From b4744f08abc262dd17da4f52bfb5fbafcddd3754 Mon Sep 17 00:00:00 2001 From: Rob Harrison <48765695+robjharrison@users.noreply.github.com> Date: Mon, 14 Oct 2024 09:01:58 +0000 Subject: [PATCH] Data refresh 141024 --- index.html | 2 +- ofsted_childrens_services_overview.xlsx | Bin 45473 -> 45453 bytes output.log | 8212 +++++++++++------------ 3 files changed, 4107 insertions(+), 4107 deletions(-) diff --git a/index.html b/index.html index 3c8d9f6..213e084 100644 --- a/index.html +++ b/index.html @@ -26,7 +26,7 @@

Ofsted ILACS Summary

Summarised outcomes of published short and standard ILACS inspection reports by Ofsted, refreshed daily.
An expanded version of the shown summary sheet, refreshed concurrently, is available to download here as an .xlsx file.
Data summary is based on the original ILACS Outcomes Summary published periodically by the ADCS: https://adcs.org.uk/inspection/article/ilacs-outcomes-summary. Read the tool/project background details and future work..

Disclaimer: This summary is built from scraped data direct from https://reports.ofsted.gov.uk/ published PDF inspection report files. As a result of the nuances|variance within the inspection report content or pdf encoding, we're noting some problematic data extraction for a small number of LAs*.
*LA extraction issues: southend-on-sea, [overall, help_and_protection_grade,care_leavers_grade], nottingham,[inspection_framework, inspection_date], redcar and cleveland,[inspection_framework, inspection_date], knowsley,[inspector_name], stoke-on-trent,[inspector_name]
Feedback on specific problems|inaccuracies|suggestions welcomed.*

-

Summary data last updated: 07 10 2024 10:17

+

Summary data last updated: 14 10 2024 10:01

LA inspections last updated: []

diff --git a/ofsted_childrens_services_overview.xlsx b/ofsted_childrens_services_overview.xlsx index 9b870a077f17da9c54ad1fefb29606e922299b8e..bd910e25aa35ef597a70c2d03260475c849fe2f9 100644 GIT binary patch delta 21219 zcmV(vKb9=`0MD^s@<;-_uKu)-@f`EKmXy^)vML<)a>t@ z-C=*<{`S@9_W0_*|L(v1=6F1<%s<^9fBR~4Iz9cj*RPN3P5am!zdk&*d-KVML-*L6 z%#Yp2*T<)>ZSIeowmm)WUMEphynbx9`&X;=;k-Zn_Enk|@vGH&zx~U(ebYaR^SXHT zyWbqQzx&PUcU6=n#cy7pe)pT#_CfzJEhB&V=-GsE6`&mA>n{hO|@nO4b&Eh{CPwoBJ9}l0t zK0mzv6uZZ-^C(HQ8|PV!;1-#4p|UGu5k?OOR^9KVigv&l&cpX7hq zCrSA_j$Y&QuKmk-+qK8l_VKAZd}<%tJqQzh9hW(ISf#k>^1)m4`?mI%uJ-Nu)HOT# z7k>Hs=<6shfA#8b|Ng&Ut^VuE{1g?xdbKmh$(&j5$@BKKu_vm3kpJq{zHRT1-p@~6 zvp#Lt?f5AB)vIrYcj!HeWB-SI{2_n+)vIH>-yS;e!Fg{*u&VLu@4s4EIg>b$vl2p7 zAa^O{E>I{Ux_z{3_WtV3J9;|okN)aHfz5-zoSWVD^m&vvu6$|ZNJv{UX{97w-f&HF zR|C-VXuHBfqz}5M)Aw)t5qEr=1;l33?hG{{dH>Z zhA6dvGM`pOZvI!n8NX{zo0WO}tG!Xt&8lt8m3TZnnjLFFNtRs;aTVtge2@9NpW4;# z@C>S+RIj7NDm1Ju%3en){Uokmn-B5%c7J?o&C5OP-<#X|{e5$4kMI9{zW=BxeU-xR z0MUE(jRLi>hu+*<-jATF;&6Y9b7+ppAKJU_+;qO?+RM{FWvK3%_h-8^7qyL~BKYzZ zLcRj!Yd?IjJNK!b)>*NP+>^*@@VX6u#W&`BU1UsxJ*;65$@l%<97ylSx5Lq#xFdhG z2ig01ZA9)SRCinvSJw(2;;H++qOCa`rOGK~6neCiTQt1Z7q47*}qcQ zA5*w1?%I3fl7M|(sF-D*R2eF!^^5R#J~rLQrfW~DyL0z|_BnrTOtd+GF{pE)eG(gW zj)~GnUng-%pT@BJV2ytv2g{tKc7Hr~{tYj*!B;e9XQgu7pVy7OR=j7&^V5?#YOVi! zzUkkOucO7qR27qkwS<3vE$*0HuF5Is;iIvdQ=&65?H7A8erO)IyQ@j9XE$?lyR1)g z=nm(P8}Es@*g&YO6wGtUyp?h_1=luB!K%LdL2;}T(9^WCX4EQc8d>9+*gxgg#jdSm zou>AG#-OH2Wd8)G@^0Hbn&4y8Jl^P9$5|Z10{(p1>{o7QPlta!=v_3JQSeWV4eiY+ z`qGs%qxdhrPNE$2*P6=`G!ib9-dyIBepyZIO$kaG94qtlsXJedf%V!hyF9HD&69cf z)NPG7;61fIyLaldN$n)k2;DTng)v?ef@DnKjBG?EHO`s(i=gG4$18RbztlWTC$?1z zzR+3lcbO_FYGi*^f!_Y8xxNvcywv)-PE%87R-L+5RzGv+6T6r#vLvd~QLlmYUW&&%lH|7~iM+yf;Dac7NYtSe*0*QSp4aPi$2-rA9O^_)}Eb zU&w*4(fcxwz8SY@A{-nevg>L2*6pNjd>`BJG)YIe4+VeEyVK>&=h7sJFD<415ofZT z7i`WAus`pOF8LP!vO}Y+sgzY-BydxNV&!nPz+1>+17u|2|8P}Su9k4oS2bwrsDz-e zRcT$=$Of0O)kK$!ii#j3RaJvOW3`O(G-pc2M& zRaC3cJ~4kjR32=$mnSChlh&;}}mp2+G9qP_As|8#+&o zx~wv&tceFp#Dy;|XbL7SzR-zn|N7K++jhThk4iQuMX$q`zasK#fv~iH-goQavf}7& z_v_u+=B5>Wgrj2&o#MGhaP(6fTzd8}O-7?wrGtMx>@&nRFKjF$=;L8WoXh12;TUcR zr;N|d?zmwNB{NwSy7RwaYErsB@_5?U>lQP07L~KL;NoB8R2I_4%JUd}5lCEtDexmV zk}+k=v8V9V9j?M>-gciIhlA&c~n|zJ$aw%f&(ygc-NuDN2g(=h&4$PQ> z!Tf(s6b%W}D$9qgX`RHEWQ@wV z(?6{2Z35|%rCwy2Va{l~Z|+-jpP%5jMx(*PR73~q9s(~z zs~rA482CZvLE)d!!*MHuqJOnJ>*ohbC9!|VbNq{>4!$D~MK(V^Hv7O!-5wu&Kka%n zFfim-0=ly1U%c^7m9G)y#P*^zWOe=q6Jh(5GSfS2mcY-c3Q)wiS}K(M>%=Nqk`6Ts zmk+(xEYjT7Eb6g(fwj*&vjGo#bIYtg9LzFrE>_e<3FqEyic5={8xpFPk2YPpdTf9G zYHv8uuJpB0O6pve+9yfs)z&#uH%u|a$xZU#}_^G-gJXKVS zc;VpiX?q{s_Rb*i7>P-NQ6&hULmHQStuH>ib4ZrvQV`HIR&J~R9i?1L$x~hIRmcnz zNyM-;Hdj|Pd>QD_pqv>fKyM^dTcUr6;=xin2eQiTkEMzwhz?{-15vuA0-P?TG(sLOT=pCE)E^ZNhD_E+~d|N<;^qlZfEH zJA6`8=k8SZJ2f2~b?wfTAC8;t(~>v@?b<&c^<)ZO6H8S(^Bqy*0o|HTTVZY!1wk3bk$%8DsItT!zPLV^}+ZBrMAwjb*a5*cXjf8j4&F7i> zC){NFkGihe_pl5iDpe=MzF^_*_pwWhVEWBCt5#uB?sL{@;rpBw`dxSD^+R7pF}FhZ zk^m2k(0;pqu<*n+0`ZI@WHGT?aS?NK6xGtRlBtaS`SGp|kV>WZ!>NBY3-qIeaM?<* z=7&YSPj%{1IKji=LLN0Gl3`^ah%70C*z`+^MWTOel*a#Usq_mki9?#hPMOcg!SW*3o7XO?Y(4j9BfcttrY}`P-G(T=L(3P-15P z+}#K)jms>F;P>qg-M)WW9oL&(yWU_jB*`86lcYQ%6{|9&Nm!+upk=KxqD^PTv?_d) zMXy(yw}PQNsU<_SFAM?JgZ$IcAL9rhsHjA&3Wi_qFDDNdOJ%t?9+m$ygked3(KW!I zqL9Q)iu5CK|Adg=oP&ZRY`IvXdqZ5y;C@aqW*M|BWg2PYE9ZaaMMJ9Isao&wUG&Xq z899{eW@ns{`{vf1qYJS>_xH_qe`>mB^{_b{cMa%GJ(Qj9H*#qC(mslx0*68Ndx=zY_-S?U@3ZxDZnaOOe50_ES=L8rkOh|5HKkr&F z5sUS?Mk#|-j8%U=SyQ3AEAkKsOp^r^k{})g(Qmn)aQ+ zGRQqD$mwk>6pt0d z)x8$kO;YT`Y%FADMz5PH5Xs7;0u7ZkmjAaFDjyKdS1qdY{L*^hsS+rVQU9*ltp-r@ zi{h%Pz`}D}YVfKgo&sJe@T!_)k3-jQ4kLjlR5~u=;sj*Jn|{}Pl_cQgD_oZ5B@lWq z#Fzs=f>?j73J``qG+iGG3FsIhB-y%|e7RWGg58ua;2ZCBDq4i~=o%9fL#iDCR4yIi z!mN1IqCtUNZasIw)u>9u3~l;*!?o_bzzTuhpIWn*&FbUf{zHeEiKNgRy{OV{R9s-q z&^=Ycs)U49nRg(9mqo7InY1;nXNkb-%?9q}Pv?K#zU`X3U8@wdP|z9Ik7cWgrNE+? zJgr399&Nb{omfuqa1r+7@E*o+f2BbDrCcm4)h{e%;axmhDa05%0~L>bH+@89lNVJH zjTwwZ`t{r%Pp+P2pPVoOzEIclyof;u%<7Ma{p$Eg;yCN`mE0SwwNGqMUB!c~g7}-} zDTaTni=r=L8W!BjL7erj4LZEu^t3tD>`u@WWQ@( z&;XZ2MV7+pHxcG()tOxGu_5>ujLX?gEDz~)LU3VL z@ta|T^{D)f9{~Z51Jd@Q!s~~G&Duw1{Ov#f)B9VSz5U_I{Z2>v4e@ZMoKXFj}*y>eWnIC^G zJU@w3TI|{#_V>mdtqv_djd594*H~CE+S5CTuWJDy}?(essw)f{C-~plosl(UQrjHm- zrm~wP3#&ym1GsVa;3^uQfZ&q zWMi)NaxN+~llc9I#zT$M1cyl1E6KZmGaKap6_R9xs!v?$YQ&C@lvTz)s76969}$1* znyu*3!Ig$aceWc3Zx|^u?7@GM_A%kAqnLd-OSJ|xp~lYWF&RSGf^0!69h+Y&%M0e3 zUuuiSuPq5lRlB^s`yVDl4&DB_LEQV|+(%l1iXWS<*{s&h{&WCEh_wVqq$Wj@L`{9v zG37MCbPP*A5>mC<%VdiqW z=J33I>*c6s6~-^yqfw*P;lt{<-tKm{((@%nfqBw+R4D}GrrIY-?o^5<7 zc1hk5cgS@ckkN$-sbQzk)!o}U5p!gjJX{VcRU)SX;hiv#yTYBK8_Eh{(Tw*# zS-ZvzU`4DQA*Soo9;l%CNOvWeJ+79pH-bt5&1}=%t;T<^N)sex{PTIYZC4L_8!-^w zQ!*b(u4YSOEhm!1h!SxyVV?d^0GB0QuW#*MOu8{7cQ}nN#BfRp2sv>H<&cmPZ=wnmWj*d^Q_1s-VfxWk+1XH%WD0< zbO0WYuosZvfFth*nU}uQUO7}4Z3C4G@(Du9Nvp(cL+?kXz6U44jgzR9azfB4`$Lf^ z*efTzNmxrZMJ0gOE};P(bqGG_(;#V>27yGQ4zqv1Z$G`D{G6c)v=LcMi_B@PeG(7Z zeWE@IB1#xxI5x~fODs!jh1d&x)$8WSd=dTCFX;*sg5tM+Yu|}~Pj5eMLw+fSg#x`7 zd_V#)0SXkR5fSSy{yltMpOo;7N7pt-_JvahsPj{!=^VhmK!8xGB|9(;-4~nFWGpc| zw8nq6&O9)<>Ek`_4|{VyZiXtxRZQ~hr^Dl_*`GFtJ@}Ea%35muJ%w7a;!OUQj|zL7 zow>qV;DVG0IoE>BDGpF`m>i?Wft;Cd$6cS(ho2qqF3pV)8ejOesF}S>Wx?voD!IT) zD?Z*OK`tkj@`8X%z}C{rvg!j*_KRiWtC@dpAM2UqFmsP>Dx+ls^|~hbeI~gtuxy7H z4B03XLh)mnHfoOLsI>0r0slcmD^yFyVp`jG?+<0b7cV?KiJrrwrku&mA+Q)C8W@B8 z(Xc^(7KkaLIT3!yV1vsfdiLeo@L&otk&kCmOtgEIAJ-8XrN5i`6r@vvT3Qoo)v$l# z8KJ&o3ZIZQULaJCQotoH;!Cr$Fm1%Do$qfSSrug&VLDKAgs}<%w$(BP=v!c3l?7C? zHOxj(ZfU;1FVO`d*9!6P#1U4`EL^jUpkrFxT8fJXR$lIS{R4H3$kTCyb(Nm;{z@%m zqOy&_dkd*;W|su7%#)TX6E-ntTBUy(JI$Pn=;#9=VSmZhPr8Wb?&cvCmZJ&tE4#ya zdu&&m!)~`-1H{UhC!5}5E@Gs8GGIMuISdB~xFVSnlBJU;+TOfwJG=*gTK%E%U$)k5 zs~i|5qHwiR%D5e)h@Jo-FliT&SqynP!;VNDadPCyE|3rtFtSH)W&vamL1=&6#BqcT z)iCT_Mj+6baVKQ>7kFVB4Go!fQv2z@NuZ&dsMc+*v9*W}i#vQtMleniB*GeW?z!1L zV6c})Q}kq}Vl~om_hD2&#_$qGDY|t$ACK){Z%we*F^XlqKCTyWu6+{q{m?AIUSgp33-Ma8 zAw^!Sl9Szkv*skebsI5#TEX$}&x~cw^_~dI>T=EzoVxJ~*?3mqP``gbaDIw8d8aqp zgeD0|r}dY&dQM84DRiNk7#KP;^Z|RYDncSP=n)}894QU^I@OgvAW8=t<;+vhXG8Sp z1sas(C2|KmwEO$6S=|weY)c$aP!&oe?GsxRRse_^Nz`Qj6z`)2kd8bX9>f4knG6oXs1%Gb#tM>l6>F!~; zQPR)FjgSn-4gt*RCsw(N*W_P(9amVtuqvn7GpKMb9Q`v4O}T$QnBsY%LARWf*>u4< za$J5YkbyQf;qb8O<};4`n6WIwKyr{=Wffr?DmIIaxj_ELV8=;bgN&U47zWihoM&H? zuCBq5DZKNSk=DIe=^;%^9-b8=!as$Z499|k)Ct&EesvXoH77qrEI$^( zu0{dSOkix(ezh4M4qwuOZlhEwW!vW5U0>!|xDy(S3LCCQ^e=C2zFIps)lVJhm*VWO zP4j};VY%@n(KZcMi?n%V+9ww3RPsnHsTUQr*ySzpb25K1Jk2AOiII#J`L;g=T1895 z!9)Z=I(^rOVPVp7^lQHqDG1@9KrH4VO^50xelJF*OuMvHlb6Yt%T;3?|9fx}V;`3_ zVY)D`B7^q^(}f^}3%7h<2=<5&ldn8BL@fr}G>=a&Net#`Oi=4%NQGLGX`dviray^s z2$w)DW?FwuO4>*A?EQow*98N{s1klR?&{Q>=VxD1%$b0&GdXs7cLcza38__6G_zat z+ynDuyfD*Yz1g-wDm9K2tszdF#(qecYMjY&EE;x@EVVXPiFA|Gop$XD=Eqv?=E6{4};cn^wiMLkzRRRc|U&yL@Cyk_}ojO^OHcF5r|STd1pK% zgs$R%M<2JKcg?HWhe_fCO431heWqqjC(p|1>{qBF)ey85jB%!~KXH^%k3la3B&`B9 z0zGKE_NDZ?bwbARSS8{8i%G415<7qr3wk2#Eg@NQ;*oskFL3&%l?o%Uam`2L*L)5? zZ+d@>0DIZqqu`{LQeZL)Q#gk(4}mT!1JX2^e1vMQTrol?$V>=G&`@b0v5&5pv?}7w zZST#_Za-{;tq3l$e>rPKT|AF9>dxq_A;h9*kIBD+kwC7sN(`UGXrA! zjg`BOKSowh%SvG(49~3BZ)v@ivELexN^4u{>#el#gKirmsHKj8^js`kg7>!kH^+a; z{4f}qo(}RZxN>vpZlQ!UKA!1CPrppWx9xs=@X_RfkO?3Wrdu7k!G-S-Nw{|c>P=wx zc`(4_azAjRfM*^f*3l^7-_0(g3|ymMHqu281=Q@Ge`JMAVr0eB5@La3&~@l>`o3(g^)p7=noiQN+2}z#RYsZ>^pfk ztaV6k_7LH51p%B_``^ic7)Uh`@xve*ZWu(0jzH*)vHc^t0hi zs%T-A<7X0Q$3+)3Sqwq|s5f!yF`qY7T6rFr@xl}+8>wA=aaRWHVCaBNF`45ezm#<| zR2tTLOau?L$9S|ykO+3b8&Dz>=N)fu4zlE0$Y&SFTIXDns1rw1b*_IX@$>c#)J$Q^ z6dq;dC%pj?APm$WhfUN2?i?EW*klV3R(>_ZR}0M(Q&gpB6z&qoikvx@Gndx^k#la& z5Y}ACE{Xx90m!1cI|qZ^W^rv8o*P4>g*u39yBex%XM=-|UI&i4&IV=bsM(Hn^OEFO zl-JmnkyNTPS8D?|l0tv)!$UL#Bd5d(=wCQn*4CUa`!R9RvIvX^yaRQ?qS02zqb`+y2L*HyK$izDc0 zx*T}4yv*`N_Pm|lnOidmNrAN=TW(R%XSGT_UTPqjT>2y56Fq;KKp~5q7zMnraM_1i z@le^^t7>jd9yckpFXW<}mS4@6qKQPV2m05T_r53EFya3aoEgsEWgCk;FtCf6q7wub zqw@5V1YA85*4dmw8eir-IqqZE2JQ%3ZF()mfg8JayMDpAwYZFH)Qf$)-L0O?#yyi3 zRojTFkSM6GpfP_=3W-8OP_BwP31{c~apn4Hklu}~OJh3fO-QpK%Y#Xzly7Pxk1#}a zxB{YjFknaGyk(T{yG#DuDM2I~c1~G??h8Up4%=EGOA;w^yltOOt&npNoU0GwV~|{Y zbkwj5=sMxzGGq5kI(sha^CDdu(@!*2f~JV0F{!JLITXS_wb(molW zog^emVx)g=QHrKghrag~s2C)Q5b)6)(g!(w_%KKH0Ugo_prDy#3~~I$tr2i20|>W- zcUOw;D-zB?G!Vn!b?ytl0b=@hwvGUy^Fn!|u-#J>rf0-S%+3=5lxZ)x^On4r)GVDlDmI?j)k zRk*wTs9Oq8bH#y9(8z<;UG0K6_!M*Nq!n*^;{&M{FNDhe*eZE$gcYP%FB#`^BH>he zVez(hCvm=9;?%^&NG=hV4B=6VR^hJcY{At{qrSH_t(!S~lB87H29!}S>i8Ht%&g{C zhwOjA63UPgoN{@Ghj2&xs@>pH{~*M{D~6c&n|>$#YxHt3zqBQcC!iL9?}=Q{bocG> znte(8aEe3Oh#NdVZ%|mIkQoHlLAj1ZQFeGkT!%0%jR$4aA;K15ElNMsc1$b`<87^r z)4 zAW4QuKaEE&oSq=jp64EsRwV-tt-_1@uKnxn+=!N1O5?R*7rw<{@_sM@9wbqrIOBic zIJvdkCKE5N@GW%n5Ma@WvwK zTO92IY=_%*e*O^vfX941{}^?+fWckr7sn{IQTcGa7sGw7I!4{i7|bM23rrX!nRfi+ zzJH&p1r|(Mls!+JL~+5Aa^)CcYzu!jP87Xe;R}3Y_f2m=TqMVguQr36JW8Z+FA}bS z<4Q4Kg)@PO%wfivW(gon3IwCkn?6bbsb^BwELrpZ{N6fT2OnR?9rs-;X*LW#PWuta zV2SR!!{hDd!OkK9OCIK#@HlPnF>rrkaHB}#zD2_a`1ph+DV zg(myPHvHeb#7B1VF}Y?TJWCHISl}^Oo1_mbYWt_c{;wROau-Y_Hq=P4qPK1y@7r6a zlvKvlv_5FI<0@=6TFIRWcaMU~*Ni|a-92mzgEKSjD;b&r=9rY}68PEgPZ_VH@qt1?BLg(9PCk)kmePCIsLD02J&5nyQNu-&1udXYQ++{mj{1Q*k}0 zyLbIjXTHFBw~3lz#ul4i-8_G640ndoV}6NrxVoA9rQJVo*T8|f*uLc0rEQ%rPDW;# zH5CH0LZ$hu5er!i>$M{h<&qag%c*k{KQgib=8Wra4=1{SicB9TAZR^}-ZtqNboR(Un{h zWim$=S`IBywrL(8&F(#JPaB6``EcIdj$N_beW)by1VdkpdafjpXSh}fe-i1Qzb-bs zp@Ub2nh}5dnWsOv9a`31MFk@yADHYyA&^E@>CMS>VJ8ci#8{!@H2lKp2!-r3?QIA| z?dbx!ijW#Ua*GWrLV_P*II_WdEH)gSiTQ4?;->|1mQt;Z$>?NaN0sP=&~7n8&OP0m z!Z@x;`ik@7EhFikk*UB{ak+#HaNP<|J;2pK1TTNTa;{v0IIRhjrC3pAgqw2MG5^GP zV`@&M=jEz2D3+J2LKK!c?A_t{1u0&T$U*?_o7LlbXPNqUTgV?@rk;^$?n#VY$u^+S zz+PdLn}+Xhew-LkM9dT3W14bimWwwG*B1`KQ}P%J4oi_o5=!!&dylBO-a!>JIan(` z4DElJNo~L#gFE4WD+kkQCXud~sZbtaQi}~3ta*oI>b$8u_UE5nC*#gzzBbLLw!1yy zo0@1D2T3RD1TU>9o?CGe5vT9cf5LnhyOGDtbf;S~GGD zsh-qxkEd2bN_FBw|JL|GkKTA_0g_HZR4ae|jHrqvO#FbAVgZG2zpGR$F!zMs_ox-T zB0oUn%b@-dB70TCvfbI#`OWpiBux{{v_&K33&Tk&pP1M@<_r}k98rK`5L5=+J_8)H zeBGDTd#|bx>g2yg-`{BihdWT4=?j`TTp$NgckzYO?TUN}R=t-Go$RNHa}=mdmwXVJ}|pBG7**;|kL`1E+?s!xdb2XeZP}o)GJe8vi>sNfJJC6!Y?6>WMs7Gl+;AVv89mJ zUuMV7&kq7dp@hh|k$5-o+Dm_qibJm6QI`mYEW3bYRE4T0bg6yb9&fL|s3 z1CEHM>zaK}^Bf}leL6w(poLYR>-}6RH|`&kkKihYDiBp60wBYz^r(MAq&9O2oSbhL zrmKT~VdwA3fB)EaxBGdPqEB(OU|yoQq<(PUJ8^L5nEW%s&B96tfCwDQWE!nRDA)`^ zenz0bAeDc-Nk=`_UuHPS>)BfF^yV%ST8PxFyMqMUPlPW7rA1~Y4`-T`U}6rlPx@!| z1whH+!u$65W~1OHgE4=&Fc}fRS|I1Bb@@QXADzU34WA=3p{dSVzCj+jlkj1Q1RA^f zgzrJhrV{Bq>7W%vve`zrsfgf9tf5FLI;G>s9is%y|BlCM(+2 z!lp_6kNFKgGAImBQdWUWjkdUVwhl86}FOyqm8@mdh>YL-}eJsPUg<;Jc zv0ZHrt}$2%0qB3&mW1?eG5Br_j_XgunkIbLiO^1Y>&^ZB)}G5|q8cCqfyv;$LOC(U z^nX9O!xs%D758zb?DeqNA0cse|{-O6}byY_UWpB2?vjtBd( z>DJqJb!tBE4p7aoP)FN6MQWb0`iW~Y!RHpPf@ptBMk1lyuO5LdxueC4XTjv;u~24g zPt1?^zi|n+s|c1r+BihCCHcT6WLELbvh0IV;u5ier&2U07xLwZ+NX|uB)Bbfphl&_ zESEz&`+m|zH8ZSS0F9!LcdEQU3;AhiE&4FT(7QQ`v^mH@xL?Xu zv_#Cwh6Sz+=;f<`$CUW}*7wSaiMnm+h z&;8X+Ers)9U1HM zAS(>qej$T9YKs*aSEV`Z7y*T&J4)gjEsV_>>ivFuZ0>fg!b-&AGh9MJ#*2tM{_-`~ zNB{WLZT-K(9a5$1aPQHvif)#ahzJ}|$}S@C5qnEvsZc9r`#f;NjeKnH&3bMOh?26Tti{@BluG-=nlv^VMadb+-Y(&U z*i-73uy~y`6If%m~P91iC&Pb|+;>3E8VC( zb|x46Vq;Bm4dDy9&pDce1uQz`;QZjP&AWGloK)qhGRY2-gg&MlVco z^KzILPbrgDQB781r|B?>MahL=78j_tlb`DVnU13AK!!SStztSrj4fa~8iwBJ6HD0{P?H!=@1SJmdneP zH!ed5RFAuN{l^{}NEtgJJ_SIm=c!{BUKE;n|A z+1h);kmlCvIGHRTUwSX!xxE$D~)Vm{0p?psXv5Is`64IP|lKS(@L$j1zyy{tRSoi@6QJ5kRb>SSSppu3TvI zwr-Mj<*Fk#Zcekr`TaxOoK`L>z}`Mv1X{J`LRh_gytRLEYbqQfAC2v{UT={ zob5nB*w;~A@OE24XH_id?pE+56RN?cJo^b9FQNzximh3+yGEI8UrAxul4kvt|Eh zEfEfU>y^d*zj=HzLE1|d2EDLUWqbHKE^sh}f+GG=h$uf&ylI*ZC5{JV5`TR2v;XGd zETuZ2P!qKfqEgwUCI(_)(iRrtXVqqzCNxP=5$1ZK#eITkIpC@cwj%RpPg08lK1anS z&lP{XBi+Rzj`*>5W8dve$I6E1Rg?~@QM-7h$S0KKc(4S>H;=Q9i=?DP+PPY_m>$SP zk55=z;`zh3!$Ky4NpdrW_>?~9s7|`ZS_#Arz_Cm=96^V zc(J0FGA#uHM*>WI3UCwvZv~M31lT60hoNFf1C|pb1+gN@QVjT->4}Lsc8*kpo@9SW zRAG4G#`@MSA7zb!D}1{+y>RK=a&(qlXRl@qJ|DV=m$*tvLC~0XL=UfSM`}epuG~}- z#ezWh5HSbT_rJakaOZsw`yNeb4g|zun>QHSfk|_{3NVN_h!Org^MV9Oo+7$4t8~kD4eaR zu=MOy!x?g8nQxvJmn7Jm?m$=14Jnn|sXVzliUduWo71Zh#sO~%oGQEx2}oiYx&p{g zg&sa{Pn+!*3{@*gAS%Ux??me(>wc6dm?eaN3|_wX!PQSpAV&-v3>d3G;*x&~MBfV+ zXBnhnk{k=M@)h&M3WZhp3TjN_5jK*CpvH6p)VM#KPJ9Ub7vO;znNYC|GeWw9e!Pe@ zv#m?$(*0}@I2XLZ#CI1o0Ld)`J-Dt6dN8;|f&=DF=y+n1x43DG!SM=M@t3@SH=&y* zOpQ9uBu8TEij>U<2aNpPVyu4@_IaydAj6Qsibhkz9I$aSUgCgRGs8!@DG^6LI z#zgw(^#j7@-H;xIHfWAqQEJDZoa_@fvSsz3^q&?1t1d}JcGRp|NX&~kY9Qu(#g9Z- z;ab=c3>$Q@L2_p1*7SE0e{@kRE(Y?$c5q#QlTl++!)O%XEE^RWxKMn)tua~KBMWUn zKIUmb7ykO;(A~epAY^}OffK0gG|+@c7qx5ipr8|l!XcS2r>ej2#a^MkcB91(C1Ejc1bgY5H_A3M^cbqTwo#6PizFUL4`jj(3+yx zKH%Twnu6u=lFZC46heo5v=wf4RaMqw@ZfC4r6Z~@kE7LiYEOS{cXxOR?mVq>1oI|i z7ds}eDwU-=;w;sdam9hx;5xWiN(pXsTE44Hh!EdGY06QEsB=a?-ssdnERY5lS zY4`cj(vaP1NMe6do3wqkF*hWtiLt{(Qf2x&qKR3wK0}UT&*-pL-`7BAg3OD_#TYYo zOZzvYjW3(MBO_E1gHwKgfwIm=v{?0FICcuRkG%3GfDxp1k&>Z?B-*~o!0(N$Qb8Oz z`ifL>KuZYQ|Jcug0m(Hl<^Jasr>vpbw(kkVBWP9n_!58BN#YuFzg7)$Ui+xEPlieg z8+uhCVvIGb*L~sQ*Q9uB)#kEN-Sq($gMjv(mn7tQ{&4WyWUp8w-nyRaG9&H^SmzZQVa+BwW!Tm3;H&~tx^Vfz)&|Kb*f7^fqu`xI#dYB8=GL! ze|Oz|eXsZkE~y+@dvb{C5?1b`RV0z_ zw>=(*{c&q#*q?(2efYtp8ciX)=?@VPizDvpUe zZbUpH&J_LdY_9qyfom%8GI}hgYD7x8POH(wDV&sEXHYO;hGGzr+-*IHrxAlzcGJz#Eoi| z6(oIaX?T zckRCYusx|l@|7X2OLpm$;+PfmZ!xf#>?yQguny>isq~N)V|SHZBG(_R#ABLt#PZ_b zy{gW&r^Mw2;{2jSmrfGItaN|p(+hF(*iV=bNNFb;(}T!i-)p5kxo}&%ntRdnz|#(pqq!;Ul5X^} zsxmK>NWG8&aPSIhyWM~NS9_;Lo}O87V(tAosDb?4osVIshw#y%@Hgk9OL0+SvHcsm z+yk)`oXbo&LGV&DYznw-axG-TL`6xCfg4svPjrs?D9r7SiCl0XQirX&wwU(^JZu}B z>MlRFA8wy-P$dOc;iIo(Z6?7?w?R(m#dyi-t&`e&z}lJ6an64kyH>l0+@B=P!>) zJ4P>59WeV;s_KBopzr9o;5(|+hf+BpVh{2dDjc8=8)NFW?e1oeC$4bf$5099P$}yR zDGlT>4*KmVo%eqhZ)%E|4P}+qQ^?`=QTJF@D`YxU3e1X@!l*4lY7yQBbMl*sqC<24 zX?yhGP+-qsYZoQ|*f&(w8oe8;5+e%jJ3XrGN)M`&@f!WJLmPlMdJo$dIhbga#@q+0nQRJ?OGLo0L~yVClSzv6o|eR zTZX_bm|z@}4qr7zA7#@vU9%O0jU>W}Vbxlfgb^=<3oq$!T&Wz$? zqP0@w=Wc(6;%FQj;ytnR)g*SEx7n$S>0*R!xrFG7EUe&+^9D^B%#D>gtYanbY z#SZZ?9wzQm93)V$q&$_wPhF}I12YdC^uunuIo}!&JLYJxF*bfcvNm$mtw-cLtaW&! z;KZ}HgS6gp64|9xub-sV1yKL7G%qM z@8)N3T-T$2@+Z!;k}PNe45rC4jzXE}V%;c{)BUhhr@~D8*rbOI-|ohzoSexLPR^t4 z^;ms0#&PZDw7rN6#DvUB0Su6R^4#E|@S6+J2mP1xKHvh8(6bPkli7E74&t{|fmV>P z*8i>&1VhP@&rr#`&$oYy3SBaJZJ;oubR{-U^cFII-yBi}6C{xQgd;;53v?@mXz)U{ z3B|8+Y^ie{5?bBMo$!~DZaUUkkj&D2tk=!zFK4SdkY|b`PD*RcLRR8PW;qV=RH^5= zzEO{otR!JVK7hrs;iAw!875d#p9{UaUr0%}j~Tl|aKztUSE!se(kAyQJQx5SFZ2@- zBnc@4KXLqskcFDEXUVMqrbW}kVrLNW=*$Rz&wmk>By!B}GzR2i^H50NxMhKdNR-vhF>>=GGjvuMH$83!Z3m|Qq0uBcx0w018TenXaol^80?!WAuc z9t%=aSDT|II%}_PWM59V&f`!{FZJfA<7u^Ncg6$0)!voy;!_Xak~YED{P>*{Y9e;X zSyR4fSU+eUEDHusgFhd{X$lU^h46>|mog-t!AxUKrqUiOtgZGb7nVf|q9dbifO)3QJqc;%|uq|R*z z3FJzh8@)@?OCek4tiwMpL5ou6r;z@j|?2xQur_0Sn7DB<< z(*PmDc7jC2BO-nmWE5qbCu4nof0X9XdPubcBMWR=8>vHPL4#QU8obV>Q9*-tGfWI- zqmWa3YcF3C=QYj_`SZbekd1A1y*twZ;>Dmu8qorSS=DM%t-u(K@rBlK%1QltdZ3uS zRrkOCxz%SCj0ZoAZo>*Oq@`xS+|)}Kq^2{}Z&D_@5KQmJrS5+Tkz~(*-xoLRlWh|s zvW=Vsn&b6Na$94CgTmOlPL!_31sJ*qcB_x zWfz;dVCzs;*vxeCnJ3kMbal8Bj?UDo>DMW;*D2)8=Q@9Q!4&d5Pw-bJu^Z6DSUihD z!Khc#U4GlkrRhbDfID_F(%>(EUb`zb8>V@Vt`7VH zF1Esa5#ng8p(KL9!g?5PhGWPhr#l3Sn8e6jrwq;fvdMt<;=in4vG)8J;^bo5=rNua zmAFa>G=l~ynY;l+%76Ovhd0xwyF1*4{Z2w$tVMnC;6)TSlME%=-ib(stTA={Ea#n4 zhAa?&g&lT-bs=Ma1_fb4f~*NcuXjZW6O2vlu&A+6smhAQsF95@o1AVI$_=}-vCP{sW| zA-zmH`&*~J5w0MZ*F|GAmKIS#Txn5cyKGg_rGLG-0rC9)I?vV0^q=|uf`*eX5rmV?BFjlzT& zDk)~5#ZVAG01-uCebYwlwznFBJV~%{nbcE%1UTFyN+!*>y_w!QIlTuzw*e)E zLZ~5#jLefi$l0wk9dzl!+FA`Ffz&0FXNIvL=x_=Rh;478{Z=fU7fMoqu(%PhQADz2d)WN3CDp)qZfqnca)BU{Nl?H8k>6R9U!L;)u;(X#ZDU&Cmhx{W})IVuQ25r z$35eJ4Z%kx>L-y#PZ(ondchb#=8VpB^}z^O=7j@`W{`hOVLs+`r~`tMZ;)mHhg`x+ zejeVd|F>Z5C(N?VrzB+&mjKHwAsAgimCA&lbg?k}C8L%`Yl7Trml;ld($;xb4(xkz zvBn^RTa!a~*W4Ov+sZk(O#KM*&GzXDLwIX{L6CESvFgN-&H33$>OBxho(1DAfS+T@ zgxMrkfV=3Ahaw`_XbE|&UkJ~9d{P!d_%olf8ggTkdnY#wqjNU>3Ap8!bdvnzQ@2&f z(y-kkMezF=S|E`3!f@N?nL=X0p7l1(hQ8P;hS2=f^@yBX%XLMD#b|Ti=Sm1Y&+zhp z^B~ZqpF87hFw9OEIrzs%j7XYp?%)!BF?A(0y@G@jUD_%yAUJYDQo>U!6a?$;i}1(- zwK5{m=y4~_-x@a{CXBo>8kfPx&Oz$S(`nz%p>yRtH@jnVGZ$K!RM@-TJO0_+shQqr zvxo0`(Y$SZD~tbxY*hi;1r@NvK=a6dPdII+^IPTQ9VrCO0DuSrr5aImxWZJ{3&A^_ zA6tXFIDx{*H2zvfwQTE6bdmg+V^0zeiXXvF8Wa%e4O}*~hXUGZ_wH6F90!(kzi0Qq zH6k|AIiVPFbvHV~SnG!cZ}iEFSGDq)fmsX%alJXYY;$%{dPKWu%j50@2BphZe49Yui856G20@56r zkLV)&~|L3t97j(cJW(m7t*{ za^Uugt&C-PV?yNE2ZxKeeUufCdQzk%VG*wp!!sOqtZ((BQ>&m?_1aX_TZE#}yD8jZ z-y5qn^zOc-&4^ANcTuv^W>m`@(2qh8a6o^2^Rw-J*PhKyrOohulu8R+x0iRWE}M zaj3%YCQKvK1w~{9VhXgWbDbl9 z=p_*+Xpq%=>JQKg-|l2chDxM4??hH2$)XhqY!Me7Wu-;|TzSe#9)GgzfXh{*UF&@r6iXo`U=_^hWvQ28ghU>9M{MgrmQYcSl;7C3=DZdcqYBDz=ejt5uchzGskqm&-JM=U3y>!m zX;@xw&WLZ3Li`g8he&u6XQ>QqLyj3OcS{`m7RiZQi0^1*!sxxqd z#Fa0QcTB3VGlu9rcy|R~GH_-_rF4pB8WBYA0COv0(@4lJyi;*+rQW7eJ;E+cY;7K` z1I|m;+NFDc6LIO89;dCK9(7%FD^YT40&P@?N*ybasCd)@8FPOjuaqS4-nj)##BZ1< zg3|r*F)VhGOJB)|hD`|5%%HL~TT4kQxf(tVMTFNPK}ztU4(drWq7;4?h(PZM5}wQ0 zMQEPKZ=RuyeG-Xl2gbW>o_tRdNXTj~>ClNJ=(R)Qf@*W-FEnHG;|o1!%PNsl zj%5~gChf*^Y(ih(jYmv5{|Fr--Dv}s0xgN9UGhjWFXQAKjH0K;%#*J!)8+8|@66V} zh$hp2A?K8y=6vpQXJ_-BFOx9l;Uy!-ong5ZLx&Fs%N!jXM*+#1hJh4{fQmjanr`R} zmf0^LZ$XPEv8}UHU1s5d^g2OWwyC${zgRLdZxViuaV-f7#vCdB-Am`cS1yq0(df!C zj(X6&oKieV69kc4lFFP17Macpi`?l1q9g-<3+rA4>(Gt^2|&RIVDr4dwCuK@!X6(s z4SpKpMrJw^dPniqScBl10{{{7{mHM5pUVbMmfCMZ!Pu@r-UCo#Pz~|9W?i!d=+L=? z3w+nSUmvjLtZP3S#iSqYPP-;a*8n9wo|@D9eQQkg-QnCpdUbbLH@o-E`LsE7<^qv_ zA8+@^r#>V2ez)C2kAt=T#y@|5xuR^A@BPQFLHWGj^r34WTU&lq{?4I$zc+tl;y0K@ zb*K0D=EzL^rFMT$|H{+(Zny2PIQn_NC3d;*Plxw*dDmYG``3GU?++i|4`+j~e$(!r z-Zw^|Yl>CdruP=;z&~`KnD6Oetc{?I82X?S)KQSPKT%M+S}3B$K&aD{|~dPoevHLf)jQLC6m9aAAf4Y zFc5_AeF~$yEh!155w-(u$*F-tU0Qk*(k2nLevs5Ue)}p;;v|q$kE@yec6L#@*y%R= z1s{|(6`}<}85m)uGMfs$H_QA1Wg&7Sd20<+sE2?S^<60(6V}74w+?(%5V8a^feBZk zZH$g#9K;qh4@GjAB(AO3Jf_lbuz%y?n{NP52)V}^B9}aJya(oPB%&iyiV^94d^-T7 zz|evQ69c9N#b<8>ufxrTLAh{h6?+FattWAG?}8eQUDp-ebg-uU6o0N>-iB3kW%j2M zfa+2TCOq(HeO=Wd5}udDVXg>f?}q6HkCc?(0ub{{gcBtqubT=yhHQpilq+x|0~NQvsNh zY_K{4?VppVus;IMrIY=oC6f-Z5F3IMb_pc`002+|000pH0000000000004l2nUguO SJ_7BmlX0C z^azB9-;N*u`M>;azgv82+SB%U_{FQ}>*cFOb66eM+r!6Sy!xL%e)F^P)#7xn59@k& zJT!m5c=fqCz5175{PUnUB)x+r*uQuoN)Bkw=`n1|K`}*|t@u@kOPd*&meSJ1B z+mEkLPi<4LPn)JW?{}}`!o?yy%l9u{_2-M zKW%^c^YbsuWg6!{e|`St&tKa&x;K+zDc^tk)3@@S-z>|e`7a{B9euSZ)1~<*ip@XE z;;ThcnEy*s`%jgce=_@C>He>hzyDCThtsb4EZ?`AaWcE{VY_S0;y;|u&HC$)$4_5h z9$$Zo+}p3SWt>D=4B~%09@p}{)8^Qo<(u{4P%l2V^`~aHYvhMf^m`?w{J@r)J+AK$zv%QIU~1%LF%FzVXidy{-MDi$ilcxAji` zz@Ptd`Smg?{^`}<|NVczTKxBgd9^gJcIG&lGwZ!`Xqxr)b^cGUp4xhK-mV(&t>^7| zV-H>TM*2^$>`r(u%?dx7wVwR9cJ+V3e|>5W+hgm!VZZj(KYq2~VoIUj^oM46D}$9} zD0xOCk0S3y^S7s_-5RZJMn#RXLC`n~1g(UiCEMRngaX$>_B<0CXkMHBeL5aa{*Qd9 z_uJiPPtf|wJc*}vTc4X(|M%f;@kl3(PwT!7=2jurf!p^gp{05?>LOV{ErzfLv&3bfMQbR&J)$fe2AJ=6Kf-a~0 z0k^E%%WxeTT#wR0Awr6M#D%5)^0}gdubU)bU4Qys@w8*m)TFfL)T(Q;v_>?x|Cd>x zyRx2klGuNYVNK$t{XaOD58HNcqLEF#zth)_(kOxj{N=bgEZl!yosS35yk&1r!C^JF zv@@sZT$j$A;%|H%FEh|!Yc>neNw`uvot!*Ja5dwZKercg!Gp8==DN{}Gj@Bo-JTvn z<*6GSMd)1$(eQhfCCS51^g%9@h@bW1b8(kK+(LY9!9`1ajf3@YS<&?u`ra*uDk*AY zS%TjFpt-O1i68kH)?o7B)~=7&G|X zfLhHpu2q(T5qmW5Py6{`qTcOc-C~>^cP3HsfVppMRW_k!G|KtAsIn|TB>|Q6r_5V_ zz0|wy`LlPhLch?Qs$aWp)Rp?pugn9O%hUZFCCVggYf%CTsIiYIzg#^!i`^6pt6HDg5s8i^=6kg+KjA9 zx-``?4{}wN)yv%3Qgm+Z;+~F2NT<)X4*9ek0L}%)i1LV+DqzT#i~AVi={I zid~#3SCj{zgFRZAAjJ!Xv#}VnL_K8EhF>YR(`Nnxhk9cINdE`$dbzHOD;=B>7N(&>VWLXT$iy(F-5dJ z82{SbA!qoj%fTpNW~ER+>C6?=x(saCpYgu8kACDrySUt5+nMt5;M* z_&o;C9jQcQa^vP z&_0Q)*UN$@Lzg++LiSw@U!A^M^AhUon_-WT~mlsTK!*7r_y9@=SfiX=6wZ~7}b?A=>oyW!Awu|d1 z8od-0r`O07PJL$}6I+c~M!l7EzGHux*_VZltb+ptqS3`Snm_VHYH+9B6(wyyo*_*R0n~%M>os@HxsS(bDBGSr(;4Sk8mxSN=MFfPXj0t~*;i{04d#OQoLfAD}Qe1G^YzQcHN_;tqQbpkpGmElZ zU+D<8X1m zG}xl>R=<6Idqa^l6_UzgJ(cAue}cDv60SB0Lp6*lA^RZ(55#kSYtEv?j&u7iR+iY6 zaczO?G{F+?kVwR&qfI25xagW0v6@j?1C+X2x2vVO1i$^D!0i2{y%Sa%6=}SLzqdQK zhk9{ZZFbFSgUOIMbJ%}RlJZ!p(3Cz+!phnND{B=IExA(L#^;oW=YYrikY14PlDOY7 z?#jHw5~S@j8PLev+?P&Uf%}X43UbJYpnz}8xd;~YJczg~q?-96W#PB8vK&Z^ap)gb z=VPd;kWgZn0xL7uF}Rr%j9PjfOPD^|2+O&4%RW!<6s>deuG)X*bc`IyRlPF~%DTQc zUZq5G5W2NuwE6zMdYs#(?mwJ=JYUcXs>^1X{5Cl$w#uc0v^sa5y6$1(i?n3p7prlrhT`t2vU#=czRXuO`Ns< z*u20sjME}sqKXXAXR1{E6NlE~-XW%)-v*-lT0-+xaN~>Q6ykv*zmzO5ZAcpo#UGk0 zBzZxRWk=|87Q(Cfa&Lm0;NLrT!hR{J=37&O(4tvQ3F?0X7*EpL2k*TMD}G$`NgX2j zdDNl4w8km{)@WrtqWPvsWtLqV5Ik)H9WwV?TkjSW zB1l*)5es+G?<#QxWVoqC1CFS{al0w*Z|N2JUz&fiT%;6(6bMB6rBA#m+KCL&HrMUD-57nJ86N)51x;Ks77toB{IYi@wWnV9{yenAghyv)-C^uRpH^P)AI zNgTyUaTH?>A)Iv1C97?bl#tCmVrOs{xNmv3(4j@$VZGu{|Blvg-p^EVN-U){TGr9jaQTV1u3iXv@j5{lC~k^J53YkF0-g zMWuOZq4{x?&;r=*cvu_bv^us=$JSkTcZO$aRbj!wXi(=R!m5|~*eB_0^1ek)DRtur z9GlRgob1Dt&D+e)5iuOeDRbb%_ORZ5+OCZ@T+glO1R(N*#GxHga7QxXDVHUd;7O*L z+7O;CHKdY)Vk`%el8Yn|Q%T(_Nh*J?WCTJF24S#XjK0MpF9sHtq#CDU0ZaK@KQ z&F=0N?zBRNg-_en`Pgpj#pc+a_@6gUp;i>Dv`?1VNWV7qCGlO>Xoiu-Ps6Tw@6Eu| zp%40lWqWxDvV$1i>!@3fmS2JgsE91TU6ENR0WMUkfLLTyDK?Jo8WBo>QiOkl3@f84 z)}TD1wzzT)#B4mm3j44Qkq}+hu}hg`L*C??dYlgHJ{!Ayr}C9?TA~A2s8l7T_KD3h zW?BoUk_f5fne1?Ww?{8Cc$ns3h5<@rm|quh$e+vx`r%kxZ(ZjHZ+#?zA+w+3fMT>x zthq!8#*1LX@;qxh)j$9cMks%QiR14Jq6ApM!=t?e9z>Zc5hzB5{n0~igm4Gh+Ey}j z#gvvV%yq?77N1{PGLo`#`Fr;d=0=X~;kia6{OnXnQh>&v>bBl2R`ub01igr~e8*DF zk;Ji@38^B=Y=GGrmV%s4LBH)c$2$?fy98WOvKu1=&Y5?Pj@!;Qx{QAuBO{lV-o z3d`3g4>#%g-_-!GI`OQFRdOj7)xQd{y@irKYL3UI;fQ6 z%yOW33#l5Q@B{lLGgzN&f%0C2VrA2Y@^>AG_n|o)YziMUH(Gz^*VUMz!`PWD<`x#1 zIb^7K;s(C$SFVLb=-@#wF>|(n|B&%x`8<;`@OMbbCh+lvLKz_G4y5!TX=@XW-fL%^ zIZA#BD0wM#Nu(;|mlC@sR7*Y*SVg>4)QU8JVH=g!pozJJ4hDS9Z6wt-x8Y#GX?#N` z+Lv(ouj_VaqJe+=IR(s?BDnaIQMJ#DePesRIIC8)?D4=1?4f+p=kO`m0|PxCmto_e z$ZZG&>RmLjnd6J;_jNRC8gIIvTO&g<$Qcrfg;JS0Oo`kaD04M|3&AfVVhb7RQfHD# zMoV8iBSkwA>_LnkVWsPmAE=$#z;z{vK5hoFvxQ3W%q)NP;a(e9CNc6c{^hdUHjBrD z^`nX6Dfy2$Q*$PfmKlj7gorrcFi-mnuZ|F;VXExcc6UZ2Ad-B>10-t!tgNe=8yU7u z%S6cHh(Y0L4H^z%NToJO1FMyg7B47_!^S(cJxVCKxVD39`KL zw3b7D#4&$cRnZknQqfGKQ?{4jgOkE+A{O;}bHk^#s@2zpb3MX_W^583^awua(jb3Hm2UWs4Ztr&mG;=%5=pSA%^ybsYSaB)&Z1eJiq zoUmLzon+a zR%d6buo%dFKNx8tZNacTp<`v?>E1g&zK5y;0E%drSlzmW!(Mc8MX6qcnn3>1!wPG% z=q0~9l*!>xOl!ZQ5UeQ)vgBHGG~3N->>_`vhSo0~$fTLmr<{H(v2mj$pv0Euw4lv#@T&uwB;o zkFQ#$Dd9a((}R%;{&1yN|jZSN%zIC-O@(Pi(*JZk`;RJgf5y}weJ3oA7YJk z2V3DKwl5Sn=i;FyU}=VcT8ZQbl7C^7Pjf{iug{Y44s*VL6&GwX!>2wx?#XIqr7b6+oV% zPkL|%t%u><09Peb0EnY30-f@;-sA&#D56!4YxD*{EC({~E|BUb z7+wP@MXOGi)2aE}y?OO2Lb0s3$2B6#v`>~@3pC5C7Z|F|&=vXYiE@94=Hz#7BgT~n z8l8F;+Rz1?l}IOtQQ93LAd^Q1cd!mBW50}9lOAR;8r-pw98wI+$$FMZt~?0XAPiEy z@(}*RfyuC|N!@4ymPv1toHgpmYl!l^KyBizK#qXN=CE$-#RH+mwgdq=)th9gePZjs z3eZqth{8gZe9+{2gsFdc3^zgiCHnkDu)v_~&m3$xYgFeXQ`O~Q#k9=jV=MH=in84J zrrAAtt|)FQ$}s`e{f$&;Nf#PsrckL2_C|Db^?2o*#x7myK5w<>Jda5w?JG;A<#x!D);4k%I(X5~Ab`1lJ;%*r361i{e#J_)xequE&e@%Yl>!`${ zh1EOFl0l;fgULX*K4gYx%;yrWlg|rCa=>F1E)~TNQi$&y9~zd*g^~oJof9NJ)`t&* zkb+B?Go2u$WkN@ry50GKEIh4FN~UQz$G#$6T)iDrSm&=3tUFK8nKd^dY;t(@M-%s~ z97n-RXrszyhP{6=<{oXEXA@CfKH>zUVr(j(J~2$Gb5)3RWTb5*6W}`CZ!e{HPs3<} ziYKP=b`Sf<|F_|OqoGlIJibu!dG=e5oRr6wEFul(@glL%RFEa4B3te+ZFJ8HsbQYM zn;IjJ2BO4XssY~1`;v*=_Drj>$_>6DPO z8gN84U5F5_la>K&dNJxxrRX$VVF{rL?9-$ts zlg%I@O3BD(y807G8+8EmB7o2;kR#BCrfpuztXsuoAdgiR-ohAH>L-x{DzPwViG3w3 zS5AL=b4d5Eb5*$8k@{zpL3Yr#h(~`di%?TzFH?WZz4u899x@KT4cvmV=1%)#g_I_;FN1BH5=vAmDgRh2oijFEK`wFH2xeh8ZY!Vam zcEH>V^~cTAf*?Omw7RUq+5W9BiE`;taF>5PHv#A_7-Yp-EHu2O>b_7pCn&MW0m7Eu z5C+d=#kK#gKDYpVFd;ycHjx}d4~{O6*fM`cn22?Fe~VTuA~peGn*&A&u@1J<+IL?p z2gvG;;KhxTyA41_4o^!$VSx+Jth;Y+t(CFf8h=XbRO)K2wElxm8?zFWav#DFFe85< zxRg9o!qP5cUK!aW3MEp-ng*HQHsd?YW!fG`y%kFl;k^_$#=rea8(xR|NHpdrf#mbQ z%qVdsei`t@-_bF$>W_O!JMtUj*w? zvO?1of4-O`;V#66@5No`3Ja@YLnlXrZv@{&8f+9l=;H2W7KGf_xuUnY+mWf1cuMUc zyOW*vdwDYdY%X_GfLSay-u|hExQ;WGh}llES74u+Jd31e7WQxUDXc@7)Wv@+7LH0o zP_^iX1t5;~>n^umaFSP@A)5FG83kWLkH&|kQkk{vEw%xb7@Lt@VG_%RS#j-z;YAuQ z!m9kf4xL_qQRy%RkE#wh5D8908^8hB=HR#&oSKx^;k-#O!L1`McMccktsb}S!`rooXu!ylh`0hBr(*#?-%Ino5-bt z0x(KS%*u#j0k8gXUj1?w2dfmFq=A9OQsS2BEJyF4L){d%jFl=Y^dqLB9`;Q4yEJm9#emZK;d1i5Jq7MK0>kW?kqsFj`oH5Vo6vx-~91sOW9F zsB2tMMvR(;uj-d1yq14igli8(b(s640N)=`V)z>qoNMS~Z35Zom&iSrEWlurB z^7$7i#1>)9oU?3d?DxP$${{U7>2Oju2+L04L@M0(i(n+_X8Tbwfn;AMCd`4b#4q!A zg+k$EHbP-?B)lQW5I%Ti*y3}WS8*Mc`z38VSM7NbbS!_4k*IuSJp4uT$y_B2_mcA5 zfeP7lgQ%5c9F!NN^A)Ud?EKAWcu8sWg7jE~q(fwi!@S3gJ~O@!^nd`#<<&#fUNgG% zi2;aQAk1k)%g~I`h4`gjoewAq-=X z5PV3@p-XsW6!G(O141*YqOZomnKl$_Ux3Yw$|Zkh>1~TZGDcRQOsvR={>*6xz+f8* zW6*d1Zdf|^$-O`+V0c0c6knO)Vz|p$0ZV8z$T~j7AtUWGw_zFD8g7dnQE0IrG|@L_ zXQhKFfdg3X71z&zAYU08qmwAi(2q{6^@KCol zY<7S1rPsFfbvG+d92ZJ!fHKoXodaXXlU3aIkR4EH@TZInb1p~@NYoF}I)#|c3>cz+ z-EZpr`&>jF6WmZdB?U-QNPv9jhO7ENp;v~a0w9&h$bOJr6-M<NjH^tNG$a8X|0#mA=RvoMect`!09szbhwvN(RI@(2O8$>NfR;FA6U3e zJp>m$cj)P80YA+nQbHbW%p_fu6iN8|AfXsnjp6GO77lMu-3&+2JfBxId2j2tSDiR-2CE&>rIsVphgIu&l((`l0#T{p^O89!h^> zs9~49MN}$%Ua3sJiZV)Y;k!GQIcbdAWpSoA9daMR2{Gy%G7_M0vCWZH=%QLngSS;!^F+-n>J+b^xN9U#}N^m zK!yJ01S!bJ)sB0l_W`Ks*_nO_u(4xgLi2@sA_Ag9b+Pa-doNG4%zj}`B{?`*?u zc=2^)ao3EJr2X*Xq#I)lcIcr!?(a7ac9aO{^J-Ub+h+05tR9u2S~^a@&^~{$K?3F= zTpdyYmL;+f{-#^%{Ht@iyU@}bg<-^>!YGnx-;KU?mS2tqKCuoemMpxZ7z`lHGew+D zX2~{mf;$wN>c|a;Q?dx@VcYE7Tc^$T$(MJ)LQp+J2$mjCu-K!wKyepYRQCUJ`%lqF z`}0uaC3L+_1%)#S!{8T=d$#o?F`{Q6s`Bt5F~mKV{lsQP!=;(Y+`@yVoY`ANS3u1T1#Lc=s@5=K5QwY5ySYZrGft3H2FCtlsEJ$_!l zU~a|J*oOh&S&~4^~$jXfa1Tu?Y6*sr!U-(Q;P|=WgMP0 zIT}Y=DQI<@q&lPg*1o=n%gg}lmX1YgGbXCT-xp--8ClhgWrPDHs0NXI6_}hsgGdY& z4;mCL!vt66r?s@W$ZUV2aavwb?gyQABR*zLGOa8_>dy0-CNy9MaTg{M!X&5?l52gG zsDh!u#4t^botgs>01*?xES58*@jUw})o&*c?cL zIF7Z>7>herdS<%12uHoJkf%Zg{4=5(VIBdp!UA`3w_$;!Et}P+IW3VkFPs4aeF#$t zW+4{O$mv2;2PY-env(KKj8PT)DKR@G2&zOtV_P+AzdbMkRXQ@6P)jyr7fq*ho@X{h zJALIby9PR3>CAtX(;S|+Dc)uCn=62nP5w32}`&{dQQ5 zqC^DF43#pUmQhr|rIo58wJGMOX`ZHJaA+tmBLS<-%c z-Z=Qmhs%HNe(;JV@z>IkXmBZXM6BP0qEmLu)W z$85{dnt<*8ntqZKe<{(5n=EnFu{Sy)v$Mh2;hN(DLo|mf9uvlKI3Sn60 zptr~87vy?DA`1#w*NgpXXPNkSTSz2dXPA+p>~Vxm$Tpr(&|Vmj`%g(mz7@;hAomH7 zT}*#)gP&F#i5?cr#t`O;kq{GYWo!x|@KTP;sDRkq7zvf_Y(z@x{jos>a@4jYk>uF0 zV7|pz=SjB2q!ybLSn=-2#CcI! z#rU=t&U1v3eL|*!z}ub4Uh-?>F^HBy(FK3uQ9G0}fEA)LlYt3c=9rT@Jj?suoRGxl zfJg)lJ)KwIsT^)CJK&Gui zLK)KXwj>;!lBl2bcrunCo@0!@wBDF?tPNrLD~zS_!u;1^FUOq^eI%ECDu-tNlufRiqJ@%diS1(dU(W?B2JydgHe)@PM z7q+X7V}HK4+_;QWRIb(z?cFUN+U7Gd%fxAKtq?`2^2}P>7b`qU+LQ{w&5Rueg$>Vp z`CYe7-a7~}BO@^=i(I^rR)@jUP^z+Jv$^S6N&az z&rN?}hpH5a8K&ud6T3WWe+Y66Gtq;}kXp<&R&xGan4%7vgq@Eke}CV!_xpC1k8f6c z7#jcY-S>{1jFIgmCxkbJDI-*7Q8EE$Yr5Nt`D)lLVfL ztdfp!rDOzJg?ZoM#FHusCc8Q!Nk^D+&3I|auC`e}wA=N^m&|`orH%?h$yi5~+4esU z5_p@;2zKX?aL5ZZAX1n&jVnqOWJbwF9lyjgack4K9!k;>(g*7hHGdev1yat~E7)HJ zA%emKHCPm2QMxK7J@>@#RRd>I2+908bgt{y`7EyWw@UJU4qchsiXqM?Znvw={&-k- zLs!m5eeazj5fy(`h9nWY<7Inl7Mr8%16DkII(j80Jz6uIB6~dhHH}ylZ6ucWQl#|7 zRR-fy6RmV8a!pH=PhQb^_~l5mC8E=Mz1~`vt=>(nP}{YDRzRC$5JC-?y+7#8WEZcv_3XP;#OG zKr%*u|M&m&UXAych%jN6kV2yH>&7s+^RiPqQcBBL3F|nPG{Ad6f|ErcCRRs)oY&@H zu2LA3pa(Um6sEO2CJ2S;E57EdNJ{tF=FsZ>;=|Ew^4(mG86m#@%W+{W{lkT2c3nD4 z;T(Sop%JpSJW;bVkLw$^67P+lx+Q**!<9ligq>`r_Yh7vF*AHCA*F1RLiw;4qhC3X z=%*2FLIT)IqPyr>q2pSHOX50!-o1)uOo+d4ovt*$+LoJH30kI-sHA4)xjw8<&&E>T zT>wv0tluvSwUVul+)}zkCL!(f^0)4k4NHF&ZoU6QezUF0=5cS|5tV?h2xvn@N@0$B z<8KTH!E;v-@hB5RjhJr;q$W7Y94*<s5OUToK{Cgjs*g z#EtRwU;cF4LhoHUeiT${s#_!{q6^8^TN6J7Fna$gH{W>L7)Nidi_TE>OVjV_6XfeW{R_Qf#Jp3J2)H^FN2lEHLkQes8L{MGg6#lfPnO-O%M?~tx8 z(wHA3eUf8|kr@G0F(m!>*HwB?5k_x-uY(@RdV8uLc2nLEZBgO_7_7+z>8231C6Tot z3&LYKGBok_rohgG7gNP{bDDb`WSfHlrqVH*)!S}x6~j3{IJ9A~NSK;VVxQ374byTh zjY$y)eT{ZpH)(F%H*2%@JEMP|xF{(5ur}1B)IPChj14tWMs9!ag!T@cI7=n^A(Tyf zy4h7K540m@<1@EO+sTyhe2@@ng2}l!QGv2ae^zbt4~46!C==7o5xLI<#UvYaWcTv~ zsLtTPN7jmx^RYl;#C_@TE~y(QoPOnv&?<9hr9c_?+x6P$#e?H?x>J93>?|$#!*({k zhRcO|pX{<@u-ET>Nk<--coes^mjby$#fTE#f1yf29Gn@PtuqEtnZG)f0|^MZAuMFy zD-oG&MZ|*5n4&Q?!0$R_i7NsbbD}9iii&V6Q#!DVtx!5Ml9b8N8Q+&Fx$)TUjBB}g zY(5|E2fd`E&1LVn@9Tf_hN6OPzlUZk$l=?CF~IMgv`YA?W2XHBHN}7>L6LE$1k4!` zClnYn3?gRnXX+9>CTm9g!|Hr|2=Wi1RhUzk9NSQ`K>0R{D-|%QLPkK+bV0EMzO;}d>`{8LHntdGIPE#yc~OT53V(EBkLg-+ zGDCcVbU1fevAS!I;tWGrK&gl&=%({x63m;Ir|t{uW4^^k>4Vj$IwV{r5vBAC1ax@A+Jp3_R->ve?k95TOM^3L%i8 zfn1!fDQ?spNgo5?x08}0;9W>MLDyQyFD-bwLKz`B7IICYQSgYDtZbMo)T6E@Xmho0 z5_RdSAU1AJ(%5g zfpD*{msPIx$pS>31b#jYf;iqv2kGq{Ke3;Ao~@^pL3u32!U$BfC&Z);x(xRy1Q9M$ z#s^7fPE+*h56HGf#FgJpGZkX%{hcIF0#j>}$j&;AT%jN+Em?sv=d7h}w0qJOKjPkQ zRB`SPdGCMnQq`D3{eKwsPTP7TwdXv}I4andL{bH;1xL|?0TJKIKPRl)LzK3~19L-Y z>eV=D=xzLH3?QxW`*L+Kx|9>OM~99PIWy66a%+k~qZ9sN@|RY}%VD+kzfMugz!~Kh z(|ZYxCnJ;Q;yfv`1kSBF-inT3%U;2RD_+mXl&nr>68NQBk9Os}kj{hJ;3_YQML_sJEzrTWT!*8451VIWbp;|c5#HCme zsU~dXJe)hBD?hybQ9qOk&nJ_rk0v)WPUwK4l*qvcg;!cO<>mz3jgpOv%Xw3|i$EM{ zW95HlwcD|br47o| z^4W$ptUxRLbM>y@3>_&uA*+2I3?XITEp_kut-Aa&g(fjuK*o(V9~qQ{VihO`Rb(8C z6fBo3dpBE~Y5;bK;N-Up+0{c=HHex|1HZ z5P=gw`mgCgcX=8UFk{gAKRNPnL{O4VkbBh?<>=nQBcl3%Js~Bb8R_#>7+|>Zyp?}T zM_G&D3g0eH&s`?B82l#Jva4By&&T%hC0aWmp^o|l%q&qX=G{S!c79AeM+69NUx&{``R+LzHc530woH5*Yk9vz^ zY&dsVtLK^&%IzqfOr0Nsrp!&(RkBx591kDRbms$ySKwU=4X zN*Q-AG~P?whLR9S9&fD&3p3`k+};Ri+lMuBZ6NU+LuN7Y-i|{c0ly_U5a|QbgAwGD zE=je#cfQEa=0lONOJ4=k6#9Qe)^ad4%=sFGeTnmB%?zKvrnD1|&YvW1)eoVVzJoQ{ z{Kn=?O6+^Uz>H&@rpQ_3#jl8q;t_NRBYq>8cjP^s8b&It(HywH)Sv(uh4B;0B-%A~ zDingE#lqVFYDX<7-5AfX5yYWz%Xokg7DM@v^ne_9>-(ue?cqlXqUL|0d8|#Ce_1^u zRNhV2QQA7NJ|!N?ADplwPYJ{IiJErG<_iQ5&Sn0e+HHMq=7DNwP~?W|;IWc71Oa^! z)9Pjlk4XbtJw4pV5O z@gY+S`tY|8$9DY^i;#aNIgXC9GdyD+UR18Vg91)8W`=6YhWz2S3hxPz|To! zkus(2sExQqQEh*X9S4#qiV9k9yEZ{QkM_noy+n`VsKS4gu+@o-mqRM;lfJmZMp%^y zBU6~_Z1v!0q%1z&APQN{o_So+7@IxHychp=-ACq(T&@3c}(Yy|#8n zm0hpzpC^B6Qvj@Ua2~Rk1e#tLN)9sFRnd^-7wlMAAUP652X}asNQ&W)-FA8J1Vv~b zD$8Yr6Ar^kX<`lT!d7Wk!BqT8JH|5vqpSPA{;X}Cmo22n8caipXuY8=7Cm{_>euy- z4}g=>(ZGk0cnxdPHfy8si~6u$m&0j@s=ol)2ub>0aT>3;$JJ&{ zh(>?rA`qhlQ8U&fQYJ_jF6N-V66P&Pe#;HVM61mPVN8$X_+!6z?@?h^D>Om!WDZH? z!TA7O3>TKQhKRpRPV3m!GB1L5 z5NAxhPOHiOs`h9*z+X@?U*>40;-aJM-%ScRiGLbV^m#$od$uduhrPb1y7An$~FqIkqOiUp!Q z0Ya}4-Vt(|n1faECR<=BjeHKqfO(O!ls+0!yP2Y$leKAfr>4GBH!Kq)^3!$0MxK9- z8{ZJxg;;aG!h#$EPvqTJ5>`MMoG{V2$0~B&(feRLZa2+C;%$|juNW{A&5)N|0032D z^+G{r7;kZa7cU z6&S(xSh9eVRh5^|8-Fne=E)3rd%aiIpF5e#e3c!)~92;_=kG`^v{cZy zCz)+a_8ZZm>Tx>uNleDAcQg^@l+)%v^+Y`7Bn+$*aGVpFrcCJk&qSu1%o~@JhWDD& zY9e!65@L?fs7ny$Gd&7>rR;g#Sle{c({w1;1VJ|08?qQGoO2~l>VmH5OsY6os>l54 zfcnLsz3I%Y^~9wEqU@?Y*M@%+M7Ok;^9v#M*n61u^rYyF=GrID!tl^045ytR-pTA; zfATt<ARkQ>lYT!TcR@G>HD|~_kSI5Sx|7;pbYuB~))*mLPDF!X zALW>lh72<)qMAPv=VR=S2XDxa;p|XBqjh7@>KGq91}#dcc&c|6)^mR^l%*ia>}9S( zS-y^!^P+rm@F$!acD&woi<@w+!5R3$gvw&bRX!7G$og9*I1PEN0!3$Di{LL&630+T z`4R+Y4zdv17Dc@UG6*vULAMK44s7AYR+6EGSLqvZpy693KE5(xyPAC7(Z$ogk(0SM z>|WjJYL!KnD^WW=fpDhr}+p6N!Uj-FnlzBOdk} zjE6TZL_=E-HA$^1Jc*VIdaN6 zLQ0Ey*c)XY>$`tJIxij=WBUiJ4nL{r@`zXfZ{~XaX?to$#!N|3XE2d-y%cpB#JC2n zfZ=je+ASOMZ`nPZ6m||11{+u;fl~I^*Z!Xg%IQPj7F7#El&(>~p$ahu(XI`oOmDoQ zI#3J?S)jgSvZeP zqFo2fgi4end?J*Q&X}_HY$`{z)6bhOL5S zp-zzE|D4=D=Lr8lOY(t)I|#fF})2hR9$x7}Rsjd&fKG?*6~A0UmJ(go`~$T{3A z`$mV~*=whlK5(faYl1NyOME{c+sE5M7lBL^2x{XRU(hOl%>I=q7(H;t89!`4Y*%#< z=&-hSO1g;c?2ujdH@6C9E}`zVkjxL>Gja=jbIcV1j!Z>TKYeQ~9OSB_+X)HP zZ$44%<}!JX5h}tc0u3-z*D%08JGrDZu|GdXGe4M0ZeDqvd{0kGIYO#yNiWvEqz*_Mw9h+rr)bPq{ne zIozEm+e@=t@Wr&HHmAgNj&L_J+^AHn_`A)w+Pz+ugH zEXS-$vP`sA;`E!7@MFJP?-{X-pkE;H=K>*^lcs6?@Hj4~s>ts|qpFks3HeBS|C;h}r>V%=Y$9U8=6Vk0Oi~=3H`u237$&Hl@ zIJ7}D0*M4^Fg_1}@i@5a_FDKhd?hj&fGZ<^)vl?vsRKla3^W}8#zcsvlw-*7wg5Ad zhs$zYhFqtx6C6ozhO`qI%u)66N9U5oH|n;5fTRyXa$dBsyVM-kKRX_Nc0cCa2!;vQ zht~Yvda++^4^4Y$U>2=~I~5#go2#D`mRA?wKOYxu^Vf^~sIE`y&4)9U1OBhW1umreKJRoL>}wDfS2CA{efBzFRZShC>XE@B5`z~Yj2*?)G5s!x;V^JWG8^05o>V=|^fpaWh%yk0;4D4SU zh(;#SgK2;syiK-I(SvsNCSJ3_$ho<@6f9-8ron@2r&i?%QYBdMQliv0*xtcn`7|6UqD> zF=~$^-$G;~xAVx*CJm#1D>x6w!Br(nLFrd<4m&PKE*SP%BUIvNpOoCy0Z}-KQ!BaO zX3^dTnKQrZ^5F%8%(E=UKN&}E$P?oL&2xpA9Vl)lu%hoevHc?gUEN6KAw7%4!wMzg z1(tY|pW=M1XzI|ep*R(2C*kd2xh+yEvA-EuF~1Vy^499bk5Y|)A)B+XESbTUa`_}( zDP5PsnTw|(!Bp%}fJC>7B#-)1WHB`0-ALRp&vSBR)EBU}<>reJXIu8g5d{ zV7_!3L!gRrgdBGayh8FN1YCDru=l2PFNo5RyO&TpStR-KA?)P2cKB;Ul_q#d$$29n zCsreTAuX}0`ZdEYoo4L#S{4L)j{qe(F-Cad(9G(@|EktKwuU&6e$c#e4 zpAaL7Lf-*iQvL*E5L+y5%+#x*BpvHkuOd!kRjJ7KLW||$Mi+EG;Ea(Vc^cP_{??2< z@H@A4^Si(SGd@FQAc%;HFA&nNNK!A6@8DDlcm^*wt|SnDoNZ^nRIVeK-$j!&)EH4m zT#Zp=yKH&UrGdQ>=L*~O$&!rRU$ZX?>SCoOr-zPMmIK>DSnm=g__C2SmuInlQZ5O<#$PdVtLRXT!M zC!8Q%ZkN-48s3O9kC~z%oU6v^$ky7+& z>}NsR3B@dTI%LO!7;-$0*|Hd|en&^{eRj6R`UI?tROn}+HOtY`2e6Xh6dqEKr|uEq z`4mftd@#-=&jEH-lUsVoI$@pr#`Af-`8%@D+t`7Bjwv_iTG2Ryhn`~UxosY|_u7Ii zj(aFG$wen{p95I9~FU4{MbnDiV1=M!Qf;b-Z#MBKY)d3$0@mkg%Aai z{Tn&v0Oepet!!`Tr$uJZ! zy3VkFvAL(t3vvok4!S^;?7T5f?{Rf!8Y)V%5_7Ln)G^`^v{bBqveXC*BTP}V={4vj z0Y+6oJAUk!K5lDZS}S%5e!A=qO;7WnFK4KW3` zEXVetzBl-`g>>+rx~b-y?b8zm_12moK?7qVi9k7ibdm~h-FF>CC@N~WA>voLt>yg~ zDc5sJ#2Kk@Dc=@HBL}qpXuOeaP;&g$Qya2PJK_%>{Nw1}P+;lN&ThLTurI;p>31!E zraHI^dodEk#t(4@0(`IRw_WBbBp~b<>2%GS=90%8I$kI+KN7n0V>6W*4U3fgi|Mae zV2!0ZamVyx^W#q1#x)i}%pZAEHm>7;l%1>8RjiY)+e0VTd9HV-`fi@IA}+D(ot36% zfh~k({;3mf+!P0uqg0F#W3*1U)=(M*km)Qrh(dDl;wW?4R=+MLaU=vgXsbMW4~B+4 zQuou(L;y$yH=Au9S(be)$DVYPpKt6{!lCm6>`8+JA|ry!igu8|eA!>;gciYnvhsKI z|M!N)CPXKMB(4fary(m%v#1dA#{B6j>ZsO;lP0=AXEq^lih$@k!V5d;fXx>F0^{<` z*}Cv-l1anMP%vT^II$Yt$&3m-&s8U>wz)w%FG!_-tq+e$Jv!;9A~RAQt>YY6V1yR@w!ptbQF%Er6 zLm#-YKCz`B^e0KGIf8PBZDfET97o}JUqc49U+7Dm&Wx{uMg79a1&LykpYW^;R~3wM zu_!U*m&nhOa&#CObT#SBLCirdpPSQpVcg;uDN7lXCb=lpAm$7-ZckBv6L7)48H5@+ z*AqRJ=70w|K9S;xuK4lBONU}dhsQuC54Bd3R50~~}+~XHikQJb5B<~>bi*J&MC+EHV zrW0?(Zzhwh=%qz}lGRw{LeGYo2miGY5Df@fW+vhZK8#DaZ(YV;ZReh9C?aAMYFAQ2-Da1(}%|;)((u0MLW&$NFw&{epD%&8NMP_xtxjDF*je z9=V^a=-zA0r0@f^J*?WMJ~dkGNvP*wgkJc2RF!>`DR zqzL*Tb6I$QpFbzn4Dsp&a0&=K$<&mS#m#yQxT9A%AXOo3*2Mni!8YLhRIO*aGZ5Ft z>0$N?s!-e3_tGjSCg?