,320 - topic #1 (0.333): 0.027*"’" + 0.009*"needs" + 0.008*"South" + 0.006*"Tyneside" + 0.006*"However" + 0.005*"carers" + 0.005*"5" + 0.005*"management" + 0.005*"homes" + 0.005*"progress" +2024-05-13 12:43:57,321 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.006*"South" + 0.005*"Tyneside" + 0.005*"2022" + 0.004*"management" + 0.004*"carers" + 0.004*"9" + 0.004*"However" + 0.004*"effective" +2024-05-13 12:43:57,321 - topic diff=0.802604, rho=1.000000 +2024-05-13 12:43:57,321 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:43:57.321358', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:43:58,295 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:43:58,296 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:58,296 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:43:58,296 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:58,297 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:43:58,297 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:58,297 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:43:58,297 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:58,298 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:43:58,298 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:43:58,298 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:43:58,298 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:00,074 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:00,077 - built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions) +2024-05-13 12:44:00,077 - Dictionary lifecycle event {'msg': "built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions)", 'datetime': '2024-05-13T12:44:00.077879', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:00,079 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:00,079 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:00,079 - using serial LDA version on this node +2024-05-13 12:44:00,079 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:00,079 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:00,083 - -8.144 per-word bound, 282.8 perplexity estimate based on a held-out corpus of 1 documents with 2318 words +2024-05-13 12:44:00,083 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:00,085 - topic #0 (0.333): 0.016*"’" + 0.005*"plans" + 0.005*"improve" + 0.005*"including" + 0.005*"progress" + 0.004*"5" + 0.004*"Southampton" + 0.004*"16" + 0.004*"experiences" + 0.004*"leaders" +2024-05-13 12:44:00,085 - topic #1 (0.333): 0.011*"’" + 0.005*"progress" + 0.005*"Southampton" + 0.004*"16" + 0.004*"plans" + 0.004*"experiences" + 0.004*"including" + 0.004*"improve" + 0.004*"June" + 0.004*"needs" +2024-05-13 12:44:00,085 - topic #2 (0.333): 0.019*"’" + 0.007*"plans" + 0.007*"Southampton" + 0.005*"needs" + 0.005*"timely" + 0.005*"5" + 0.005*"well" + 0.005*"improve" + 0.004*"progress" + 0.004*"provide" +2024-05-13 12:44:00,086 - topic diff=0.751984, rho=1.000000 +2024-05-13 12:44:00,086 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:00.086162', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:01,015 - Inspection date 2023-06-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:01,015 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:01,016 - Inspection date 2023-06-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:01,016 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:01,016 - Inspection date 2023-06-05 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:01,016 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:01,016 - Inspection date 2023-06-05 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:01,016 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:01,017 - Inspection date 2023-06-05 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:01,017 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:01,017 - Inspection date 2023-06-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:01,017 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:02,724 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:02,726 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions) +2024-05-13 12:44:02,726 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions)", 'datetime': '2024-05-13T12:44:02.726462', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:02,727 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:02,727 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:02,727 - using serial LDA version on this node +2024-05-13 12:44:02,728 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:02,728 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:02,731 - -7.943 per-word bound, 246.0 perplexity estimate based on a held-out corpus of 1 documents with 2086 words +2024-05-13 12:44:02,731 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:02,733 - topic #0 (0.333): 0.016*"’" + 0.009*"planning" + 0.006*"practice" + 0.006*"leaders" + 0.006*"quality" + 0.006*"number" + 0.006*"always" + 0.006*"effective" + 0.006*"carers" + 0.005*"However" +2024-05-13 12:44:02,733 - topic #1 (0.333): 0.012*"’" + 0.007*"practice" + 0.007*"planning" + 0.007*"quality" + 0.006*"protection" + 0.005*"number" + 0.005*"risk" + 0.005*"effective" + 0.005*"leaders" + 0.004*"within" +2024-05-13 12:44:02,733 - topic #2 (0.333): 0.011*"’" + 0.007*"practice" + 0.007*"quality" + 0.006*"planning" + 0.006*"leaders" + 0.006*"within" + 0.005*"well" + 0.005*"protection" + 0.005*"good" + 0.005*"needs" +2024-05-13 12:44:02,733 - topic diff=0.770959, rho=1.000000 +2024-05-13 12:44:02,733 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:02.733889', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:05,167 - Inspection date 2019-07-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:05,167 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:05,173 - Inspection date 2019-07-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:05,173 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:05,173 - Inspection date 2019-07-15 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:05,173 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:05,174 - Inspection date 2019-07-15 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:05,174 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:05,174 - Inspection date 2019-07-15 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:05,174 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:05,175 - Inspection date 2019-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:05,175 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:06,773 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:06,775 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions) +2024-05-13 12:44:06,775 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions)", 'datetime': '2024-05-13T12:44:06.775485', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:06,776 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:06,776 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:06,776 - using serial LDA version on this node +2024-05-13 12:44:06,777 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:06,777 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:06,781 - -8.051 per-word bound, 265.2 perplexity estimate based on a held-out corpus of 1 documents with 2218 words +2024-05-13 12:44:06,781 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:06,782 - topic #0 (0.333): 0.011*"’" + 0.007*"St" + 0.006*"21" + 0.005*"progress" + 0.005*"need" + 0.005*"needs" + 0.005*"well" + 0.004*"Helens" + 0.004*"July" + 0.004*"10" +2024-05-13 12:44:06,782 - topic #1 (0.333): 0.016*"’" + 0.008*"Helens" + 0.008*"needs" + 0.007*"St" + 0.007*"progress" + 0.006*"well" + 0.006*"10" + 0.006*"need" + 0.006*"receive" + 0.005*"good" +2024-05-13 12:44:06,783 - topic #2 (0.333): 0.019*"’" + 0.009*"Helens" + 0.008*"St" + 0.008*"needs" + 0.007*"well" + 0.006*"good" + 0.006*"receive" + 0.005*"21" + 0.005*"effective" + 0.005*"risk" +2024-05-13 12:44:06,783 - topic diff=0.773044, rho=1.000000 +2024-05-13 12:44:06,783 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:06.783400', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:07,873 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:07,873 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:07,874 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:07,874 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:07,874 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:07,874 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:07,874 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:07,874 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:07,875 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:07,875 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:07,875 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:07,875 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:09,309 