#_Yw1<7I>dGS!rGuq%MyhAHAzJhT{Yml?
zNdz9+{e9Q0?g*8(We_NTr~;*t_KB?wE4V|AK5Bkg?=0Wa9KBKwP9F14aMFo64S#Uz
zpyHu`@fI`~j_oA&i8^-s_Srw=zJfYS^uLvnWCUrYOqw}PD+#IR!gg-j-BYmRft*=5
zO_(YcHZ8N+M}6zpM36OLp^{Ji(0P
zBUjuhfcYoLEz#;YE=A1{E+ORyV-7JCVE$3EsXfm|WC+u^64a|E?OlT@Q^@HrW3YR#
z&{;M&V{CQ;_6HMx5v?6p$4i){swl@E8gs{V?X!us&L42*Q8_i+PoFua6u@f4J}S73
zIrbJ89AA%$ESu2UEIS|^9~4*egsA+}pD7p?q9G}V5-A9bKZa+*`((uLX|!%qDl*zv
ztYd~Mu~4NUihH%0IPr;U9zkkojg{Rk7EU6dqY7<`(!Y+DaTDaQ&w42qfZ=2l-kPhBU!5JN*1*f5nrTps@$tcg6
zsL=`(9@3(*?TAw)SS-W8Uq}gwc^3lUPAdWg1|JJs<3hOZU{FQI^9@!DaR?Xk`MxUb
z@gXK(c%+DbS^&0b9-m&48_d%fYuoV{Poa`z+9ye>sZV0O!6oW5pG||l3`SECF#HjB
zB#d4VDLUEMWrYl-&=?w@HMPNe{oC;wPP<;sdb4cJahfG)6?iR^#lCBiFDKXQ}D2Dy7?>?zC%vUodFa(jh`*6RWg_BMBR4=SBDk
zs{~i}*o0z*HHG!Tl
z6cOf{`Dg0m1R5pFy@A-*J}#~&Xg?SoO<$JcFr*%sUIy4&1&ajQ(01)hnRn}i%<-|R
z!aEs%hf#P6CvVMTpa?ro7&9THvw77}_&9bX@Pu^<&L~3&eCux_yH`gQg253)HkcyD
z{y4+$2v4#3U}6Py9j~wbSS1@aL7jj?r6^$Q$a?0CO-6`=|8x$Zwh}RRG3QjD;3(Fp
zHly!`po^YRCjSCP2)SM>F|ZO7^>!%T3-!r=jpc%f|JZcRX0>kirvr1-cxBg7dNQ)z
z5}P!CA>^6pU3}}WZ^9;_4<^q+P-_%HkIgp+2Q}5PvGQ~9hAHy@lubl?h!AzM0;1)9EHqY~sp=5(g3!9ow4*q{|MnR3E_2p5n4I|7^Z|!rhlV
z;32DQ!B2$!t+@^W;iwGWwhEN-#iVkC-^oZXrj9N*78)8o08WH>xi}PcNmUx0tNAU>
z8NV-C%x*FthOnMk1E=B#eHb6*K?Hx9Z+Z>m9Z5@thty8iJK7P$=O^>O&G}Y;;xUK%
zMjMc6*zP1(d7r_aRT9mZz-_ojyki=#PlNz2Ah$+`3GIr#m4CZf)2
z68yQ6ijGJLy!yk?gBvvf&OqFA_6kUV*(20Oq4Y(#cx=TN3&Gu2f<3z80T)Yk2mFW>
zhp&y81MH}9JP%G!s>_t%G#D6v*At~XzYFtV58Lix*S3HSSO__&s{~`DF_lb45yaXj
zks}MExPlyOJ-?9Z2CuqICbA!7XcMcRGfypO
z8NX}y?fb1?;}Q8^loOEdGaEMprd=v_*Y2EIv13R5tb)JKec6@k2Ep5?LjXtut{%DY
zY-%BmFC(NJk+N%lF?am0HocbONRM5+UB6(UTU^F9>c_s_?p9Cc;60P}SKH*OP&KH2
zpfO4cRYO9MvkYH=IXdC#d^c{yM2I5D92m0z5Mv=Xfk!
zsMCuuY)OIy>TBbtuG)|0s%P+MMRf2np^;?+dz_kct93&|pb9m?4y)i)no5&IFj<3*ez~
z6=7oEwkV`iL<-6jjhrVH7FK3ih&!%MkIXTR3;a9FdVyH@6wIYbpc9Z4Z$vsQ6sE+)
zf?OfZOovyx;5WE7DIlNZ{M=MV1SFwIK^KC!Z(spxM5yTxp#vuR(@z6MuB-IIA8zeY
z;#|9b#A%HSpt2`KXBrT2%8S_dzpl?G8=ucY(l$~W35CYvBT`&8_JePi
zUP>S!PRp2!R^+V#`wH}1bkF{D-cQV46v;m$GC#@)IKUG-9%XDkNRlD&Pven(r{`vW
zw5PZStX0VXQ>*aezH9$}J1wJSwbH0`IJ~*W)>St30aIVXpO6<69V;x9fi)g}<(5Bv
z_uB_YVVYdZ@@(51fm}vrevmg$v0xXNjb9pG}4?ad8E^u&n_{AeiZJ0jX=EZP-eXAZ(cQZCKiPHiz2uY@$`?%){p!%SIY0wE5
zHy8qM=XhPvj2|DHuwaO|4s3TB@|YBsGEZapRTm<*h#!Qw0+GWGLz;~9Qj3wx`Ak-L
z(Wqp|NzXtiu%0iMKQ)2~nQl_nkXds=fZi@#$1PumEccBuX*P^oPW!>jV1w>|y2In`
zhQW?M0aae_nr+vv?%MT(GXF~l{+HS(Hdw&agsWY07LH_k7PEB*`lag*i}b>^Y8oBB
zOzevvcE+W`a}$GLbY%HVTfmZ-g1S0vEn}Oc7DWhoXQ&%Vl5l?B7gYMyZJ!!8R3nN@
zk0w~;G1#A^k1J~XQ(^yC4gtD54M$+$H_XdI;5tU$^cKpYC5Ubtpn4!>Q?-)rYpl0*+O0vrISw3|-C0heNC
zcVr1$cV38&KEfP%W|)jr9Qp9c`c(!zM}!1`5K8aDyuy?lhM6J=&{LAFNIgN*1!RL_
z-$D`jGUQ%DmW84rSnef&g1go7la38EXc2~!j*V(*ddD;$!M<)^V1061;%;Sv}WhuxRtaMm0&?p2tdQwn>O_P
zq2JX@u?|RHuoeP72mnCGKg#Wgk``ms6@uwySdTho8K7Vyg+jV;gs5b}xMwUw$LBXI
zdPF8AYB^+Vu<7-G$n&yg>ycK^Ix1F_~}qmg5qwsoyI&6%a^RH)Gk
zl|Qh?@;~7RumfsJ7L2;=s8F?9|~yv@K-JP@$jkf
z!;`NLotx8heW&z(c2y7B>A6(EDKa*m6cm*fUmVQ-rHYb&U{{HnZ$<>mU}7pQ)F0y#
zO-VM*`eA=_6Iz;A3CYp5`}=0~xZdvDj{NO$3>InpOw>;z+fG9pKe5ZfyqRGKkuq0=
z1lP>M&?Kv9YMwn$+tX(2`+z~F`*M?NyvR$l|I9hbB>T+n6v*E(tf8YYR=4mT=oNkB>&YMK4A!Kq5=0ZgqcOW6M+i($LkTJ*s!1W+H#dD}-iu=jN2bkkN$EMq
z>=z?{x~VyNpqDAruwY)M41FSV&b!0&3o^|h(Z!?N**OKfEu^t8v){-#`y|G`X&d<{