_8DAl#%^usoa6bxvDGaeOWJT|qr*k6~CE^fncCKsT zs(~>t8#UjN1`^VmYesY=4|?m;0o6F#B-q`f<{g;;ZFj~*FAF1xH$<^JnDqBs<7GCH zyGxNjsa-hZJ*srgF=uX+x6n9NCYz`zlUp@tTftP;AeFZ}gxe1)7L#Kt`Ib%v*`y6L zl#c;_>3$jxm~#3NDMZ@Sdgufi5lg=0QD$Bz%Q@6UN0gbxUtI^y;pyLfYT6f(W;&pp z(#f`QD9E^o}^r~>WFiN@n3M&P)m zsmypJk?QoY$f!Oit4c~%!MaAHN4S+|5IKbNX35}BY!3U9QR{`a01C^Svjpy%#JAb1 zQytFt%Ez}DlHQUHhs&$Z@w&8dfA8w|t0Q)swarJPv-G3gc~{5D3V@@hbA5h)Xtp1J zHxI{43%S*uoh10azMMD5)?9S*e%_x@vBqkP_9 z`q0+<#+ERZpE-?Vg#}DuOqr+FfX?9QVYa`H6EjOuc(|ZeJ;2*kA%=dg!zvpDUoUNtDeScaV z@k+dI@ag@&S#N8zle2%p+l2SFYad94ygzl>@9P#0)4n#V^B&Oo__SSlJNo)`I{)(j z0kfE$4-N%8;5*YMldP*Be@??N5QOhMMdW*8Cj|;tl1hMjq7o8CMcgcVn_9#_vJGk8 z9ye{%R_cl4dS<_!UAdfXRh#^R^U~-F|vlL*qDa$BKI2$o{(`34m8S#;a$9b0HlQ)1<{%XUZoH>;Yy@jjRqd2;^UXI4D z>#}Y#SY!Sie=c6%hgDOlccQZpZ9k5_rUE=d19 -2024-10-07 08:47:16,406 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions) -2024-10-07 08:47:16,409 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-10-07T08:47:16.406718', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:16,411 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:47:16,411 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:47:16,411 - using serial LDA version on this node -2024-10-07 08:47:16,412 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:47:16,412 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:47:16,416 - -8.108 per-word bound, 276.0 perplexity estimate based on a held-out corpus of 1 documents with 2696 words -2024-10-07 08:47:16,416 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:47:16,418 - topic #0 (0.333): 0.017*"’" + 0.007*"leaders" + 0.007*"needs" + 0.006*"practice" + 0.006*"within" + 0.004*"2023" + 0.004*"progress" + 0.004*"plans" + 0.004*"senior" + 0.004*"need" -2024-10-07 08:47:16,418 - topic #1 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"Barnsley" + 0.005*"leaders" + 0.005*"practice" + 0.005*"within" + 0.004*"11" + 0.004*"experiences" + 0.004*"senior" + 0.004*"15" -2024-10-07 08:47:16,418 - topic #2 (0.333): 0.021*"’" + 0.009*"needs" + 0.008*"leaders" + 0.007*"within" + 0.007*"Barnsley" + 0.006*"practice" + 0.005*"plans" + 0.005*"response" + 0.005*"family" + 0.004*"appropriate" -2024-10-07 08:47:16,418 - topic diff=0.803082, rho=1.000000 -2024-10-07 08:47:16,418 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:16.418854', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:16,421 - Failed to import jpype dependencies. Fallback to subprocess. -2024-10-07 08:47:16,421 - No module named 'jpype' -2024-10-07 08:47:18,967 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:47:18,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:18,967 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:47:18,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:18,968 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:47:18,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:18,968 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:47:18,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:18,968 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:47:18,969 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:18,969 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:47:18,969 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:28,208 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:47:28,210 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions) -2024-10-07 08:47:28,210 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-10-07T08:47:28.210886', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:28,211 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:47:28,211 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:47:28,212 - using serial LDA version on this node -2024-10-07 08:47:28,212 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:47:28,212 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:47:28,216 - -8.025 per-word bound, 260.4 perplexity estimate based on a held-out corpus of 1 documents with 2085 words -2024-10-07 08:47:28,216 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:47:28,217 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"practice" + 0.005*"clear" + 0.005*"4" + 0.005*"plans" + 0.004*"‘" + 0.004*"protection" + 0.004*"leaders" -2024-10-07 08:47:28,217 - topic #1 (0.333): 0.016*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"practice" + 0.006*"leaders" + 0.006*"plans" + 0.005*"impact" + 0.005*"North" + 0.004*"effective" + 0.004*"Bath" -2024-10-07 08:47:28,217 - topic #2 (0.333): 0.022*"’" + 0.010*"well" + 0.006*"needs" + 0.005*"receive" + 0.005*"plans" + 0.005*"East" + 0.005*"practice" + 0.005*"effective" + 0.005*"28" + 0.005*"Somerset" -2024-10-07 08:47:28,217 - topic diff=0.747855, rho=1.000000 -2024-10-07 08:47:28,218 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:28.218102', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:29,207 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:47:29,207 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:29,208 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:47:29,208 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:29,208 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:47:29,208 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:29,208 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:47:29,208 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:29,209 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:47:29,209 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:29,209 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:47:29,209 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:41,178 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:47:41,180 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions) -2024-10-07 08:47:41,180 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-10-07T08:47:41.180691', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:41,181 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:47:41,181 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:47:41,182 - using serial LDA version on this node -2024-10-07 08:47:41,182 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:47:41,182 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:47:41,186 - -8.115 per-word bound, 277.3 perplexity estimate based on a held-out corpus of 1 documents with 2585 words -2024-10-07 08:47:41,186 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:47:41,188 - topic #0 (0.333): 0.012*"’" + 0.005*"needs" + 0.005*"Bedford" + 0.005*"well" + 0.004*"plans" + 0.004*"ensure" + 0.004*"education" + 0.004*"Borough" + 0.004*"26" + 0.004*"good" -2024-10-07 08:47:41,188 - topic #1 (0.333): 0.021*"’" + 0.007*"ensure" + 0.007*"needs" + 0.006*"well" + 0.006*"supported" + 0.005*"Bedford" + 0.005*"plans" + 0.005*"family" + 0.005*"need" + 0.005*"education" -2024-10-07 08:47:41,188 - topic #2 (0.333): 0.020*"’" + 0.007*"needs" + 0.006*"good" + 0.006*"ensure" + 0.005*"well" + 0.005*"progress" + 0.005*"plans" + 0.005*"Borough" + 0.005*"Bedford" + 0.004*"supported" -2024-10-07 08:47:41,188 - topic diff=0.798113, rho=1.000000 -2024-10-07 08:47:41,189 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:41.189007', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:42,095 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:47:42,096 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:42,096 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:47:42,096 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:42,096 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:47:42,096 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:42,097 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:47:42,097 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:42,097 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:47:42,097 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:42,097 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:47:42,097 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:54,342 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:47:54,345 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions) -2024-10-07 08:47:54,345 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-10-07T08:47:54.345188', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:54,346 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:47:54,346 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:47:54,346 - using serial LDA version on this node -2024-10-07 08:47:54,346 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:47:54,347 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:47:54,350 - -7.972 per-word bound, 251.1 perplexity estimate based on a held-out corpus of 1 documents with 2378 words -2024-10-07 08:47:54,350 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:47:54,352 - topic #0 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"effective" + 0.006*"well" + 0.006*"trust" + 0.005*"progress" + 0.004*"Birmingham" + 0.004*"appropriate" + 0.004*"risk" + 0.004*"plans" -2024-10-07 08:47:54,352 - topic #1 (0.333): 0.017*"’" + 0.011*"needs" + 0.008*"well" + 0.006*"Birmingham" + 0.006*"effective" + 0.006*"plans" + 0.005*"progress" + 0.005*"trust" + 0.005*"appropriate" + 0.005*"risk" -2024-10-07 08:47:54,352 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.007*"plans" + 0.007*"effective" + 0.006*"3" + 0.005*"Birmingham" + 0.005*"progress" + 0.005*"leaders" + 0.005*"well" + 0.005*"trust" -2024-10-07 08:47:54,352 - topic diff=0.804554, rho=1.000000 -2024-10-07 08:47:54,352 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:54.352731', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:47:55,315 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:47:55,315 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:55,315 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:47:55,315 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:47:55,316 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:47:55,316 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:47:55,316 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:47:55,317 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:06,578 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:48:06,580 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions) -2024-10-07 08:48:06,580 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-10-07T08:48:06.580234', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:06,581 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:48:06,581 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:48:06,582 - using serial LDA version on this node -2024-10-07 08:48:06,582 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:48:06,582 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:48:06,586 - -7.963 per-word bound, 249.6 perplexity estimate based on a held-out corpus of 1 documents with 2353 words -2024-10-07 08:48:06,586 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:48:06,587 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"practice" + 0.008*"quality" + 0.007*"impact" + 0.006*"Darwen" + 0.006*"well" + 0.006*"Blackburn" + 0.005*"planning" + 0.005*"receive" -2024-10-07 08:48:06,587 - topic #1 (0.333): 0.011*"’" + 0.008*"Blackburn" + 0.007*"impact" + 0.006*"practice" + 0.005*"quality" + 0.005*"well" + 0.005*"needs" + 0.005*"planning" + 0.005*"Darwen" + 0.005*"result" -2024-10-07 08:48:06,587 - topic #2 (0.333): 0.011*"’" + 0.007*"needs" + 0.007*"Darwen" + 0.006*"quality" + 0.006*"practice" + 0.006*"Blackburn" + 0.006*"well" + 0.005*"means" + 0.005*"plans" + 0.005*"result" -2024-10-07 08:48:06,588 - topic diff=0.818977, rho=1.000000 -2024-10-07 08:48:06,588 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:06.588142', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:07,494 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:48:07,494 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:07,495 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:48:07,495 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:07,495 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:48:07,495 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:07,495 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:48:07,495 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:07,496 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:48:07,496 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:07,496 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:48:07,496 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:18,909 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:48:18,911 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions) -2024-10-07 08:48:18,912 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-10-07T08:48:18.912045', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:18,913 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:48:18,913 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:48:18,913 - using serial LDA version on this node -2024-10-07 08:48:18,913 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:48:18,913 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:48:18,917 - -7.923 per-word bound, 242.7 perplexity estimate based on a held-out corpus of 1 documents with 2392 words -2024-10-07 08:48:18,917 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:48:18,918 - topic #0 (0.333): 0.017*"’" + 0.012*"needs" + 0.009*"well" + 0.008*"Blackpool" + 0.007*"effective" + 0.005*"plans" + 0.005*"supported" + 0.005*"practice" + 0.005*"5" + 0.005*"team" -2024-10-07 08:48:18,918 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.008*"well" + 0.006*"Blackpool" + 0.006*"effective" + 0.006*"supported" + 0.005*"practice" + 0.005*"16" + 0.005*"progress" + 0.005*"carers" -2024-10-07 08:48:18,919 - topic #2 (0.333): 0.015*"’" + 0.010*"well" + 0.008*"needs" + 0.007*"Blackpool" + 0.006*"16" + 0.005*"plans" + 0.005*"timely" + 0.005*"homes" + 0.005*"quality" + 0.005*"practice" -2024-10-07 08:48:18,919 - topic diff=0.827000, rho=1.000000 -2024-10-07 08:48:18,919 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:18.919348', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:19,880 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:48:19,881 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:19,881 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:48:19,881 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:19,881 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:48:19,882 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:19,882 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:48:19,882 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:19,882 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:48:19,883 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:19,883 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:48:19,883 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:30,432 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:48:30,434 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions) -2024-10-07 08:48:30,434 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-10-07T08:48:30.434689', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:30,435 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:48:30,435 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:48:30,436 - using serial LDA version on this node -2024-10-07 08:48:30,436 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:48:30,436 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:48:30,439 - -7.909 per-word bound, 240.4 perplexity estimate based on a held-out corpus of 1 documents with 2055 words -2024-10-07 08:48:30,439 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:48:30,441 - topic #0 (0.333): 0.017*"’" + 0.010*"Bolton" + 0.008*"needs" + 0.007*"well" + 0.006*"supported" + 0.006*"plans" + 0.005*"planning" + 0.005*"11" + 0.005*"protection" + 0.004*"strong" -2024-10-07 08:48:30,441 - topic #1 (0.333): 0.023*"’" + 0.009*"well" + 0.009*"plans" + 0.008*"needs" + 0.007*"Bolton" + 0.006*"11" + 0.005*"effective" + 0.005*"need" + 0.005*"strong" + 0.005*"timely" -2024-10-07 08:48:30,441 - topic #2 (0.333): 0.016*"’" + 0.011*"needs" + 0.008*"well" + 0.007*"Bolton" + 0.007*"plans" + 0.006*"need" + 0.005*"planning" + 0.005*"supported" + 0.005*"effective" + 0.005*"response" -2024-10-07 08:48:30,441 - topic diff=0.772443, rho=1.000000 -2024-10-07 08:48:30,442 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:30.442035', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:31,376 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:48:31,376 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:31,376 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:48:31,376 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:48:31,377 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:48:31,377 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:48:31,377 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:48:31,378 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:40,776 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:48:40,778 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions) -2024-10-07 08:48:40,778 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-10-07T08:48:40.778699', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:40,779 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:48:40,779 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:48:40,780 - using serial LDA version on this node -2024-10-07 08:48:40,780 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:48:40,780 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:48:40,783 - -8.030 per-word bound, 261.4 perplexity estimate based on a held-out corpus of 1 documents with 2004 words -2024-10-07 08:48:40,784 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:48:40,785 - topic #0 (0.333): 0.018*"’" + 0.007*"quality" + 0.005*"practice" + 0.005*"6" + 0.005*"time" + 0.005*"Bournemouth" + 0.005*"Poole" + 0.004*"Christchurch" + 0.004*"impact" + 0.004*"right" -2024-10-07 08:48:40,785 - topic #1 (0.333): 0.015*"’" + 0.006*"quality" + 0.006*"Christchurch" + 0.006*"progress" + 0.005*"practice" + 0.005*"impact" + 0.005*"risk" + 0.005*"6" + 0.004*"However" + 0.004*"2021" -2024-10-07 08:48:40,785 - topic #2 (0.333): 0.020*"’" + 0.006*"practice" + 0.005*"progress" + 0.005*"17" + 0.005*"Bournemouth" + 0.005*"Poole" + 0.005*"December" + 0.005*"well" + 0.004*"risk" + 0.004*"time" -2024-10-07 08:48:40,785 - topic diff=0.744346, rho=1.000000 -2024-10-07 08:48:40,786 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:40.786125', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:42,847 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:48:42,848 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:42,848 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:48:42,848 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:42,848 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:48:42,848 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:42,849 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:48:42,849 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:42,849 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:48:42,849 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:42,849 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:48:42,849 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:52,416 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:48:52,417 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions) -2024-10-07 08:48:52,418 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-10-07T08:48:52.418008', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:52,418 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:48:52,419 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:48:52,419 - using serial LDA version on this node -2024-10-07 08:48:52,419 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:48:52,419 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:48:52,422 - -7.854 per-word bound, 231.4 perplexity estimate based on a held-out corpus of 1 documents with 1846 words -2024-10-07 08:48:52,422 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:48:52,424 - topic #0 (0.333): 0.009*"’" + 0.007*"Bracknell" + 0.006*"good" + 0.005*"well" + 0.005*"plans" + 0.005*"needs" + 0.005*"Forest" + 0.005*"quality" + 0.005*"need" + 0.004*"risk" -2024-10-07 08:48:52,424 - topic #1 (0.333): 0.014*"’" + 0.008*"Bracknell" + 0.006*"needs" + 0.006*"risk" + 0.006*"good" + 0.005*"Forest" + 0.005*"plans" + 0.005*"well" + 0.005*"need" + 0.005*"education" -2024-10-07 08:48:52,424 - topic #2 (0.333): 0.022*"’" + 0.008*"Forest" + 0.008*"needs" + 0.008*"risk" + 0.008*"quality" + 0.007*"effective" + 0.006*"provided" + 0.006*"progress" + 0.006*"good" + 0.005*"Bracknell" -2024-10-07 08:48:52,424 - topic diff=0.776951, rho=1.000000 -2024-10-07 08:48:52,424 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:52.424835', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:48:53,340 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:48:53,340 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:53,341 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:48:53,341 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:53,341 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:48:53,341 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:53,341 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:48:53,341 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:53,342 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:48:53,342 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:48:53,342 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:48:53,342 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:03,881 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:49:03,883 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions) -2024-10-07 08:49:03,884 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)", 'datetime': '2024-10-07T08:49:03.884016', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:03,885 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:49:03,885 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:49:03,885 - using serial LDA version on this node -2024-10-07 08:49:03,885 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:49:03,885 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:49:03,889 - -8.087 per-word bound, 271.9 perplexity estimate based on a held-out corpus of 1 documents with 2249 words -2024-10-07 08:49:03,889 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:49:03,891 - topic #0 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"Brighton" + 0.005*"Hove" + 0.005*"experiences" + 0.005*"relationships" + 0.004*"needs" + 0.004*"practice" + 0.004*"progress" + 0.004*"March" -2024-10-07 08:49:03,891 - topic #1 (0.333): 0.013*"’" + 0.006*"progress" + 0.006*"Hove" + 0.005*"practice" + 0.005*"Brighton" + 0.005*"well" + 0.005*"relationships" + 0.005*"needs" + 0.005*"experiences" + 0.004*"receive" -2024-10-07 08:49:03,891 - topic #2 (0.333): 0.020*"’" + 0.009*"well" + 0.009*"needs" + 0.008*"Hove" + 0.007*"Brighton" + 0.007*"practice" + 0.005*"relationships" + 0.005*"experiences" + 0.005*"11" + 0.005*"progress" -2024-10-07 08:49:03,891 - topic diff=0.775504, rho=1.000000 -2024-10-07 08:49:03,891 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:03.891712', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:04,847 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:49:04,847 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:04,847 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:49:04,847 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:04,847 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:49:04,847 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:04,848 - Inspection date None / Column 'in_care' not found in the DataFrame. -2024-10-07 08:49:04,848 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:04,848 - Inspection date None / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:49:04,848 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:04,848 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:49:04,848 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:18,642 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:49:18,644 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions) -2024-10-07 08:49:18,644 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-10-07T08:49:18.644613', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:18,645 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:49:18,645 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:49:18,646 - using serial LDA version on this node -2024-10-07 08:49:18,646 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:49:18,646 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:49:18,652 - -8.037 per-word bound, 262.7 perplexity estimate based on a held-out corpus of 1 documents with 2647 words -2024-10-07 08:49:18,655 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:49:18,657 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.007*"good" + 0.007*"needs" + 0.006*"Bristol" + 0.005*"health" + 0.005*"leaders" + 0.004*"progress" + 0.004*"2023" + 0.004*"plans" -2024-10-07 08:49:18,658 - topic #1 (0.333): 0.021*"’" + 0.009*"good" + 0.007*"needs" + 0.007*"well" + 0.006*"Bristol" + 0.006*"progress" + 0.005*"16" + 0.005*"need" + 0.005*"health" + 0.005*"27" -2024-10-07 08:49:18,658 - topic #2 (0.333): 0.021*"’" + 0.011*"well" + 0.009*"Bristol" + 0.008*"needs" + 0.007*"good" + 0.006*"plans" + 0.005*"receive" + 0.005*"always" + 0.005*"health" + 0.005*"progress" -2024-10-07 08:49:18,658 - topic diff=0.823577, rho=1.000000 -2024-10-07 08:49:18,658 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:18.658746', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:19,615 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:49:19,615 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:19,615 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:49:19,615 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:19,616 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:49:19,616 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:19,616 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:49:19,616 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:19,616 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:49:19,616 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:19,617 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:49:19,617 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:30,730 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:49:30,733 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions) -2024-10-07 08:49:30,734 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-10-07T08:49:30.734134', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:30,735 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:49:30,736 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:49:30,736 - using serial LDA version on this node -2024-10-07 08:49:30,737 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:49:30,737 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:49:30,745 - -8.242 per-word bound, 302.8 perplexity estimate based on a held-out corpus of 1 documents with 2404 words -2024-10-07 08:49:30,745 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:49:30,746 - topic #0 (0.333): 0.014*"’" + 0.005*"plans" + 0.005*"Buckinghamshire" + 0.005*"17" + 0.004*"many" + 0.004*"6" + 0.004*"December" + 0.004*"protection" + 0.004*"well" + 0.004*"number" -2024-10-07 08:49:30,747 - topic #1 (0.333): 0.010*"’" + 0.004*"number" + 0.004*"Buckinghamshire" + 0.004*"17" + 0.004*"plans" + 0.004*"protection" + 0.004*"6" + 0.003*"practice" + 0.003*"many" + 0.003*"2021" -2024-10-07 08:49:30,747 - topic #2 (0.333): 0.015*"’" + 0.006*"plans" + 0.006*"number" + 0.004*"17" + 0.004*"2021" + 0.004*"Buckinghamshire" + 0.004*"many" + 0.004*"practice" + 0.004*"protection" + 0.003*"6" -2024-10-07 08:49:30,747 - topic diff=0.724755, rho=1.000000 -2024-10-07 08:49:30,747 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:30.747663', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:31,729 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:49:31,729 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:31,729 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:49:31,729 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:49:31,730 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:49:31,730 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:49:31,730 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:49:31,731 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:42,465 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:49:42,467 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions) -2024-10-07 08:49:42,467 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-10-07T08:49:42.467311', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:42,468 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:49:42,468 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:49:42,468 - using serial LDA version on this node -2024-10-07 08:49:42,469 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:49:42,469 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:49:42,472 - -7.978 per-word bound, 252.1 perplexity estimate based on a held-out corpus of 1 documents with 2427 words -2024-10-07 08:49:42,473 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:49:42,474 - topic #0 (0.333): 0.010*"’" + 0.007*"protection" + 0.006*"2021" + 0.006*"practice" + 0.005*"impact" + 0.005*"needs" + 0.005*"need" + 0.005*"quality" + 0.005*"5" + 0.004*"team" -2024-10-07 08:49:42,474 - topic #1 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"2021" + 0.007*"protection" + 0.006*"team" + 0.006*"practice" + 0.006*"risk" + 0.005*"quality" + 0.005*"Bury" + 0.005*"new" -2024-10-07 08:49:42,474 - topic #2 (0.333): 0.007*"’" + 0.006*"2021" + 0.005*"team" + 0.005*"needs" + 0.005*"protection" + 0.005*"need" + 0.004*"October" + 0.004*"impact" + 0.004*"progress" + 0.004*"Bury" -2024-10-07 08:49:42,474 - topic diff=0.818605, rho=1.000000 -2024-10-07 08:49:42,475 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:42.475002', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:43,477 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:49:43,477 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:43,477 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:49:43,477 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:43,477 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:49:43,478 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:43,478 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:49:43,478 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:43,478 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:49:43,478 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:43,478 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:49:43,479 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:54,761 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:49:54,763 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions) -2024-10-07 08:49:54,764 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-10-07T08:49:54.764065', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:54,765 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:49:54,765 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:49:54,765 - using serial LDA version on this node -2024-10-07 08:49:54,765 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:49:54,765 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:49:54,769 - -8.026 per-word bound, 260.7 perplexity estimate based on a held-out corpus of 1 documents with 2389 words -2024-10-07 08:49:54,769 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:49:54,771 - topic #0 (0.333): 0.024*"’" + 0.011*"needs" + 0.010*"Calderdale" + 0.008*"well" + 0.006*"ensure" + 0.006*"progress" + 0.006*"plans" + 0.005*"19" + 0.005*"information" + 0.005*"parents" -2024-10-07 08:49:54,771 - topic #1 (0.333): 0.020*"’" + 0.009*"needs" + 0.008*"Calderdale" + 0.007*"plans" + 0.006*"risk" + 0.005*"parents" + 0.005*"progress" + 0.005*"well" + 0.005*"experiences" + 0.005*"ensure" -2024-10-07 08:49:54,771 - topic #2 (0.333): 0.015*"’" + 0.008*"needs" + 0.006*"Calderdale" + 0.005*"ensure" + 0.005*"progress" + 0.005*"well" + 0.005*"plans" + 0.004*"risk" + 0.004*"information" + 0.004*"experiences" -2024-10-07 08:49:54,771 - topic diff=0.784350, rho=1.000000 -2024-10-07 08:49:54,771 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:54.771584', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:49:55,684 - Inspection date 2024-02-19 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:49:55,684 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:55,684 - Inspection date 2024-02-19 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:49:55,684 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:55,685 - Inspection date 2024-02-19 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:49:55,685 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:55,685 - Inspection date 2024-02-19 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:49:55,685 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:55,685 - Inspection date 2024-02-19 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:49:55,685 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:49:55,685 - Inspection date 2024-02-19 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:49:55,686 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:07,872 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:50:07,874 - built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions) -2024-10-07 08:50:07,874 - Dictionary lifecycle event {'msg': "built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions)", 'datetime': '2024-10-07T08:50:07.874738', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:07,875 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:50:07,875 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:50:07,876 - using serial LDA version on this node -2024-10-07 08:50:07,876 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:50:07,876 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:50:07,880 - -8.004 per-word bound, 256.7 perplexity estimate based on a held-out corpus of 1 documents with 2339 words -2024-10-07 08:50:07,880 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:50:07,881 - topic #0 (0.333): 0.020*"’" + 0.006*"Cambridgeshire" + 0.006*"effective" + 0.006*"practice" + 0.006*"good" + 0.005*"leaders" + 0.005*"15" + 0.005*"needs" + 0.005*"well" + 0.005*"response" -2024-10-07 08:50:07,882 - topic #1 (0.333): 0.014*"’" + 0.006*"needs" + 0.006*"However" + 0.006*"leaders" + 0.005*"4" + 0.005*"Cambridgeshire" + 0.005*"leadership" + 0.004*"quality" + 0.004*"effective" + 0.004*"15" -2024-10-07 08:50:07,882 - topic #2 (0.333): 0.015*"’" + 0.009*"needs" + 0.008*"leaders" + 0.007*"Cambridgeshire" + 0.006*"good" + 0.005*"well" + 0.005*"2024" + 0.005*"strong" + 0.004*"quality" + 0.004*"experiences" -2024-10-07 08:50:07,882 - topic diff=0.785544, rho=1.000000 -2024-10-07 08:50:07,882 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:50:07.882532', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:08,938 - Inspection date 2024-03-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:50:08,939 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:08,939 - Inspection date 2024-03-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:50:08,939 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:08,939 - Inspection date 2024-03-04 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:50:08,939 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:08,940 - Inspection date 2024-03-04 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:50:08,940 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:08,940 - Inspection date 2024-03-04 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:50:08,940 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:08,940 - Inspection date 2024-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:50:08,940 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:19,194 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:50:19,197 - built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) -2024-10-07 08:50:19,198 - Dictionary lifecycle event {'msg': "built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-10-07T08:50:19.198148', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:19,199 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:50:19,199 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:50:19,200 - using serial LDA version on this node -2024-10-07 08:50:19,200 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:50:19,200 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:50:19,207 - -7.965 per-word bound, 249.9 perplexity estimate based on a held-out corpus of 1 documents with 2199 words -2024-10-07 08:50:19,207 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:50:19,209 - topic #0 (0.333): 0.010*"’" + 0.007*"well" + 0.007*"needs" + 0.007*"carers" + 0.005*"good" + 0.005*"need" + 0.004*"effective" + 0.004*"Bedfordshire" + 0.004*"number" + 0.004*"21" -2024-10-07 08:50:19,209 - topic #1 (0.333): 0.022*"’" + 0.011*"well" + 0.007*"needs" + 0.007*"plans" + 0.006*"need" + 0.006*"carers" + 0.006*"Central" + 0.006*"good" + 0.006*"Bedfordshire" + 0.006*"progress" -2024-10-07 08:50:19,209 - topic #2 (0.333): 0.013*"’" + 0.008*"well" + 0.007*"need" + 0.007*"needs" + 0.006*"good" + 0.006*"progress" + 0.005*"carers" + 0.005*"plans" + 0.005*"protection" + 0.005*"Leaders" -2024-10-07 08:50:19,209 - topic diff=0.791028, rho=1.000000 -2024-10-07 08:50:19,209 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:50:19.209862', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:20,149 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:50:20,149 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:20,149 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:50:20,149 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:20,149 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:50:20,150 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:20,150 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:50:20,150 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:20,150 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:50:20,150 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:20,150 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:50:20,150 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:31,769 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:50:31,771 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions) -2024-10-07 08:50:31,771 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)", 'datetime': '2024-10-07T08:50:31.771333', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:31,772 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:50:31,772 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:50:31,772 - using serial LDA version on this node -2024-10-07 08:50:31,773 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:50:31,773 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:50:31,776 - -7.972 per-word bound, 251.1 perplexity estimate based on a held-out corpus of 1 documents with 2272 words -2024-10-07 08:50:31,776 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:50:31,778 - topic #0 (0.333): 0.013*"’" + 0.008*"2024" + 0.008*"needs" + 0.008*"practice" + 0.007*"plans" + 0.007*"quality" + 0.006*"well" + 0.006*"East" + 0.006*"Cheshire" + 0.006*"leaders" -2024-10-07 08:50:31,778 - topic #1 (0.333): 0.009*"’" + 0.006*"practice" + 0.006*"2024" + 0.005*"plans" + 0.004*"East" + 0.004*"leaders" + 0.004*"Cheshire" + 0.004*"needs" + 0.004*"well" + 0.004*"always" -2024-10-07 08:50:31,778 - topic #2 (0.333): 0.014*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"2024" + 0.007*"plans" + 0.006*"quality" + 0.005*"effective" + 0.005*"Cheshire" + 0.005*"need" + 0.005*"East" -2024-10-07 08:50:31,778 - topic diff=0.790338, rho=1.000000 -2024-10-07 08:50:31,778 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:50:31.778932', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:32,768 - Inspection date 2024-02-26 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:50:32,769 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:32,769 - Inspection date 2024-02-26 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:50:32,769 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:32,769 - Inspection date 2024-02-26 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:50:32,769 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:32,769 - Inspection date 2024-02-26 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:50:32,769 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:32,770 - Inspection date 2024-02-26 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:50:32,770 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:32,770 - Inspection date 2024-02-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:50:32,770 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:43,861 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:50:43,863 - built Dictionary<1010 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2203 corpus positions) -2024-10-07 08:50:43,863 - Dictionary lifecycle event {'msg': "built Dictionary<1010 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2203 corpus positions)", 'datetime': '2024-10-07T08:50:43.863224', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:43,864 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:50:43,864 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:50:43,864 - using serial LDA version on this node -2024-10-07 08:50:43,864 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:50:43,865 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:50:43,868 - -7.930 per-word bound, 243.9 perplexity estimate based on a held-out corpus of 1 documents with 2203 words -2024-10-07 08:50:43,868 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:50:43,869 - topic #0 (0.333): 0.016*"’" + 0.007*"good" + 0.006*"needs" + 0.006*"well" + 0.005*"progress" + 0.005*"Cheshire" + 0.005*"Chester" + 0.005*"impact" + 0.005*"timely" + 0.005*"plans" -2024-10-07 08:50:43,869 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"progress" + 0.005*"plans" + 0.005*"leaders" + 0.005*"information" + 0.004*"impact" + 0.004*"2024" + 0.004*"means" -2024-10-07 08:50:43,870 - topic #2 (0.333): 0.017*"’" + 0.006*"plans" + 0.005*"well" + 0.005*"progress" + 0.005*"needs" + 0.005*"access" + 0.005*"impact" + 0.004*"Cheshire" + 0.004*"effective" + 0.004*"Chester" -2024-10-07 08:50:43,870 - topic diff=0.787317, rho=1.000000 -2024-10-07 08:50:43,870 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:50:43.870362', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:44,841 - Inspection date 2024-07-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:50:44,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:44,842 - Inspection date 2024-07-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:50:44,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:44,842 - Inspection date 2024-07-15 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:50:44,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:44,842 - Inspection date 2024-07-15 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:50:44,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:44,843 - Inspection date 2024-07-15 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:50:44,843 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:44,843 - Inspection date 2024-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:50:44,843 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:56,257 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:50:56,259 - built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions) -2024-10-07 08:50:56,259 - Dictionary lifecycle event {'msg': "built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions)", 'datetime': '2024-10-07T08:50:56.259864', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:56,261 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:50:56,261 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:50:56,261 - using serial LDA version on this node -2024-10-07 08:50:56,261 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:50:56,261 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:50:56,265 - -8.050 per-word bound, 265.1 perplexity estimate based on a held-out corpus of 1 documents with 2639 words -2024-10-07 08:50:56,265 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:50:56,267 - topic #0 (0.333): 0.025*"’" + 0.007*"plans" + 0.006*"2" + 0.006*"Bradford" + 0.005*"risk" + 0.005*"City" + 0.005*"practice" + 0.005*"21" + 0.004*"impact" + 0.004*"◼" -2024-10-07 08:50:56,267 - topic #1 (0.333): 0.019*"’" + 0.007*"plans" + 0.006*"needs" + 0.005*"need" + 0.005*"quality" + 0.005*"changes" + 0.005*"◼" + 0.005*"Borough" + 0.005*"Council" + 0.004*"2022" -2024-10-07 08:50:56,267 - topic #2 (0.333): 0.016*"’" + 0.005*"plans" + 0.005*"impact" + 0.005*"Bradford" + 0.004*"2" + 0.004*"needs" + 0.004*"many" + 0.004*"need" + 0.004*"worker" + 0.004*"Metropolitan" -2024-10-07 08:50:56,267 - topic diff=0.811010, rho=1.000000 -2024-10-07 08:50:56,267 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:50:56.267831', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:50:57,239 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:50:57,239 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:57,240 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:50:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:57,240 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:50:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:57,240 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:50:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:57,241 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:50:57,241 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:50:57,241 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:50:57,241 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:05,971 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:51:05,972 - built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions) -2024-10-07 08:51:05,972 - Dictionary lifecycle event {'msg': "built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions)", 'datetime': '2024-10-07T08:51:05.972822', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:05,973 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:51:05,973 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:51:05,973 - using serial LDA version on this node -2024-10-07 08:51:05,974 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:51:05,974 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:51:05,977 - -7.839 per-word bound, 228.9 perplexity estimate based on a held-out corpus of 1 documents with 1767 words -2024-10-07 08:51:05,977 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:51:05,978 - topic #0 (0.333): 0.011*"well" + 0.008*"’" + 0.008*"ensure" + 0.007*"needs" + 0.006*"clear" + 0.005*"effective" + 0.005*"good" + 0.005*"progress" + 0.004*"experiences" + 0.004*"individual" -2024-10-07 08:51:05,978 - topic #1 (0.333): 0.012*"needs" + 0.011*"well" + 0.008*"ensure" + 0.007*"’" + 0.006*"effective" + 0.006*"progress" + 0.006*"clear" + 0.005*"good" + 0.005*"individual" + 0.005*"plans" -2024-10-07 08:51:05,979 - topic #2 (0.333): 0.017*"’" + 0.014*"needs" + 0.009*"ensure" + 0.008*"well" + 0.007*"effective" + 0.007*"plans" + 0.006*"clear" + 0.006*"progress" + 0.006*"practice" + 0.006*"good" -2024-10-07 08:51:05,979 - topic diff=0.752588, rho=1.000000 -2024-10-07 08:51:05,979 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:51:05.979340', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:07,085 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:51:07,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:07,086 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:51:07,086 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:07,086 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:51:07,086 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:07,086 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:51:07,087 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:07,087 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:51:07,087 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:07,087 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:51:07,087 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:17,401 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:51:17,403 - built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions) -2024-10-07 08:51:17,403 - Dictionary lifecycle event {'msg': "built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions)", 'datetime': '2024-10-07T08:51:17.403264', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:17,404 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:51:17,404 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:51:17,404 - using serial LDA version on this node -2024-10-07 08:51:17,405 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:51:17,405 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:51:17,408 - -7.907 per-word bound, 240.0 perplexity estimate based on a held-out corpus of 1 documents with 2281 words -2024-10-07 08:51:17,408 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:51:17,409 - topic #0 (0.333): 0.017*"’" + 0.008*"well" + 0.008*"Wakefield" + 0.008*"quality" + 0.007*"effective" + 0.007*"good" + 0.006*"November" + 0.006*"plans" + 0.005*"practice" + 0.005*"progress" -2024-10-07 08:51:17,410 - topic #1 (0.333): 0.016*"’" + 0.010*"leaders" + 0.008*"Wakefield" + 0.008*"November" + 0.007*"effective" + 0.007*"well" + 0.007*"quality" + 0.007*"plans" + 0.006*"good" + 0.006*"19" -2024-10-07 08:51:17,410 - topic #2 (0.333): 0.016*"’" + 0.008*"quality" + 0.007*"November" + 0.007*"good" + 0.007*"well" + 0.006*"Wakefield" + 0.006*"leaders" + 0.005*"19" + 0.005*"plans" + 0.005*"progress" -2024-10-07 08:51:17,410 - topic diff=0.801231, rho=1.000000 -2024-10-07 08:51:17,410 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:51:17.410578', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:18,286 - Inspection date 2021-11-08 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:51:18,287 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:18,287 - Inspection date 2021-11-08 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:51:18,287 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:18,288 - Inspection date 2021-11-08 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:51:18,288 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:18,288 - Inspection date 2021-11-08 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:51:18,288 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:18,288 - Inspection date 2021-11-08 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:51:18,288 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:18,288 - Inspection date 2021-11-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:51:18,288 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:27,696 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:51:27,698 - built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions) -2024-10-07 08:51:27,698 - Dictionary lifecycle event {'msg': "built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions)", 'datetime': '2024-10-07T08:51:27.698727', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:27,699 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:51:27,699 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:51:27,700 - using serial LDA version on this node -2024-10-07 08:51:27,700 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:51:27,700 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:51:27,703 - -7.866 per-word bound, 233.4 perplexity estimate based on a held-out corpus of 1 documents with 1855 words -2024-10-07 08:51:27,703 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:51:27,705 - topic #0 (0.333): 0.019*"’" + 0.010*"March" + 0.008*"needs" + 0.007*"quality" + 0.006*"effective" + 0.006*"ensure" + 0.006*"However" + 0.006*"well" + 0.005*"York" + 0.005*"training" -2024-10-07 08:51:27,705 - topic #1 (0.333): 0.011*"’" + 0.006*"needs" + 0.006*"effective" + 0.005*"quality" + 0.005*"need" + 0.005*"good" + 0.005*"supported" + 0.005*"York" + 0.005*"experiences" + 0.005*"However" -2024-10-07 08:51:27,705 - topic #2 (0.333): 0.012*"’" + 0.006*"quality" + 0.006*"needs" + 0.005*"ensure" + 0.005*"plans" + 0.005*"York" + 0.004*"effective" + 0.004*"March" + 0.004*"However" + 0.004*"education" -2024-10-07 08:51:27,705 - topic diff=0.783969, rho=1.000000 -2024-10-07 08:51:27,705 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:51:27.705711', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:28,590 - Inspection date 2022-03-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:51:28,590 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:28,590 - Inspection date 2022-03-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:51:28,590 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:28,591 - Inspection date 2022-03-07 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:51:28,591 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:28,591 - Inspection date 2022-03-07 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:51:28,591 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:28,591 - Inspection date 2022-03-07 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:51:28,591 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:28,591 - Inspection date 2022-03-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:51:28,591 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:38,675 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:51:38,678 - built Dictionary<1053 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2351 corpus positions) -2024-10-07 08:51:38,678 - Dictionary lifecycle event {'msg': "built Dictionary<1053 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2351 corpus positions)", 'datetime': '2024-10-07T08:51:38.678198', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:38,679 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:51:38,679 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:51:38,679 - using serial LDA version on this node -2024-10-07 08:51:38,680 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:51:38,680 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:51:38,683 - -7.958 per-word bound, 248.6 perplexity estimate based on a held-out corpus of 1 documents with 2351 words -2024-10-07 08:51:38,683 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:51:38,685 - topic #0 (0.333): 0.013*"’" + 0.007*"need" + 0.007*"needs" + 0.006*"Cornwall" + 0.005*"July" + 0.004*"well" + 0.004*"receive" + 0.004*"oversight" + 0.004*"effective" + 0.003*"1" -2024-10-07 08:51:38,685 - topic #1 (0.333): 0.022*"’" + 0.012*"needs" + 0.008*"Cornwall" + 0.007*"well" + 0.007*"need" + 0.006*"receive" + 0.006*"effective" + 0.005*"progress" + 0.005*"5" + 0.005*"risk" -2024-10-07 08:51:38,685 - topic #2 (0.333): 0.018*"’" + 0.008*"Cornwall" + 0.007*"needs" + 0.006*"well" + 0.006*"need" + 0.005*"5" + 0.005*"leaders" + 0.005*"1" + 0.005*"receive" + 0.005*"oversight" -2024-10-07 08:51:38,685 - topic diff=0.800151, rho=1.000000 -2024-10-07 08:51:38,685 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:51:38.685840', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:39,639 - Inspection date 2024-07-01 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:51:39,639 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:39,640 - Inspection date 2024-07-01 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:51:39,640 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:39,640 - Inspection date 2024-07-01 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:51:39,640 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:39,640 - Inspection date 2024-07-01 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:51:39,640 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:39,640 - Inspection date 2024-07-01 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:51:39,641 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:39,641 - Inspection date 2024-07-01 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:51:39,641 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:47,279 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:51:47,280 - built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions) -2024-10-07 08:51:47,280 - Dictionary lifecycle event {'msg': "built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions)", 'datetime': '2024-10-07T08:51:47.280812', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:47,281 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:51:47,281 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:51:47,281 - using serial LDA version on this node -2024-10-07 08:51:47,282 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:51:47,282 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:51:47,285 - -7.686 per-word bound, 205.9 perplexity estimate based on a held-out corpus of 1 documents with 1521 words -2024-10-07 08:51:47,285 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:51:47,286 - topic #0 (0.333): 0.024*"’" + 0.011*"Isles" + 0.008*"practice" + 0.008*"Scilly" + 0.007*"need" + 0.006*"information" + 0.006*"needs" + 0.005*"protection" + 0.005*"13" + 0.004*"risks" -2024-10-07 08:51:47,286 - topic #1 (0.333): 0.020*"’" + 0.016*"Scilly" + 0.013*"Isles" + 0.010*"information" + 0.009*"need" + 0.008*"practice" + 0.008*"needs" + 0.006*"quality" + 0.006*"place" + 0.006*"risks" -2024-10-07 08:51:47,286 - topic #2 (0.333): 0.019*"’" + 0.012*"Isles" + 0.010*"Scilly" + 0.010*"information" + 0.008*"practice" + 0.008*"protection" + 0.007*"need" + 0.006*"quality" + 0.006*"place" + 0.006*"needs" -2024-10-07 08:51:47,286 - topic diff=0.757559, rho=1.000000 -2024-10-07 08:51:47,287 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-07T08:51:47.287030', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:48,181 - Inspection date 2023-07-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:51:48,181 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:48,181 - Inspection date 2023-07-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:51:48,181 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:48,182 - Inspection date 2023-07-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:51:48,182 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:48,182 - Inspection date 2023-07-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:51:48,182 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:48,182 - Inspection date 2023-07-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:51:48,182 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:48,183 - Inspection date 2023-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:51:48,183 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:51:59,310 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:51:59,311 - built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions) -2024-10-07 08:51:59,312 - Dictionary lifecycle event {'msg': "built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions)", 'datetime': '2024-10-07T08:51:59.312008', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:51:59,312 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:51:59,313 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:51:59,313 - using serial LDA version on this node -2024-10-07 08:51:59,313 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:51:59,313 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:51:59,317 - -7.849 per-word bound, 230.5 perplexity estimate based on a held-out corpus of 1 documents with 2074 words -2024-10-07 08:51:59,317 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:51:59,318 - topic #0 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"Coventry" + 0.006*"plans" + 0.006*"well" + 0.005*"strong" + 0.005*"supported" + 0.005*"family" + 0.004*"education" + 0.004*"need" -2024-10-07 08:51:59,318 - topic #1 (0.333): 0.021*"’" + 0.008*"Coventry" + 0.007*"needs" + 0.007*"well" + 0.007*"supported" + 0.005*"plans" + 0.005*"strong" + 0.005*"family" + 0.004*"range" + 0.004*"July" -2024-10-07 08:51:59,318 - topic #2 (0.333): 0.021*"’" + 0.010*"well" + 0.009*"Coventry" + 0.008*"supported" + 0.007*"family" + 0.007*"needs" + 0.006*"need" + 0.006*"plans" + 0.006*"strong" + 0.005*"20" -2024-10-07 08:51:59,319 - topic diff=0.804938, rho=1.000000 -2024-10-07 08:51:59,319 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:51:59.319210', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:00,313 - Inspection date 2022-06-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:52:00,313 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:00,313 - Inspection date 2022-06-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:52:00,313 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:00,314 - Inspection date 2022-06-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:52:00,314 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:00,314 - Inspection date 2022-06-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:52:00,314 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:00,314 - Inspection date 2022-06-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:52:00,314 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:00,315 - Inspection date 2022-06-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:52:00,315 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:12,951 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:52:12,953 - built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions) -2024-10-07 08:52:12,954 - Dictionary lifecycle event {'msg': "built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions)", 'datetime': '2024-10-07T08:52:12.954046', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:12,955 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:52:12,955 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:52:12,955 - using serial LDA version on this node -2024-10-07 08:52:12,956 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:52:12,956 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:52:12,960 - -8.090 per-word bound, 272.4 perplexity estimate based on a held-out corpus of 1 documents with 2653 words -2024-10-07 08:52:12,960 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:52:12,961 - topic #0 (0.333): 0.022*"’" + 0.008*"well" + 0.008*"October" + 0.007*"leaders" + 0.007*"needs" + 0.006*"practice" + 0.005*"Darlington" + 0.005*"quality" + 0.005*"supported" + 0.005*"effective" -2024-10-07 08:52:12,961 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"leaders" + 0.006*"needs" + 0.006*"practice" + 0.005*"October" + 0.005*"Darlington" + 0.004*"quality" + 0.004*"education" + 0.004*"effective" -2024-10-07 08:52:12,961 - topic #2 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"Darlington" + 0.006*"needs" + 0.006*"October" + 0.006*"leaders" + 0.006*"practice" + 0.005*"effective" + 0.005*"10" + 0.005*"21" -2024-10-07 08:52:12,962 - topic diff=0.797656, rho=1.000000 -2024-10-07 08:52:12,962 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:52:12.962207', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:13,890 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:52:13,891 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:13,891 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:52:13,891 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:13,891 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:52:13,892 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:13,892 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:52:13,892 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:13,892 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:52:13,892 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:13,893 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:52:13,893 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:25,476 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:52:25,478 - built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions) -2024-10-07 08:52:25,479 - Dictionary lifecycle event {'msg': "built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions)", 'datetime': '2024-10-07T08:52:25.479128', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:25,480 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:52:25,480 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:52:25,480 - using serial LDA version on this node -2024-10-07 08:52:25,480 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:52:25,481 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:52:25,484 - -8.042 per-word bound, 263.5 perplexity estimate based on a held-out corpus of 1 documents with 2396 words -2024-10-07 08:52:25,484 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:52:25,486 - topic #0 (0.333): 0.020*"’" + 0.010*"needs" + 0.007*"quality" + 0.007*"Derby" + 0.006*"receive" + 0.006*"progress" + 0.006*"leaders" + 0.006*"good" + 0.005*"plans" + 0.005*"well" -2024-10-07 08:52:25,486 - topic #1 (0.333): 0.021*"’" + 0.010*"needs" + 0.008*"Derby" + 0.006*"receive" + 0.006*"appropriate" + 0.006*"plans" + 0.006*"quality" + 0.006*"need" + 0.005*"oversight" + 0.005*"leaders" -2024-10-07 08:52:25,486 - topic #2 (0.333): 0.022*"’" + 0.008*"needs" + 0.007*"Derby" + 0.006*"quality" + 0.005*"receive" + 0.005*"well" + 0.005*"need" + 0.005*"plans" + 0.005*"good" + 0.004*"progress" -2024-10-07 08:52:25,486 - topic diff=0.772026, rho=1.000000 -2024-10-07 08:52:25,487 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:52:25.487120', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:26,429 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:52:26,429 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:26,429 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:52:26,429 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:26,430 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:52:26,430 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:26,430 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:52:26,430 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:26,430 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:52:26,430 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:26,431 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:52:26,431 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:35,660 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:52:35,662 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions) -2024-10-07 08:52:35,662 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions)", 'datetime': '2024-10-07T08:52:35.662860', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:35,663 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:52:35,663 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:52:35,664 - using serial LDA version on this node -2024-10-07 08:52:35,664 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:52:35,664 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:52:35,668 - -8.038 per-word bound, 262.7 perplexity estimate based on a held-out corpus of 1 documents with 2035 words -2024-10-07 08:52:35,668 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:52:35,669 - topic #0 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"Derbyshire" + 0.006*"need" + 0.005*"plans" + 0.005*"education" + 0.005*"leaders" + 0.004*"positive" + 0.004*"effective" + 0.004*"health" -2024-10-07 08:52:35,669 - topic #1 (0.333): 0.015*"’" + 0.009*"well" + 0.007*"Derbyshire" + 0.005*"needs" + 0.005*"positive" + 0.005*"health" + 0.005*"good" + 0.005*"number" + 0.005*"leaders" + 0.005*"effective" -2024-10-07 08:52:35,670 - topic #2 (0.333): 0.010*"’" + 0.006*"Derbyshire" + 0.006*"well" + 0.005*"plans" + 0.005*"needs" + 0.004*"10" + 0.004*"practice" + 0.004*"30" + 0.004*"need" + 0.004*"positive" -2024-10-07 08:52:35,670 - topic diff=0.741010, rho=1.000000 -2024-10-07 08:52:35,670 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:52:35.670347', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:36,701 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:52:36,701 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:36,702 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:52:36,702 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:36,702 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:52:36,702 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:36,702 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:52:36,702 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:36,702 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:52:36,703 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:36,703 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:52:36,703 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:48,036 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:52:48,039 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions) -2024-10-07 08:52:48,039 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions)", 'datetime': '2024-10-07T08:52:48.039229', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:48,040 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:52:48,040 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:52:48,040 - using serial LDA version on this node -2024-10-07 08:52:48,041 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:52:48,041 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:52:48,045 - -8.147 per-word bound, 283.4 perplexity estimate based on a held-out corpus of 1 documents with 2313 words -2024-10-07 08:52:48,045 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:52:48,046 - topic #0 (0.333): 0.009*"’" + 0.005*"well" + 0.005*"leaders" + 0.004*"health" + 0.004*"risk" + 0.004*"Devon" + 0.004*"practice" + 0.004*"need" + 0.004*"living" + 0.004*"needs" -2024-10-07 08:52:48,046 - topic #1 (0.333): 0.009*"’" + 0.005*"well" + 0.005*"leaders" + 0.005*"risk" + 0.005*"health" + 0.004*"protection" + 0.004*"living" + 0.004*"plans" + 0.004*"progress" + 0.003*"risks" -2024-10-07 08:52:48,047 - topic #2 (0.333): 0.009*"’" + 0.006*"well" + 0.006*"progress" + 0.005*"health" + 0.005*"risk" + 0.005*"case" + 0.004*"leaders" + 0.004*"quality" + 0.004*"Devon" + 0.004*"time" -2024-10-07 08:52:48,047 - topic diff=0.733848, rho=1.000000 -2024-10-07 08:52:48,047 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:52:48.047409', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:52:49,056 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:52:49,056 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:49,056 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:52:49,056 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:49,057 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:52:49,057 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:49,057 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:52:49,057 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:49,057 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:52:49,057 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:52:49,057 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:52:49,058 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:00,181 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:53:00,183 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions) -2024-10-07 08:53:00,183 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions)", 'datetime': '2024-10-07T08:53:00.183828', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:00,184 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:53:00,185 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:53:00,185 - using serial LDA version on this node -2024-10-07 08:53:00,185 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:53:00,185 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:53:00,189 - -8.110 per-word bound, 276.3 perplexity estimate based on a held-out corpus of 1 documents with 2429 words -2024-10-07 08:53:00,189 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:53:00,191 - topic #0 (0.333): 0.027*"’" + 0.007*"well" + 0.007*"Doncaster" + 0.006*"records" + 0.006*"many" + 0.005*"leaders" + 0.005*"plans" + 0.005*"information" + 0.005*"arrangements" + 0.005*"14" -2024-10-07 08:53:00,191 - topic #1 (0.333): 0.012*"’" + 0.006*"well" + 0.005*"progress" + 0.004*"leaders" + 0.004*"Doncaster" + 0.004*"25" + 0.004*"arrangements" + 0.004*"made" + 0.003*"plans" + 0.003*"oversight" -2024-10-07 08:53:00,191 - topic #2 (0.333): 0.015*"’" + 0.006*"Doncaster" + 0.006*"well" + 0.005*"progress" + 0.005*"quality" + 0.005*"February" + 0.005*"many" + 0.004*"leaders" + 0.004*"plans" + 0.004*"oversight" -2024-10-07 08:53:00,191 - topic diff=0.786725, rho=1.000000 -2024-10-07 08:53:00,191 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:53:00.191901', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:02,113 - Inspection date 2022-02-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:53:02,113 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:02,113 - Inspection date 2022-02-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:53:02,114 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:02,114 - Inspection date 2022-02-14 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:53:02,114 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:02,114 - Inspection date 2022-02-14 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:53:02,115 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:02,115 - Inspection date 2022-02-14 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:53:02,115 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:02,115 - Inspection date 2022-02-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:53:02,115 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:10,545 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:53:10,547 - built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions) -2024-10-07 08:53:10,547 - Dictionary lifecycle event {'msg': "built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions)", 'datetime': '2024-10-07T08:53:10.547684', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:10,548 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:53:10,548 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:53:10,549 - using serial LDA version on this node -2024-10-07 08:53:10,549 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:53:10,549 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:53:10,553 - -8.100 per-word bound, 274.5 perplexity estimate based on a held-out corpus of 1 documents with 1942 words -2024-10-07 08:53:10,553 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:53:10,554 - topic #0 (0.333): 0.011*"’" + 0.008*"Dorset" + 0.005*"good" + 0.005*"well" + 0.004*"leaders" + 0.004*"27" + 0.004*"needs" + 0.004*"including" + 0.004*"Senior" + 0.004*"arrangements" -2024-10-07 08:53:10,554 - topic #1 (0.333): 0.015*"’" + 0.007*"good" + 0.007*"Dorset" + 0.007*"well" + 0.005*"change" + 0.004*"arrangements" + 0.004*"needs" + 0.004*"impact" + 0.004*"quality" + 0.004*"pandemic" -2024-10-07 08:53:10,554 - topic #2 (0.333): 0.014*"’" + 0.008*"Dorset" + 0.005*"good" + 0.005*"well" + 0.005*"needs" + 0.005*"arrangements" + 0.004*"8" + 0.004*"receive" + 0.004*"October" + 0.004*"leaders" -2024-10-07 08:53:10,555 - topic diff=0.711821, rho=1.000000 -2024-10-07 08:53:10,555 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:53:10.555208', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:11,461 - Inspection date 2021-09-27 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:53:11,461 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:11,461 - Inspection date 2021-09-27 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:53:11,461 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:11,462 - Inspection date 2021-09-27 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:53:11,462 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:11,462 - Inspection date 2021-09-27 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:53:11,462 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:11,462 - Inspection date 2021-09-27 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:53:11,462 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:11,463 - Inspection date 2021-09-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:53:11,463 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:21,856 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:53:21,858 - built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions) -2024-10-07 08:53:21,858 - Dictionary lifecycle event {'msg': "built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions)", 'datetime': '2024-10-07T08:53:21.858202', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:21,859 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:53:21,859 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:53:21,859 - using serial LDA version on this node -2024-10-07 08:53:21,860 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:53:21,860 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:53:21,863 - -8.012 per-word bound, 258.2 perplexity estimate based on a held-out corpus of 1 documents with 2138 words -2024-10-07 08:53:21,863 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:53:21,865 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.008*"Dudley" + 0.005*"plans" + 0.005*"arrangements" + 0.005*"always" + 0.004*"quality" + 0.004*"well" + 0.004*"management" + 0.004*"ensure" -2024-10-07 08:53:21,865 - topic #1 (0.333): 0.015*"’" + 0.013*"needs" + 0.009*"Dudley" + 0.006*"arrangements" + 0.006*"well" + 0.005*"oversight" + 0.005*"11" + 0.005*"quality" + 0.004*"ensure" + 0.004*"always" -2024-10-07 08:53:21,865 - topic #2 (0.333): 0.016*"’" + 0.010*"needs" + 0.007*"Dudley" + 0.006*"always" + 0.006*"plans" + 0.006*"well" + 0.005*"ensure" + 0.005*"oversight" + 0.004*"However" + 0.004*"November" -2024-10-07 08:53:21,865 - topic diff=0.760780, rho=1.000000 -2024-10-07 08:53:21,865 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:53:21.865724', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:22,850 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:53:22,851 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:22,851 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:53:22,851 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:22,851 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:53:22,851 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:22,851 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:53:22,852 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:22,852 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:53:22,852 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:22,852 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:53:22,852 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:34,330 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:53:34,332 - built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions) -2024-10-07 08:53:34,333 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-10-07T08:53:34.333103', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:34,334 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:53:34,334 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:53:34,334 - using serial LDA version on this node -2024-10-07 08:53:34,334 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:53:34,334 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:53:34,338 - -7.977 per-word bound, 252.0 perplexity estimate based on a held-out corpus of 1 documents with 2278 words -2024-10-07 08:53:34,338 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:53:34,339 - topic #0 (0.333): 0.014*"’" + 0.011*"needs" + 0.008*"Durham" + 0.007*"plans" + 0.006*"well" + 0.006*"May" + 0.006*"ensure" + 0.005*"risks" + 0.005*"practice" + 0.005*"identified" -2024-10-07 08:53:34,340 - topic #1 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"May" + 0.007*"well" + 0.006*"plans" + 0.006*"Durham" + 0.005*"leaders" + 0.005*"ensure" + 0.005*"practice" + 0.004*"progress" -2024-10-07 08:53:34,340 - topic #2 (0.333): 0.016*"’" + 0.012*"needs" + 0.007*"Durham" + 0.007*"May" + 0.007*"well" + 0.006*"ensure" + 0.006*"plans" + 0.005*"practice" + 0.005*"family" + 0.004*"20" -2024-10-07 08:53:34,340 - topic diff=0.768121, rho=1.000000 -2024-10-07 08:53:34,340 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:53:34.340561', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:35,248 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:53:35,248 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:35,249 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:53:35,249 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:35,249 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:53:35,249 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:35,249 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:53:35,249 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:35,250 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:53:35,250 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:35,250 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:53:35,250 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:45,785 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:53:45,787 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions) -2024-10-07 08:53:45,787 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions)", 'datetime': '2024-10-07T08:53:45.787956', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:45,788 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:53:45,789 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:53:45,789 - using serial LDA version on this node -2024-10-07 08:53:45,789 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:53:45,789 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:53:45,793 - -7.926 per-word bound, 243.2 perplexity estimate based on a held-out corpus of 1 documents with 2014 words -2024-10-07 08:53:45,793 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:53:45,794 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.008*"plans" + 0.007*"East" + 0.007*"needs" + 0.006*"progress" + 0.006*"Riding" + 0.005*"10" + 0.005*"30" + 0.005*"partners" -2024-10-07 08:53:45,794 - topic #1 (0.333): 0.018*"’" + 0.012*"needs" + 0.009*"plans" + 0.008*"well" + 0.007*"progress" + 0.006*"Riding" + 0.006*"East" + 0.005*"education" + 0.005*"good" + 0.005*"10" -2024-10-07 08:53:45,794 - topic #2 (0.333): 0.010*"’" + 0.009*"plans" + 0.008*"needs" + 0.007*"well" + 0.007*"progress" + 0.005*"Riding" + 0.005*"February" + 0.004*"30" + 0.004*"East" + 0.004*"quality" -2024-10-07 08:53:45,794 - topic diff=0.776274, rho=1.000000 -2024-10-07 08:53:45,794 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:53:45.794917', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:46,653 - Inspection date 2023-01-30 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:53:46,653 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:46,654 - Inspection date 2023-01-30 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:53:46,654 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:46,654 - Inspection date 2023-01-30 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:53:46,654 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:46,654 - Inspection date 2023-01-30 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:53:46,654 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:46,655 - Inspection date 2023-01-30 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:53:46,655 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:46,655 - Inspection date 2023-01-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:53:46,655 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:56,963 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:53:56,967 - built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions) -2024-10-07 08:53:56,967 - Dictionary lifecycle event {'msg': "built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions)", 'datetime': '2024-10-07T08:53:56.967476', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:56,969 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:53:56,969 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:53:56,969 - using serial LDA version on this node -2024-10-07 08:53:56,970 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:53:56,970 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:53:56,977 - -8.078 per-word bound, 270.2 perplexity estimate based on a held-out corpus of 1 documents with 2220 words -2024-10-07 08:53:56,977 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:53:56,979 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.009*"plans" + 0.007*"needs" + 0.006*"East" + 0.006*"Sussex" + 0.006*"progress" + 0.006*"impact" + 0.005*"provide" + 0.005*"11" -2024-10-07 08:53:56,979 - topic #1 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"needs" + 0.007*"plans" + 0.006*"East" + 0.006*"progress" + 0.006*"including" + 0.006*"Sussex" + 0.005*"provide" + 0.005*"impact" -2024-10-07 08:53:56,980 - topic #2 (0.333): 0.015*"’" + 0.010*"well" + 0.007*"needs" + 0.007*"plans" + 0.006*"East" + 0.006*"Sussex" + 0.006*"progress" + 0.006*"experiences" + 0.005*"including" + 0.005*"2023" -2024-10-07 08:53:56,980 - topic diff=0.754175, rho=1.000000 -2024-10-07 08:53:56,980 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:53:56.980440', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:53:57,973 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:53:57,973 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:57,973 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:53:57,973 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:57,974 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:53:57,974 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:57,974 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:53:57,974 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:57,974 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:53:57,974 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:53:57,975 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:53:57,975 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:09,715 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:54:09,719 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions) -2024-10-07 08:54:09,719 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions)", 'datetime': '2024-10-07T08:54:09.719446', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:09,721 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:54:09,722 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:54:09,722 - using serial LDA version on this node -2024-10-07 08:54:09,723 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:54:09,723 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:54:09,731 - -8.011 per-word bound, 257.9 perplexity estimate based on a held-out corpus of 1 documents with 2686 words -2024-10-07 08:54:09,731 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:54:09,733 - topic #0 (0.333): 0.016*"’" + 0.007*"plans" + 0.006*"progress" + 0.005*"family" + 0.005*"supported" + 0.005*"leaders" + 0.005*"experiences" + 0.005*"well" + 0.005*"quality" + 0.005*"new" -2024-10-07 08:54:09,733 - topic #1 (0.333): 0.020*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"progress" + 0.006*"plans" + 0.005*"understand" + 0.005*"family" + 0.005*"‘" + 0.005*"health" + 0.005*"helped" -2024-10-07 08:54:09,733 - topic #2 (0.333): 0.016*"’" + 0.007*"progress" + 0.006*"needs" + 0.006*"well" + 0.006*"Essex" + 0.005*"plans" + 0.005*"risk" + 0.005*"experiences" + 0.005*"advisers" + 0.005*"leaders" -2024-10-07 08:54:09,733 - topic diff=0.810544, rho=1.000000 -2024-10-07 08:54:09,734 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:54:09.734057', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:10,668 - Inspection date 2023-06-26 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:54:10,668 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:10,668 - Inspection date 2023-06-26 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:54:10,669 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:10,669 - Inspection date 2023-06-26 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:54:10,669 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:10,669 - Inspection date 2023-06-26 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:54:10,669 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:10,670 - Inspection date 2023-06-26 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:54:10,670 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:10,670 - Inspection date 2023-06-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:54:10,670 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:21,339 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:54:21,341 - built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions) -2024-10-07 08:54:21,341 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions)", 'datetime': '2024-10-07T08:54:21.341402', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:21,342 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:54:21,342 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:54:21,342 - using serial LDA version on this node -2024-10-07 08:54:21,343 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:54:21,343 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:54:21,347 - -8.041 per-word bound, 263.4 perplexity estimate based on a held-out corpus of 1 documents with 2356 words -2024-10-07 08:54:21,347 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:54:21,348 - topic #0 (0.333): 0.011*"’" + 0.006*"effective" + 0.005*"timely" + 0.005*"well" + 0.005*"practice" + 0.005*"quality" + 0.005*"good" + 0.005*"team" + 0.004*"plans" + 0.004*"needs" -2024-10-07 08:54:21,348 - topic #1 (0.333): 0.009*"’" + 0.006*"effective" + 0.005*"practice" + 0.005*"good" + 0.005*"quality" + 0.005*"well" + 0.004*"timely" + 0.004*"needs" + 0.004*"home" + 0.004*"need" -2024-10-07 08:54:21,348 - topic #2 (0.333): 0.017*"’" + 0.011*"effective" + 0.009*"good" + 0.008*"practice" + 0.007*"quality" + 0.007*"needs" + 0.006*"well" + 0.006*"early" + 0.006*"timely" + 0.005*"need" -2024-10-07 08:54:21,349 - topic diff=0.787636, rho=1.000000 -2024-10-07 08:54:21,349 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:54:21.349180', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:22,257 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:54:22,257 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:22,257 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:54:22,257 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:22,257 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:54:22,257 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:22,258 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:54:22,258 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:22,258 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:54:22,258 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:22,258 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:54:22,258 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:33,602 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:54:33,604 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions) -2024-10-07 08:54:33,605 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions)", 'datetime': '2024-10-07T08:54:33.605165', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:33,606 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:54:33,606 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:54:33,606 - using serial LDA version on this node -2024-10-07 08:54:33,607 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:54:33,607 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:54:33,611 - -8.065 per-word bound, 267.8 perplexity estimate based on a held-out corpus of 1 documents with 2579 words -2024-10-07 08:54:33,611 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:54:33,612 - topic #0 (0.333): 0.020*"’" + 0.009*"needs" + 0.007*"2022" + 0.007*"February" + 0.006*"plans" + 0.005*"protection" + 0.005*"progress" + 0.005*"experienced" + 0.005*"Gloucestershire" + 0.005*"family" -2024-10-07 08:54:33,612 - topic #1 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"2022" + 0.007*"February" + 0.007*"plans" + 0.006*"progress" + 0.005*"well" + 0.005*"timely" + 0.005*"experienced" + 0.004*"good" -2024-10-07 08:54:33,613 - topic #2 (0.333): 0.013*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"plans" + 0.006*"February" + 0.006*"2022" + 0.005*"Gloucestershire" + 0.005*"7" + 0.005*"need" + 0.005*"appropriate" -2024-10-07 08:54:33,613 - topic diff=0.823067, rho=1.000000 -2024-10-07 08:54:33,613 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:54:33.613303', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:34,730 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:54:34,731 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:34,731 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:54:34,731 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:34,731 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:54:34,731 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:34,731 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:54:34,732 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:34,732 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:54:34,732 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:34,732 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:54:34,732 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:47,701 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:54:47,705 - built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions) -2024-10-07 08:54:47,705 - Dictionary lifecycle event {'msg': "built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions)", 'datetime': '2024-10-07T08:54:47.705219', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:47,707 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:54:47,707 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:54:47,707 - using serial LDA version on this node -2024-10-07 08:54:47,708 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:54:47,708 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:54:47,715 - -8.059 per-word bound, 266.6 perplexity estimate based on a held-out corpus of 1 documents with 2652 words -2024-10-07 08:54:47,716 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:54:47,718 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.006*"Halton" + 0.006*"many" + 0.006*"quality" + 0.006*"including" + 0.006*"plans" + 0.005*"need" + 0.005*"Leaders" + 0.005*"lack" -2024-10-07 08:54:47,718 - topic #1 (0.333): 0.015*"’" + 0.007*"Halton" + 0.007*"quality" + 0.006*"needs" + 0.006*"many" + 0.006*"including" + 0.005*"need" + 0.005*"plans" + 0.004*"Leaders" + 0.004*"lack" -2024-10-07 08:54:47,718 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.005*"protection" + 0.005*"many" + 0.005*"need" + 0.005*"Halton" + 0.005*"quality" + 0.004*"recently" + 0.004*"including" + 0.004*"experiences" -2024-10-07 08:54:47,718 - topic diff=0.800364, rho=1.000000 -2024-10-07 08:54:47,719 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:54:47.719095', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:54:48,692 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:54:48,692 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:48,692 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:54:48,692 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:48,692 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:54:48,693 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:48,693 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:54:48,693 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:48,693 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:54:48,693 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:54:48,693 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:54:48,693 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:00,096 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:55:00,098 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2524 corpus positions) -2024-10-07 08:55:00,099 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2524 corpus positions)", 'datetime': '2024-10-07T08:55:00.099092', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:00,100 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:55:00,100 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:55:00,100 - using serial LDA version on this node -2024-10-07 08:55:00,100 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:55:00,101 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:55:00,104 - -7.973 per-word bound, 251.2 perplexity estimate based on a held-out corpus of 1 documents with 2524 words -2024-10-07 08:55:00,104 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:55:00,106 - topic #0 (0.333): 0.010*"’" + 0.007*"family" + 0.007*"plans" + 0.006*"well" + 0.006*"progress" + 0.005*"new" + 0.005*"quality" + 0.004*"needs" + 0.004*"carers" + 0.004*"practice" -2024-10-07 08:55:00,106 - topic #1 (0.333): 0.018*"’" + 0.008*"well" + 0.007*"family" + 0.006*"new" + 0.006*"plans" + 0.006*"achieve" + 0.006*"progress" + 0.006*"quality" + 0.005*"receive" + 0.005*"understand" -2024-10-07 08:55:00,106 - topic #2 (0.333): 0.019*"’" + 0.008*"new" + 0.007*"progress" + 0.006*"family" + 0.006*"well" + 0.006*"plans" + 0.005*"needs" + 0.005*"quality" + 0.005*"Hampshire" + 0.005*"practice" -2024-10-07 08:55:00,106 - topic diff=0.814952, rho=1.000000 -2024-10-07 08:55:00,106 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:55:00.106815', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:01,080 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:55:01,080 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:01,080 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:55:01,080 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:01,081 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:55:01,081 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:01,081 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:55:01,081 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:01,081 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:55:01,081 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:01,081 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:55:01,082 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:13,811 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:55:13,814 - built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions) -2024-10-07 08:55:13,814 - Dictionary lifecycle event {'msg': "built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions)", 'datetime': '2024-10-07T08:55:13.814893', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:13,816 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:55:13,816 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:55:13,817 - using serial LDA version on this node -2024-10-07 08:55:13,817 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:55:13,817 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:55:13,822 - -8.072 per-word bound, 269.1 perplexity estimate based on a held-out corpus of 1 documents with 2584 words -2024-10-07 08:55:13,822 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:55:13,824 - topic #0 (0.333): 0.018*"’" + 0.007*"needs" + 0.007*"Hartlepool" + 0.006*"March" + 0.006*"well" + 0.005*"strong" + 0.005*"leaders" + 0.005*"supported" + 0.005*"practice" + 0.004*"clear" -2024-10-07 08:55:13,824 - topic #1 (0.333): 0.015*"’" + 0.009*"March" + 0.007*"Hartlepool" + 0.006*"needs" + 0.006*"18" + 0.005*"well" + 0.005*"leaders" + 0.005*"plans" + 0.005*"clear" + 0.004*"strong" -2024-10-07 08:55:13,824 - topic #2 (0.333): 0.026*"’" + 0.007*"March" + 0.006*"well" + 0.006*"Hartlepool" + 0.006*"needs" + 0.006*"leaders" + 0.005*"effective" + 0.005*"plans" + 0.004*"ensure" + 0.004*"good" -2024-10-07 08:55:13,824 - topic diff=0.789380, rho=1.000000 -2024-10-07 08:55:13,824 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:55:13.824975', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:14,830 - Inspection date 2024-03-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:55:14,830 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:14,830 - Inspection date 2024-03-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:55:14,831 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:14,831 - Inspection date 2024-03-18 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:55:14,831 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:14,831 - Inspection date 2024-03-18 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:55:14,831 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:14,831 - Inspection date 2024-03-18 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:55:14,831 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:14,832 - Inspection date 2024-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:55:14,832 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:26,793 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:55:26,795 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) -2024-10-07 08:55:26,795 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-10-07T08:55:26.795480', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:26,796 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:55:26,796 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:55:26,796 - using serial LDA version on this node -2024-10-07 08:55:26,797 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:55:26,797 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:55:26,801 - -8.043 per-word bound, 263.8 perplexity estimate based on a held-out corpus of 1 documents with 2531 words -2024-10-07 08:55:26,801 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:55:26,802 - topic #0 (0.333): 0.019*"’" + 0.006*"practice" + 0.006*"needs" + 0.005*"lack" + 0.005*"many" + 0.004*"18" + 0.004*"impact" + 0.004*"carers" + 0.004*"plans" + 0.004*"quality" -2024-10-07 08:55:26,802 - topic #1 (0.333): 0.018*"’" + 0.005*"Herefordshire" + 0.005*"impact" + 0.005*"practice" + 0.005*"lack" + 0.004*"29" + 0.004*"needs" + 0.004*"many" + 0.004*"ensure" + 0.004*"progress" -2024-10-07 08:55:26,802 - topic #2 (0.333): 0.015*"’" + 0.006*"Herefordshire" + 0.005*"lack" + 0.005*"practice" + 0.005*"agency" + 0.005*"plans" + 0.004*"many" + 0.004*"harm" + 0.004*"impact" + 0.004*"needs" -2024-10-07 08:55:26,803 - topic diff=0.788639, rho=1.000000 -2024-10-07 08:55:26,803 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:55:26.803169', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:27,636 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:55:27,636 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:27,637 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:55:27,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:27,637 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:55:27,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:27,637 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:55:27,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:27,638 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:55:27,638 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:27,638 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:55:27,638 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:39,670 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:55:39,672 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions) -2024-10-07 08:55:39,672 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions)", 'datetime': '2024-10-07T08:55:39.672862', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:39,673 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:55:39,674 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:55:39,674 - using serial LDA version on this node -2024-10-07 08:55:39,674 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:55:39,674 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:55:39,678 - -8.131 per-word bound, 280.4 perplexity estimate based on a held-out corpus of 1 documents with 2456 words -2024-10-07 08:55:39,678 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:55:39,680 - topic #0 (0.333): 0.020*"’" + 0.006*"Hertfordshire" + 0.006*"well" + 0.004*"receive" + 0.004*"needs" + 0.004*"27" + 0.004*"23" + 0.004*"effective" + 0.004*"leaders" + 0.004*"plans" -2024-10-07 08:55:39,680 - topic #1 (0.333): 0.019*"’" + 0.008*"Hertfordshire" + 0.007*"well" + 0.007*"needs" + 0.005*"plans" + 0.004*"family" + 0.004*"risk" + 0.004*"effective" + 0.004*"receive" + 0.004*"January" -2024-10-07 08:55:39,680 - topic #2 (0.333): 0.027*"’" + 0.006*"needs" + 0.006*"well" + 0.006*"receive" + 0.005*"Hertfordshire" + 0.005*"plans" + 0.005*"2023" + 0.005*"need" + 0.004*"positive" + 0.004*"23" -2024-10-07 08:55:39,680 - topic diff=0.792795, rho=1.000000 -2024-10-07 08:55:39,680 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:55:39.680951', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:41,329 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:55:41,329 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:41,330 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:55:41,330 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:41,330 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:55:41,330 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:41,330 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:55:41,330 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:41,330 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:55:41,331 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:41,331 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:55:41,331 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:50,742 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:55:50,744 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions) -2024-10-07 08:55:50,744 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions)", 'datetime': '2024-10-07T08:55:50.744676', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:50,745 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:55:50,745 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:55:50,745 - using serial LDA version on this node -2024-10-07 08:55:50,746 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:55:50,746 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:55:50,749 - -7.955 per-word bound, 248.2 perplexity estimate based on a held-out corpus of 1 documents with 1934 words -2024-10-07 08:55:50,749 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:55:50,751 - topic #0 (0.333): 0.019*"’" + 0.008*"leaders" + 0.007*"well" + 0.006*"practice" + 0.006*"Senior" + 0.005*"plans" + 0.005*"good" + 0.005*"needs" + 0.005*"progress" + 0.005*"3" -2024-10-07 08:55:50,751 - topic #1 (0.333): 0.011*"’" + 0.009*"leaders" + 0.006*"supported" + 0.005*"needs" + 0.005*"progress" + 0.005*"improve" + 0.005*"plans" + 0.004*"Isle" + 0.004*"well" + 0.004*"PAs" -2024-10-07 08:55:50,751 - topic #2 (0.333): 0.021*"’" + 0.008*"leaders" + 0.006*"needs" + 0.006*"Wight" + 0.005*"Isle" + 0.005*"3" + 0.005*"improve" + 0.005*"PAs" + 0.005*"information" + 0.005*"Senior" -2024-10-07 08:55:50,751 - topic diff=0.771167, rho=1.000000 -2024-10-07 08:55:50,751 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:55:50.751700', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:55:51,735 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:55:51,735 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:51,736 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:55:51,736 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:51,736 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:55:51,736 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:51,736 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:55:51,736 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:51,737 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:55:51,737 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:55:51,737 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:55:51,737 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:04,122 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:56:04,125 - built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions) -2024-10-07 08:56:04,125 - Dictionary lifecycle event {'msg': "built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions)", 'datetime': '2024-10-07T08:56:04.125455', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:04,126 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:56:04,126 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:56:04,127 - using serial LDA version on this node -2024-10-07 08:56:04,127 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:56:04,127 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:56:04,131 - -8.167 per-word bound, 287.4 perplexity estimate based on a held-out corpus of 1 documents with 2888 words -2024-10-07 08:56:04,131 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:56:04,133 - topic #0 (0.333): 0.023*"’" + 0.010*"Kent" + 0.006*"needs" + 0.006*"Council" + 0.006*"supported" + 0.005*"County" + 0.005*"well" + 0.005*"practice" + 0.005*"progress" + 0.004*"leaders" -2024-10-07 08:56:04,133 - topic #1 (0.333): 0.013*"’" + 0.008*"Kent" + 0.007*"well" + 0.006*"needs" + 0.005*"Council" + 0.005*"County" + 0.004*"9" + 0.004*"supported" + 0.004*"including" + 0.004*"progress" -2024-10-07 08:56:04,133 - topic #2 (0.333): 0.016*"’" + 0.010*"Kent" + 0.009*"needs" + 0.007*"well" + 0.006*"supported" + 0.006*"Council" + 0.005*"progress" + 0.005*"County" + 0.004*"leaders" + 0.004*"practice" -2024-10-07 08:56:04,133 - topic diff=0.800288, rho=1.000000 -2024-10-07 08:56:04,134 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:56:04.133982', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:05,085 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:56:05,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:05,085 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:56:05,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:05,085 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:56:05,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:05,086 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:56:05,086 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:05,086 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:56:05,086 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:05,086 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:56:05,086 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:15,003 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:56:15,005 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions) -2024-10-07 08:56:15,005 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions)", 'datetime': '2024-10-07T08:56:15.005961', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:15,006 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:56:15,007 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:56:15,007 - using serial LDA version on this node -2024-10-07 08:56:15,007 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:56:15,007 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:56:15,011 - -7.948 per-word bound, 246.9 perplexity estimate based on a held-out corpus of 1 documents with 1970 words -2024-10-07 08:56:15,011 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:56:15,012 - topic #0 (0.333): 0.015*"’" + 0.008*"practice" + 0.007*"number" + 0.007*"planning" + 0.006*"well" + 0.006*"protection" + 0.006*"management" + 0.006*"need" + 0.006*"impact" + 0.006*"Hull" -2024-10-07 08:56:15,012 - topic #1 (0.333): 0.015*"’" + 0.007*"number" + 0.007*"planning" + 0.006*"need" + 0.006*"well" + 0.006*"Hull" + 0.006*"risks" + 0.006*"management" + 0.005*"protection" + 0.005*"oversight" -2024-10-07 08:56:15,012 - topic #2 (0.333): 0.018*"’" + 0.006*"protection" + 0.006*"planning" + 0.006*"number" + 0.005*"well" + 0.005*"agency" + 0.004*"Hull" + 0.004*"small" + 0.004*"risks" + 0.004*"team" -2024-10-07 08:56:15,012 - topic diff=0.759500, rho=1.000000 -2024-10-07 08:56:15,013 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:56:15.013044', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:15,938 - Inspection date 2022-11-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:56:15,938 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:15,938 - Inspection date 2022-11-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:56:15,939 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:15,939 - Inspection date 2022-11-14 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:56:15,939 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:15,939 - Inspection date 2022-11-14 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:56:15,939 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:15,940 - Inspection date 2022-11-14 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:56:15,940 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:15,940 - Inspection date 2022-11-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:56:15,940 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:28,024 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:56:28,026 - built Dictionary<963 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2139 corpus positions) -2024-10-07 08:56:28,026 - Dictionary lifecycle event {'msg': "built Dictionary<963 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2139 corpus positions)", 'datetime': '2024-10-07T08:56:28.026347', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:28,027 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:56:28,027 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:56:28,027 - using serial LDA version on this node -2024-10-07 08:56:28,028 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:56:28,028 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:56:28,031 - -7.874 per-word bound, 234.6 perplexity estimate based on a held-out corpus of 1 documents with 2139 words -2024-10-07 08:56:28,031 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:56:28,032 - topic #0 (0.333): 0.025*"’" + 0.009*"needs" + 0.008*"Kirklees" + 0.008*"plans" + 0.006*"impact" + 0.006*"effective" + 0.006*"leaders" + 0.005*"need" + 0.005*"well" + 0.005*"timely" -2024-10-07 08:56:28,033 - topic #1 (0.333): 0.017*"’" + 0.008*"effective" + 0.007*"well" + 0.007*"Kirklees" + 0.006*"plans" + 0.006*"needs" + 0.006*"ensure" + 0.006*"impact" + 0.005*"need" + 0.005*"quality" -2024-10-07 08:56:28,033 - topic #2 (0.333): 0.018*"’" + 0.007*"plans" + 0.006*"Kirklees" + 0.006*"effective" + 0.006*"needs" + 0.005*"quality" + 0.005*"need" + 0.005*"well" + 0.004*"accommodation" + 0.004*"impact" -2024-10-07 08:56:28,033 - topic diff=0.794831, rho=1.000000 -2024-10-07 08:56:28,033 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:56:28.033605', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:29,002 - Inspection date 2024-07-08 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:56:29,002 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:29,002 - Inspection date 2024-07-08 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:56:29,002 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:29,003 - Inspection date 2024-07-08 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:56:29,003 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:29,003 - Inspection date 2024-07-08 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:56:29,003 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:29,003 - Inspection date 2024-07-08 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:56:29,003 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:29,004 - Inspection date 2024-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:56:29,004 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:38,060 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:56:38,062 - built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions) -2024-10-07 08:56:38,063 - Dictionary lifecycle event {'msg': "built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions)", 'datetime': '2024-10-07T08:56:38.063121', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:38,064 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:56:38,064 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:56:38,064 - using serial LDA version on this node -2024-10-07 08:56:38,065 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:56:38,065 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:56:38,070 - -7.831 per-word bound, 227.7 perplexity estimate based on a held-out corpus of 1 documents with 1837 words -2024-10-07 08:56:38,070 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:56:38,072 - topic #0 (0.333): 0.016*"’" + 0.009*"progress" + 0.007*"quality" + 0.007*"needs" + 0.007*"Knowsley" + 0.006*"plans" + 0.006*"2021" + 0.006*"abuse" + 0.005*"experiences" + 0.005*"impact" -2024-10-07 08:56:38,072 - topic #1 (0.333): 0.015*"’" + 0.008*"progress" + 0.008*"plans" + 0.007*"needs" + 0.006*"quality" + 0.006*"Knowsley" + 0.006*"need" + 0.006*"good" + 0.005*"2021" + 0.005*"11" -2024-10-07 08:56:38,073 - topic #2 (0.333): 0.012*"’" + 0.007*"needs" + 0.007*"progress" + 0.007*"plans" + 0.007*"quality" + 0.006*"2021" + 0.005*"22" + 0.005*"Knowsley" + 0.005*"need" + 0.005*"impact" -2024-10-07 08:56:38,073 - topic diff=0.744480, rho=1.000000 -2024-10-07 08:56:38,073 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:56:38.073602', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:38,946 - Inspection date 2021-10-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:56:38,946 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:38,946 - Inspection date 2021-10-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:56:38,946 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:38,946 - Inspection date 2021-10-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:56:38,947 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:38,947 - Inspection date 2021-10-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:56:38,947 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:38,947 - Inspection date 2021-10-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:56:38,947 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:38,947 - Inspection date 2021-10-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:56:38,948 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:49,640 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:56:49,642 - built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions) -2024-10-07 08:56:49,643 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions)", 'datetime': '2024-10-07T08:56:49.643127', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:49,644 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:56:49,644 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:56:49,644 - using serial LDA version on this node -2024-10-07 08:56:49,644 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:56:49,644 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:56:49,648 - -7.973 per-word bound, 251.3 perplexity estimate based on a held-out corpus of 1 documents with 2263 words -2024-10-07 08:56:49,648 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:56:49,650 - topic #0 (0.333): 0.015*"’" + 0.007*"need" + 0.005*"needs" + 0.005*"well" + 0.005*"Lancashire" + 0.005*"plans" + 0.005*"supported" + 0.005*"parents" + 0.004*"practice" + 0.004*"health" -2024-10-07 08:56:49,650 - topic #1 (0.333): 0.018*"’" + 0.011*"well" + 0.008*"needs" + 0.008*"need" + 0.006*"Lancashire" + 0.006*"positive" + 0.006*"supported" + 0.005*"homes" + 0.005*"health" + 0.005*"plans" -2024-10-07 08:56:49,650 - topic #2 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"needs" + 0.006*"Lancashire" + 0.006*"need" + 0.006*"plans" + 0.005*"practice" + 0.005*"progress" + 0.005*"information" + 0.005*"live" -2024-10-07 08:56:49,651 - topic diff=0.780913, rho=1.000000 -2024-10-07 08:56:49,651 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:56:49.651201', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:56:50,638 - Inspection date 2022-11-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:56:50,638 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:50,638 - Inspection date 2022-11-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:56:50,638 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:50,638 - Inspection date 2022-11-28 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:56:50,639 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:50,639 - Inspection date 2022-11-28 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:56:50,639 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:50,639 - Inspection date 2022-11-28 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:56:50,639 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:56:50,639 - Inspection date 2022-11-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:56:50,639 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:01,543 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:57:01,545 - built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions) -2024-10-07 08:57:01,545 - Dictionary lifecycle event {'msg': "built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions)", 'datetime': '2024-10-07T08:57:01.545734', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:01,546 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:57:01,546 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:57:01,547 - using serial LDA version on this node -2024-10-07 08:57:01,547 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:57:01,547 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:57:01,551 - -8.011 per-word bound, 257.9 perplexity estimate based on a held-out corpus of 1 documents with 2261 words -2024-10-07 08:57:01,551 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:57:01,552 - topic #0 (0.333): 0.018*"’" + 0.008*"Leeds" + 0.008*"needs" + 0.005*"well" + 0.005*"risk" + 0.005*"making" + 0.005*"4" + 0.004*"ensure" + 0.004*"21" + 0.004*"protection" -2024-10-07 08:57:01,552 - topic #1 (0.333): 0.012*"’" + 0.006*"Leeds" + 0.006*"well" + 0.005*"needs" + 0.005*"risk" + 0.004*"benefit" + 0.004*"practice" + 0.004*"2022" + 0.004*"plans" + 0.004*"leaders" -2024-10-07 08:57:01,553 - topic #2 (0.333): 0.016*"’" + 0.007*"needs" + 0.007*"Leeds" + 0.006*"well" + 0.006*"practice" + 0.006*"risk" + 0.005*"ensure" + 0.005*"4" + 0.005*"plans" + 0.005*"protection" -2024-10-07 08:57:01,553 - topic diff=0.782002, rho=1.000000 -2024-10-07 08:57:01,553 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:57:01.553444', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:02,460 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:57:02,460 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:02,460 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:57:02,460 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:02,461 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:57:02,461 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:02,461 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:57:02,461 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:02,461 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:57:02,461 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:02,461 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:57:02,462 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:11,790 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:57:11,792 - built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions) -2024-10-07 08:57:11,792 - Dictionary lifecycle event {'msg': "built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions)", 'datetime': '2024-10-07T08:57:11.792956', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:11,793 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:57:11,794 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:57:11,794 - using serial LDA version on this node -2024-10-07 08:57:11,794 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:57:11,794 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:57:11,798 - -7.871 per-word bound, 234.2 perplexity estimate based on a held-out corpus of 1 documents with 1950 words -2024-10-07 08:57:11,798 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:57:11,799 - topic #0 (0.333): 0.023*"’" + 0.010*"2021" + 0.009*"Leicester" + 0.009*"well" + 0.008*"needs" + 0.006*"ensure" + 0.006*"number" + 0.006*"improve" + 0.005*"20" + 0.005*"1" -2024-10-07 08:57:11,800 - topic #1 (0.333): 0.016*"’" + 0.008*"2021" + 0.008*"well" + 0.006*"Leicester" + 0.005*"ensure" + 0.005*"good" + 0.005*"needs" + 0.005*"1" + 0.005*"number" + 0.004*"high" -2024-10-07 08:57:11,800 - topic #2 (0.333): 0.018*"’" + 0.009*"well" + 0.008*"good" + 0.006*"needs" + 0.006*"Leicester" + 0.006*"2021" + 0.005*"20" + 0.005*"including" + 0.005*"number" + 0.005*"1" -2024-10-07 08:57:11,800 - topic diff=0.784027, rho=1.000000 -2024-10-07 08:57:11,800 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:57:11.800516', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:12,779 - Inspection date 2021-09-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:57:12,780 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:12,780 - Inspection date 2021-09-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:57:12,780 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:12,781 - Inspection date 2021-09-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:57:12,781 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:12,781 - Inspection date 2021-09-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:57:12,781 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:12,781 - Inspection date 2021-09-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:57:12,781 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:12,782 - Inspection date 2021-09-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:57:12,782 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:27,002 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:57:27,005 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions) -2024-10-07 08:57:27,005 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions)", 'datetime': '2024-10-07T08:57:27.005389', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:27,006 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:57:27,006 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:57:27,006 - using serial LDA version on this node -2024-10-07 08:57:27,007 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:57:27,007 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:57:27,011 - -8.102 per-word bound, 274.8 perplexity estimate based on a held-out corpus of 1 documents with 2745 words -2024-10-07 08:57:27,011 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:57:27,013 - topic #0 (0.333): 0.011*"’" + 0.008*"well" + 0.005*"Leicestershire" + 0.005*"ensure" + 0.005*"understand" + 0.005*"family" + 0.004*"experiences" + 0.004*"need" + 0.004*"quality" + 0.004*"progress" -2024-10-07 08:57:27,013 - topic #1 (0.333): 0.025*"’" + 0.010*"well" + 0.007*"needs" + 0.007*"Leicestershire" + 0.006*"need" + 0.006*"family" + 0.006*"PAs" + 0.006*"experiences" + 0.005*"understand" + 0.005*"plans" -2024-10-07 08:57:27,013 - topic #2 (0.333): 0.013*"’" + 0.007*"Leicestershire" + 0.007*"well" + 0.006*"family" + 0.005*"progress" + 0.005*"plans" + 0.005*"experiences" + 0.004*"risk" + 0.004*"needs" + 0.004*"need" -2024-10-07 08:57:27,013 - topic diff=0.822323, rho=1.000000 -2024-10-07 08:57:27,013 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:57:27.013641', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:27,984 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:57:27,984 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:27,985 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:57:27,985 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:27,985 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:57:27,985 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:27,985 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:57:27,985 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:27,986 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:57:27,986 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:27,986 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:57:27,986 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:41,584 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:57:41,587 - built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions) -2024-10-07 08:57:41,587 - Dictionary lifecycle event {'msg': "built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions)", 'datetime': '2024-10-07T08:57:41.587795', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:41,589 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:57:41,590 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:57:41,590 - using serial LDA version on this node -2024-10-07 08:57:41,590 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:57:41,591 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:57:41,598 - -8.191 per-word bound, 292.2 perplexity estimate based on a held-out corpus of 1 documents with 2927 words -2024-10-07 08:57:41,599 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:57:41,601 - topic #0 (0.333): 0.018*"’" + 0.008*"Lincolnshire" + 0.007*"needs" + 0.006*"plans" + 0.005*"well" + 0.005*"24" + 0.004*"progress" + 0.004*"education" + 0.004*"need" + 0.004*"effective" -2024-10-07 08:57:41,601 - topic #1 (0.333): 0.019*"’" + 0.007*"Lincolnshire" + 0.006*"well" + 0.004*"needs" + 0.004*"progress" + 0.004*"family" + 0.004*"April" + 0.004*"28" + 0.003*"offer" + 0.003*"education" -2024-10-07 08:57:41,602 - topic #2 (0.333): 0.026*"’" + 0.008*"needs" + 0.007*"Lincolnshire" + 0.006*"well" + 0.005*"plans" + 0.005*"family" + 0.005*"progress" + 0.004*"2023" + 0.004*"24" + 0.004*"28" -2024-10-07 08:57:41,602 - topic diff=0.791934, rho=1.000000 -2024-10-07 08:57:41,602 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:57:41.602432', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:42,640 - Inspection date 2023-04-24 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:57:42,641 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:42,641 - Inspection date 2023-04-24 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:57:42,641 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:42,641 - Inspection date 2023-04-24 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:57:42,641 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:42,641 - Inspection date 2023-04-24 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:57:42,642 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:42,642 - Inspection date 2023-04-24 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:57:42,642 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:42,642 - Inspection date 2023-04-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:57:42,642 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:55,721 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:57:55,724 - built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) -2024-10-07 08:57:55,724 - Dictionary lifecycle event {'msg': "built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-10-07T08:57:55.724365', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:55,725 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:57:55,725 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:57:55,725 - using serial LDA version on this node -2024-10-07 08:57:55,726 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:57:55,726 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:57:55,730 - -7.992 per-word bound, 254.6 perplexity estimate based on a held-out corpus of 1 documents with 2720 words -2024-10-07 08:57:55,730 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:57:55,731 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.008*"need" + 0.006*"always" + 0.006*"practice" + 0.006*"Liverpool" + 0.005*"protection" + 0.005*"met" + 0.005*"quality" + 0.004*"24" -2024-10-07 08:57:55,731 - topic #1 (0.333): 0.023*"’" + 0.007*"practice" + 0.007*"needs" + 0.006*"always" + 0.006*"need" + 0.006*"quality" + 0.005*"timely" + 0.005*"13" + 0.005*"protection" + 0.005*"Liverpool" -2024-10-07 08:57:55,732 - topic #2 (0.333): 0.019*"’" + 0.007*"Liverpool" + 0.006*"quality" + 0.006*"always" + 0.006*"practice" + 0.006*"needs" + 0.005*"PAs" + 0.005*"including" + 0.004*"need" + 0.004*"receive" -2024-10-07 08:57:55,732 - topic diff=0.838463, rho=1.000000 -2024-10-07 08:57:55,732 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:57:55.732307', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:57:56,635 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:57:56,635 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:56,635 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:57:56,636 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:56,636 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:57:56,636 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:56,636 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:57:56,636 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:56,636 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:57:56,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:57:56,637 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:57:56,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:09,028 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:58:09,030 - built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions) -2024-10-07 08:58:09,030 - Dictionary lifecycle event {'msg': "built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions)", 'datetime': '2024-10-07T08:58:09.030641', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:09,031 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:58:09,031 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:58:09,032 - using serial LDA version on this node -2024-10-07 08:58:09,032 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:58:09,032 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:58:09,036 - -8.095 per-word bound, 273.5 perplexity estimate based on a held-out corpus of 1 documents with 2610 words -2024-10-07 08:58:09,036 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:58:09,038 - topic #0 (0.333): 0.022*"’" + 0.008*"needs" + 0.006*"plans" + 0.005*"progress" + 0.005*"practice" + 0.005*"planning" + 0.005*"well" + 0.005*"carers" + 0.005*"good" + 0.004*"Dagenham" -2024-10-07 08:58:09,038 - topic #1 (0.333): 0.026*"’" + 0.008*"needs" + 0.007*"good" + 0.006*"plans" + 0.006*"well" + 0.005*"information" + 0.005*"carers" + 0.004*"ensure" + 0.004*"London" + 0.004*"e" -2024-10-07 08:58:09,038 - topic #2 (0.333): 0.018*"’" + 0.007*"needs" + 0.005*"good" + 0.005*"10" + 0.005*"carers" + 0.005*"practice" + 0.005*"well" + 0.004*"Barking" + 0.004*"information" + 0.004*"e" -2024-10-07 08:58:09,038 - topic diff=0.796903, rho=1.000000 -2024-10-07 08:58:09,038 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:58:09.038852', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:09,953 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:58:09,953 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:09,953 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:58:09,953 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:09,954 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:58:09,954 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:09,954 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:58:09,954 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:09,954 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:58:09,954 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:09,955 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:58:09,955 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:21,837 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:58:21,839 - built Dictionary<1132 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2445 corpus positions) -2024-10-07 08:58:21,839 - Dictionary lifecycle event {'msg': "built Dictionary<1132 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2445 corpus positions)", 'datetime': '2024-10-07T08:58:21.839897', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:21,840 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:58:21,841 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:58:21,841 - using serial LDA version on this node -2024-10-07 08:58:21,841 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:58:21,841 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:58:21,845 - -8.048 per-word bound, 264.7 perplexity estimate based on a held-out corpus of 1 documents with 2445 words -2024-10-07 08:58:21,845 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:58:21,847 - topic #0 (0.333): 0.029*"’" + 0.010*"needs" + 0.008*"well" + 0.007*"plans" + 0.007*"Barnet" + 0.005*"experiences" + 0.005*"effective" + 0.005*"14" + 0.005*"risk" + 0.005*"10" -2024-10-07 08:58:21,847 - topic #1 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"plans" + 0.007*"well" + 0.006*"Barnet" + 0.005*"2024" + 0.004*"understand" + 0.004*"carers" + 0.004*"10" + 0.004*"risk" -2024-10-07 08:58:21,847 - topic #2 (0.333): 0.014*"’" + 0.008*"Barnet" + 0.007*"well" + 0.007*"needs" + 0.006*"plans" + 0.004*"experiences" + 0.004*"strong" + 0.004*"progress" + 0.004*"carers" + 0.004*"10" -2024-10-07 08:58:21,847 - topic diff=0.793983, rho=1.000000 -2024-10-07 08:58:21,847 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:58:21.847785', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:22,853 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:58:22,853 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:22,854 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:58:22,854 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:22,854 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:58:22,854 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:22,854 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:58:22,854 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:22,855 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:58:22,855 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:22,855 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:58:22,855 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:35,144 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:58:35,147 - built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions) -2024-10-07 08:58:35,147 - Dictionary lifecycle event {'msg': "built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions)", 'datetime': '2024-10-07T08:58:35.147230', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:35,148 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:58:35,148 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:58:35,148 - using serial LDA version on this node -2024-10-07 08:58:35,149 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:58:35,149 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:58:35,153 - -8.099 per-word bound, 274.3 perplexity estimate based on a held-out corpus of 1 documents with 2563 words -2024-10-07 08:58:35,153 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:58:35,154 - topic #0 (0.333): 0.014*"’" + 0.006*"need" + 0.005*"10" + 0.005*"Bexley" + 0.005*"effective" + 0.004*"including" + 0.004*"needs" + 0.004*"practice" + 0.004*"plans" + 0.004*"clear" -2024-10-07 08:58:35,154 - topic #1 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"needs" + 0.006*"plans" + 0.005*"effective" + 0.005*"10" + 0.005*"need" + 0.005*"Bexley" + 0.005*"practice" + 0.004*"6" -2024-10-07 08:58:35,155 - topic #2 (0.333): 0.022*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"effective" + 0.006*"Bexley" + 0.005*"need" + 0.005*"plans" + 0.005*"make" + 0.005*"progress" + 0.004*"6" -2024-10-07 08:58:35,155 - topic diff=0.782137, rho=1.000000 -2024-10-07 08:58:35,155 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:58:35.155471', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:36,207 - Inspection date 2023-02-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:58:36,208 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:36,208 - Inspection date 2023-02-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:58:36,208 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:36,209 - Inspection date 2023-02-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:58:36,210 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:36,211 - Inspection date 2023-02-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:58:36,211 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:36,211 - Inspection date 2023-02-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:58:36,213 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:36,213 - Inspection date 2023-02-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:58:36,213 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:47,162 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:58:47,164 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions) -2024-10-07 08:58:47,164 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions)", 'datetime': '2024-10-07T08:58:47.164552', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:47,165 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:58:47,165 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:58:47,165 - using serial LDA version on this node -2024-10-07 08:58:47,166 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:58:47,166 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:58:47,169 - -7.927 per-word bound, 243.4 perplexity estimate based on a held-out corpus of 1 documents with 2371 words -2024-10-07 08:58:47,170 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:58:47,171 - topic #0 (0.333): 0.014*"’" + 0.009*"well" + 0.005*"leaders" + 0.005*"progress" + 0.005*"senior" + 0.005*"plans" + 0.005*"practice" + 0.004*"information" + 0.004*"Brent" + 0.004*"good" -2024-10-07 08:58:47,171 - topic #1 (0.333): 0.022*"’" + 0.008*"well" + 0.007*"plans" + 0.007*"leaders" + 0.007*"number" + 0.007*"progress" + 0.007*"good" + 0.006*"Brent" + 0.006*"practice" + 0.005*"senior" -2024-10-07 08:58:47,171 - topic #2 (0.333): 0.013*"’" + 0.009*"well" + 0.008*"leaders" + 0.007*"quality" + 0.006*"plans" + 0.006*"progress" + 0.005*"good" + 0.005*"Brent" + 0.005*"needs" + 0.004*"practice" -2024-10-07 08:58:47,171 - topic diff=0.826619, rho=1.000000 -2024-10-07 08:58:47,172 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:58:47.172144', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:58:48,199 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:58:48,199 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:48,199 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:58:48,199 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:48,199 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:58:48,200 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:48,200 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:58:48,200 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:48,200 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:58:48,200 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:58:48,201 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:58:48,201 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:01,326 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:59:01,328 - built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions) -2024-10-07 08:59:01,328 - Dictionary lifecycle event {'msg': "built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions)", 'datetime': '2024-10-07T08:59:01.328691', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:01,329 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:59:01,329 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:59:01,330 - using serial LDA version on this node -2024-10-07 08:59:01,330 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:59:01,330 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:59:01,335 - -8.182 per-word bound, 290.4 perplexity estimate based on a held-out corpus of 1 documents with 2640 words -2024-10-07 08:59:01,335 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:59:01,336 - topic #0 (0.333): 0.023*"’" + 0.011*"Bromley" + 0.007*"needs" + 0.007*"well" + 0.006*"leaders" + 0.005*"plans" + 0.005*"helping" + 0.005*"YPAs" + 0.005*"practice" + 0.004*"November" -2024-10-07 08:59:01,337 - topic #1 (0.333): 0.018*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"Bromley" + 0.005*"plans" + 0.005*"health" + 0.005*"practice" + 0.004*"leaders" + 0.004*"progress" + 0.004*"2023" -2024-10-07 08:59:01,337 - topic #2 (0.333): 0.017*"’" + 0.010*"Bromley" + 0.007*"well" + 0.006*"plans" + 0.006*"needs" + 0.005*"leaders" + 0.005*"practice" + 0.005*"education" + 0.005*"relationships" + 0.004*"health" -2024-10-07 08:59:01,337 - topic diff=0.769265, rho=1.000000 -2024-10-07 08:59:01,337 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:59:01.337522', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:02,379 - Inspection date 2023-11-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:59:02,379 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:02,380 - Inspection date 2023-11-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:59:02,380 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:02,380 - Inspection date 2023-11-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:59:02,380 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:02,380 - Inspection date 2023-11-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:59:02,380 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:02,381 - Inspection date 2023-11-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:59:02,381 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:02,381 - Inspection date 2023-11-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:59:02,381 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:11,045 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:59:11,047 - built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions) -2024-10-07 08:59:11,047 - Dictionary lifecycle event {'msg': "built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions)", 'datetime': '2024-10-07T08:59:11.047171', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:11,048 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:59:11,048 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:59:11,048 - using serial LDA version on this node -2024-10-07 08:59:11,048 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:59:11,048 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:59:11,052 - -8.061 per-word bound, 267.0 perplexity estimate based on a held-out corpus of 1 documents with 1735 words -2024-10-07 08:59:11,052 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:59:11,053 - topic #0 (0.333): 0.013*"’" + 0.008*"leaders" + 0.007*"practice" + 0.006*"response" + 0.005*"well" + 0.005*"25" + 0.005*"protection" + 0.005*"needs" + 0.005*"Camden" + 0.005*"appropriate" -2024-10-07 08:59:11,053 - topic #1 (0.333): 0.010*"Camden" + 0.010*"’" + 0.006*"practice" + 0.005*"protection" + 0.005*"29" + 0.005*"leaders" + 0.005*"needs" + 0.004*"well" + 0.004*"2022" + 0.004*"April" -2024-10-07 08:59:11,054 - topic #2 (0.333): 0.008*"’" + 0.006*"Camden" + 0.006*"leaders" + 0.006*"well" + 0.005*"practice" + 0.005*"needs" + 0.004*"appropriate" + 0.004*"response" + 0.004*"protection" + 0.003*"2022" -2024-10-07 08:59:11,054 - topic diff=0.700036, rho=1.000000 -2024-10-07 08:59:11,054 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:59:11.054350', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:11,962 - Inspection date 2022-04-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:59:11,962 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:11,963 - Inspection date 2022-04-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:59:11,963 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:11,963 - Inspection date 2022-04-25 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:59:11,963 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:11,963 - Inspection date 2022-04-25 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:59:11,963 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:11,964 - Inspection date 2022-04-25 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:59:11,964 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:11,964 - Inspection date 2022-04-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:59:11,964 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:23,287 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:59:23,289 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions) -2024-10-07 08:59:23,289 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions)", 'datetime': '2024-10-07T08:59:23.289753', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:23,290 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:59:23,290 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:59:23,291 - using serial LDA version on this node -2024-10-07 08:59:23,291 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:59:23,291 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:59:23,295 - -7.985 per-word bound, 253.3 perplexity estimate based on a held-out corpus of 1 documents with 2209 words -2024-10-07 08:59:23,295 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:59:23,296 - topic #0 (0.333): 0.011*"’" + 0.008*"needs" + 0.008*"well" + 0.006*"effective" + 0.006*"Croydon" + 0.006*"improved" + 0.005*"quality" + 0.005*"good" + 0.005*"health" + 0.005*"plans" -2024-10-07 08:59:23,296 - topic #1 (0.333): 0.009*"’" + 0.006*"well" + 0.006*"needs" + 0.006*"Senior" + 0.005*"good" + 0.005*"quality" + 0.005*"ensure" + 0.005*"risk" + 0.005*"Croydon" + 0.005*"health" -2024-10-07 08:59:23,296 - topic #2 (0.333): 0.014*"’" + 0.007*"well" + 0.007*"need" + 0.007*"needs" + 0.006*"Croydon" + 0.005*"However" + 0.005*"Senior" + 0.005*"quality" + 0.005*"ensure" + 0.005*"arrangements" -2024-10-07 08:59:23,297 - topic diff=0.772138, rho=1.000000 -2024-10-07 08:59:23,297 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:59:23.297186', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:24,425 - Inspection date 2020-02-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:59:24,425 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:24,426 - Inspection date 2020-02-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:59:24,426 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:24,426 - Inspection date 2020-02-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:59:24,426 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:24,426 - Inspection date 2020-02-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:59:24,427 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:24,427 - Inspection date 2020-02-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:59:24,427 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:24,427 - Inspection date 2020-02-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:59:24,427 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:36,277 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:59:36,279 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions) -2024-10-07 08:59:36,280 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions)", 'datetime': '2024-10-07T08:59:36.280082', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:36,281 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:59:36,281 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:59:36,281 - using serial LDA version on this node -2024-10-07 08:59:36,282 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:59:36,282 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:59:36,285 - -8.052 per-word bound, 265.4 perplexity estimate based on a held-out corpus of 1 documents with 2365 words -2024-10-07 08:59:36,285 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:59:36,287 - topic #0 (0.333): 0.022*"’" + 0.009*"Ealing" + 0.008*"needs" + 0.008*"well" + 0.007*"plans" + 0.006*"progress" + 0.006*"need" + 0.005*"London" + 0.005*"effective" + 0.005*"3" -2024-10-07 08:59:36,287 - topic #1 (0.333): 0.011*"’" + 0.008*"well" + 0.006*"Ealing" + 0.005*"needs" + 0.005*"plans" + 0.004*"progress" + 0.004*"need" + 0.004*"quality" + 0.004*"effective" + 0.003*"good" -2024-10-07 08:59:36,287 - topic #2 (0.333): 0.015*"’" + 0.008*"Ealing" + 0.006*"well" + 0.006*"progress" + 0.005*"effective" + 0.005*"including" + 0.005*"3" + 0.004*"Borough" + 0.004*"April" + 0.004*"good" -2024-10-07 08:59:36,287 - topic diff=0.802784, rho=1.000000 -2024-10-07 08:59:36,288 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:59:36.287992', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:37,396 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:59:37,396 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:37,397 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:59:37,397 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:37,397 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:59:37,397 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:37,397 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:59:37,397 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:37,398 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:59:37,398 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:37,398 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:59:37,398 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:49,511 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 08:59:49,513 - built Dictionary<1108 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) -2024-10-07 08:59:49,514 - Dictionary lifecycle event {'msg': "built Dictionary<1108 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-10-07T08:59:49.514007', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:49,515 - using symmetric alpha at 0.3333333333333333 -2024-10-07 08:59:49,515 - using symmetric eta at 0.3333333333333333 -2024-10-07 08:59:49,515 - using serial LDA version on this node -2024-10-07 08:59:49,515 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 08:59:49,516 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 08:59:49,519 - -8.000 per-word bound, 256.0 perplexity estimate based on a held-out corpus of 1 documents with 2531 words -2024-10-07 08:59:49,519 - PROGRESS: pass 0, at document #1/1 -2024-10-07 08:59:49,521 - topic #0 (0.333): 0.012*"’" + 0.011*"needs" + 0.009*"well" + 0.007*"plans" + 0.006*"Enfield" + 0.005*"receive" + 0.005*"practice" + 0.005*"good" + 0.005*"timely" + 0.005*"ensure" -2024-10-07 08:59:49,521 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.007*"plans" + 0.007*"Enfield" + 0.007*"well" + 0.006*"need" + 0.005*"receive" + 0.004*"protection" + 0.004*"timely" + 0.004*"practice" -2024-10-07 08:59:49,521 - topic #2 (0.333): 0.021*"’" + 0.011*"needs" + 0.010*"well" + 0.008*"Enfield" + 0.006*"plans" + 0.006*"need" + 0.005*"timely" + 0.005*"receive" + 0.005*"practice" + 0.005*"education" -2024-10-07 08:59:49,521 - topic diff=0.800080, rho=1.000000 -2024-10-07 08:59:49,521 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:59:49.521865', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 08:59:50,467 - Inspection date 2024-07-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 08:59:50,468 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:50,468 - Inspection date 2024-07-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 08:59:50,468 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:50,468 - Inspection date 2024-07-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 08:59:50,468 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:50,469 - Inspection date 2024-07-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 08:59:50,469 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:50,469 - Inspection date 2024-07-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 08:59:50,469 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 08:59:50,469 - Inspection date 2024-07-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 08:59:50,469 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:01,605 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:00:01,607 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2078 corpus positions) -2024-10-07 09:00:01,607 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2078 corpus positions)", 'datetime': '2024-10-07T09:00:01.607407', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:01,608 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:00:01,608 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:00:01,608 - using serial LDA version on this node -2024-10-07 09:00:01,609 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:00:01,609 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:00:01,612 - -7.988 per-word bound, 253.9 perplexity estimate based on a held-out corpus of 1 documents with 2078 words -2024-10-07 09:00:01,612 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:00:01,614 - topic #0 (0.333): 0.017*"’" + 0.012*"Greenwich" + 0.009*"well" + 0.008*"needs" + 0.005*"carers" + 0.005*"7" + 0.005*"3" + 0.005*"progress" + 0.004*"Borough" + 0.004*"plans" -2024-10-07 09:00:01,614 - topic #1 (0.333): 0.016*"’" + 0.010*"Greenwich" + 0.007*"plans" + 0.006*"well" + 0.005*"needs" + 0.004*"3" + 0.004*"provide" + 0.004*"Borough" + 0.004*"Royal" + 0.004*"progress" -2024-10-07 09:00:01,614 - topic #2 (0.333): 0.019*"’" + 0.010*"Greenwich" + 0.007*"needs" + 0.007*"plans" + 0.006*"provide" + 0.006*"well" + 0.005*"2024" + 0.005*"progress" + 0.005*"7" + 0.004*"3" -2024-10-07 09:00:01,614 - topic diff=0.757385, rho=1.000000 -2024-10-07 09:00:01,614 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:00:01.614916', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:02,610 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:00:02,610 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:02,610 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:00:02,610 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:02,611 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:00:02,611 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:02,611 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:00:02,611 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:02,611 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:00:02,611 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:02,612 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:00:02,612 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:16,689 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:00:16,691 - built Dictionary<1222 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2748 corpus positions) -2024-10-07 09:00:16,692 - Dictionary lifecycle event {'msg': 'built Dictionary<1222 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2748 corpus positions)', 'datetime': '2024-10-07T09:00:16.692130', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:16,693 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:00:16,693 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:00:16,693 - using serial LDA version on this node -2024-10-07 09:00:16,694 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:00:16,694 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:00:16,698 - -8.103 per-word bound, 274.9 perplexity estimate based on a held-out corpus of 1 documents with 2748 words -2024-10-07 09:00:16,698 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:00:16,699 - topic #0 (0.333): 0.014*"’" + 0.006*"Hackney" + 0.006*"needs" + 0.005*"July" + 0.005*"well" + 0.004*"need" + 0.004*"12" + 0.004*"carers" + 0.004*"progress" + 0.004*"1" -2024-10-07 09:00:16,699 - topic #1 (0.333): 0.013*"’" + 0.009*"Hackney" + 0.006*"needs" + 0.005*"practice" + 0.005*"need" + 0.005*"effective" + 0.004*"carers" + 0.004*"12" + 0.004*"well" + 0.004*"understand" -2024-10-07 09:00:16,700 - topic #2 (0.333): 0.022*"’" + 0.011*"Hackney" + 0.010*"needs" + 0.006*"carers" + 0.006*"well" + 0.005*"12" + 0.005*"oversight" + 0.004*"timely" + 0.004*"need" + 0.004*"education" -2024-10-07 09:00:16,700 - topic diff=0.815237, rho=1.000000 -2024-10-07 09:00:16,700 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:00:16.700405', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:17,786 - Inspection date 2024-07-01 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:00:17,786 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:17,787 - Inspection date 2024-07-01 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:00:17,787 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:17,787 - Inspection date 2024-07-01 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:00:17,787 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:17,787 - Inspection date 2024-07-01 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:00:17,787 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:17,787 - Inspection date 2024-07-01 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:00:17,788 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:17,788 - Inspection date 2024-07-01 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:00:17,788 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:32,538 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:00:32,541 - built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) -2024-10-07 09:00:32,542 - Dictionary lifecycle event {'msg': "built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-10-07T09:00:32.542017', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:32,543 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:00:32,543 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:00:32,543 - using serial LDA version on this node -2024-10-07 09:00:32,544 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:00:32,544 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:00:32,548 - -8.208 per-word bound, 295.6 perplexity estimate based on a held-out corpus of 1 documents with 2905 words -2024-10-07 09:00:32,548 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:00:32,550 - topic #0 (0.333): 0.014*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"receive" + 0.005*"Hammersmith" + 0.004*"Leaders" + 0.004*"leaders" + 0.004*"plans" + 0.004*"Fulham" + 0.004*"timely" -2024-10-07 09:00:32,550 - topic #1 (0.333): 0.017*"’" + 0.008*"well" + 0.006*"receive" + 0.005*"Fulham" + 0.005*"plans" + 0.005*"Hammersmith" + 0.004*"leaders" + 0.004*"protection" + 0.004*"11" + 0.004*"effective" -2024-10-07 09:00:32,550 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"receive" + 0.005*"2024" + 0.004*"effective" + 0.004*"Leaders" + 0.004*"supported" + 0.004*"11" + 0.004*"plans" -2024-10-07 09:00:32,550 - topic diff=0.797748, rho=1.000000 -2024-10-07 09:00:32,550 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:00:32.550969', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:33,491 - Inspection date 2024-03-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:00:33,491 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:33,491 - Inspection date 2024-03-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:00:33,491 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:33,491 - Inspection date 2024-03-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:00:33,492 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:33,492 - Inspection date 2024-03-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:00:33,492 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:33,492 - Inspection date 2024-03-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:00:33,492 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:33,492 - Inspection date 2024-03-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:00:33,493 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:46,869 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:00:46,872 - built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions) -2024-10-07 09:00:46,872 - Dictionary lifecycle event {'msg': "built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions)", 'datetime': '2024-10-07T09:00:46.872604', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:46,873 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:00:46,873 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:00:46,874 - using serial LDA version on this node -2024-10-07 09:00:46,874 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:00:46,874 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:00:46,878 - -8.169 per-word bound, 287.8 perplexity estimate based on a held-out corpus of 1 documents with 2620 words -2024-10-07 09:00:46,878 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:00:46,880 - topic #0 (0.333): 0.011*"’" + 0.007*"Haringey" + 0.006*"needs" + 0.006*"plans" + 0.006*"progress" + 0.006*"well" + 0.005*"good" + 0.004*"education" + 0.004*"need" + 0.004*"carers" -2024-10-07 09:00:46,880 - topic #1 (0.333): 0.016*"’" + 0.009*"Haringey" + 0.008*"needs" + 0.007*"plans" + 0.006*"well" + 0.006*"need" + 0.005*"good" + 0.005*"risk" + 0.005*"education" + 0.004*"progress" -2024-10-07 09:00:46,880 - topic #2 (0.333): 0.019*"’" + 0.008*"Haringey" + 0.007*"needs" + 0.007*"plans" + 0.005*"well" + 0.005*"good" + 0.005*"need" + 0.005*"24" + 0.004*"risk" + 0.004*"progress" -2024-10-07 09:00:46,880 - topic diff=0.770820, rho=1.000000 -2024-10-07 09:00:46,880 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:00:46.880866', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:47,788 - Inspection date 2023-02-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:00:47,789 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:47,789 - Inspection date 2023-02-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:00:47,789 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:47,789 - Inspection date 2023-02-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:00:47,789 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:47,790 - Inspection date 2023-02-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:00:47,790 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:47,790 - Inspection date 2023-02-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:00:47,790 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:47,790 - Inspection date 2023-02-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:00:47,790 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:56,634 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:00:56,636 - built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions) -2024-10-07 09:00:56,636 - Dictionary lifecycle event {'msg': "built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions)", 'datetime': '2024-10-07T09:00:56.636738', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:56,637 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:00:56,637 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:00:56,637 - using serial LDA version on this node -2024-10-07 09:00:56,638 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:00:56,638 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:00:56,641 - -7.971 per-word bound, 250.8 perplexity estimate based on a held-out corpus of 1 documents with 1732 words -2024-10-07 09:00:56,641 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:00:56,643 - topic #0 (0.333): 0.012*"’" + 0.011*"good" + 0.009*"needs" + 0.009*"well" + 0.006*"protection" + 0.006*"impact" + 0.006*"plans" + 0.005*"need" + 0.005*"school" + 0.005*"practice" -2024-10-07 09:00:56,643 - topic #1 (0.333): 0.011*"’" + 0.011*"good" + 0.008*"well" + 0.008*"needs" + 0.006*"practice" + 0.005*"impact" + 0.005*"plans" + 0.005*"need" + 0.005*"experiences" + 0.005*"early" -2024-10-07 09:00:56,643 - topic #2 (0.333): 0.011*"’" + 0.009*"good" + 0.008*"well" + 0.006*"needs" + 0.005*"protection" + 0.005*"plans" + 0.005*"impact" + 0.004*"experiences" + 0.004*"early" + 0.004*"need" -2024-10-07 09:00:56,643 - topic diff=0.691362, rho=1.000000 -2024-10-07 09:00:56,643 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:00:56.643583', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:00:58,456 - Inspection date 2020-02-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:00:58,457 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:58,457 - Inspection date 2020-02-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:00:58,457 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:58,457 - Inspection date 2020-02-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:00:58,457 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:58,458 - Inspection date 2020-02-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:00:58,458 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:58,458 - Inspection date 2020-02-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:00:58,458 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:00:58,458 - Inspection date 2020-02-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:00:58,458 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:09,931 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:01:09,933 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions) -2024-10-07 09:01:09,934 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions)", 'datetime': '2024-10-07T09:01:09.934089', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:09,935 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:01:09,935 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:01:09,935 - using serial LDA version on this node -2024-10-07 09:01:09,935 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:01:09,935 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:01:09,939 - -8.013 per-word bound, 258.3 perplexity estimate based on a held-out corpus of 1 documents with 2243 words -2024-10-07 09:01:09,939 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:01:09,941 - topic #0 (0.333): 0.019*"’" + 0.012*"Havering" + 0.010*"quality" + 0.007*"plans" + 0.007*"oversight" + 0.006*"effective" + 0.006*"needs" + 0.005*"December" + 0.004*"2023" + 0.004*"11" -2024-10-07 09:01:09,941 - topic #1 (0.333): 0.018*"’" + 0.010*"Havering" + 0.007*"plans" + 0.006*"quality" + 0.004*"oversight" + 0.004*"practice" + 0.004*"effective" + 0.003*"11" + 0.003*"22" + 0.003*"experiences" -2024-10-07 09:01:09,941 - topic #2 (0.333): 0.015*"’" + 0.011*"Havering" + 0.008*"quality" + 0.007*"plans" + 0.005*"effective" + 0.005*"11" + 0.004*"well" + 0.004*"22" + 0.004*"practice" + 0.004*"needs" -2024-10-07 09:01:09,941 - topic diff=0.777945, rho=1.000000 -2024-10-07 09:01:09,941 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:01:09.941764', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:11,083 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:01:11,084 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:11,084 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:01:11,084 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:11,084 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:01:11,084 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:11,085 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:01:11,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:11,085 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:01:11,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:11,085 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:01:11,085 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:22,547 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:01:22,549 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions) -2024-10-07 09:01:22,550 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions)", 'datetime': '2024-10-07T09:01:22.549993', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:22,551 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:01:22,551 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:01:22,551 - using serial LDA version on this node -2024-10-07 09:01:22,551 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:01:22,552 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:01:22,555 - -8.074 per-word bound, 269.5 perplexity estimate based on a held-out corpus of 1 documents with 2511 words -2024-10-07 09:01:22,555 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:01:22,557 - topic #0 (0.333): 0.012*"’" + 0.007*"Hillingdon" + 0.007*"well" + 0.007*"needs" + 0.006*"plans" + 0.005*"team" + 0.005*"2" + 0.004*"leaders" + 0.004*"need" + 0.004*"health" -2024-10-07 09:01:22,557 - topic #1 (0.333): 0.020*"’" + 0.009*"needs" + 0.008*"plans" + 0.007*"Hillingdon" + 0.007*"well" + 0.005*"6" + 0.005*"need" + 0.004*"PAs" + 0.004*"receive" + 0.004*"good" -2024-10-07 09:01:22,557 - topic #2 (0.333): 0.020*"’" + 0.011*"needs" + 0.009*"plans" + 0.008*"Hillingdon" + 0.008*"well" + 0.005*"team" + 0.005*"2" + 0.004*"need" + 0.004*"leaders" + 0.004*"2023" -2024-10-07 09:01:22,557 - topic diff=0.790635, rho=1.000000 -2024-10-07 09:01:22,558 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:01:22.558085', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:23,541 - Inspection date 2023-10-02 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:01:23,541 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:23,542 - Inspection date 2023-10-02 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:01:23,542 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:23,542 - Inspection date 2023-10-02 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:01:23,542 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:23,542 - Inspection date 2023-10-02 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:01:23,542 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:23,542 - Inspection date 2023-10-02 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:01:23,543 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:23,543 - Inspection date 2023-10-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:01:23,543 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:35,653 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:01:35,655 - built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions) -2024-10-07 09:01:35,655 - Dictionary lifecycle event {'msg': "built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions)", 'datetime': '2024-10-07T09:01:35.655395', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:35,656 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:01:35,656 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:01:35,656 - using serial LDA version on this node -2024-10-07 09:01:35,657 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:01:35,657 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:01:35,660 - -8.003 per-word bound, 256.5 perplexity estimate based on a held-out corpus of 1 documents with 2271 words -2024-10-07 09:01:35,660 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:01:35,662 - topic #0 (0.333): 0.022*"’" + 0.011*"needs" + 0.010*"well" + 0.008*"effective" + 0.008*"timely" + 0.007*"Hounslow" + 0.006*"plans" + 0.005*"training" + 0.005*"experiences" + 0.005*"oversight" -2024-10-07 09:01:35,662 - topic #1 (0.333): 0.017*"’" + 0.012*"needs" + 0.010*"well" + 0.009*"effective" + 0.008*"Hounslow" + 0.005*"timely" + 0.005*"16" + 0.004*"progress" + 0.004*"education" + 0.004*"oversight" -2024-10-07 09:01:35,662 - topic #2 (0.333): 0.020*"’" + 0.010*"needs" + 0.009*"well" + 0.006*"plans" + 0.005*"Hounslow" + 0.005*"timely" + 0.005*"effective" + 0.005*"20" + 0.005*"strong" + 0.004*"ensure" -2024-10-07 09:01:35,662 - topic diff=0.780990, rho=1.000000 -2024-10-07 09:01:35,662 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:01:35.662773', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:36,683 - Inspection date 2023-10-16 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:01:36,684 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:36,684 - Inspection date 2023-10-16 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:01:36,684 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:36,684 - Inspection date 2023-10-16 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:01:36,685 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:36,685 - Inspection date 2023-10-16 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:01:36,685 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:36,685 - Inspection date 2023-10-16 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:01:36,685 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:36,686 - Inspection date 2023-10-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:01:36,686 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:45,605 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:01:45,607 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions) -2024-10-07 09:01:45,607 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions)", 'datetime': '2024-10-07T09:01:45.607363', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:45,608 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:01:45,608 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:01:45,608 - using serial LDA version on this node -2024-10-07 09:01:45,609 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:01:45,609 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:01:45,612 - -7.929 per-word bound, 243.7 perplexity estimate based on a held-out corpus of 1 documents with 1982 words -2024-10-07 09:01:45,612 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:01:45,613 - topic #0 (0.333): 0.012*"’" + 0.011*"needs" + 0.009*"well" + 0.007*"plans" + 0.005*"highly" + 0.005*"risk" + 0.005*"leaders" + 0.004*"Islington" + 0.004*"practice" + 0.004*"good" -2024-10-07 09:01:45,614 - topic #1 (0.333): 0.013*"’" + 0.013*"well" + 0.012*"needs" + 0.007*"plans" + 0.007*"good" + 0.007*"highly" + 0.007*"quality" + 0.006*"leaders" + 0.005*"effective" + 0.005*"Islington" -2024-10-07 09:01:45,614 - topic #2 (0.333): 0.012*"’" + 0.010*"needs" + 0.008*"well" + 0.006*"good" + 0.006*"effective" + 0.006*"plans" + 0.005*"quality" + 0.005*"highly" + 0.005*"Islington" + 0.005*"leaders" -2024-10-07 09:01:45,614 - topic diff=0.741402, rho=1.000000 -2024-10-07 09:01:45,614 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:01:45.614472', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:47,740 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:01:47,740 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:47,740 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:01:47,740 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:47,741 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:01:47,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:47,741 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:01:47,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:47,741 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:01:47,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:47,741 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:01:47,742 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:01:59,165 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:01:59,167 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions) -2024-10-07 09:01:59,167 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions)", 'datetime': '2024-10-07T09:01:59.167675', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:01:59,168 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:01:59,168 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:01:59,168 - using serial LDA version on this node -2024-10-07 09:01:59,169 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:01:59,169 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:01:59,172 - -7.904 per-word bound, 239.4 perplexity estimate based on a held-out corpus of 1 documents with 2090 words -2024-10-07 09:01:59,172 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:01:59,174 - topic #0 (0.333): 0.012*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"plans" + 0.007*"need" + 0.007*"Lambeth" + 0.007*"leaders" + 0.006*"progress" + 0.006*"good" + 0.006*"impact" -2024-10-07 09:01:59,174 - topic #1 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"plans" + 0.007*"needs" + 0.007*"good" + 0.006*"progress" + 0.006*"Lambeth" + 0.005*"impact" + 0.005*"need" + 0.005*"leaders" -2024-10-07 09:01:59,174 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.009*"well" + 0.007*"good" + 0.006*"plans" + 0.006*"Lambeth" + 0.005*"arrangements" + 0.005*"4" + 0.005*"2022" + 0.005*"impact" -2024-10-07 09:01:59,174 - topic diff=0.797040, rho=1.000000 -2024-10-07 09:01:59,174 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:01:59.174784', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:00,188 - Inspection date 2022-10-24 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:02:00,189 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:00,189 - Inspection date 2022-10-24 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:02:00,189 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:00,189 - Inspection date 2022-10-24 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:02:00,189 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:00,189 - Inspection date 2022-10-24 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:02:00,190 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:00,190 - Inspection date 2022-10-24 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:02:00,190 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:00,190 - Inspection date 2022-10-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:02:00,190 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:12,189 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:02:12,192 - built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions) -2024-10-07 09:02:12,192 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-10-07T09:02:12.192221', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:12,193 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:02:12,193 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:02:12,193 - using serial LDA version on this node -2024-10-07 09:02:12,194 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:02:12,194 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:02:12,197 - -8.046 per-word bound, 264.2 perplexity estimate based on a held-out corpus of 1 documents with 2352 words -2024-10-07 09:02:12,197 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:02:12,199 - topic #0 (0.333): 0.018*"’" + 0.009*"well" + 0.007*"needs" + 0.007*"plans" + 0.005*"effective" + 0.005*"Lewisham" + 0.005*"good" + 0.005*"progress" + 0.005*"4" + 0.005*"need" -2024-10-07 09:02:12,199 - topic #1 (0.333): 0.014*"’" + 0.007*"well" + 0.007*"effective" + 0.007*"plans" + 0.006*"needs" + 0.005*"Lewisham" + 0.004*"progress" + 0.004*"benefit" + 0.004*"good" + 0.004*"4" -2024-10-07 09:02:12,199 - topic #2 (0.333): 0.019*"’" + 0.008*"needs" + 0.008*"well" + 0.007*"plans" + 0.007*"Lewisham" + 0.006*"effective" + 0.005*"progress" + 0.005*"4" + 0.005*"good" + 0.005*"leaders" -2024-10-07 09:02:12,199 - topic diff=0.768726, rho=1.000000 -2024-10-07 09:02:12,199 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:02:12.199833', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:13,100 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:02:13,100 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:13,100 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:02:13,100 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:13,101 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:02:13,101 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:13,101 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:02:13,101 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:13,101 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:02:13,101 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:13,101 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:02:13,102 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:22,884 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:02:22,886 - built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions) -2024-10-07 09:02:22,886 - Dictionary lifecycle event {'msg': "built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions)", 'datetime': '2024-10-07T09:02:22.886202', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:22,887 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:02:22,887 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:02:22,887 - using serial LDA version on this node -2024-10-07 09:02:22,887 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:02:22,887 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:02:22,891 - -7.991 per-word bound, 254.3 perplexity estimate based on a held-out corpus of 1 documents with 2032 words -2024-10-07 09:02:22,891 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:02:22,892 - topic #0 (0.333): 0.014*"’" + 0.008*"well" + 0.006*"Merton" + 0.006*"needs" + 0.005*"4" + 0.005*"good" + 0.005*"progress" + 0.004*"information" + 0.004*"plans" + 0.004*"family" -2024-10-07 09:02:22,892 - topic #1 (0.333): 0.015*"’" + 0.009*"well" + 0.006*"Merton" + 0.005*"plans" + 0.005*"family" + 0.005*"needs" + 0.004*"2022" + 0.004*"early" + 0.004*"progress" + 0.004*"ensure" -2024-10-07 09:02:22,893 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"Merton" + 0.006*"needs" + 0.005*"plans" + 0.004*"leaders" + 0.004*"ensure" + 0.004*"progress" + 0.004*"good" + 0.004*"health" -2024-10-07 09:02:22,893 - topic diff=0.754536, rho=1.000000 -2024-10-07 09:02:22,893 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:02:22.893257', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:23,715 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:02:23,715 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:23,715 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:02:23,716 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:23,716 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:02:23,716 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:23,716 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:02:23,716 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:23,716 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:02:23,716 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:23,717 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:02:23,717 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:35,530 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:02:35,532 - built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions) -2024-10-07 09:02:35,532 - Dictionary lifecycle event {'msg': "built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions)", 'datetime': '2024-10-07T09:02:35.532692', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:35,533 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:02:35,533 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:02:35,534 - using serial LDA version on this node -2024-10-07 09:02:35,534 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:02:35,534 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:02:35,538 - -8.057 per-word bound, 266.3 perplexity estimate based on a held-out corpus of 1 documents with 2540 words -2024-10-07 09:02:35,538 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:02:35,539 - topic #0 (0.333): 0.014*"’" + 0.006*"needs" + 0.006*"effective" + 0.006*"Newham" + 0.005*"practice" + 0.005*"progress" + 0.004*"need" + 0.004*"plans" + 0.004*"good" + 0.004*"18" -2024-10-07 09:02:35,539 - topic #1 (0.333): 0.021*"’" + 0.009*"Newham" + 0.008*"needs" + 0.006*"progress" + 0.006*"practice" + 0.006*"plans" + 0.006*"need" + 0.005*"good" + 0.005*"effective" + 0.005*"Leaders" -2024-10-07 09:02:35,540 - topic #2 (0.333): 0.020*"’" + 0.009*"needs" + 0.007*"plans" + 0.007*"need" + 0.007*"progress" + 0.006*"practice" + 0.006*"effective" + 0.005*"Newham" + 0.005*"good" + 0.005*"receive" -2024-10-07 09:02:35,540 - topic diff=0.783692, rho=1.000000 -2024-10-07 09:02:35,540 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:02:35.540316', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:36,421 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:02:36,422 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:36,422 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:02:36,422 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:36,422 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:02:36,422 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:36,423 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:02:36,423 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:36,423 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:02:36,423 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:36,423 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:02:36,423 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:47,446 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:02:47,450 - built Dictionary<1204 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2389 corpus positions) -2024-10-07 09:02:47,450 - Dictionary lifecycle event {'msg': "built Dictionary<1204 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-10-07T09:02:47.450347', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:47,452 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:02:47,452 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:02:47,452 - using serial LDA version on this node -2024-10-07 09:02:47,453 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:02:47,453 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:02:47,460 - -8.164 per-word bound, 286.8 perplexity estimate based on a held-out corpus of 1 documents with 2389 words -2024-10-07 09:02:47,460 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:02:47,463 - topic #0 (0.333): 0.013*"’" + 0.007*"Redbridge" + 0.006*"supported" + 0.005*"carers" + 0.005*"practice" + 0.005*"needs" + 0.004*"10" + 0.004*"effective" + 0.004*"leaders" + 0.004*"14" -2024-10-07 09:02:47,463 - topic #1 (0.333): 0.013*"’" + 0.008*"Redbridge" + 0.006*"family" + 0.005*"needs" + 0.005*"early" + 0.005*"leaders" + 0.004*"risk" + 0.004*"practice" + 0.004*"10" + 0.004*"carers" -2024-10-07 09:02:47,463 - topic #2 (0.333): 0.017*"’" + 0.006*"Redbridge" + 0.005*"practice" + 0.005*"needs" + 0.005*"carers" + 0.004*"supported" + 0.004*"leaders" + 0.004*"family" + 0.004*"14" + 0.004*"early" -2024-10-07 09:02:47,463 - topic diff=0.748891, rho=1.000000 -2024-10-07 09:02:47,463 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:02:47.463901', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:48,423 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:02:48,423 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:48,424 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:02:48,424 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:48,424 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:02:48,424 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:48,424 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:02:48,424 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:48,425 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:02:48,425 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:48,425 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:02:48,425 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:57,131 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:02:57,133 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions) -2024-10-07 09:02:57,133 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions)", 'datetime': '2024-10-07T09:02:57.133409', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:57,134 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:02:57,134 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:02:57,134 - using serial LDA version on this node -2024-10-07 09:02:57,135 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:02:57,135 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:02:57,138 - -7.985 per-word bound, 253.4 perplexity estimate based on a held-out corpus of 1 documents with 1818 words -2024-10-07 09:02:57,138 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:02:57,139 - topic #0 (0.333): 0.014*"’" + 0.008*"well" + 0.008*"Richmond" + 0.006*"needs" + 0.006*"supported" + 0.005*"need" + 0.005*"team" + 0.005*"good" + 0.005*"strong" + 0.005*"31" -2024-10-07 09:02:57,140 - topic #1 (0.333): 0.018*"’" + 0.013*"well" + 0.010*"Richmond" + 0.009*"needs" + 0.006*"team" + 0.006*"need" + 0.006*"good" + 0.006*"additional" + 0.006*"supported" + 0.005*"ensure" -2024-10-07 09:02:57,140 - topic #2 (0.333): 0.013*"’" + 0.010*"well" + 0.006*"needs" + 0.006*"supported" + 0.005*"4" + 0.005*"good" + 0.005*"Richmond" + 0.004*"team" + 0.004*"Thames" + 0.004*"need" -2024-10-07 09:02:57,140 - topic diff=0.738729, rho=1.000000 -2024-10-07 09:02:57,140 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:02:57.140600', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:02:58,118 - Inspection date 2022-01-31 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:02:58,118 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:58,119 - Inspection date 2022-01-31 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:02:58,119 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:58,119 - Inspection date 2022-01-31 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:02:58,119 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:58,119 - Inspection