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:09,312 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions) +2024-05-13 12:44:09,313 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions)", 'datetime': '2024-05-13T12:44:09.313231', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:09,315 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:09,315 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:09,315 - using serial LDA version on this node +2024-05-13 12:44:09,316 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:09,316 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:09,322 - -7.997 per-word bound, 255.4 perplexity estimate based on a held-out corpus of 1 documents with 2334 words +2024-05-13 12:44:09,323 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:09,325 - topic #0 (0.333): 0.019*"’" + 0.014*"needs" + 0.007*"quality" + 0.007*"health" + 0.007*"Staffordshire" + 0.006*"progress" + 0.006*"oversight" + 0.005*"practice" + 0.005*"10" + 0.005*"ensure" +2024-05-13 12:44:09,325 - topic #1 (0.333): 0.011*"’" + 0.008*"needs" + 0.006*"ensure" + 0.005*"practice" + 0.005*"progress" + 0.004*"oversight" + 0.004*"Staffordshire" + 0.004*"quality" + 0.004*"plans" + 0.004*"health" +2024-05-13 12:44:09,325 - topic #2 (0.333): 0.018*"’" + 0.011*"needs" + 0.006*"practice" + 0.006*"quality" + 0.006*"oversight" + 0.005*"ensure" + 0.005*"plans" + 0.005*"progress" + 0.005*"health" + 0.004*"Staffordshire" +2024-05-13 12:44:09,325 - topic diff=0.811271, rho=1.000000 +2024-05-13 12:44:09,326 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:09.326168', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:10,309 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:10,309 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:10,310 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:10,310 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:10,310 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:10,310 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:10,311 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:10,311 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:10,311 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:10,316 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:10,316 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:10,316 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:11,754 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:11,756 - built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) +2024-05-13 12:44:11,756 - Dictionary lifecycle event {'msg': "built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-05-13T12:44:11.756961', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:11,758 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:11,758 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:11,758 - using serial LDA version on this node +2024-05-13 12:44:11,758 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:11,758 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:11,762 - -7.973 per-word bound, 251.3 perplexity estimate based on a held-out corpus of 1 documents with 2316 words +2024-05-13 12:44:11,762 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:11,764 - topic #0 (0.333): 0.010*"’" + 0.008*"well" + 0.007*"practice" + 0.007*"Stockport" + 0.006*"strong" + 0.005*"risk" + 0.005*"needs" + 0.005*"quality" + 0.004*"28" + 0.004*"ensure" +2024-05-13 12:44:11,764 - topic #1 (0.333): 0.011*"’" + 0.009*"well" + 0.008*"practice" + 0.007*"Stockport" + 0.006*"needs" + 0.006*"plans" + 0.005*"risk" + 0.005*"ensure" + 0.005*"leaders" + 0.005*"1" +2024-05-13 12:44:11,764 - topic #2 (0.333): 0.012*"’" + 0.007*"well" + 0.006*"strong" + 0.006*"needs" + 0.006*"practice" + 0.005*"Stockport" + 0.005*"plans" + 0.005*"response" + 0.004*"leaders" + 0.004*"quality" +2024-05-13 12:44:11,764 - topic diff=0.790721, rho=1.000000 +2024-05-13 12:44:11,764 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:11.764898', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:12,758 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:12,759 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:12,759 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:12,759 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:12,759 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:12,759 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:12,760 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:12,760 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:12,760 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:12,760 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:12,760 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:12,760 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:14,259 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:14,261 - built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions) +2024-05-13 12:44:14,261 - Dictionary lifecycle event {'msg': "built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions)", 'datetime': '2024-05-13T12:44:14.261863', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:14,262 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:14,263 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:14,263 - using serial LDA version on this node +2024-05-13 12:44:14,263 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:14,263 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:14,267 - -7.971 per-word bound, 250.9 perplexity estimate based on a held-out corpus of 1 documents with 2269 words +2024-05-13 12:44:14,267 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:14,268 - topic #0 (0.333): 0.018*"’" + 0.008*"leaders" + 0.007*"plans" + 0.007*"needs" + 0.006*"on-Tees" + 0.006*"Stockton" + 0.005*"well" + 0.005*"quality" + 0.005*"senior" + 0.004*"good" +2024-05-13 12:44:14,268 - topic #1 (0.333): 0.022*"’" + 0.010*"leaders" + 0.008*"plans" + 0.007*"quality" + 0.007*"needs" + 0.006*"Stockton" + 0.006*"well" + 0.006*"on-Tees" + 0.006*"senior" + 0.006*"good" +2024-05-13 12:44:14,269 - topic #2 (0.333): 0.018*"’" + 0.010*"plans" + 0.007*"leaders" + 0.007*"well" + 0.006*"good" + 0.006*"needs" + 0.006*"on-Tees" + 0.005*"Stockton" + 0.005*"17" + 0.005*"carers" +2024-05-13 12:44:14,269 - topic diff=0.769571, rho=1.000000 +2024-05-13 12:44:14,269 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:14.269325', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:15,359 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:15,360 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:15,360 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:15,360 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:15,361 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:15,361 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:15,361 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:15,361 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:15,362 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:15,362 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:15,362 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:15,362 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:17,249 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:17,251 - built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions) +2024-05-13 12:44:17,251 - Dictionary lifecycle event {'msg': "built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions)", 'datetime': '2024-05-13T12:44:17.251450', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:17,252 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:17,252 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:17,252 - using serial LDA version on this node +2024-05-13 12:44:17,253 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:17,253 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:17,256 - -7.902 per-word bound, 239.2 perplexity estimate based on a held-out corpus of 1 documents with 2165 words +2024-05-13 12:44:17,256 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:17,258 - topic #0 (0.333): 0.018*"’" + 0.009*"needs" + 0.009*"on-Trent" + 0.008*"well" + 0.008*"Stoke" + 0.007*"However" + 0.007*"plans" + 0.006*"protection" + 0.005*"progress" + 0.005*"ensure" +2024-05-13 12:44:17,258 - topic #1 (0.333): 0.014*"’" + 0.008*"needs" + 0.007*"Stoke" + 0.007*"plans" + 0.006*"However" + 0.006*"on-Trent" + 0.006*"ensure" + 0.005*"well" + 0.005*"protection" + 0.005*"quality" +2024-05-13 12:44:17,258 - topic #2 (0.333): 0.020*"’" + 0.008*"needs" + 0.006*"well" + 0.005*"plans" + 0.005*"However" + 0.005*"ensure" + 0.005*"on-Trent" + 0.005*"timely" + 0.005*"quality" + 0.005*"Stoke" +2024-05-13 12:44:17,258 - topic diff=0.777850, rho=1.000000 +2024-05-13 12:44:17,258 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:17.258846', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:18,329 