zXfrVwG!7rde9!~LopKz8LYC>f8?@9IvUEU#P|P5iOAj)GF*`yFMvy?!_FMPt6)D5L
zlyCzwPl1GJDD|RVB=sRM{mCQDsj(T0HE-m9Oq~ms$NuQI>u}(C?AfLya2*@~oivt)1&tu>rFc-qH#Zo`Yo;E3L%_0;Kj$|$t
z<#LbHszHW&1F&^oV6xv#IO)qW3aDUnzcwD5=<1o#5zLpNgFfmA2L}wm{W2)TgeYTw
z)y8ahHgA7(MKej$1ha$DNK(Vlo609PGr;LIOvIv4LP2(DrUoaU__vqU>n=j!YnAsi
zz{D(@ntmdE$=nHruOsu3WwVa^r
zG4dYOgoG!_MMK7-W!2-;NYRq0$>F?zKkjaI#*#Ekk;^TfR0TzSVx6HjQ!>zS6usvR
zO#rM0^X;(s&%DGW8R38h3u(6AJ40+IU_JmYFQlj*VT(OxSzkAsSH*1)!Z->wfk
zJ5%B+jVTDaOV%ojv!2C><21{8$sJK8(YF3B!a=juIAPsJSm3K8Q
z=4YWN(qg;D_?@R)i=WR*kL+Pp*|gVIKNK!iTm
zlR49wfC(-i>uEE&{YHB4K*OOJEDc58sd!vQ9u<5ewo=S;BSOj{QyS_};pKKp2!hyM
zGEij>0EHVmL06Nb%8(0p)FJ|9%Px2wRh6mKxopeyF>5~0^D*w`KM$X+B>$TQ9lM^@@nHW7BW>SKQIodzz->WYW
zP7YSyx6e1*0yhXv@oDnOn;P>d3m_xp4*9`JKXs{KA}Ki0^E?xOb1Bq?g3Z@*L>=$D
z@UBM2Kv@F~zmmHxTzWcjeqs+K$MV1*NDns#0hr<)4>zfgU{b4RyL8Mgm&}%y)au&%
zyKZ~`;U$A*segj7HS9TlM28!IZDPpvN$%N@bj_ik*E7@4RMw&`~C>6mC&Vq3Awi
z(t_y;_%r4hDJm|1EUS-$jhWtmp17T#Og2G&@d~f8URjIhjl1*6|o|S?9=Cu{)f%$9Atgp1>lS)EXt6Ck4`f=*AU+g>N7B5>E&06^chp
zpZGFufBksi{(fs6qecVQWHZ(R#|*1z6h!kbN-tfyAJG*$9?qxDbJGEP@ltQ7%2JH%
zi-Gx=WW%&i2H5e^F=cN@xwWGqcxr;r*;of#n!DCn_8(#UzsL
zgdB>0XgdU3B&qwI4$p13GXB-BJ>5KjEX(m+KQ`TZ+pbQ{r`-Xo6p8KGqTP=%0wmc?
z*XiqR2Hlqj(~FmDkMN&ErinzxQ9?eN*PS25EwO!};NnV_RK|gT5IW7~Zj0dSa7iQ#
z$I*j-jCdT@$29}P3iN1(aWp4d=6RKjk
z|3iormZ4=q#Xn(arDp3ZXeI$wrY2M+1~LqPX>!<5(Vi_=LVM*VyvbZNJHrP1R-LLG
z1_LVY5f66nrDes%B3+G9(5RKh6*WfBMl+7jCSbd{UY=!G?vF~f@U0FQ`-Pk|JW6aP
zqP*^~-wq}($iDZunmVpt_v1ZcK?DINO6&7s2z15(i5|i
zs-NT*WJ3Feae|tXWuBULkVym+NpPlQ?85P3yW3r#ecJyS@8$j0oZpl8Mu4zK2MN^%
za9%RXktAmJ3%pebLj$!-A@B&k)##0XK3hV>*?%-^vH-2
z5{}Ir>>EHq-<`vx!2-`nshiP^z=EXGME!6%;v!fEuXm5#>pUYMw}R~5!kVdnSPxpq
zSq`-CCR%!P)DmMSP;n}S@!pMbb;b665=%S|jL0veSKK_xe()ZgLUR$UH!m5wSEUu9
z3Xe55%2*#tSz&xf04O$M`Tiob7pKfXu2>a=F}*G8*dr%aIBYYs7izYOQqD3_nk_bZg@Iq}5p+W950kX+En!mS
z?Gk{LMSOuENrL|RIeCe6@>*EdK1pVvSGW`v*$;BgZ)Bm3%M(ssBMmQ)j+VbUZ749KA-Tdr-qbG!{`9t_YLKQLj
z(Vlo0i1gzhFX4wa{&C+vubbm(*A5^sv+frZ@G-Gn56NG}4uq-uG~736Yo`De;j`jx
z{KL4!i72xm?B2n>3WZVnR}q*jq$?bq*Ubr&;3s{UKsb
zD;Eu5hn_70ty*&_tX@7)+c-28POFc`c3Ch2eT{>Ck`&HxAnxnSs4kYY%PP^RnCp
zo2dMU=%e+vhWcpzOd?KvMC1FJS;TORH+m{Feuf6S_lzh(JoI&
zDLm4gvk$3%79~fle8q~01!qBZm)yrbp$aZ_%Zwf|P&u!u4+%{nrTNx%+yqL%8w_izP;kQc2j
z5nqHZqGvwV`prXN7u`G9UQyT-eF%Z**7P0D`}J0Tg3-K}6b_jbX_=>RYR%zRGz9r^
zdw0uKK3uNWX^4wDT=}DjoTp{~XUz{zk?S?Y{l9s9IvrlDCE$XYTkdG$8B3?kW(#Tb
z4PV9u4urAqV!M|zRpVZK_>-Q{)qRbv#&>xzUZ9&P>A+D)A40#JJjN9U4k1
z5s8~LT)R}3wF|CF?n3**rGLxO)pG5=nqByG=pJ6;Xe9-KV%lj!yc8a(<@30D9aX9^
zfw5NqI?Aoveip>)jyBJQrQXl1G2J?U^GkDLa_ar80DcjRSflwEJSMDO_qM_*g$qY|{D?IU4uf?GN1VZ^ut@DR
z!&yvo7v4Cq&dp|oBwpWu(vYHh5;ub5+2C|trfzlV*ybt$6EjVH^g;dQ_c8_K
zzy24ueEnvdsK3=v&7PZo9Oa2p$gid`Jfj#};LlCdR+sXt=lW`L%=E#&qAL_?!1U}9
zbWUpQei*F)9ATpw13!vSzcprTdjO&h#m8hVsKDRfAG-UOSb!`oaQal73^T0IHq@>k
zgd$azaX}E8s(-nz!h2V==b*xf^Ddkw7I~9kJ-CHKb3ssJL{dC|q9QHI+9m|#2`dh9
zGNB}bhE$q|oXUwY1TwX-JrmnX66di`_}UZYQ%%8IdP#=+779T`KAH$Ox~eMcFL0?s(t1EG4!V;0x>8jEo~x=Lqx`h{^k^B%ZZ#<}DOK8L+nAda
z)!5kiA*nJf9ude&9et*o@Grw!r(G8rpwof7j6T|-K%TmPZF35Yj)LAIq$1+9FBA8h
z_O3fOoo`Uy0L0@>Sk1ut#z02GONbT9GB15HEp`xklbs_eh~9it6#{)Br2k_p2*xJY
z@Qq9m>{6>JqE=arCJ`(&uAuz6P%Le3bPKI);Zzb3_7