date 2022-01-31 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:02:58,119 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:58,120 - Inspection date 2022-01-31 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:02:58,120 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:02:58,120 - Inspection date 2022-01-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:02:58,120 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:08,004 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:03:08,006 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions) -2024-10-07 09:03:08,006 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions)", 'datetime': '2024-10-07T09:03:08.006657', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:08,007 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:03:08,007 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:03:08,007 - using serial LDA version on this node -2024-10-07 09:03:08,008 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:03:08,008 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:03:08,011 - -7.923 per-word bound, 242.8 perplexity estimate based on a held-out corpus of 1 documents with 1878 words -2024-10-07 09:03:08,011 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:03:08,013 - topic #0 (0.333): 0.014*"’" + 0.010*"Southwark" + 0.008*"good" + 0.007*"well" + 0.007*"strong" + 0.006*"needs" + 0.006*"effective" + 0.005*"progress" + 0.005*"leaders" + 0.005*"plans" -2024-10-07 09:03:08,013 - topic #1 (0.333): 0.016*"’" + 0.008*"good" + 0.007*"Southwark" + 0.006*"well" + 0.006*"needs" + 0.006*"plans" + 0.006*"progress" + 0.005*"need" + 0.005*"strong" + 0.005*"Leaders" -2024-10-07 09:03:08,013 - topic #2 (0.333): 0.022*"’" + 0.010*"Southwark" + 0.008*"well" + 0.008*"needs" + 0.007*"good" + 0.006*"receive" + 0.006*"need" + 0.006*"progress" + 0.006*"Leaders" + 0.005*"plans" -2024-10-07 09:03:08,013 - topic diff=0.739257, rho=1.000000 -2024-10-07 09:03:08,013 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:03:08.013737', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:08,878 - Inspection date 2022-09-26 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:03:08,879 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:08,879 - Inspection date 2022-09-26 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:03:08,879 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:08,879 - Inspection date 2022-09-26 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:03:08,880 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:08,880 - Inspection date 2022-09-26 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:03:08,880 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:08,880 - Inspection date 2022-09-26 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:03:08,880 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:08,880 - Inspection date 2022-09-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:03:08,881 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:17,620 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:03:17,622 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions) -2024-10-07 09:03:17,622 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions)", 'datetime': '2024-10-07T09:03:17.622860', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:17,623 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:03:17,623 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:03:17,624 - using serial LDA version on this node -2024-10-07 09:03:17,624 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:03:17,624 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:03:17,627 - -7.985 per-word bound, 253.4 perplexity estimate based on a held-out corpus of 1 documents with 1847 words -2024-10-07 09:03:17,627 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:03:17,629 - topic #0 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"Sutton" + 0.005*"effective" + 0.005*"good" + 0.004*"6" + 0.004*"needs" + 0.004*"progress" + 0.004*"December" + 0.004*"protection" -2024-10-07 09:03:17,629 - topic #1 (0.333): 0.019*"’" + 0.007*"needs" + 0.006*"progress" + 0.006*"well" + 0.006*"Sutton" + 0.005*"effective" + 0.005*"receive" + 0.005*"6" + 0.004*"need" + 0.004*"good" -2024-10-07 09:03:17,629 - topic #2 (0.333): 0.018*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"receive" + 0.005*"Sutton" + 0.005*"good" + 0.005*"supported" + 0.005*"progress" + 0.004*"need" + 0.004*"leaders" -2024-10-07 09:03:17,629 - topic diff=0.724635, rho=1.000000 -2024-10-07 09:03:17,629 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:03:17.629948', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:19,417 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:03:19,417 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:19,418 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:03:19,418 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:19,418 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:03:19,418 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:19,418 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:03:19,418 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:19,419 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:03:19,419 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:19,419 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:03:19,419 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:30,206 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:03:30,209 - built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions) -2024-10-07 09:03:30,209 - Dictionary lifecycle event {'msg': "built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions)", 'datetime': '2024-10-07T09:03:30.209308', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:30,210 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:03:30,210 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:03:30,210 - using serial LDA version on this node -2024-10-07 09:03:30,211 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:03:30,211 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:03:30,215 - -8.132 per-word bound, 280.6 perplexity estimate based on a held-out corpus of 1 documents with 2465 words -2024-10-07 09:03:30,215 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:03:30,216 - topic #0 (0.333): 0.014*"’" + 0.007*"effective" + 0.006*"practice" + 0.006*"good" + 0.006*"progress" + 0.005*"plans" + 0.005*"‘" + 0.005*"well" + 0.004*"need" + 0.004*"carers" -2024-10-07 09:03:30,216 - topic #1 (0.333): 0.014*"’" + 0.007*"effective" + 0.006*"good" + 0.006*"‘" + 0.005*"plans" + 0.005*"well" + 0.004*"early" + 0.004*"progress" + 0.004*"practice" + 0.004*"needs" -2024-10-07 09:03:30,217 - topic #2 (0.333): 0.016*"’" + 0.007*"good" + 0.007*"plans" + 0.006*"need" + 0.006*"well" + 0.006*"risk" + 0.005*"early" + 0.005*"‘" + 0.005*"practice" + 0.005*"including" -2024-10-07 09:03:30,217 - topic diff=0.769348, rho=1.000000 -2024-10-07 09:03:30,217 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:03:30.217251', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:31,164 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:03:31,164 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:31,165 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:03:31,165 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:31,165 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:03:31,165 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:31,166 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:03:31,166 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:31,166 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:03:31,166 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:31,166 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:03:31,166 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:42,985 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:03:42,987 - built Dictionary<1061 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2398 corpus positions) -2024-10-07 09:03:42,987 - Dictionary lifecycle event {'msg': "built Dictionary<1061 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2398 corpus positions)", 'datetime': '2024-10-07T09:03:42.987614', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:42,988 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:03:42,988 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:03:42,989 - using serial LDA version on this node -2024-10-07 09:03:42,989 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:03:42,989 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:03:42,993 - -7.955 per-word bound, 248.2 perplexity estimate based on a held-out corpus of 1 documents with 2398 words -2024-10-07 09:03:42,993 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:03:42,994 - topic #0 (0.333): 0.020*"’" + 0.012*"needs" + 0.008*"well" + 0.008*"plans" + 0.006*"Forest" + 0.006*"Waltham" + 0.005*"progress" + 0.005*"leaders" + 0.004*"2024" + 0.004*"know" -2024-10-07 09:03:42,994 - topic #1 (0.333): 0.016*"’" + 0.010*"well" + 0.008*"needs" + 0.007*"plans" + 0.006*"progress" + 0.005*"Waltham" + 0.004*"12" + 0.004*"leaders" + 0.004*"Leaders" + 0.004*"Forest" -2024-10-07 09:03:42,994 - topic #2 (0.333): 0.017*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"Waltham" + 0.006*"Forest" + 0.005*"plans" + 0.005*"Leaders" + 0.005*"leaders" + 0.005*"8" + 0.004*"12" -2024-10-07 09:03:42,995 - topic diff=0.783410, rho=1.000000 -2024-10-07 09:03:42,995 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:03:42.995140', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:44,172 - Inspection date 2024-07-08 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:03:44,173 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:44,173 - Inspection date 2024-07-08 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:03:44,173 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:44,173 - Inspection date 2024-07-08 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:03:44,173 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:44,174 - Inspection date 2024-07-08 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:03:44,174 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:44,174 - Inspection date 2024-07-08 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:03:44,174 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:44,175 - Inspection date 2024-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:03:44,175 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:52,695 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:03:52,697 - built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions) -2024-10-07 09:03:52,697 - Dictionary lifecycle event {'msg': "built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions)", 'datetime': '2024-10-07T09:03:52.697364', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:52,698 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:03:52,698 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:03:52,698 - using serial LDA version on this node -2024-10-07 09:03:52,698 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:03:52,699 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:03:52,702 - -7.852 per-word bound, 231.0 perplexity estimate based on a held-out corpus of 1 documents with 1772 words -2024-10-07 09:03:52,702 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:03:52,703 - topic #0 (0.333): 0.011*"’" + 0.007*"well" + 0.006*"protection" + 0.005*"practice" + 0.005*"progress" + 0.005*"Wandsworth" + 0.005*"needs" + 0.005*"7" + 0.005*"However" + 0.005*"Senior" -2024-10-07 09:03:52,703 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"Wandsworth" + 0.005*"protection" + 0.005*"Senior" + 0.005*"team" + 0.005*"supported" + 0.005*"progress" + 0.005*"practice" -2024-10-07 09:03:52,703 - topic #2 (0.333): 0.011*"’" + 0.006*"progress" + 0.006*"quality" + 0.006*"well" + 0.005*"needs" + 0.005*"effective" + 0.005*"ensure" + 0.005*"Senior" + 0.005*"practice" + 0.004*"timely" -2024-10-07 09:03:52,703 - topic diff=0.743712, rho=1.000000 -2024-10-07 09:03:52,704 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:03:52.704036', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:03:53,555 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:03:53,555 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:53,555 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:03:53,555 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:53,555 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:03:53,555 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:53,556 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:03:53,556 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:53,556 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:03:53,556 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:03:53,556 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:03:53,556 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:02,702 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:04:02,705 - built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions) -2024-10-07 09:04:02,705 - Dictionary lifecycle event {'msg': "built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions)", 'datetime': '2024-10-07T09:04:02.705915', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:02,707 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:04:02,707 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:04:02,708 - using serial LDA version on this node -2024-10-07 09:04:02,708 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:04:02,708 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:04:02,714 - -8.151 per-word bound, 284.3 perplexity estimate based on a held-out corpus of 1 documents with 2101 words -2024-10-07 09:04:02,715 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:04:02,717 - topic #0 (0.333): 0.012*"’" + 0.006*"practice" + 0.005*"highly" + 0.005*"needs" + 0.005*"across" + 0.004*"well" + 0.004*"family" + 0.003*"many" + 0.003*"Westminster" + 0.003*"quality" -2024-10-07 09:04:02,717 - topic #1 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"practice" + 0.006*"highly" + 0.005*"well" + 0.004*"direct" + 0.004*"plans" + 0.003*"shared" + 0.003*"many" + 0.003*"experiences" -2024-10-07 09:04:02,717 - topic #2 (0.333): 0.013*"’" + 0.007*"practice" + 0.006*"highly" + 0.006*"needs" + 0.005*"well" + 0.004*"many" + 0.004*"high" + 0.004*"family" + 0.003*"skilled" + 0.003*"across" -2024-10-07 09:04:02,717 - topic diff=0.688628, rho=1.000000 -2024-10-07 09:04:02,718 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:04:02.718121', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:03,875 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:04:03,876 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:03,876 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:04:03,876 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:03,876 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:04:03,876 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:03,877 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:04:03,877 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:03,877 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:04:03,877 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:03,877 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:04:03,877 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:16,138 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:04:16,142 - built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions) -2024-10-07 09:04:16,142 - Dictionary lifecycle event {'msg': "built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions)", 'datetime': '2024-10-07T09:04:16.142211', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:16,143 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:04:16,143 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:04:16,143 - using serial LDA version on this node -2024-10-07 09:04:16,144 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:04:16,144 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:04:16,148 - -8.107 per-word bound, 275.6 perplexity estimate based on a held-out corpus of 1 documents with 2593 words -2024-10-07 09:04:16,148 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:04:16,149 - topic #0 (0.333): 0.017*"’" + 0.006*"need" + 0.006*"good" + 0.006*"needs" + 0.005*"ensure" + 0.005*"effective" + 0.005*"plans" + 0.005*"Luton" + 0.005*"impact" + 0.004*"progress" -2024-10-07 09:04:16,149 - topic #1 (0.333): 0.011*"’" + 0.006*"Luton" + 0.006*"plans" + 0.005*"need" + 0.004*"needs" + 0.004*"effective" + 0.004*"ensure" + 0.004*"22" + 0.004*"2022" + 0.004*"good" -2024-10-07 09:04:16,150 - topic #2 (0.333): 0.021*"’" + 0.008*"needs" + 0.007*"need" + 0.006*"plans" + 0.006*"effective" + 0.006*"progress" + 0.006*"impact" + 0.005*"Luton" + 0.005*"quality" + 0.005*"good" -2024-10-07 09:04:16,150 - topic diff=0.794024, rho=1.000000 -2024-10-07 09:04:16,150 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:04:16.150332', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:17,178 - Inspection date 2022-07-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:04:17,178 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:17,179 - Inspection date 2022-07-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:04:17,179 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:17,179 - Inspection date 2022-07-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:04:17,179 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:17,179 - Inspection date 2022-07-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:04:17,179 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:17,179 - Inspection date 2022-07-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:04:17,180 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:17,180 - Inspection date 2022-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:04:17,180 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:26,097 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:04:26,098 - built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions) -2024-10-07 09:04:26,099 - Dictionary lifecycle event {'msg': "built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions)", 'datetime': '2024-10-07T09:04:26.098998', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:26,099 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:04:26,099 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:04:26,100 - using serial LDA version on this node -2024-10-07 09:04:26,100 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:04:26,100 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:04:26,103 - -7.769 per-word bound, 218.1 perplexity estimate based on a held-out corpus of 1 documents with 1938 words -2024-10-07 09:04:26,103 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:04:26,104 - topic #0 (0.333): 0.018*"’" + 0.011*"needs" + 0.010*"Manchester" + 0.006*"always" + 0.006*"supported" + 0.006*"well" + 0.005*"disabled" + 0.005*"progress" + 0.005*"effective" + 0.005*"1" -2024-10-07 09:04:26,105 - topic #1 (0.333): 0.026*"’" + 0.012*"Manchester" + 0.010*"needs" + 0.008*"well" + 0.008*"supported" + 0.007*"always" + 0.006*"quality" + 0.005*"plans" + 0.005*"protection" + 0.005*"family" -2024-10-07 09:04:26,105 - topic #2 (0.333): 0.017*"’" + 0.009*"Manchester" + 0.007*"well" + 0.006*"needs" + 0.006*"always" + 0.006*"effective" + 0.006*"plans" + 0.005*"protection" + 0.005*"education" + 0.005*"supported" -2024-10-07 09:04:26,105 - topic diff=0.811393, rho=1.000000 -2024-10-07 09:04:26,105 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-07T09:04:26.105435', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:27,035 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:04:27,035 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:27,035 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:04:27,036 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:27,036 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:04:27,036 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:27,036 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:04:27,036 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:27,037 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:04:27,037 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:27,037 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:04:27,037 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:36,806 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:04:36,808 - built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions) -2024-10-07 09:04:36,808 - Dictionary lifecycle event {'msg': "built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions)", 'datetime': '2024-10-07T09:04:36.808896', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:36,809 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:04:36,810 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:04:36,810 - using serial LDA version on this node -2024-10-07 09:04:36,810 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:04:36,810 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:04:36,814 - -7.889 per-word bound, 237.0 perplexity estimate based on a held-out corpus of 1 documents with 1857 words -2024-10-07 09:04:36,814 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:04:36,815 - topic #0 (0.333): 0.016*"’" + 0.009*"Medway" + 0.008*"quality" + 0.008*"practice" + 0.007*"leaders" + 0.007*"well" + 0.006*"needs" + 0.005*"progress" + 0.005*"oversight" + 0.005*"impact" -2024-10-07 09:04:36,815 - topic #1 (0.333): 0.015*"’" + 0.010*"well" + 0.009*"Medway" + 0.008*"quality" + 0.007*"practice" + 0.007*"experiences" + 0.006*"oversight" + 0.005*"17" + 0.005*"impact" + 0.005*"needs" -2024-10-07 09:04:36,815 - topic #2 (0.333): 0.016*"’" + 0.009*"Medway" + 0.009*"practice" + 0.007*"quality" + 0.007*"needs" + 0.006*"leaders" + 0.006*"oversight" + 0.006*"well" + 0.006*"impact" + 0.006*"clear" -2024-10-07 09:04:36,815 - topic diff=0.759378, rho=1.000000 -2024-10-07 09:04:36,816 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:04:36.816043', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:37,746 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:04:37,746 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:37,746 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:04:37,746 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:37,746 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:04:37,746 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:37,747 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:04:37,747 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:37,747 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:04:37,747 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:37,747 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:04:37,747 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:49,851 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:04:49,855 - built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions) -2024-10-07 09:04:49,855 - Dictionary lifecycle event {'msg': "built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-10-07T09:04:49.855423', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:49,857 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:04:49,857 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:04:49,857 - using serial LDA version on this node -2024-10-07 09:04:49,858 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:04:49,858 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:04:49,865 - -8.000 per-word bound, 256.0 perplexity estimate based on a held-out corpus of 1 documents with 2278 words -2024-10-07 09:04:49,865 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:04:49,867 - topic #0 (0.333): 0.016*"’" + 0.008*"plans" + 0.008*"effective" + 0.007*"Middlesbrough" + 0.007*"needs" + 0.006*"well" + 0.006*"24" + 0.006*"practice" + 0.006*"progress" + 0.005*"13" -2024-10-07 09:04:49,867 - topic #1 (0.333): 0.012*"’" + 0.007*"Middlesbrough" + 0.006*"plans" + 0.006*"well" + 0.006*"effective" + 0.006*"practice" + 0.006*"needs" + 0.005*"place" + 0.005*"progress" + 0.005*"2023" -2024-10-07 09:04:49,868 - topic #2 (0.333): 0.012*"’" + 0.006*"effective" + 0.006*"well" + 0.006*"Middlesbrough" + 0.005*"plans" + 0.005*"needs" + 0.004*"practice" + 0.004*"24" + 0.004*"progress" + 0.004*"planning" -2024-10-07 09:04:49,868 - topic diff=0.780353, rho=1.000000 -2024-10-07 09:04:49,868 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:04:49.868588', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:04:50,841 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:04:50,841 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:50,841 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:04:50,841 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:50,841 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:04:50,841 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:50,842 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:04:50,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:50,842 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:04:50,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:04:50,842 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:04:50,842 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:01,554 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:05:01,556 - built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions) -2024-10-07 09:05:01,556 - Dictionary lifecycle event {'msg': "built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions)", 'datetime': '2024-10-07T09:05:01.556880', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:01,557 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:05:01,558 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:05:01,558 - using serial LDA version on this node -2024-10-07 09:05:01,558 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:05:01,558 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:05:01,562 - -8.036 per-word bound, 262.4 perplexity estimate based on a held-out corpus of 1 documents with 2328 words -2024-10-07 09:05:01,562 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:05:01,563 - topic #0 (0.333): 0.012*"’" + 0.007*"Milton" + 0.006*"Keynes" + 0.005*"well" + 0.005*"good" + 0.005*"leaders" + 0.005*"practice" + 0.005*"need" + 0.005*"plans" + 0.004*"25" -2024-10-07 09:05:01,564 - topic #1 (0.333): 0.013*"’" + 0.005*"Keynes" + 0.005*"Milton" + 0.004*"well" + 0.004*"need" + 0.004*"2021" + 0.004*"plans" + 0.004*"education" + 0.004*"October" + 0.003*"needs" -2024-10-07 09:05:01,564 - topic #2 (0.333): 0.018*"’" + 0.007*"well" + 0.006*"need" + 0.006*"Keynes" + 0.005*"practice" + 0.005*"25" + 0.005*"Milton" + 0.005*"education" + 0.005*"5" + 0.005*"plans" -2024-10-07 09:05:01,564 - topic diff=0.789233, rho=1.000000 -2024-10-07 09:05:01,564 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:05:01.564464', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:02,463 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:05:02,464 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:02,464 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:05:02,464 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:02,464 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:05:02,464 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:02,465 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:05:02,465 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:02,465 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:05:02,465 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:02,465 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:05:02,466 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:12,462 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:05:12,463 - built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions) -2024-10-07 09:05:12,464 - Dictionary lifecycle event {'msg': "built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions)", 'datetime': '2024-10-07T09:05:12.464100', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:12,465 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:05:12,465 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:05:12,465 - using serial LDA version on this node -2024-10-07 09:05:12,465 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:05:12,465 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:05:12,469 - -7.878 per-word bound, 235.2 perplexity estimate based on a held-out corpus of 1 documents with 2076 words -2024-10-07 09:05:12,469 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:05:12,470 - topic #0 (0.333): 0.014*"’" + 0.009*"plans" + 0.007*"needs" + 0.007*"good" + 0.006*"well" + 0.006*"Newcastle" + 0.006*"protection" + 0.006*"progress" + 0.005*"10" + 0.005*"ensure" -2024-10-07 09:05:12,470 - topic #1 (0.333): 0.017*"’" + 0.011*"plans" + 0.008*"needs" + 0.007*"protection" + 0.007*"making" + 0.006*"well" + 0.006*"good" + 0.006*"Newcastle" + 0.006*"need" + 0.005*"response" -2024-10-07 09:05:12,470 - topic #2 (0.333): 0.016*"’" + 0.011*"plans" + 0.008*"Newcastle" + 0.007*"needs" + 0.007*"good" + 0.007*"protection" + 0.006*"ensure" + 0.006*"well" + 0.006*"progress" + 0.006*"management" -2024-10-07 09:05:12,470 - topic diff=0.782500, rho=1.000000 -2024-10-07 09:05:12,471 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:05:12.471113', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:13,358 - Inspection date 2021-11-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:05:13,358 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:13,358 - Inspection date 2021-11-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:05:13,358 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:13,358 - Inspection date 2021-11-29 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:05:13,359 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:13,359 - Inspection date 2021-11-29 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:05:13,359 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:13,359 - Inspection date 2021-11-29 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:05:13,359 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:13,359 - Inspection date 2021-11-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:05:13,359 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:25,180 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:05:25,182 - built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions) -2024-10-07 09:05:25,182 - Dictionary lifecycle event {'msg': "built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions)", 'datetime': '2024-10-07T09:05:25.182517', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:25,183 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:05:25,183 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:05:25,184 - using serial LDA version on this node -2024-10-07 09:05:25,184 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:05:25,184 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:05:25,188 - -8.128 per-word bound, 279.8 perplexity estimate based on a held-out corpus of 1 documents with 2655 words -2024-10-07 09:05:25,188 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:05:25,190 - topic #0 (0.333): 0.009*"’" + 0.008*"well" + 0.006*"carers" + 0.006*"Norfolk" + 0.005*"supported" + 0.005*"7" + 0.004*"practice" + 0.004*"18" + 0.004*"including" + 0.004*"plans" -2024-10-07 09:05:25,190 - topic #1 (0.333): 0.019*"’" + 0.008*"Norfolk" + 0.007*"well" + 0.005*"practice" + 0.005*"range" + 0.005*"leaders" + 0.005*"needs" + 0.004*"carers" + 0.004*"including" + 0.004*"plans" -2024-10-07 09:05:25,190 - topic #2 (0.333): 0.020*"’" + 0.009*"Norfolk" + 0.009*"well" + 0.008*"needs" + 0.007*"carers" + 0.007*"supported" + 0.006*"practice" + 0.005*"plans" + 0.005*"progress" + 0.004*"leaders" -2024-10-07 09:05:25,190 - topic diff=0.786128, rho=1.000000 -2024-10-07 09:05:25,190 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:05:25.190674', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:26,110 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:05:26,110 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:26,111 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:05:26,111 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:26,111 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:05:26,111 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:26,111 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:05:26,111 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:26,112 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:05:26,112 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:26,112 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:05:26,112 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:36,400 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:05:36,403 - built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions) -2024-10-07 09:05:36,403 - Dictionary lifecycle event {'msg': "built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions)", 'datetime': '2024-10-07T09:05:36.403348', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:36,404 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:05:36,405 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:05:36,405 - using serial LDA version on this node -2024-10-07 09:05:36,405 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:05:36,405 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:05:36,411 - -7.894 per-word bound, 237.9 perplexity estimate based on a held-out corpus of 1 documents with 2045 words -2024-10-07 09:05:36,411 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:05:36,413 - topic #0 (0.333): 0.013*"’" + 0.008*"practice" + 0.007*"risk" + 0.006*"needs" + 0.005*"need" + 0.005*"leaders" + 0.005*"many" + 0.005*"planning" + 0.005*"senior" + 0.004*"quality" -2024-10-07 09:05:36,414 - topic #1 (0.333): 0.017*"’" + 0.007*"practice" + 0.007*"risk" + 0.007*"leaders" + 0.006*"needs" + 0.006*"planning" + 0.005*"October" + 0.005*"Lincolnshire" + 0.005*"North" + 0.005*"plans" -2024-10-07 09:05:36,414 - topic #2 (0.333): 0.011*"’" + 0.009*"practice" + 0.007*"planning" + 0.007*"leaders" + 0.007*"risk" + 0.006*"many" + 0.006*"needs" + 0.005*"quality" + 0.005*"need" + 0.005*"2021" -2024-10-07 09:05:36,414 - topic diff=0.771727, rho=1.000000 -2024-10-07 09:05:36,414 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:05:36.414723', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:37,630 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:05:37,630 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:37,630 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:05:37,630 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:37,630 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:05:37,630 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:37,631 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:05:37,631 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:37,631 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:05:37,631 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:37,631 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:05:37,631 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:47,308 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:05:47,310 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions) -2024-10-07 09:05:47,310 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions)", 'datetime': '2024-10-07T09:05:47.310963', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:47,311 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:05:47,312 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:05:47,312 - using serial LDA version on this node -2024-10-07 09:05:47,312 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:05:47,312 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:05:47,316 - -8.066 per-word bound, 267.9 perplexity estimate based on a held-out corpus of 1 documents with 2174 words -2024-10-07 09:05:47,316 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:05:47,318 - topic #0 (0.333): 0.017*"’" + 0.007*"‘" + 0.006*"well" + 0.006*"North" + 0.006*"family" + 0.005*"team" + 0.005*"need" + 0.005*"approach" + 0.004*"leaders" + 0.004*"10" -2024-10-07 09:05:47,318 - topic #1 (0.333): 0.024*"’" + 0.007*"family" + 0.006*"Lincolnshire" + 0.006*"North" + 0.006*"leaders" + 0.006*"‘" + 0.005*"well" + 0.005*"approach" + 0.005*"10" + 0.004*"14" -2024-10-07 09:05:47,318 - topic #2 (0.333): 0.020*"’" + 0.009*"‘" + 0.005*"approach" + 0.005*"council" + 0.005*"Lincolnshire" + 0.005*"10" + 0.005*"leaders" + 0.005*"need" + 0.005*"family" + 0.004*"practice" -2024-10-07 09:05:47,318 - topic diff=0.748620, rho=1.000000 -2024-10-07 09:05:47,318 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:05:47.318663', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:48,417 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:05:48,418 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:48,418 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:05:48,418 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:48,418 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:05:48,418 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:48,419 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:05:48,419 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:48,419 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:05:48,419 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:48,419 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:05:48,419 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:58,313 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:05:58,316 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions) -2024-10-07 09:05:58,316 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions)", 'datetime': '2024-10-07T09:05:58.316470', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:58,318 