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:18,330 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:18,330 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:18,330 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:18,330 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:18,331 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:18,331 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:18,331 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:18,332 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:18,332 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:18,332 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:18,332 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:20,129 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:20,133 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2286 corpus positions) +2024-05-13 12:44:20,133 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2286 corpus positions)", 'datetime': '2024-05-13T12:44:20.133879', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:20,135 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:20,136 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:20,136 - using serial LDA version on this node +2024-05-13 12:44:20,137 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:20,137 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:20,143 - -8.183 per-word bound, 290.7 perplexity estimate based on a held-out corpus of 1 documents with 2286 words +2024-05-13 12:44:20,144 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:20,146 - topic #0 (0.333): 0.012*"’" + 0.005*"progress" + 0.005*"effective" + 0.005*"well" + 0.005*"ensure" + 0.004*"practice" + 0.004*"leaders" + 0.004*"high" + 0.004*"good" + 0.004*"Suffolk" +2024-05-13 12:44:20,146 - topic #1 (0.333): 0.014*"’" + 0.007*"well" + 0.007*"progress" + 0.005*"leaders" + 0.005*"good" + 0.005*"effective" + 0.004*"ensure" + 0.004*"experiences" + 0.004*"need" + 0.004*"carers" +2024-05-13 12:44:20,147 - topic #2 (0.333): 0.013*"’" + 0.006*"well" + 0.006*"progress" + 0.005*"effective" + 0.005*"good" + 0.004*"needs" + 0.004*"leaders" + 0.004*"practice" + 0.004*"ensure" + 0.004*"high" +2024-05-13 12:44:20,147 - topic diff=0.727986, rho=1.000000 +2024-05-13 12:44:20,147 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:20.147427', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:21,289 - Got stderr: May 13, 2024 12:44:20 PM org.apache.pdfbox.pdmodel.font.PDTrueTypeFont +WARNING: Using fallback font 'LiberationSans' for 'TimesNewRomanPSMT' + +2024-05-13 12:44:21,296 - Inspection date 2019-04-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:21,296 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:21,296 - Inspection date 2019-04-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:21,296 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:21,296 - Inspection date 2019-04-08 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:21,297 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:21,297 - Inspection date 2019-04-08 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:21,297 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:21,297 - Inspection date 2019-04-08 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:21,297 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:21,297 - Inspection date 2019-04-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:21,297 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:22,863 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:22,866 - built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions) +2024-05-13 12:44:22,866 - Dictionary lifecycle event {'msg': "built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions)", 'datetime': '2024-05-13T12:44:22.866659', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:22,867 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:22,867 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:22,868 - using serial LDA version on this node +2024-05-13 12:44:22,868 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:22,868 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:22,872 - -8.056 per-word bound, 266.1 perplexity estimate based on a held-out corpus of 1 documents with 2409 words +2024-05-13 12:44:22,872 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:22,873 - topic #0 (0.333): 0.017*"’" + 0.008*"well" + 0.007*"quality" + 0.007*"needs" + 0.006*"experienced" + 0.006*"Sunderland" + 0.005*"good" + 0.005*"TfC" + 0.005*"robust" + 0.005*"highly" +2024-05-13 12:44:22,873 - topic #1 (0.333): 0.015*"’" + 0.007*"quality" + 0.006*"needs" + 0.005*"Sunderland" + 0.005*"practice" + 0.005*"council" + 0.004*"well" + 0.004*"protection" + 0.004*"parents" + 0.004*"training" +2024-05-13 12:44:22,874 - topic #2 (0.333): 0.017*"’" + 0.008*"well" + 0.006*"Sunderland" + 0.006*"needs" + 0.005*"quality" + 0.005*"practice" + 0.005*"parents" + 0.004*"experienced" + 0.004*"protection" + 0.004*"training" +2024-05-13 12:44:22,874 - topic diff=0.779895, rho=1.000000 +2024-05-13 12:44:22,874 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:22.874272', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:24,251 - Inspection date 2021-06-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:24,251 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:24,251 - Inspection date 2021-06-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:24,251 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:24,251 - Inspection date 2021-06-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:24,252 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:24,252 - Inspection date 2021-06-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:24,252 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:24,252 - Inspection date 2021-06-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:24,252 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:24,252 - Inspection date 2021-06-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:24,252 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:25,929 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:25,931 - built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions) +2024-05-13 12:44:25,931 - Dictionary lifecycle event {'msg': "built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions)", 'datetime': '2024-05-13T12:44:25.931519', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:25,932 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:25,932 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:25,932 - using serial LDA version on this node +2024-05-13 12:44:25,933 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:25,933 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:25,936 - -7.962 per-word bound, 249.3 perplexity estimate based on a held-out corpus of 1 documents with 2111 words +2024-05-13 12:44:25,937 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:25,938 - topic #0 (0.333): 0.016*"’" + 0.010*"needs" + 0.009*"well" + 0.008*"practice" + 0.008*"progress" + 0.006*"quality" + 0.005*"Surrey" + 0.005*"good" + 0.005*"carers" + 0.005*"plans" +2024-05-13 12:44:25,938 - topic #1 (0.333): 0.014*"’" + 0.010*"needs" + 0.010*"well" + 0.008*"practice" + 0.006*"17" + 0.005*"effective" + 0.005*"progress" + 0.005*"However" + 0.005*"carers" + 0.005*"plans" +2024-05-13 12:44:25,938 - topic #2 (0.333): 0.008*"’" + 0.008*"well" + 0.008*"needs" + 0.006*"progress" + 0.006*"plans" + 0.005*"practice" + 0.005*"quality" + 0.004*"good" + 0.004*"carers" + 0.004*"effective" +2024-05-13 12:44:25,938 - topic diff=0.764917, rho=1.000000 +2024-05-13 12:44:25,939 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:25.939015', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:27,073 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:27,074 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:27,076 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:27,076 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:27,077 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:27,077 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:27,077 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:27,077 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:27,078 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:27,078 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:27,078 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:27,078 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:29,024 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:29,026 - built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions) +2024-05-13 12:44:29,026 - Dictionary lifecycle event {'msg': "built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions)", 'datetime': '2024-05-13T12:44:29.026875', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:29,027 