z3{?MeS@^_%v5>buWIG2Ep{d{~n8*XDdQD)oA1E-1wa8%w5lLwXT&0Ot01~=T(X^E@
zkruEd6CvegH`S_(Sg)$o;9qFeu0)ZJhsY^ip9XM@5f&=x^}I9s?dJaW>7+IVz%g1}
zD}a_@B1qr)=OYBAas=}ss$N5%bnU&-^_B54
zR%Satwzt<6<2p-GKI@S&l9OLZ!iXGp#A1uwe*xKaR{bDP7y48ZANKoZ+zZ7qSx~3Q
zKvr6R5tE=2G1^3&q9C_xj^LA7Y^z{mXql4j4k>=%F3Tq)@*+RFbEIwObao4SWK*mc
zj0s+n48Ejw9SGj}N_{(FItC*{GdYdfyTf{OPjI(O@rQAWXc_AcDbuG*7i~~S33C^W
z(1dX=qM=q=G{zHieU8e3m>MpII3wyGvG^!}pph1!se_@C9?GN6M4zD7W~^6efW8WIN;a|T{p@3Z
zvamN11R{=~M3BgRn%!Awm=sRlxFoIzc#N1YRrB6l;3|!MPR4+Vk#dzjnAP^PN_&55
z)9#LKbE8sNW=7<#>t~ca8yCMN3=N6qXN3W2m=AJ|*Wx;3KrA2;TtaT*a~Jk;;Cpi=
zyV)8PDDNqUFK`MXV*6w$Uny5W>xY1U=w%(eip-ba^;8D(f-{6e}R%c#5*T=Yxn2<~2zJH2P
zwdUF3x%~srhSv9?nw`D1A8Z1X$mXU(#@4c-y$Qrbc5Si7q+mV;&f@Sz&Gd
zT9&_##!B;Q1k9sn_q^TT9}nH?ADYLfe_A~@+xvFEF?Yg^YLpcuuWhM+V>*C6$)-L@
z$Y^$!>9X~XqkmIc0xI
z)?|TfuqMB>&s753ezDd-uw2*X_Wrzwy^2$P?Z@{0
z?L!u-q`(TlIo{e}gqa#ip^yTSYlC(32)?JDn<4nP>Fe!*|Bn=RgP*Jh<5FfO3lW)p
z)vj4T%!!zxXxB4;^&kKC?>b>MKy8-oqy3xeuKE(2@4s(%p+GRT>ViMxhaVGFrF!_$
z67&rt7oZAjZW%~ChNc>Re+;Eq)?_8cfKgiyAt)>MtDW*;TpFCIf?zLtsSd2-!>YZIp&x$e
z@P;noI}YX@Y9<&!?_M(RAWpH>#l{K<1yE=j-tI_)g@5)jGLTQk$ImTf*yR*+DjIiM
zND@zwuk@w-Q?nQFb~IFeLk6p3;z8fZu>?XWvXh84S-@rlf4r_5>Vcnj3S52nxsqP7>VM@)oxuO-xsam?h~zdZwG1h
zhnVB23F8{?x9_*>W*<8D6VuLUEy8*j6Vl>v*m>a@B?*-lSBb&`h-A62yq}o}%$ZfD
zr1K2&fElJre*nj&CJCaU>lO}i-E;VaB=1+BC~?D~JjV!?;3d3>ah+5c@3`jj1?6k&
zH%!fWE-1gCyvl?#&B9c2)}UA$7>q@&<}w(lsJIxsOf8@wT!q^7zh%7_n9-6pli5kJ
zslrCeWs)t$+ep$_af#I6Gtm|
zKHQ@6#NhGp89qcabfduXSF?<-h
zydhC3Yb*8zM1VTkWGTy%(e0Qa9i9t6?nu+dLf=XuJG_v7LVc_p8~I!phE^JL$NgpW
zpN<3=Gbup?*?Y?p=KUbXaxm-_FJvIj)8$W3MG<
z%d}YtfRvL!1KK}_jOJ{{3~L4fW5v1Dz0Z4|O||+g<>e!UP+$mSCNc!nKLi5Mu(1UI
zEM(-)q6!D_(=Q9@>F&QB&NW<%R0j)Ee>qqCsU~`Iug+m#G`B9{P&6;~eyZbXwP|<8
z^S#xKm9ci{3wa-Y>%K@28Q%IXK>#BnL~vodo8*0(V=91hcqkjmI=>CF53@EX7^5iy
zXXMTakcz-AcKzy^Drrgfn3PvUs^PlRihlBAi>>5%lE;J<`f7qK^pddc$wDvFf26cA
zIVP}t|5Bnj3-#k{2|R5j%B>{eB-e9TEOm$6liYis<>E0xD(BWH(J1MmLMC0_K*IDWr0lh4(W@GIDJoZRKQ4a}RmN96)}dY7bd+
ztG<+%ec?|sVA^n4KiKTutrhLGe=HCqUb(t8sc73F1-VkuM)$F&69x8#1+!JemHKvE
zrS~4>z@RNvI`-o1jh=u?L?}zxQV6d0bLBwEs3?~qCuYiA-DGbSch1=MNka;9B$clM
zVk^mfp$XJSf$;;jw~gE*vk1W~KnPyP->3*dyLuCd*;wP$-rDt-#CeUwe@Xs&Fg|Bv
zJ7w?AbewrHXp+Xzz))7TnlURd66@^~l+uF-R)gC+kGUfE?Ecq3we5sA@pjng;7(N;
z*CYyfHV7i$fR1EXkET-7W2O6TeTDID&pmCmojZLdSpneTOefBTU1sH{pdII8Nq^GL6Ff1-VoxG99Ri#)lKl
zJpA;QlGKY1ct`${3eC}2heY*obx4spvn5EENA{+#E7aCU%V~0ZA-^msp?g*-T-5M{
zW{`RkcGpYme|t$XzY4>-<&%IXo_ZK<240C%F&!ZSL2v|*FL)(OYy@-=ifxnUhe!XM
z`W?K2Awizlnu#amnQ6y|;n1<)W-a;UVzjO;GEEd8E${bIQak?QZW{#bb%j>wNiK+F^L*DwPUA7_^bAKyiZbyGuf)MjGqCZR+|Og$3Jc{|
z9?{F4-;;@6ryKN~yam^c)^S7(TvpFr`>?&$3gk(G<S^&fSsr8vG7<~9=
zC%JZ)f1ztHXqFUw@i&r@2Re?zsR}ZjE{R~_T8Jz;`Q9n+bn905P{&kB7Z3#wg)2Zf
z{AQ-AD8H``yYQF4nHW5P9ex!KXBvGVjK8CFoHZC<#^l)KRqy^deW*rNAUby17(er{
zzA=v#r+Gzlx0se*Fm)4fq{I}E+>IatgWLxie*%Sqa}4&>;j`jcfUrUmDJWTsi1bsq
zrBk_}lyyK&<{=P>0)qcEoPw!sl&cZjnqIb$OG=MEHiY90r_l-^Guvf2RG+PNu91WB
zUi_oc^XFFJ(A_n+M#r{vPU+GVDg?rV8J?}5oHR3+j-(FwU<~!P4bK<_KtVWmeR*n|
ze@EV1K~lq^lqI$=3D+*H1Sly`C&BgQ@1MG0yi*b@^%V5wLA)7m(O@Pt?i>>~@w>aP
zTtxhQBWw?I@}vKcklYL3ZJz=P=?8lb+%y|{U8@-4=2O?>bZ#xn6&V(s&DEZ3@$Iyq
zZ=cQ}koOk)q*!vDX~n{Mh78ljjgG?Nq@eGHgUc39{O3nB<2WBl1*j-zM+yQZH~i9Th3=&