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:29,028 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:29,028 - using serial LDA version on this node +2024-05-13 12:44:29,028 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:29,028 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:29,032 - -7.828 per-word bound, 227.3 perplexity estimate based on a held-out corpus of 1 documents with 2229 words +2024-05-13 12:44:29,032 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:29,033 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"Swindon" + 0.006*"need" + 0.005*"effective" + 0.005*"always" + 0.005*"plans" + 0.004*"17" + 0.004*"Council" +2024-05-13 12:44:29,033 - topic #1 (0.333): 0.025*"’" + 0.015*"needs" + 0.010*"Swindon" + 0.010*"need" + 0.008*"well" + 0.008*"plans" + 0.007*"always" + 0.006*"impact" + 0.006*"lack" + 0.005*"effective" +2024-05-13 12:44:29,034 - topic #2 (0.333): 0.024*"’" + 0.013*"needs" + 0.009*"well" + 0.008*"Swindon" + 0.008*"need" + 0.007*"always" + 0.006*"28" + 0.006*"health" + 0.006*"home" + 0.006*"plans" +2024-05-13 12:44:29,034 - topic diff=0.838194, rho=1.000000 +2024-05-13 12:44:29,034 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:29.034406', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:30,177 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:30,177 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:30,177 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:30,177 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:30,178 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:30,178 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:30,178 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:30,178 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:30,178 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:30,178 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:30,178 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:30,179 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:31,623 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:31,626 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions) +2024-05-13 12:44:31,626 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions)", 'datetime': '2024-05-13T12:44:31.626464', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:31,627 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:31,627 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:31,628 - using serial LDA version on this node +2024-05-13 12:44:31,628 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:31,628 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:31,632 - -7.949 per-word bound, 247.2 perplexity estimate based on a held-out corpus of 1 documents with 2491 words +2024-05-13 12:44:31,632 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:31,633 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"impact" + 0.006*"quality" + 0.005*"experienced" + 0.005*"experiences" + 0.005*"protection" + 0.005*"2023" + 0.005*"plans" + 0.005*"practice" +2024-05-13 12:44:31,633 - topic #1 (0.333): 0.014*"’" + 0.008*"needs" + 0.006*"risk" + 0.006*"impact" + 0.006*"practice" + 0.005*"2023" + 0.005*"understand" + 0.005*"quality" + 0.004*"experienced" + 0.004*"◼" +2024-05-13 12:44:31,634 - topic #2 (0.333): 0.020*"’" + 0.009*"needs" + 0.007*"risk" + 0.006*"response" + 0.006*"quality" + 0.005*"4" + 0.005*"impact" + 0.005*"experienced" + 0.005*"Tameside" + 0.005*"practice" +2024-05-13 12:44:31,634 - topic diff=0.823682, rho=1.000000 +2024-05-13 12:44:31,634 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:31.634219', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:32,567 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:32,567 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:32,568 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:32,568 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:32,568 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:32,568 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:32,568 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:32,569 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:32,569 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:32,569 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:32,569 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:32,569 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:34,474 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:34,476 - built Dictionary<1110 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2461 corpus positions) +2024-05-13 12:44:34,476 - Dictionary lifecycle event {'msg': "built Dictionary<1110 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2461 corpus positions)", 'datetime': '2024-05-13T12:44:34.476818', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:34,477 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:34,478 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:34,478 - using serial LDA version on this node +2024-05-13 12:44:34,478 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:34,478 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:34,482 - -8.020 per-word bound, 259.6 perplexity estimate based on a held-out corpus of 1 documents with 2461 words +2024-05-13 12:44:34,482 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:34,484 - topic #0 (0.333): 0.021*"’" + 0.011*"well" + 0.009*"needs" + 0.007*"effective" + 0.006*"plans" + 0.005*"improve" + 0.005*"need" + 0.005*"strong" + 0.005*"ensure" + 0.005*"planning" +2024-05-13 12:44:34,484 - topic #1 (0.333): 0.013*"well" + 0.010*"’" + 0.007*"needs" + 0.007*"effective" + 0.005*"leaders" + 0.005*"practice" + 0.005*"need" + 0.005*"strong" + 0.005*"carers" + 0.004*"improve" +2024-05-13 12:44:34,484 - topic #2 (0.333): 0.016*"’" + 0.009*"well" + 0.007*"effective" + 0.007*"needs" + 0.006*"practice" + 0.006*"strong" + 0.005*"plans" + 0.005*"need" + 0.005*"ensure" + 0.005*"planning" +2024-05-13 12:44:34,484 - topic diff=0.794265, rho=1.000000 +2024-05-13 12:44:34,484 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:34.484684', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:35,641 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:35,642 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:35,642 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:35,642 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:35,643 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:35,643 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:35,643 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:35,643 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:35,644 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:35,644 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:35,644 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:35,645 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:37,017 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:37,020 - built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions) +2024-05-13 12:44:37,020 - Dictionary lifecycle event {'msg': "built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions)", 'datetime': '2024-05-13T12:44:37.020569', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:37,021 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:37,021 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:37,022 - using serial LDA version on this node +2024-05-13 12:44:37,022 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:37,022 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:37,026 - -8.135 per-word bound, 281.2 perplexity estimate based on a held-out corpus of 1 documents with 2160 words +2024-05-13 12:44:37,026 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:37,028 - topic #0 (0.333): 0.011*"’" + 0.009*"well" + 0.005*"carers" + 0.005*"need" + 0.005*"needs" + 0.004*"practice" + 0.004*"ensure" + 0.004*"leaders" + 0.004*"effective" + 0.004*"protection" +2024-05-13 12:44:37,028 - topic #1 (0.333): 0.011*"’" + 0.008*"well" + 0.006*"carers" + 0.005*"need" + 0.004*"needs" + 0.004*"good" + 0.004*"leaders" + 0.004*"ensure" + 0.003*"Good" + 0.003*"time" +2024-05-13 12:44:37,028 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.005*"carers" + 0.005*"need" + 0.005*"Thurrock" + 0.004*"practice" + 0.004*"effective" + 0.004*"impact" + 0.004*"needs" + 0.004*"ensure" +2024-05-13 12:44:37,029 - topic diff=0.722701, rho=1.000000 +2024-05-13 12:44:37,029 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:37.029198', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:39,430 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:39,430 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:39,430 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:39,431 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:39,431 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:39,431 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:39,431 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:39,431 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:39,431 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:39,431 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:39,431 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:39,432 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:41,044 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:41,046 - built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions) +2024-05-13 12:44:41,046 - Dictionary lifecycle event {'msg': "built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions)", 'datetime': '2024-05-13T12:44:41.046656', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:41,047 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:41,048 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:41,048 - using serial LDA version on this node +2024-05-13 12:44:41,048 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:41,048 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:41,052 - -8.037 per-word bound, 262.7 perplexity estimate based on a held-out corpus of 1 documents with 2065 words +2024-05-13 12:44:41,052 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:41,054 - topic #0 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"Torbay" + 0.007*"good" + 0.005*"needs" + 0.005*"progress" + 0.005*"effective" + 0.005*"team" + 0.004*"agencies" + 0.004*"quality" +2024-05-13 12:44:41,054 - topic #1 (0.333): 0.021*"’" + 0.010*"well" + 0.008*"Torbay" + 0.007*"needs" + 0.005*"effective" + 0.005*"good" + 0.004*"2022" + 0.004*"timely" + 0.004*"focus" + 0.004*"plans" +2024-05-13 12:44:41,054 - topic #2 (0.333): 0.012*"’" + 0.007*"well" + 0.006*"Torbay" + 0.005*"21" + 0.004*"good" + 0.004*"needs" + 0.004*"effective" + 0.004*"timely" + 0.004*"team" + 0.004*"progress" +2024-05-13 12:44:41,054 - topic diff=0.750342, rho=1.000000 +2024-05-13 12:44:41,054 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:41.054692', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:42,084 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:42,084 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:42,084 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:42,085 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:42,085 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:42,085 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:42,085 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:42,085 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:42,086 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:42,086 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:42,086 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:42,086 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:43,731 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:43,733 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions) +2024-05-13 12:44:43,733 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions)", 'datetime': '2024-05-13T12:44:43.733701', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:43,734 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:43,734 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:43,735 - using serial LDA version on this node +2024-05-13 12:44:43,735 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:43,735 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:43,739 - -7.906 per-word bound, 239.8 perplexity estimate based on a held-out corpus of 1 documents with 2448 words +2024-05-13 12:44:43,739 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:43,740 - topic #0 (0.333): 0.014*"’" + 0.008*"Trafford" + 0.008*"plans" + 0.006*"quality" + 0.006*"well" + 0.006*"practice" + 0.005*"leaders" + 0.005*"placed" + 0.005*"needs" + 0.005*"December" +2024-05-13 12:44:43,741 - topic #1 (0.333): 0.020*"’" + 0.013*"needs" + 0.008*"Trafford" + 0.008*"well" + 0.007*"quality" + 0.007*"plans" + 0.006*"leaders" + 0.006*"practice" + 0.006*"impact" + 0.005*"ensure" +2024-05-13 12:44:43,741 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"Trafford" + 0.006*"plans" + 0.006*"quality" + 0.005*"leaders" + 0.005*"placed" + 0.004*"worker" + 0.004*"December" +2024-05-13 12:44:43,741 - topic diff=0.831127, rho=1.000000 +2024-05-13 12:44:43,741 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:43.741579', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:44,961 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:44,961 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:44,962 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:44,962 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:44,962 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:44,962 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:44,962 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:44,963 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:44,963 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:44,963 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:44,963 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:44,963 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:46,925 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:46,927 - built Dictionary<1162 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2626 corpus positions) +2024-05-13 12:44:46,928 - Dictionary lifecycle event {'msg': 'built Dictionary<1162 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2626 corpus positions)', 'datetime': '2024-05-13T12:44:46.928130', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:46,929 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:46,929 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:46,929 - using serial LDA version on this node +2024-05-13 12:44:46,930 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:46,930 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:46,934 - -8.051 per-word bound, 265.2 perplexity estimate based on a held-out corpus of 1 documents with 2626 words +2024-05-13 12:44:46,934 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:46,935 - topic #0 (0.333): 0.015*"’" + 0.008*"leaders" + 0.006*"needs" + 0.006*"well" + 0.005*"Walsall" + 0.005*"oversight" + 0.004*"Senior" + 0.004*"positive" + 0.004*"information" + 0.004*"need" +2024-05-13 12:44:46,935 - topic #1 (0.333): 0.020*"’" + 0.007*"leaders" + 0.005*"well" + 0.005*"2021" + 0.005*"4" + 0.005*"needs" + 0.004*"information" + 0.004*"oversight" + 0.004*"Walsall" + 0.004*"plans" +2024-05-13 12:44:46,936 - topic #2 (0.333): 0.026*"’" + 0.008*"needs" + 0.007*"leaders" + 0.006*"Walsall" + 0.006*"well" + 0.005*"4" + 0.005*"information" + 0.005*"Senior" + 0.005*"good" + 0.004*"practice" +2024-05-13 12:44:46,936 - topic diff=0.816892, rho=1.000000 +2024-05-13 12:44:46,936 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:46.936316', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:47,861 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:47,861 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:47,861 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:47,862 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:47,862 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:47,862 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:47,862 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:47,862 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:47,862 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:47,863 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:47,863 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:47,863 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:49,791 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:49,794 - built Dictionary<1110 unique tokens: ['0161', '0300', '08', '1', '10']...> from 1 documents (total 2187 corpus positions) +2024-05-13 12:44:49,794 - Dictionary lifecycle event {'msg': "built Dictionary<1110 unique tokens: ['0161', '0300', '08', '1', '10']...