zCMGzqcL%eZXYD9TSJFSM5O;$2e;@Qf`n|FAaSSkHsvcy7II71`?ZU8Eka;-G2s^u-
zdN@cdL1Y;9c;2obUPAFy7A2{9B?AjAmWI<|FfwDl(R3%1=W!-!^Ru_C2~T^zP=h5V
zX@HcNK!7r8^3pC{W47pxlwuV&)wem$1kY!E*gX~HzeM?{-&42+jf7B
zfa=pwIO5OORZc!Po3^8v%98$#xhbhRtb*R>!Y+x73|VzXCJs+G4a##Iq
z1)V&`{K)t~0FU`Z3u3TCiB(%dHaRkTW5=5FWn2s^n7y4t<9wOE6{q69%yxHr5g|aHU?5`YyEzfQMfdPe
z>^#SWH*c1Ue?~gmyP1F~CoVhSD=LWJQ~=NbTakYrH!)DzN#IX}8Bq8Zg3q2Czs=k}
zkWR&Ys9XZ1@S#Ut%l3!N|CnWNm|T(lt`!e(wpPJNC!kOZX
z;NC%ny|D4nvyTA-#sFiY6o2>9-R~6-WR5htl7{2i?_SOko}>xFye%VT&f|!TQ@b)q
z5}|vU?>+=XL9j^g1H=!32cyJ~+mC(>4$TdpGZk`5KoVap;3eQP`&T%x1R|npv8?D0
zf89g~3)N*iP8ikZ+`&D)Yu>F7*bUaTAI!Z$KiZvkO_HtwKzckir+52y`(bl;ICqdy
z-5u7=?p<>}Z4RALbNTUhe|+lA-@Dy*4~+*Fre&PhcbDtQ=JMWs=o*yI`%CY;=CQT)
zNac49-MhW{jfuZt7S)~J-J26J@k{Ogf1duz)A??5MU3sT@8x=+mad{n>ZXq>{WCBA)kTp#cTyln9C
z-D7*dZOl$C{s-PByt94!z#!!Psq^Dw)4^eSY|QGs2Xs0-ZP(t8zCIpLzx)4Cv(B9l
z4g_VPexsA&t1ExmNlOs618vEvfkItcdK1zn5w(7h)H;6qDo)}g;8TyQnf-QlQMuf!
zHu(kTrO_42GlCM(+z6?+6?$)0=>jD_FfCYXG*qYukCyda$t~r^!K*VCT#(?C2-2Q%
zTcKSDmSXJr4ixiQbm%Baw-{m3zOEfIJ);fL*vTin5WBwd}u3z4URa2=C
zr{aL>QgF&0uwYzW;_D(Fu4O)~A6{=LIF?>oD@B{{mE}A^#?x0mt08pP>E&vm>nz0}7ZQd4Sze001`ZlRL0d
z0mGAyusQ)4lgY3^0{NwrAEqUfFtHFDWubnfB>?~cPyzq|5dZ)H0000000000fPux6
TTd_U?8Izi^BL>p000000f;l98
diff --git a/output.log b/output.log
index ca0a838..601ccab 100644
--- a/output.log
+++ b/output.log
@@ -1,4109 +1,4115 @@
-2024-08-05 08:34:41,586 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:34:41,589 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)
-2024-08-05 08:34:41,593 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-08-05T08:34:41.589703', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:41,595 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:34:41,595 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:34:41,595 - using serial LDA version on this node
-2024-08-05 08:34:41,596 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:34:41,596 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:34:41,600 - -8.103 per-word bound, 274.9 perplexity estimate based on a held-out corpus of 1 documents with 2696 words
-2024-08-05 08:34:41,600 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:34:41,602 - topic #0 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"within" + 0.006*"practice" + 0.005*"leaders" + 0.005*"Barnsley" + 0.004*"11" + 0.004*"15" + 0.004*"progress" + 0.004*"September"
-2024-08-05 08:34:41,602 - topic #1 (0.333): 0.018*"’" + 0.008*"needs" + 0.006*"leaders" + 0.006*"Barnsley" + 0.006*"within" + 0.005*"practice" + 0.005*"plans" + 0.004*"response" + 0.004*"senior" + 0.004*"understand"
-2024-08-05 08:34:41,602 - topic #2 (0.333): 0.020*"’" + 0.009*"leaders" + 0.009*"needs" + 0.006*"within" + 0.006*"practice" + 0.006*"Barnsley" + 0.005*"experiences" + 0.005*"plans" + 0.004*"11" + 0.004*"senior"
-2024-08-05 08:34:41,602 - topic diff=0.799144, rho=1.000000
-2024-08-05 08:34:41,603 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:34:41.603095', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:41,605 - Failed to import jpype dependencies. Fallback to subprocess.