> from 1 documents (total 2187 corpus positions)", 'datetime': '2024-05-13T12:44:49.794375', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:49,795 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:49,795 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:49,795 - using serial LDA version on this node +2024-05-13 12:44:49,796 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:49,796 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:49,799 - -8.091 per-word bound, 272.7 perplexity estimate based on a held-out corpus of 1 documents with 2187 words +2024-05-13 12:44:49,800 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:49,801 - topic #0 (0.333): 0.011*"’" + 0.006*"practice" + 0.006*"well" + 0.004*"home" + 0.004*"number" + 0.004*"plans" + 0.004*"information" + 0.004*"progress" + 0.004*"carers" + 0.004*"good" +2024-05-13 12:44:49,801 - topic #1 (0.333): 0.014*"’" + 0.006*"practice" + 0.006*"well" + 0.005*"plans" + 0.005*"Senior" + 0.004*"progress" + 0.004*"needs" + 0.004*"senior" + 0.004*"parents" + 0.004*"number" +2024-05-13 12:44:49,801 - topic #2 (0.333): 0.017*"’" + 0.007*"well" + 0.006*"practice" + 0.005*"number" + 0.004*"Senior" + 0.004*"carers" + 0.004*"need" + 0.004*"progress" + 0.004*"home" + 0.004*"plans" +2024-05-13 12:44:49,802 - topic diff=0.723735, rho=1.000000 +2024-05-13 12:44:49,802 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:49.802171', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:51,069 - Inspection date 2019-07-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:51,069 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:51,070 - Inspection date 2019-07-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:51,070 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:51,070 - Inspection date 2019-07-08 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:51,070 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:51,071 - Inspection date 2019-07-08 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:51,071 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:51,073 - Inspection date 2019-07-08 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:51,074 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:51,074 - Inspection date 2019-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:51,074 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:52,628 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:52,630 - built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions) +2024-05-13 12:44:52,631 - Dictionary lifecycle event {'msg': "built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions)", 'datetime': '2024-05-13T12:44:52.631132', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:52,632 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:52,632 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:52,632 - using serial LDA version on this node +2024-05-13 12:44:52,632 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:52,633 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:52,636 - -8.005 per-word bound, 256.8 perplexity estimate based on a held-out corpus of 1 documents with 2113 words +2024-05-13 12:44:52,636 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:52,637 - topic #0 (0.333): 0.009*"’" + 0.007*"Warwickshire" + 0.006*"practice" + 0.006*"plans" + 0.005*"well" + 0.005*"needs" + 0.005*"Senior" + 0.004*"progress" + 0.004*"carers" + 0.004*"supported" +2024-05-13 12:44:52,638 - topic #1 (0.333): 0.009*"’" + 0.006*"plans" + 0.005*"well" + 0.005*"Warwickshire" + 0.005*"needs" + 0.004*"progress" + 0.004*"good" + 0.004*"practice" + 0.004*"22" + 0.004*"agencies" +2024-05-13 12:44:52,638 - topic #2 (0.333): 0.015*"’" + 0.008*"needs" + 0.008*"well" + 0.006*"plans" + 0.006*"carers" + 0.005*"good" + 0.005*"Warwickshire" + 0.005*"3" + 0.005*"clear" + 0.005*"effective" +2024-05-13 12:44:52,638 - topic diff=0.764374, rho=1.000000 +2024-05-13 12:44:52,638 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:52.638576', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:53,548 - Inspection date 2021-11-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:53,548 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:53,548 - Inspection date 2021-11-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:53,548 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:53,549 - Inspection date 2021-11-22 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:53,549 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:53,549 - Inspection date 2021-11-22 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:53,549 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:53,549 - Inspection date 2021-11-22 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:53,549 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:53,549 - Inspection date 2021-11-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:53,550 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:54,833 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:54,836 - built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions) +2024-05-13 12:44:54,836 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions)", 'datetime': '2024-05-13T12:44:54.836531', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:54,837 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:54,837 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:54,838 - using serial LDA version on this node +2024-05-13 12:44:54,838 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:54,838 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:54,842 - -8.106 per-word bound, 275.5 perplexity estimate based on a held-out corpus of 1 documents with 2146 words +2024-05-13 12:44:54,842 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:54,843 - topic #0 (0.333): 0.011*"’" + 0.006*"well" + 0.006*"Berkshire" + 0.005*"14" + 0.004*"18" + 0.004*"need" + 0.004*"practice" + 0.004*"West" + 0.004*"working" + 0.004*"plans" +2024-05-13 12:44:54,844 - topic #1 (0.333): 0.012*"’" + 0.008*"West" + 0.007*"Berkshire" + 0.005*"well" + 0.004*"ensure" + 0.004*"needs" + 0.004*"18" + 0.004*"2022" + 0.004*"progress" + 0.004*"need" +2024-05-13 12:44:54,844 - topic #2 (0.333): 0.019*"’" + 0.007*"West" + 0.006*"well" + 0.006*"Berkshire" + 0.005*"agency" + 0.005*"plans" + 0.004*"needs" + 0.004*"early" + 0.004*"need" + 0.004*"education" +2024-05-13 12:44:54,844 - topic diff=0.714033, rho=1.000000 +2024-05-13 12:44:54,844 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:54.844546', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:55,807 - Inspection date 2022-03-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:55,807 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:55,808 - Inspection date 2022-03-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:55,808 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:55,808 - Inspection date 2022-03-14 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:55,808 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:55,808 - Inspection date 2022-03-14 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:55,808 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:55,809 - Inspection date 2022-03-14 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:55,809 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:55,809 - Inspection date 2022-03-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:55,809 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:57,588 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:44:57,591 - built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions) +2024-05-13 12:44:57,591 - Dictionary lifecycle event {'msg': "built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions)", 'datetime': '2024-05-13T12:44:57.591488', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:57,592 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:44:57,592 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:44:57,592 - using serial LDA version on this node +2024-05-13 12:44:57,593 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:44:57,593 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:44:57,597 - -8.045 per-word bound, 264.0 perplexity estimate based on a held-out corpus of 1 documents with 2224 words +2024-05-13 12:44:57,597 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:44:57,598 - topic #0 (0.333): 0.018*"’" + 0.008*"Northamptonshire" + 0.007*"quality" + 0.005*"West" + 0.005*"plans" + 0.005*"well" + 0.005*"needs" + 0.005*"NCT" + 0.004*"practice" + 0.004*"Leaders" +2024-05-13 12:44:57,598 - topic #1 (0.333): 0.020*"’" + 0.007*"West" + 0.007*"Northamptonshire" + 0.007*"well" + 0.006*"quality" + 0.005*"NCT" + 0.005*"practice" + 0.005*"14" + 0.005*"impact" + 0.004*"However" +2024-05-13 12:44:57,599 - topic #2 (0.333): 0.014*"’" + 0.009*"Northamptonshire" + 0.007*"West" + 0.007*"quality" + 0.006*"well" + 0.006*"needs" + 0.006*"practice" + 0.005*"3" + 0.005*"need" + 0.005*"experiences" +2024-05-13 12:44:57,599 - topic diff=0.755219, rho=1.000000 +2024-05-13 12:44:57,599 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:44:57.599371', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:44:58,536 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:44:58,536 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:58,536 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:44:58,536 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:58,537 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:44:58,537 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:58,537 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:44:58,537 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:58,537 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:44:58,537 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:44:58,538 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:44:58,538 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:00,373 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:00,375 - built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) +2024-05-13 12:45:00,376 - Dictionary lifecycle event {'msg': "built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-05-13T12:45:00.376002', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:00,377 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:00,377 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:00,377 - using serial LDA version on this node +2024-05-13 12:45:00,378 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:00,378 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:00,382 - -8.124 per-word bound, 279.1 perplexity estimate based on a held-out corpus of 1 documents with 2720 words +2024-05-13 12:45:00,382 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:00,383 - topic #0 (0.333): 0.017*"’" + 0.007*"well" + 0.006*"plans" + 0.006*"needs" + 0.006*"Sussex" + 0.005*"13" + 0.005*"quality" + 0.005*"health" + 0.005*"West" + 0.004*"number" +2024-05-13 12:45:00,383 - topic #1 (0.333): 0.012*"’" + 0.007*"plans" + 0.005*"needs" + 0.005*"well" + 0.005*"West" + 0.005*"13" + 0.004*"Sussex" + 0.004*"practice" + 0.004*"number" + 0.004*"strong" +2024-05-13 12:45:00,384 - topic #2 (0.333): 0.010*"’" + 0.006*"well" + 0.005*"plans" + 0.005*"West" + 0.004*"supported" + 0.004*"needs" + 0.004*"number" + 0.004*"quality" + 0.004*"24" + 0.004*"Sussex" +2024-05-13 12:45:00,384 - topic diff=0.812448, rho=1.000000 +2024-05-13 12:45:00,384 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:00.384360', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:01,422 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:01,422 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:01,422 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:01,422 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:01,423 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:01,423 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:01,423 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:01,423 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:01,423 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:01,423 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:01,424 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:01,424 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:03,784 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:03,787 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions) +2024-05-13 12:45:03,787 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions)", 'datetime': '2024-05-13T12:45:03.787312', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:03,788 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:03,788 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:03,788 - using serial LDA version on this node +2024-05-13 12:45:03,789 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:03,789 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:03,792 - -7.959 per-word bound, 248.8 perplexity estimate based on a held-out corpus of 1 documents with 2416 words +2024-05-13 12:45:03,793 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:03,794 - topic #0 (0.333): 0.014*"’" + 0.007*"plans" + 0.007*"May" + 0.006*"quality" + 0.006*"needs" + 0.005*"leaders" + 0.005*"Wigan" + 0.005*"appropriate" + 0.005*"practice" + 0.004*"9" +2024-05-13 12:45:03,794 - topic #1 (0.333): 0.011*"’" + 0.008*"practice" + 0.007*"May" + 0.006*"Wigan" + 0.005*"needs" + 0.005*"timely" + 0.005*"quality" + 0.005*"plans" + 0.005*"20" + 0.005*"9" +2024-05-13 12:45:03,794 - topic #2 (0.333): 0.012*"’" + 0.007*"May" + 0.007*"plans" + 0.006*"practice" + 0.006*"needs" + 0.006*"appropriate" + 0.006*"Wigan" + 0.005*"quality" + 0.005*"leaders" + 0.005*"2022" +2024-05-13 12:45:03,794 - topic diff=0.786948, rho=1.000000 +2024-05-13 12:45:03,795 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:03.795023', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:04,747 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:04,747 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:04,747 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:04,747 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:04,747 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:04,748 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:04,748 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:04,748 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:04,748 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:04,748 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:04,748 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:04,749 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:06,416 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:06,419 - built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions) +2024-05-13 12:45:06,419 - Dictionary lifecycle event {'msg': "built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions)", 'datetime': '2024-05-13T12:45:06.419292', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:06,420 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:06,420 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:06,420 - using serial LDA version on this node +2024-05-13 12:45:06,421 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:06,421 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:06,424 - -7.959 per-word bound, 248.9 perplexity estimate based on a held-out corpus of 1 documents with 2600 words +2024-05-13 12:45:06,425 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:06,426 - topic #0 (0.333): 0.021*"’" + 0.012*"well" + 0.009*"needs" + 0.006*"progress" + 0.006*"parents" + 0.006*"including" + 0.006*"risk" + 0.006*"Wiltshire" + 0.005*"need" + 0.005*"plans" +2024-05-13 12:45:06,426 - topic #1 (0.333): 0.013*"well" + 0.009*"’" + 0.007*"need" + 0.006*"progress" + 0.006*"Wiltshire" + 0.006*"needs" + 0.006*"risk" + 0.005*"including" + 0.005*"supported" + 0.005*"25" +2024-05-13 12:45:06,426 - topic #2 (0.333): 0.014*"’" + 0.009*"well" + 0.007*"need" + 0.007*"quality" + 0.006*"supported" + 0.006*"plans" + 0.006*"ensure" + 0.005*"parents" + 0.005*"needs" + 0.005*"Wiltshire" +2024-05-13 12:45:06,426 - topic diff=0.830828, rho=1.000000 +2024-05-13 12:45:06,427 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:06.427087', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:07,474 - Inspection date 2023-09-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:07,474 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:07,475 - Inspection date 2023-09-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:07,475 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:07,475 - Inspection date 2023-09-25 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:07,475 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:07,475 - Inspection date 2023-09-25 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:07,475 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:07,476 - Inspection date 2023-09-25 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:07,476 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:07,476 - Inspection date 2023-09-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:07,476 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:09,307 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:09,310 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) +2024-05-13 12:45:09,310 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-05-13T12:45:09.310813', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:09,312 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:09,312 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:09,320 - using serial LDA version on this node +2024-05-13 12:45:09,321 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:09,321 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:09,330 - -7.908 per-word bound, 240.2 perplexity estimate based on a held-out corpus of 1 documents with 2233 words +2024-05-13 12:45:09,330 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:09,332 - topic #0 (0.333): 0.012*"’" + 0.010*"needs" + 0.007*"ensure" + 0.007*"Wirral" + 0.006*"well" + 0.006*"practice" + 0.006*"plans" + 0.005*"29" + 0.005*"18" + 0.005*"number" +2024-05-13 12:45:09,333 - topic #1 (0.333): 0.011*"’" + 0.010*"needs" + 0.008*"Wirral" + 0.007*"ensure" + 0.007*"plans" + 0.006*"practice" + 0.005*"number" + 0.005*"response" + 0.005*"well" + 0.005*"risk" +2024-05-13 12:45:09,333 - topic #2 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"ensure" + 