-2024-08-05 08:34:41,605 - No module named 'jpype'
-2024-08-05 08:34:44,316 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:34:44,316 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:44,317 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:34:44,317 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:44,317 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:34:44,317 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:44,317 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:34:44,317 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:44,318 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:34:44,318 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:44,318 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:34:44,318 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:46,222 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:34:46,224 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)
-2024-08-05 08:34:46,224 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-08-05T08:34:46.224763', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:46,225 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:34:46,225 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:34:46,226 - using serial LDA version on this node
-2024-08-05 08:34:46,226 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:34:46,226 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:34:46,230 - -8.019 per-word bound, 259.5 perplexity estimate based on a held-out corpus of 1 documents with 2085 words
-2024-08-05 08:34:46,230 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:34:46,231 - topic #0 (0.333): 0.023*"’" + 0.009*"well" + 0.006*"practice" + 0.006*"effective" + 0.006*"plans" + 0.006*"leaders" + 0.006*"needs" + 0.005*"clear" + 0.005*"Somerset" + 0.005*"Bath"
-2024-08-05 08:34:46,231 - topic #1 (0.333): 0.014*"’" + 0.008*"well" + 0.006*"needs" + 0.006*"practice" + 0.005*"leaders" + 0.004*"plans" + 0.004*"4" + 0.004*"East" + 0.004*"Somerset" + 0.004*"receive"
-2024-08-05 08:34:46,231 - topic #2 (0.333): 0.014*"’" + 0.008*"well" + 0.007*"needs" + 0.005*"plans" + 0.004*"education" + 0.004*"protection" + 0.004*"impact" + 0.004*"East" + 0.004*"North" + 0.004*"receive"
-2024-08-05 08:34:46,232 - topic diff=0.760495, rho=1.000000
-2024-08-05 08:34:46,232 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:34:46.232238', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:47,299 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:34:47,300 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:47,300 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:34:47,300 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:47,300 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:34:47,300 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:47,301 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:34:47,301 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:47,301 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:34:47,301 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:47,301 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:34:47,301 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:49,346 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:34:49,349 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)
-2024-08-05 08:34:49,349 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-08-05T08:34:49.349549', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:49,350 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:34:49,350 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:34:49,351 - using serial LDA version on this node
-2024-08-05 08:34:49,351 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:34:49,351 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:34:49,355 - -8.114 per-word bound, 277.1 perplexity estimate based on a held-out corpus of 1 documents with 2585 words
-2024-08-05 08:34:49,355 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:34:49,357 - topic #0 (0.333): 0.022*"’" + 0.007*"ensure" + 0.007*"needs" + 0.006*"well" + 0.005*"family" + 0.005*"plans" + 0.005*"education" + 0.005*"Bedford" + 0.005*"Borough" + 0.005*"26"
-2024-08-05 08:34:49,357 - topic #1 (0.333): 0.017*"’" + 0.008*"needs" + 0.006*"ensure" + 0.006*"Bedford" + 0.005*"well" + 0.005*"good" + 0.005*"supported" + 0.005*"progress" + 0.005*"need" + 0.004*"15"
-2024-08-05 08:34:49,357 - topic #2 (0.333): 0.016*"’" + 0.006*"plans" + 0.006*"well" + 0.005*"needs" + 0.005*"supported" + 0.005*"ensure" + 0.005*"relationships" + 0.005*"good" + 0.004*"education" + 0.004*"Bedford"
-2024-08-05 08:34:49,357 - topic diff=0.788495, rho=1.000000
-2024-08-05 08:34:49,358 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:34:49.357990', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:50,250 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:34:50,250 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:50,251 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:34:50,251 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:50,251 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:34:50,251 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:50,251 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:34:50,252 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:50,252 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:34:50,252 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:50,252 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:34:50,253 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:51,871 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:34:51,873 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)
-2024-08-05 08:34:51,873 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-08-05T08:34:51.873950', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:51,875 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:34:51,875 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:34:51,875 - using serial LDA version on this node
-2024-08-05 08:34:51,875 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:34:51,875 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:34:51,879 - -7.972 per-word bound, 251.0 perplexity estimate based on a held-out corpus of 1 documents with 2378 words
-2024-08-05 08:34:51,879 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:34:51,880 - topic #0 (0.333): 0.011*"’" + 0.009*"needs" + 0.005*"Birmingham" + 0.005*"progress" + 0.005*"well" + 0.005*"plans" + 0.005*"effective" + 0.004*"trust" + 0.004*"risk" + 0.004*"March"
-2024-08-05 08:34:51,881 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"effective" + 0.007*"well" + 0.006*"plans" + 0.006*"appropriate" + 0.006*"progress" + 0.006*"Birmingham" + 0.006*"timely" + 0.006*"trust"
-2024-08-05 08:34:51,881 - topic #2 (0.333): 0.013*"’" + 0.009*"needs" + 0.006*"effective" + 0.005*"well" + 0.005*"Birmingham" + 0.005*"plans" + 0.005*"trust" + 0.005*"risk" + 0.004*"3" + 0.004*"March"
-2024-08-05 08:34:51,881 - topic diff=0.817572, rho=1.000000
-2024-08-05 08:34:51,881 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:34:51.881530', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:52,895 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:34:52,896 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:52,896 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:34:52,896 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:52,896 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:34:52,896 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:52,897 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:34:52,897 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:52,897 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:34:52,897 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:52,897 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:34:52,897 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:54,873 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:34:54,876 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)
-2024-08-05 08:34:54,876 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-08-05T08:34:54.876393', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:54,877 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:34:54,877 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:34:54,877 - using serial LDA version on this node
-2024-08-05 08:34:54,878 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:34:54,878 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:34:54,881 - -7.959 per-word bound, 248.8 perplexity estimate based on a held-out corpus of 1 documents with 2353 words
-2024-08-05 08:34:54,882 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:34:54,883 - topic #0 (0.333): 0.016*"’" + 0.007*"practice" + 0.007*"needs" + 0.007*"Darwen" + 0.007*"impact" + 0.006*"Blackburn" + 0.006*"well" + 0.006*"quality" + 0.005*"means" + 0.005*"receive"
-2024-08-05 08:34:54,883 - topic #1 (0.333): 0.010*"’" + 0.007*"practice" + 0.007*"Darwen" + 0.007*"quality" + 0.007*"impact" + 0.006*"needs" + 0.006*"Blackburn" + 0.005*"well" + 0.005*"effective" + 0.005*"result"
-2024-08-05 08:34:54,883 - topic #2 (0.333): 0.015*"’" + 0.009*"needs" + 0.008*"quality" + 0.007*"Blackburn" + 0.006*"practice" + 0.006*"planning" + 0.006*"well" + 0.005*"Darwen" + 0.005*"progress" + 0.004*"result"
-2024-08-05 08:34:54,883 - topic diff=0.810735, rho=1.000000
-2024-08-05 08:34:54,884 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:34:54.884109', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:55,804 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:34:55,804 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:55,805 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:34:55,805 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:55,805 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:34:55,805 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:55,805 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:34:55,806 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:55,806 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:34:55,806 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:55,806 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:34:55,806 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:57,666 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:34:57,669 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)