0.006*"plans" + 0.006*"Wirral" + 0.005*"practice" + 0.005*"18" + 0.005*"number" + 0.004*"small" + 0.004*"appropriate" +2024-05-13 12:45:09,333 - topic diff=0.806319, rho=1.000000 +2024-05-13 12:45:09,333 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:09.333620', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:10,446 - Inspection date 2023-09-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:10,447 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:10,447 - Inspection date 2023-09-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:10,447 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:10,448 - Inspection date 2023-09-18 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:10,448 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:10,448 - Inspection date 2023-09-18 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:10,448 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:10,448 - Inspection date 2023-09-18 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:10,449 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:10,449 - Inspection date 2023-09-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:10,449 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:12,139 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:12,141 - built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions) +2024-05-13 12:45:12,141 - Dictionary lifecycle event {'msg': "built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions)", 'datetime': '2024-05-13T12:45:12.141777', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:12,142 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:12,143 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:12,143 - using serial LDA version on this node +2024-05-13 12:45:12,143 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:12,143 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:12,147 - -8.060 per-word bound, 266.9 perplexity estimate based on a held-out corpus of 1 documents with 2214 words +2024-05-13 12:45:12,147 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:12,148 - topic #0 (0.333): 0.011*"’" + 0.006*"provided" + 0.006*"plans" + 0.005*"progress" + 0.005*"needs" + 0.005*"effective" + 0.005*"well" + 0.005*"17" + 0.005*"oversight" + 0.004*"ensure" +2024-05-13 12:45:12,149 - topic #1 (0.333): 0.016*"’" + 0.007*"plans" + 0.006*"effective" + 0.006*"needs" + 0.005*"progress" + 0.005*"impact" + 0.005*"17" + 0.005*"6" + 0.005*"parents" + 0.004*"experiences" +2024-05-13 12:45:12,149 - topic #2 (0.333): 0.010*"’" + 0.007*"plans" + 0.007*"effective" + 0.006*"needs" + 0.006*"well" + 0.005*"progress" + 0.005*"appropriate" + 0.005*"experiences" + 0.005*"quality" + 0.005*"provided" +2024-05-13 12:45:12,149 - topic diff=0.755080, rho=1.000000 +2024-05-13 12:45:12,149 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:12.149499', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:13,054 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:13,054 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:13,055 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:13,055 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:13,055 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:13,055 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:13,056 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:13,056 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:13,056 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:13,056 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:13,057 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:13,057 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:14,964 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:14,967 - built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) +2024-05-13 12:45:14,967 - Dictionary lifecycle event {'msg': "built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-05-13T12:45:14.967175', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:14,968 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:14,968 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:14,968 - using serial LDA version on this node +2024-05-13 12:45:14,969 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:14,969 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:14,972 - -8.049 per-word bound, 264.9 perplexity estimate based on a held-out corpus of 1 documents with 2233 words +2024-05-13 12:45:14,972 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:14,974 - topic #0 (0.333): 0.011*"’" + 0.007*"needs" + 0.006*"effective" + 0.005*"plans" + 0.005*"Wolverhampton" + 0.004*"education" + 0.004*"quality" + 0.004*"experiences" + 0.004*"leaders" + 0.004*"risks" +2024-05-13 12:45:14,974 - topic #1 (0.333): 0.011*"’" + 0.007*"needs" + 0.006*"Wolverhampton" + 0.006*"risks" + 0.005*"effective" + 0.005*"risk" + 0.005*"plans" + 0.004*"receive" + 0.004*"education" + 0.004*"practice" +2024-05-13 12:45:14,974 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.006*"Wolverhampton" + 0.006*"quality" + 0.005*"effective" + 0.005*"leaders" + 0.005*"receive" + 0.005*"supported" + 0.005*"strong" + 0.005*"risks" +2024-05-13 12:45:14,974 - topic diff=0.741121, rho=1.000000 +2024-05-13 12:45:14,975 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:14.975064', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:15,984 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:15,984 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:15,984 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:15,984 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:15,985 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:15,985 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:15,985 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:15,985 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:15,985 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:15,985 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:15,986 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:15,986 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:17,548 - adding document #0 to Dictionary<0 unique tokens: []> +2024-05-13 12:45:17,550 - built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions) +2024-05-13 12:45:17,550 - Dictionary lifecycle event {'msg': "built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions)", 'datetime': '2024-05-13T12:45:17.550586', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:17,551 - using symmetric alpha at 0.3333333333333333 +2024-05-13 12:45:17,551 - using symmetric eta at 0.3333333333333333 +2024-05-13 12:45:17,552 - using serial LDA version on this node +2024-05-13 12:45:17,552 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-05-13 12:45:17,552 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-05-13 12:45:17,556 - -7.941 per-word bound, 245.8 perplexity estimate based on a held-out corpus of 1 documents with 2343 words +2024-05-13 12:45:17,556 - PROGRESS: pass 0, at document #1/1 +2024-05-13 12:45:17,557 - topic #0 (0.333): 0.011*"’" + 0.006*"ensure" + 0.005*"well" + 0.005*"needs" + 0.005*"plans" + 0.005*"Worcestershire" + 0.005*"leaders" + 0.005*"15" + 0.005*"appropriate" + 0.004*"26" +2024-05-13 12:45:17,557 - topic #1 (0.333): 0.024*"’" + 0.010*"well" + 0.010*"plans" + 0.009*"needs" + 0.009*"progress" + 0.008*"Worcestershire" + 0.008*"leaders" + 0.006*"appropriate" + 0.006*"ensure" + 0.005*"Senior" +2024-05-13 12:45:17,557 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"plans" + 0.006*"leaders" + 0.005*"progress" + 0.005*"Worcestershire" + 0.005*"ensure" + 0.005*"making" + 0.005*"education" +2024-05-13 12:45:17,558 - topic diff=0.825611, rho=1.000000 +2024-05-13 12:45:17,558 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-05-13T12:45:17.558200', 'gensim': '4.3.2', 'python': '3.10.13 (main, Apr 3 2024, 17:08:15) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1019-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-05-13 12:45:18,606 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-05-13 12:45:18,606 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:18,606 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-05-13 12:45:18,606 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:18,607 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. +2024-05-13 12:45:18,607 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:18,607 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. +2024-05-13 12:45:18,607 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:18,607 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. +2024-05-13 12:45:18,607 - Index(['judgement', 'grade'], dtype='object') +2024-05-13 12:45:18,607 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-05-13 12:45:18,608 - Index(['judgement', 'grade'], dtype='object')