-2024-08-05 08:34:57,669 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-08-05T08:34:57.669561', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:57,670 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:34:57,670 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:34:57,670 - using serial LDA version on this node
-2024-08-05 08:34:57,671 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:34:57,671 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:34:57,674 - -7.925 per-word bound, 243.1 perplexity estimate based on a held-out corpus of 1 documents with 2392 words
-2024-08-05 08:34:57,675 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:34:57,676 - topic #0 (0.333): 0.019*"’" + 0.010*"needs" + 0.010*"well" + 0.009*"Blackpool" + 0.006*"practice" + 0.005*"effective" + 0.005*"quality" + 0.005*"16" + 0.005*"progress" + 0.005*"need"
-2024-08-05 08:34:57,676 - topic #1 (0.333): 0.016*"’" + 0.010*"needs" + 0.009*"well" + 0.006*"plans" + 0.006*"effective" + 0.006*"supported" + 0.006*"Blackpool" + 0.005*"understand" + 0.005*"practice" + 0.005*"experiences"
-2024-08-05 08:34:57,676 - topic #2 (0.333): 0.014*"’" + 0.010*"needs" + 0.008*"well" + 0.007*"Blackpool" + 0.005*"5" + 0.005*"effective" + 0.005*"experiences" + 0.005*"plans" + 0.004*"supported" + 0.004*"16"
-2024-08-05 08:34:57,676 - topic diff=0.829670, rho=1.000000
-2024-08-05 08:34:57,676 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:34:57.676923', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:34:58,707 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:34:58,707 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:58,707 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:34:58,707 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:58,708 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:34:58,708 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:58,708 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:34:58,708 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:58,708 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:34:58,708 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:34:58,708 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:34:58,709 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:00,441 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:00,443 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)
-2024-08-05 08:35:00,443 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-08-05T08:35:00.443726', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:00,444 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:00,444 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:00,445 - using serial LDA version on this node
-2024-08-05 08:35:00,445 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:00,445 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:00,448 - -7.910 per-word bound, 240.4 perplexity estimate based on a held-out corpus of 1 documents with 2055 words
-2024-08-05 08:35:00,449 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:00,450 - topic #0 (0.333): 0.018*"’" + 0.010*"needs" + 0.008*"Bolton" + 0.007*"plans" + 0.006*"well" + 0.006*"need" + 0.005*"supported" + 0.005*"11" + 0.005*"15" + 0.005*"response"
-2024-08-05 08:35:00,450 - topic #1 (0.333): 0.018*"’" + 0.009*"plans" + 0.008*"Bolton" + 0.007*"well" + 0.006*"needs" + 0.005*"effective" + 0.005*"strong" + 0.005*"planning" + 0.005*"supported" + 0.005*"good"
-2024-08-05 08:35:00,450 - topic #2 (0.333): 0.020*"’" + 0.011*"needs" + 0.010*"well" + 0.008*"Bolton" + 0.006*"plans" + 0.006*"supported" + 0.005*"planning" + 0.005*"experiences" + 0.005*"timely" + 0.005*"11"
-2024-08-05 08:35:00,450 - topic diff=0.771020, rho=1.000000
-2024-08-05 08:35:00,451 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:00.451028', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:01,407 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:01,407 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:01,408 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:01,408 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:01,408 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:01,408 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:01,408 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:01,408 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:01,409 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:01,409 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:01,409 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:01,409 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:02,982 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:02,985 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)
-2024-08-05 08:35:02,985 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-08-05T08:35:02.985308', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:02,986 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:02,986 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:02,986 - using serial LDA version on this node
-2024-08-05 08:35:02,987 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:02,987 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:02,990 - -8.034 per-word bound, 262.2 perplexity estimate based on a held-out corpus of 1 documents with 2004 words
-2024-08-05 08:35:02,990 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:02,992 - topic #0 (0.333): 0.022*"’" + 0.007*"quality" + 0.007*"practice" + 0.006*"progress" + 0.006*"Poole" + 0.005*"impact" + 0.005*"risk" + 0.005*"Bournemouth" + 0.005*"well" + 0.005*"6"
-2024-08-05 08:35:02,992 - topic #1 (0.333): 0.016*"’" + 0.005*"practice" + 0.004*"However" + 0.004*"time" + 0.004*"quality" + 0.004*"right" + 0.004*"6" + 0.004*"17" + 0.004*"positive" + 0.004*"Bournemouth"
-2024-08-05 08:35:02,992 - topic #2 (0.333): 0.012*"’" + 0.005*"quality" + 0.005*"practice" + 0.005*"Christchurch" + 0.004*"progress" + 0.004*"17" + 0.004*"impact" + 0.004*"time" + 0.004*"positive" + 0.004*"health"
-2024-08-05 08:35:02,992 - topic diff=0.765288, rho=1.000000
-2024-08-05 08:35:02,992 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:02.992853', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:05,044 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:05,045 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:05,045 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:05,045 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:05,045 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:05,045 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:05,046 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:05,046 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:05,046 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:05,046 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:05,046 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:05,046 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:06,419 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:06,421 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)
-2024-08-05 08:35:06,422 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-08-05T08:35:06.422073', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:06,422 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:06,423 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:06,423 - using serial LDA version on this node
-2024-08-05 08:35:06,423 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:06,423 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:06,426 - -7.855 per-word bound, 231.5 perplexity estimate based on a held-out corpus of 1 documents with 1846 words
-2024-08-05 08:35:06,427 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:06,428 - topic #0 (0.333): 0.015*"’" + 0.008*"risk" + 0.007*"well" + 0.006*"needs" + 0.006*"Bracknell" + 0.006*"progress" + 0.006*"Forest" + 0.006*"effective" + 0.006*"good" + 0.005*"provided"
-2024-08-05 08:35:06,428 - topic #1 (0.333): 0.015*"’" + 0.006*"risk" + 0.006*"quality" + 0.006*"plans" + 0.006*"Forest" + 0.006*"good" + 0.005*"effective" + 0.005*"needs" + 0.005*"Bracknell" + 0.005*"receive"
-2024-08-05 08:35:06,428 - topic #2 (0.333): 0.018*"’" + 0.008*"Bracknell" + 0.008*"Forest" + 0.008*"needs" + 0.007*"quality" + 0.006*"good" + 0.006*"provided" + 0.005*"effective" + 0.005*"progress" + 0.005*"plans"
-2024-08-05 08:35:06,428 - topic diff=0.766512, rho=1.000000
-2024-08-05 08:35:06,428 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:06.428853', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:07,541 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:07,542 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:07,542 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:07,542 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:07,542 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:07,542 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:07,542 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:07,543 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:07,543 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:07,543 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:07,543 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:07,543 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:09,183 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:09,186 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)
-2024-08-05 08:35:09,186 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)", 'datetime': '2024-08-05T08:35:09.186764', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:09,187 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:09,187 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:09,188 - using serial LDA version on this node
-2024-08-05 08:35:09,188 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:09,188 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:09,192 - -8.090 per-word bound, 272.5 perplexity estimate based on a held-out corpus of 1 documents with 2249 words
-2024-08-05 08:35:09,192 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:09,194 - topic #0 (0.333): 0.018*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"Hove" + 0.005*"relationships" + 0.005*"practice" + 0.005*"family" + 0.004*"PAs" + 0.004*"experiences" + 0.004*"progress"
-2024-08-05 08:35:09,194 - topic #1 (0.333): 0.020*"’" + 0.009*"Hove" + 0.008*"well" + 0.007*"needs" + 0.006*"Brighton" + 0.006*"practice" + 0.006*"relationships" + 0.006*"experiences" + 0.006*"progress" + 0.005*"15"
-2024-08-05 08:35:09,194 - topic #2 (0.333): 0.010*"’" + 0.009*"Brighton" + 0.007*"well" + 0.007*"practice" + 0.007*"needs" + 0.005*"progress" + 0.005*"PAs" + 0.005*"11" + 0.005*"Hove" + 0.005*"experiences"
-2024-08-05 08:35:09,194 - topic diff=0.744463, rho=1.000000
-2024-08-05 08:35:09,194 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:09.194665', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:10,279 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:10,280 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:10,280 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:10,280 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:10,280 - Inspection date None / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:10,280 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:10,280 - Inspection date None / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:10,281 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:10,281 - Inspection date None / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:10,281 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:10,281 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:10,281 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:11,908 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:11,913 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)
-2024-08-05 08:35:11,913 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-08-05T08:35:11.913891', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:11,915 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:11,916 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:11,916 - using serial LDA version on this node
-2024-08-05 08:35:11,917 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:11,917 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:11,925 - -8.029 per-word bound, 261.2 perplexity estimate based on a held-out corpus of 1 documents with 2647 words
-2024-08-05 08:35:11,925 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:11,927 - topic #0 (0.333): 0.016*"’" + 0.009*"well" + 0.008*"Bristol" + 0.008*"needs" + 0.007*"good" + 0.006*"progress" + 0.005*"arrangements" + 0.005*"need" + 0.004*"living" + 0.004*"meetings"
-2024-08-05 08:35:11,927 - topic #1 (0.333): 0.025*"’" + 0.009*"good" + 0.008*"needs" + 0.008*"well" + 0.007*"Bristol" + 0.005*"leaders" + 0.005*"health" + 0.005*"27" + 0.005*"progress" + 0.005*"always"
-2024-08-05 08:35:11,928 - topic #2 (0.333): 0.014*"’" + 0.009*"well" + 0.007*"Bristol" + 0.007*"good" + 0.006*"needs" + 0.006*"health" + 0.005*"need" + 0.004*"plans" + 0.004*"ensure" + 0.004*"always"
-2024-08-05 08:35:11,928 - topic diff=0.818620, rho=1.000000
-2024-08-05 08:35:11,928 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:11.928455', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:12,937 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:12,937 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:12,937 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:12,938 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:12,938 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:12,938 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:12,938 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:12,938 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:12,938 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:12,939 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:12,939 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:12,939 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:14,741 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:14,744 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)
-2024-08-05 08:35:14,744 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-08-05T08:35:14.744736', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:14,745 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:14,745 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:14,746 - using serial LDA version on this node
-2024-08-05 08:35:14,746 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:14,746 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:14,750 - -8.240 per-word bound, 302.4 perplexity estimate based on a held-out corpus of 1 documents with 2404 words
-2024-08-05 08:35:14,750 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:14,752 - topic #0 (0.333): 0.015*"’" + 0.005*"number" + 0.005*"Buckinghamshire" + 0.005*"17" + 0.005*"protection" + 0.004*"2021" + 0.004*"plans" + 0.004*"many" + 0.004*"needs" + 0.004*"6"
-2024-08-05 08:35:14,752 - topic #1 (0.333): 0.011*"’" + 0.005*"plans" + 0.004*"practice" + 0.004*"17" + 0.003*"December" + 0.003*"number" + 0.003*"protection" + 0.003*"teams" + 0.003*"Buckinghamshire" + 0.003*"progress"
-2024-08-05 08:35:14,752 - topic #2 (0.333): 0.014*"’" + 0.006*"plans" + 0.005*"number" + 0.005*"Buckinghamshire" + 0.004*"6" + 0.004*"many" + 0.004*"17" + 0.004*"practice" + 0.004*"December" + 0.003*"small"
-2024-08-05 08:35:14,752 - topic diff=0.731419, rho=1.000000
-2024-08-05 08:35:14,753 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:14.753112', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:16,050 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:16,051 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:16,051 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:16,051 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:16,052 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:16,052 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:16,056 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:16,063 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:16,063 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:16,064 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:16,064 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:16,064 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:21,721 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:21,726 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)
-2024-08-05 08:35:21,726 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-08-05T08:35:21.726590', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:21,728 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:21,728 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:21,729 - using serial LDA version on this node
-2024-08-05 08:35:21,729 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:21,729 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:21,738 - -7.976 per-word bound, 251.7 perplexity estimate based on a held-out corpus of 1 documents with 2427 words
-2024-08-05 08:35:21,742 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:21,744 - topic #0 (0.333): 0.013*"’" + 0.006*"needs" + 0.006*"2021" + 0.006*"protection" + 0.006*"team" + 0.006*"need" + 0.005*"Bury" + 0.005*"impact" + 0.005*"risk" + 0.005*"practice"
-2024-08-05 08:35:21,744 - topic #1 (0.333): 0.010*"’" + 0.007*"protection" + 0.006*"2021" + 0.006*"needs" + 0.005*"team" + 0.005*"need" + 0.005*"practice" + 0.005*"impact" + 0.005*"quality" + 0.005*"risk"
-2024-08-05 08:35:21,744 - topic #2 (0.333): 0.011*"’" + 0.007*"needs" + 0.007*"practice" + 0.006*"2021" + 0.006*"protection" + 0.005*"team" + 0.004*"impact" + 0.004*"October" + 0.004*"quality" + 0.004*"always"
-2024-08-05 08:35:21,744 - topic diff=0.803612, rho=1.000000
-2024-08-05 08:35:21,745 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.02s', 'datetime': '2024-08-05T08:35:21.745054', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:23,607 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:23,624 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:23,624 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:23,632 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:23,633 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:23,633 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:23,633 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:23,634 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:23,634 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:23,634 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:23,634 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:23,635 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:26,218 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:26,220 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)
-2024-08-05 08:35:26,220 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-08-05T08:35:26.220881', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:26,221 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:26,222 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:26,222 - using serial LDA version on this node
-2024-08-05 08:35:26,222 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:26,222 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:26,226 - -8.028 per-word bound, 261.1 perplexity estimate based on a held-out corpus of 1 documents with 2389 words
-2024-08-05 08:35:26,226 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:26,228 - topic #0 (0.333): 0.019*"’" + 0.012*"needs" + 0.009*"Calderdale" + 0.006*"ensure" + 0.006*"well" + 0.006*"experiences" + 0.005*"risk" + 0.005*"plans" + 0.005*"progress" + 0.005*"PAs"
-2024-08-05 08:35:26,228 - topic #1 (0.333): 0.025*"’" + 0.008*"Calderdale" + 0.007*"needs" + 0.007*"plans" + 0.006*"well" + 0.006*"progress" + 0.005*"ensure" + 0.005*"risk" + 0.005*"supported" + 0.004*"parents"
-2024-08-05 08:35:26,228 - topic #2 (0.333): 0.016*"’" + 0.009*"needs" + 0.007*"Calderdale" + 0.006*"progress" + 0.006*"well" + 0.005*"parents" + 0.004*"plans" + 0.004*"ensure" + 0.004*"experiences" + 0.004*"risk"
-2024-08-05 08:35:26,228 - topic diff=0.780981, rho=1.000000
-2024-08-05 08:35:26,228 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:26.228832', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:27,217 - Inspection date 2024-02-19 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:27,218 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:27,218 - Inspection date 2024-02-19 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:27,218 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:27,218 - Inspection date 2024-02-19 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:27,219 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:27,219 - Inspection date 2024-02-19 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:27,219 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:27,220 - Inspection date 2024-02-19 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:27,220 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:27,220 - Inspection date 2024-02-19 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:27,220 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:29,060 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:29,062 - built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions)
-2024-08-05 08:35:29,062 - Dictionary lifecycle event {'msg': "built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions)", 'datetime': '2024-08-05T08:35:29.062843', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:29,063 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:29,064 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:29,064 - using serial LDA version on this node
-2024-08-05 08:35:29,064 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:29,064 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:29,068 - -8.004 per-word bound, 256.8 perplexity estimate based on a held-out corpus of 1 documents with 2339 words
-2024-08-05 08:35:29,068 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:29,069 - topic #0 (0.333): 0.013*"’" + 0.007*"needs" + 0.007*"Cambridgeshire" + 0.006*"leaders" + 0.005*"2024" + 0.005*"effective" + 0.005*"However" + 0.005*"clear" + 0.005*"15" + 0.004*"good"
-2024-08-05 08:35:29,070 - topic #1 (0.333): 0.015*"’" + 0.007*"good" + 0.006*"Cambridgeshire" + 0.005*"leaders" + 0.005*"experiences" + 0.005*"well" + 0.005*"effective" + 0.004*"quality" + 0.004*"needs" + 0.004*"leadership"
-2024-08-05 08:35:29,070 - topic #2 (0.333): 0.020*"’" + 0.008*"needs" + 0.007*"leaders" + 0.006*"Cambridgeshire" + 0.005*"well" + 0.005*"practice" + 0.005*"4" + 0.005*"effective" + 0.005*"leadership" + 0.005*"good"
-2024-08-05 08:35:29,070 - topic diff=0.784694, rho=1.000000
-2024-08-05 08:35:29,070 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:29.070708', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:30,132 - Inspection date 2024-03-04 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:30,133 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:30,133 - Inspection date 2024-03-04 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:30,133 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:30,133 - Inspection date 2024-03-04 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:30,133 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:30,134 - Inspection date 2024-03-04 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:30,134 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:30,134 - Inspection date 2024-03-04 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:30,134 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:30,134 - Inspection date 2024-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:30,135 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:31,815 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:31,818 - built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)
-2024-08-05 08:35:31,818 - Dictionary lifecycle event {'msg': "built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-08-05T08:35:31.818283', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:31,819 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:31,819 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:31,819 - using serial LDA version on this node
-2024-08-05 08:35:31,820 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:31,820 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:31,823 - -7.965 per-word bound, 249.9 perplexity estimate based on a held-out corpus of 1 documents with 2199 words
-2024-08-05 08:35:31,823 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:31,825 - topic #0 (0.333): 0.019*"’" + 0.011*"well" + 0.008*"needs" + 0.007*"progress" + 0.007*"need" + 0.006*"carers" + 0.006*"good" + 0.006*"plans" + 0.005*"effective" + 0.005*"education"
-2024-08-05 08:35:31,825 - topic #1 (0.333): 0.009*"’" + 0.008*"well" + 0.006*"good" + 0.005*"plans" + 0.005*"need" + 0.005*"needs" + 0.004*"carers" + 0.004*"Bedfordshire" + 0.004*"17" + 0.004*"education"
-2024-08-05 08:35:31,825 - topic #2 (0.333): 0.018*"’" + 0.008*"well" + 0.008*"needs" + 0.007*"carers" + 0.006*"need" + 0.006*"plans" + 0.006*"Bedfordshire" + 0.006*"good" + 0.005*"Leaders" + 0.005*"Central"
-2024-08-05 08:35:31,825 - topic diff=0.791665, rho=1.000000
-2024-08-05 08:35:31,825 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:31.825731', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:32,836 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:32,836 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:32,837 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:32,837 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:32,837 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:32,837 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:32,837 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:32,838 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:32,838 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:32,838 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:32,838 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:32,838 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:34,371 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:34,373 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)
-2024-08-05 08:35:34,374 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)", 'datetime': '2024-08-05T08:35:34.374158', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:34,375 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:34,375 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:34,375 - using serial LDA version on this node
-2024-08-05 08:35:34,375 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:34,375 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:34,379 - -7.976 per-word bound, 251.8 perplexity estimate based on a held-out corpus of 1 documents with 2272 words
-2024-08-05 08:35:34,379 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:34,380 - topic #0 (0.333): 0.013*"’" + 0.007*"needs" + 0.007*"2024" + 0.007*"East" + 0.006*"quality" + 0.006*"practice" + 0.006*"well" + 0.006*"Cheshire" + 0.005*"leaders" + 0.005*"need"
-2024-08-05 08:35:34,381 - topic #1 (0.333): 0.008*"’" + 0.006*"plans" + 0.006*"needs" + 0.006*"quality" + 0.006*"2024" + 0.005*"well" + 0.005*"practice" + 0.004*"means" + 0.004*"leaders" + 0.004*"effective"
-2024-08-05 08:35:34,381 - topic #2 (0.333): 0.015*"’" + 0.009*"2024" + 0.008*"plans" + 0.008*"needs" + 0.007*"practice" + 0.007*"well" + 0.006*"Cheshire" + 0.006*"effective" + 0.006*"leaders" + 0.005*"East"
-2024-08-05 08:35:34,381 - topic diff=0.786808, rho=1.000000
-2024-08-05 08:35:34,381 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-08-05T08:35:34.381565', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:35,273 - Inspection date 2024-02-26 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-08-05 08:35:35,273 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:35,273 - Inspection date 2024-02-26 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-08-05 08:35:35,273 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:35,274 - Inspection date 2024-02-26 / Column 'help_and_protection' not found in the DataFrame.
-2024-08-05 08:35:35,274 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:35,274 - Inspection date 2024-02-26 / Column 'in_care' not found in the DataFrame.
-2024-08-05 08:35:35,274 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:35,274 - Inspection date 2024-02-26 / Column 'care_leavers' not found in the DataFrame.
-2024-08-05 08:35:35,274 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:35,274 - Inspection date 2024-02-26 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-08-05 08:35:35,275 - Index(['judgement', 'grade'], dtype='object')
-2024-08-05 08:35:37,023 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-08-05 08:35:37,025 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions)
-2024-08-05 08:35:37,026 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions)", 'datetime': '2024-08-05T08:35:37.026051', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-08-05 08:35:37,027 - using symmetric alpha at 0.3333333333333333
-2024-08-05 08:35:37,027 - using symmetric eta at 0.3333333333333333
-2024-08-05 08:35:37,027 - using serial LDA version on this node
-2024-08-05 08:35:37,027 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-08-05 08:35:37,027 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-08-05 08:35:37,031 - -7.999 per-word bound, 255.8 perplexity estimate based on a held-out corpus of 1 documents with 2186 words
-2024-08-05 08:35:37,031 - PROGRESS: pass 0, at document #1/1
-2024-08-05 08:35:37,032 - topic #0 (0.333): 0.014*"’" + 0.005*"well" + 0.004*"needs" + 0.004*"effective" + 0.004*"order" + 0.004*"leaders" + 0.004*"receive" + 0.004*"However" + 0.004*"learning" + 0.003*"always"
-2024-08-05 08:35:37,033 - topic #1 (0.333): 0.029*"’" + 0.008*"well" + 0.008*"needs" + 0.005*"practice" + 0.005*"impact" + 0.005*"effectively" + 0.005*"plans" + 0.004*"always" + 0.004*"effective" + 0.004*"progress"
-2024-08-05 08:35:37,033 - topic #2 (0.333): 0.014*"’" + 0.007*"well" + 0.007*"needs" + 0.005*"receive" + 0.004*"practice" + 0.004*"order" + 0.004*"effectively" + 0.004*"plans" + 0.004*"always" + 0.004*"need"
-2024-08-05 08:35:37,033 - topic diff=0.783968, rho=1.000000
-2024-08-05 08:35:37,033 - LdaModel lifecycle event {'msg': 'trained LdaModel