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:05:58,318 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:05:58,318 - using serial LDA version on this node -2024-10-07 09:05:58,319 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:05:58,319 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:05:58,325 - -8.034 per-word bound, 262.1 perplexity estimate based on a held-out corpus of 1 documents with 2204 words -2024-10-07 09:05:58,325 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:05:58,327 - topic #0 (0.333): 0.018*"’" + 0.009*"Northamptonshire" + 0.008*"North" + 0.007*"well" + 0.006*"quality" + 0.005*"needs" + 0.005*"14" + 0.005*"experiences" + 0.005*"plans" + 0.005*"impact" -2024-10-07 09:05:58,327 - topic #1 (0.333): 0.017*"’" + 0.009*"Northamptonshire" + 0.006*"quality" + 0.006*"North" + 0.006*"practice" + 0.006*"Leaders" + 0.005*"well" + 0.005*"NCT" + 0.005*"need" + 0.005*"3" -2024-10-07 09:05:58,327 - topic #2 (0.333): 0.015*"’" + 0.006*"well" + 0.005*"Northamptonshire" + 0.005*"North" + 0.005*"practice" + 0.005*"Leaders" + 0.005*"quality" + 0.004*"impact" + 0.004*"need" + 0.004*"needs" -2024-10-07 09:05:58,327 - topic diff=0.751124, rho=1.000000 -2024-10-07 09:05:58,327 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:05:58.327934', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:05:59,286 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:05:59,286 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:59,287 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:05:59,287 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:59,287 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:05:59,287 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:59,287 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:05:59,287 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:59,288 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:05:59,288 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:05:59,288 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:05:59,288 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:11,546 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:06:11,549 - built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions) -2024-10-07 09:06:11,549 - Dictionary lifecycle event {'msg': "built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions)", 'datetime': '2024-10-07T09:06:11.549218', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:11,550 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:06:11,550 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:06:11,550 - using serial LDA version on this node -2024-10-07 09:06:11,551 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:06:11,551 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:06:11,555 - -8.071 per-word bound, 268.9 perplexity estimate based on a held-out corpus of 1 documents with 2902 words -2024-10-07 09:06:11,555 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:06:11,556 - topic #0 (0.333): 0.017*"’" + 0.006*"quality" + 0.006*"needs" + 0.005*"practice" + 0.005*"well" + 0.005*"risk" + 0.005*"North" + 0.005*"always" + 0.005*"experienced" + 0.005*"Somerset" -2024-10-07 09:06:11,556 - topic #1 (0.333): 0.016*"’" + 0.007*"quality" + 0.006*"needs" + 0.006*"number" + 0.005*"always" + 0.005*"plans" + 0.005*"Somerset" + 0.005*"North" + 0.005*"need" + 0.005*"practice" -2024-10-07 09:06:11,557 - topic #2 (0.333): 0.017*"’" + 0.008*"quality" + 0.008*"needs" + 0.007*"always" + 0.007*"Somerset" + 0.006*"North" + 0.006*"progress" + 0.006*"number" + 0.006*"practice" + 0.006*"risk" -2024-10-07 09:06:11,557 - topic diff=0.833813, rho=1.000000 -2024-10-07 09:06:11,557 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:06:11.557434', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:13,317 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:06:13,317 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:13,317 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:06:13,318 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:13,318 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:06:13,318 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:13,318 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:06:13,318 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:13,318 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:06:13,318 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:13,319 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:06:13,319 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:24,849 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:06:24,852 - built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions) -2024-10-07 09:06:24,852 - Dictionary lifecycle event {'msg': "built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions)", 'datetime': '2024-10-07T09:06:24.852498', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:24,853 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:06:24,853 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:06:24,854 - using serial LDA version on this node -2024-10-07 09:06:24,854 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:06:24,854 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:06:24,858 - -8.224 per-word bound, 298.9 perplexity estimate based on a held-out corpus of 1 documents with 2518 words -2024-10-07 09:06:24,858 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:06:24,860 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.005*"leaders" + 0.005*"need" + 0.004*"impact" + 0.004*"quality" + 0.004*"make" + 0.004*"needs" + 0.004*"early" + 0.004*"protection" -2024-10-07 09:06:24,860 - topic #1 (0.333): 0.019*"’" + 0.006*"well" + 0.005*"quality" + 0.005*"need" + 0.005*"make" + 0.004*"leaders" + 0.004*"needs" + 0.004*"understand" + 0.004*"progress" + 0.003*"impact" -2024-10-07 09:06:24,860 - topic #2 (0.333): 0.014*"’" + 0.006*"leaders" + 0.006*"well" + 0.005*"need" + 0.005*"make" + 0.005*"needs" + 0.004*"early" + 0.004*"clear" + 0.004*"protection" + 0.004*"impact" -2024-10-07 09:06:24,860 - topic diff=0.730326, rho=1.000000 -2024-10-07 09:06:24,860 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:06:24.860975', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:25,866 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:06:25,866 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:25,866 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:06:25,866 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:25,866 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:06:25,867 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:25,867 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:06:25,867 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:25,867 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:06:25,867 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:25,867 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:06:25,867 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:38,008 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:06:38,011 - built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions) -2024-10-07 09:06:38,011 - Dictionary lifecycle event {'msg': "built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions)", 'datetime': '2024-10-07T09:06:38.011293', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:38,012 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:06:38,012 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:06:38,012 - using serial LDA version on this node -2024-10-07 09:06:38,013 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:06:38,013 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:06:38,019 - -8.145 per-word bound, 283.2 perplexity estimate based on a held-out corpus of 1 documents with 2759 words -2024-10-07 09:06:38,019 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:06:38,021 - topic #0 (0.333): 0.023*"’" + 0.009*"well" + 0.007*"needs" + 0.007*"practice" + 0.006*"family" + 0.006*"Yorkshire" + 0.005*"North" + 0.005*"‘" + 0.005*"need" + 0.004*"7" -2024-10-07 09:06:38,021 - topic #1 (0.333): 0.018*"’" + 0.007*"well" + 0.005*"North" + 0.005*"Yorkshire" + 0.004*"practice" + 0.004*"3" + 0.004*"needs" + 0.004*"carers" + 0.004*"‘" + 0.004*"supported" -2024-10-07 09:06:38,021 - topic #2 (0.333): 0.019*"’" + 0.008*"well" + 0.008*"North" + 0.007*"Yorkshire" + 0.006*"practice" + 0.006*"family" + 0.005*"3" + 0.005*"‘" + 0.005*"needs" + 0.004*"7" -2024-10-07 09:06:38,021 - topic diff=0.804902, rho=1.000000 -2024-10-07 09:06:38,021 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:06:38.021743', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:39,200 - Inspection date 2023-07-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:06:39,200 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:39,200 - Inspection date 2023-07-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:06:39,200 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:39,201 - Inspection date 2023-07-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:06:39,201 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:39,201 - Inspection date 2023-07-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:06:39,201 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:39,201 - Inspection date 2023-07-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:06:39,201 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:39,202 - Inspection date 2023-07-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:06:39,202 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:52,344 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:06:52,346 - built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions) -2024-10-07 09:06:52,347 - Dictionary lifecycle event {'msg': "built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions)", 'datetime': '2024-10-07T09:06:52.347052', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:52,348 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:06:52,348 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:06:52,348 - using serial LDA version on this node -2024-10-07 09:06:52,349 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:06:52,349 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:06:52,353 - -8.068 per-word bound, 268.4 perplexity estimate based on a held-out corpus of 1 documents with 2884 words -2024-10-07 09:06:52,353 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:06:52,354 - topic #0 (0.333): 0.016*"’" + 0.008*"family" + 0.007*"well" + 0.007*"needs" + 0.006*"experiences" + 0.006*"leaders" + 0.006*"strong" + 0.005*"provide" + 0.005*"practice" + 0.005*"within" -2024-10-07 09:06:52,354 - topic #1 (0.333): 0.022*"’" + 0.008*"family" + 0.007*"leaders" + 0.007*"strong" + 0.007*"needs" + 0.006*"well" + 0.005*"Northumberland" + 0.005*"plans" + 0.005*"effective" + 0.005*"experiences" -2024-10-07 09:06:52,355 - topic #2 (0.333): 0.016*"’" + 0.007*"experiences" + 0.007*"family" + 0.006*"Northumberland" + 0.006*"progress" + 0.006*"leaders" + 0.006*"strong" + 0.005*"needs" + 0.005*"provide" + 0.004*"well" -2024-10-07 09:06:52,355 - topic diff=0.833599, rho=1.000000 -2024-10-07 09:06:52,355 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:06:52.355254', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:06:53,395 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:06:53,395 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:53,395 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:06:53,396 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:53,396 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:06:53,396 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:53,396 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:06:53,396 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:53,396 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:06:53,397 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:06:53,397 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:06:53,397 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:05,151 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:07:05,154 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) -2024-10-07 09:07:05,154 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-10-07T09:07:05.154241', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:05,155 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:07:05,155 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:07:05,155 - using serial LDA version on this node -2024-10-07 09:07:05,156 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:07:05,156 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:07:05,162 - -8.027 per-word bound, 260.9 perplexity estimate based on a held-out corpus of 1 documents with 2316 words -2024-10-07 09:07:05,162 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:07:05,165 - topic #0 (0.333): 0.010*"’" + 0.009*"needs" + 0.005*"effective" + 0.005*"11" + 0.005*"Nottingham" + 0.005*"plans" + 0.005*"However" + 0.005*"impact" + 0.004*"July" + 0.004*"oversight" -2024-10-07 09:07:05,165 - topic #1 (0.333): 0.014*"’" + 0.010*"needs" + 0.007*"Nottingham" + 0.006*"plans" + 0.005*"effective" + 0.005*"practice" + 0.004*"protection" + 0.004*"impact" + 0.004*"11" + 0.004*"However" -2024-10-07 09:07:05,165 - topic #2 (0.333): 0.016*"’" + 0.006*"needs" + 0.005*"oversight" + 0.005*"effective" + 0.005*"City" + 0.005*"plans" + 0.005*"impact" + 0.005*"2022" + 0.005*"Nottingham" + 0.005*"risk" -2024-10-07 09:07:05,165 - topic diff=0.766504, rho=1.000000 -2024-10-07 09:07:05,166 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:07:05.166060', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:06,168 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:07:06,168 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:06,168 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:07:06,168 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:06,169 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:07:06,169 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:06,169 - Inspection date None / Column 'in_care' not found in the DataFrame. -2024-10-07 09:07:06,169 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:06,169 - Inspection date None / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:07:06,169 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:06,170 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:07:06,170 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:17,341 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:07:17,343 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions) -2024-10-07 09:07:17,343 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions)", 'datetime': '2024-10-07T09:07:17.343399', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:17,344 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:07:17,344 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:07:17,344 - using serial LDA version on this node -2024-10-07 09:07:17,345 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:07:17,345 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:07:17,348 - -8.006 per-word bound, 257.1 perplexity estimate based on a held-out corpus of 1 documents with 2129 words -2024-10-07 09:07:17,348 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:07:17,350 - topic #0 (0.333): 0.021*"’" + 0.011*"needs" + 0.009*"well" + 0.007*"Nottinghamshire" + 0.007*"plans" + 0.005*"Leaders" + 0.005*"practice" + 0.005*"ensure" + 0.005*"20" + 0.005*"effective" -2024-10-07 09:07:17,350 - topic #1 (0.333): 0.014*"’" + 0.008*"well" + 0.008*"needs" + 0.006*"Nottinghamshire" + 0.005*"Leaders" + 0.004*"plans" + 0.004*"progress" + 0.004*"effective" + 0.004*"benefit" + 0.004*"ensure" -2024-10-07 09:07:17,350 - topic #2 (0.333): 0.016*"’" + 0.009*"well" + 0.005*"effective" + 0.005*"plans" + 0.005*"needs" + 0.005*"24" + 0.004*"leaders" + 0.004*"benefit" + 0.004*"2024" + 0.004*"need" -2024-10-07 09:07:17,350 - topic diff=0.782390, rho=1.000000 -2024-10-07 09:07:17,350 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:07:17.350771', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:18,267 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:07:18,267 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:18,267 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:07:18,268 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:18,268 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:07:18,269 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:18,269 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:07:18,269 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:18,269 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:07:18,270 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:18,270 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:07:18,270 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:30,512 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:07:30,514 - built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions) -2024-10-07 09:07:30,514 - Dictionary lifecycle event {'msg': "built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions)", 'datetime': '2024-10-07T09:07:30.514490', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:30,515 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:07:30,515 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:07:30,515 - using serial LDA version on this node -2024-10-07 09:07:30,516 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:07:30,516 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:07:30,520 - -8.078 per-word bound, 270.1 perplexity estimate based on a held-out corpus of 1 documents with 2441 words -2024-10-07 09:07:30,520 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:07:30,522 - topic #0 (0.333): 0.011*"’" + 0.009*"plans" + 0.005*"Oldham" + 0.005*"needs" + 0.005*"leaders" + 0.005*"well" + 0.005*"practice" + 0.004*"receive" + 0.004*"24" + 0.004*"appropriate" -2024-10-07 09:07:30,522 - topic #1 (0.333): 0.015*"’" + 0.010*"well" + 0.007*"plans" + 0.007*"needs" + 0.007*"Oldham" + 0.007*"practice" + 0.006*"PAs" + 0.006*"leaders" + 0.005*"effective" + 0.005*"risk" -2024-10-07 09:07:30,522 - topic #2 (0.333): 0.012*"’" + 0.008*"plans" + 0.008*"well" + 0.007*"PAs" + 0.006*"needs" + 0.005*"progress" + 0.005*"Oldham" + 0.005*"practice" + 0.005*"appropriate" + 0.004*"leaders" -2024-10-07 09:07:30,522 - topic diff=0.783423, rho=1.000000 -2024-10-07 09:07:30,522 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:07:30.522586', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:31,378 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:07:31,378 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:31,378 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:07:31,378 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:31,378 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:07:31,379 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:31,379 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:07:31,379 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:31,379 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:07:31,379 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:31,379 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:07:31,379 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:42,685 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:07:42,687 - built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions) -2024-10-07 09:07:42,687 - Dictionary lifecycle event {'msg': "built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions)", 'datetime': '2024-10-07T09:07:42.687707', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:42,688 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:07:42,688 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:07:42,689 - using serial LDA version on this node -2024-10-07 09:07:42,689 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:07:42,689 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:07:42,693 - -7.999 per-word bound, 255.8 perplexity estimate based on a held-out corpus of 1 documents with 2294 words -2024-10-07 09:07:42,693 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:07:42,695 - topic #0 (0.333): 0.019*"’" + 0.011*"needs" + 0.009*"Oxfordshire" + 0.007*"good" + 0.006*"well" + 0.006*"risk" + 0.006*"progress" + 0.006*"quality" + 0.005*"supported" + 0.005*"23" -2024-10-07 09:07:42,695 - topic #1 (0.333): 0.019*"’" + 0.010*"needs" + 0.007*"well" + 0.007*"risk" + 0.006*"Oxfordshire" + 0.005*"supported" + 0.005*"arrangements" + 0.005*"receive" + 0.005*"access" + 0.005*"good" -2024-10-07 09:07:42,695 - topic #2 (0.333): 0.020*"’" + 0.009*"needs" + 0.007*"well" + 0.006*"Oxfordshire" + 0.005*"supported" + 0.005*"good" + 0.005*"leaders" + 0.005*"12" + 0.004*"practice" + 0.004*"receive" -2024-10-07 09:07:42,695 - topic diff=0.777842, rho=1.000000 -2024-10-07 09:07:42,695 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:07:42.695678', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:43,909 - Inspection date 2024-02-12 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:07:43,909 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:43,910 - Inspection date 2024-02-12 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:07:43,910 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:43,910 - Inspection date 2024-02-12 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:07:43,910 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:43,910 - Inspection date 2024-02-12 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:07:43,910 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:43,911 - Inspection date 2024-02-12 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:07:43,911 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:43,911 - Inspection date 2024-02-12 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:07:43,911 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:52,919 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:07:52,920 - built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions) -2024-10-07 09:07:52,921 - Dictionary lifecycle event {'msg': "built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions)", 'datetime': '2024-10-07T09:07:52.921108', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:52,921 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:07:52,922 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:07:52,922 - using serial LDA version on this node -2024-10-07 09:07:52,922 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:07:52,922 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:07:52,925 - -7.877 per-word bound, 235.0 perplexity estimate based on a held-out corpus of 1 documents with 1737 words -2024-10-07 09:07:52,925 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:07:52,927 - topic #0 (0.333): 0.017*"needs" + 0.017*"’" + 0.008*"need" + 0.007*"well" + 0.007*"progress" + 0.007*"Peterborough" + 0.006*"2023" + 0.005*"supported" + 0.005*"27" + 0.005*"8" -2024-10-07 09:07:52,927 - topic #1 (0.333): 0.014*"’" + 0.012*"needs" + 0.007*"need" + 0.007*"Peterborough" + 0.006*"2023" + 0.006*"plans" + 0.006*"supported" + 0.006*"8" + 0.005*"receive" + 0.005*"progress" -2024-10-07 09:07:52,927 - topic #2 (0.333): 0.011*"’" + 0.009*"needs" + 0.007*"Peterborough" + 0.006*"2023" + 0.006*"well" + 0.005*"good" + 0.005*"need" + 0.004*"plans" + 0.004*"receive" + 0.004*"27" -2024-10-07 09:07:52,927 - topic diff=0.737929, rho=1.000000 -2024-10-07 09:07:52,927 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:07:52.927775', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:07:54,069 - Inspection date 2023-11-27 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:07:54,069 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:54,069 - Inspection date 2023-11-27 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:07:54,069 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:54,070 - Inspection date 2023-11-27 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:07:54,070 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:54,070 - Inspection date 2023-11-27 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:07:54,070 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:54,070 - Inspection date 2023-11-27 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:07:54,070 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:07:54,070 - Inspection date 2023-11-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:07:54,071 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:07,945 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:08:07,947 - built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) -2024-10-07 09:08:07,947 - Dictionary lifecycle event {'msg': "built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-10-07T09:08:07.947913', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:07,949 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:08:07,949 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:08:07,949 - using serial LDA version on this node -2024-10-07 09:08:07,949 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:08:07,950 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:08:07,954 - -8.085 per-word bound, 271.5 perplexity estimate based on a held-out corpus of 1 documents with 2905 words -2024-10-07 09:08:07,954 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:08:07,955 - topic #0 (0.333): 0.015*"’" + 0.009*"needs" + 0.007*"Plymouth" + 0.007*"well" + 0.005*"22" + 0.005*"2" + 0.005*"education" + 0.005*"practice" + 0.005*"plans" + 0.005*"benefit" -2024-10-07 09:08:07,955 - topic #1 (0.333): 0.011*"’" + 0.008*"needs" + 0.006*"well" + 0.006*"Plymouth" + 0.006*"practice" + 0.005*"appropriate" + 0.005*"risks" + 0.005*"Council" + 0.004*"February" + 0.004*"timely" -2024-10-07 09:08:07,955 - topic #2 (0.333): 0.012*"’" + 0.008*"well" + 0.007*"needs" + 0.006*"Plymouth" + 0.004*"appropriate" + 0.004*"plans" + 0.004*"practice" + 0.004*"2024" + 0.004*"education" + 0.004*"good" -2024-10-07 09:08:07,956 - topic diff=0.841621, rho=1.000000 -2024-10-07 09:08:07,956 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:08:07.956149', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:08,924 - Inspection date 2024-01-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:08:08,924 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:08,924 - Inspection date 2024-01-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:08:08,924 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:08,925 - Inspection date 2024-01-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:08:08,925 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:08,925 - Inspection date 2024-01-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:08:08,925 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:08,925 - Inspection date 2024-01-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:08:08,925 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:08,926 - Inspection date 2024-01-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:08:08,926 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:21,815 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:08:21,817 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions) -2024-10-07 09:08:21,818 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions)", 'datetime': '2024-10-07T09:08:21.818041', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:21,819 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:08:21,819 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:08:21,819 - using serial LDA version on this node -2024-10-07 09:08:21,819 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:08:21,820 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:08:21,824 - -8.106 per-word bound, 275.5 perplexity estimate based on a held-out corpus of 1 documents with 2738 words -2024-10-07 09:08:21,824 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:08:21,825 - topic #0 (0.333): 0.013*"’" + 0.007*"care-experienced" + 0.007*"well" + 0.006*"needs" + 0.006*"family" + 0.006*"health" + 0.005*"plans" + 0.004*"15" + 0.004*"Portsmouth" + 0.004*"leaders" -2024-10-07 09:08:21,825 - topic #1 (0.333): 0.015*"’" + 0.009*"care-experienced" + 0.008*"well" + 0.008*"Portsmouth" + 0.007*"needs" + 0.006*"family" + 0.005*"plans" + 0.005*"leaders" + 0.005*"risk" + 0.005*"19" -2024-10-07 09:08:21,825 - topic #2 (0.333): 0.022*"’" + 0.008*"Portsmouth" + 0.007*"care-experienced" + 0.006*"needs" + 0.006*"well" + 0.006*"health" + 0.005*"plans" + 0.005*"practice" + 0.004*"progress" + 0.004*"19" -2024-10-07 09:08:21,826 - topic diff=0.791685, rho=1.000000 -2024-10-07 09:08:21,826 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:08:21.826195', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:22,803 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:08:22,803 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:22,804 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:08:22,804 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:22,804 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:08:22,804 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:22,804 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:08:22,804 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:22,805 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:08:22,805 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:22,805 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:08:22,805 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:34,385 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:08:34,387 - built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions) -2024-10-07 09:08:34,387 - Dictionary lifecycle event {'msg': "built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions)", 'datetime': '2024-10-07T09:08:34.387537', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:34,388 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:08:34,388 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:08:34,389 - using serial LDA version on this node -2024-10-07 09:08:34,389 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:08:34,389 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:08:34,393 - -8.157 per-word bound, 285.5 perplexity estimate based on a held-out corpus of 1 documents with 2562 words -2024-10-07 09:08:34,393 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:08:34,395 - topic #0 (0.333): 0.013*"’" + 0.006*"needs" + 0.005*"PAs" + 0.005*"plans" + 0.004*"progress" + 0.004*"well" + 0.004*"3" + 0.004*"arrangements" + 0.004*"22" + 0.004*"family" -2024-10-07 09:08:34,395 - topic #1 (0.333): 0.012*"’" + 0.005*"needs" + 0.005*"Reading" + 0.005*"clear" + 0.005*"progress" + 0.005*"plans" + 0.004*"PAs" + 0.004*"timely" + 0.004*"3" + 0.004*"2024" -2024-10-07 09:08:34,395 - topic #2 (0.333): 0.016*"’" + 0.008*"needs" + 0.006*"PAs" + 0.006*"well" + 0.005*"progress" + 0.005*"plans" + 0.005*"Reading" + 0.005*"May" + 0.004*"22" + 0.004*"effective" -2024-10-07 09:08:34,395 - topic diff=0.767321, rho=1.000000 -2024-10-07 09:08:34,395 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:08:34.395574', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:35,382 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:08:35,382 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:35,382 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:08:35,383 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:35,383 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:08:35,383 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:35,383 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:08:35,383 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:35,383 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:08:35,384 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:35,384 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:08:35,384 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:46,571 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:08:46,574 - built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions) -2024-10-07 09:08:46,574 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions)", 'datetime': '2024-10-07T09:08:46.574311', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:46,575 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:08:46,575 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:08:46,575 - using serial LDA version on this node -2024-10-07 09:08:46,576 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:08:46,576 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:08:46,579 - -8.005 per-word bound, 256.8 perplexity estimate based on a held-out corpus of 1 documents with 2515 words -2024-10-07 09:08:46,580 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:08:46,581 - topic #0 (0.333): 0.017*"’" + 0.006*"However" + 0.006*"Redcar" + 0.006*"consistently" + 0.005*"leaders" + 0.005*"plans" + 0.005*"practice" + 0.005*"2022" + 0.005*"Cleveland" + 0.005*"needs" -2024-10-07 09:08:46,581 - topic #1 (0.333): 0.016*"’" + 0.005*"However" + 0.005*"consistently" + 0.005*"plans" + 0.005*"risk" + 0.004*"Cleveland" + 0.004*"practice" + 0.004*"response" + 0.004*"June" + 0.004*"appropriate" -2024-10-07 09:08:46,581 - topic #2 (0.333): 0.019*"’" + 0.008*"leaders" + 0.007*"needs" + 0.006*"plans" + 0.006*"20" + 0.005*"carers" + 0.005*"2022" + 0.005*"However" + 0.005*"consistently" + 0.005*"practice" -2024-10-07 09:08:46,581 - topic diff=0.803247, rho=1.000000 -2024-10-07 09:08:46,581 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:08:46.581953', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:08:47,505 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:08:47,506 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:47,506 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:08:47,506 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:47,506 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:08:47,506 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:47,506 - Inspection date None / Column 'in_care' not found in the DataFrame. -2024-10-07 09:08:47,506 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:47,507 - Inspection date None / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:08:47,507 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:08:47,507 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:08:47,507 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:00,159 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:09:00,161 - built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions) -2024-10-07 09:09:00,161 - Dictionary lifecycle event {'msg': "built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions)", 'datetime': '2024-10-07T09:09:00.161592', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:00,162 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:09:00,162 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:09:00,163 - using serial LDA version on this node -2024-10-07 09:09:00,163 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:09:00,163 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:09:00,167 - -8.028 per-word bound, 261.0 perplexity estimate based on a held-out corpus of 1 documents with 2656 words -2024-10-07 09:09:00,167 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:09:00,168 - topic #0 (0.333): 0.019*"’" + 0.009*"experienced" + 0.009*"needs" + 0.007*"practice" + 0.006*"plans" + 0.006*"Rochdale" + 0.005*"quality" + 0.005*"PAs" + 0.005*"response" + 0.005*"well" -2024-10-07 09:09:00,169 - topic #1 (0.333): 0.023*"’" + 0.009*"experienced" + 0.009*"practice" + 0.007*"response" + 0.007*"needs" + 0.006*"good" + 0.006*"plans" + 0.005*"consistently" + 0.005*"3" + 0.005*"quality" -2024-10-07 09:09:00,169 - topic #2 (0.333): 0.017*"’" + 0.010*"experienced" + 0.008*"practice" + 0.007*"needs" + 0.006*"plans" + 0.006*"consistently" + 0.005*"response" + 0.005*"3" + 0.005*"quality" + 0.004*"well" -2024-10-07 09:09:00,169 - topic diff=0.819981, rho=1.000000 -2024-10-07 09:09:00,169 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:09:00.169400', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:01,225 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:09:01,225 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:01,225 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:09:01,225 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:01,226 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:09:01,226 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:01,226 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:09:01,226 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:01,226 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:09:01,226 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:01,226 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:09:01,227 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:12,970 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:09:12,972 - built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions) -2024-10-07 09:09:12,972 - Dictionary lifecycle event {'msg': "built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions)", 'datetime': '2024-10-07T09:09:12.972641', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:12,973 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:09:12,973 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:09:12,974 - using serial LDA version on this node -2024-10-07 09:09:12,974 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:09:12,974 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:09:12,978 - -8.065 per-word bound, 267.8 perplexity estimate based on a held-out corpus of 1 documents with 2366 words -2024-10-07 09:09:12,978 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:09:12,979 - topic #0 (0.333): 0.013*"’" + 0.005*"needs" + 0.005*"Rotherham" + 0.004*"good" + 0.004*"well" + 0.004*"However" + 0.004*"clear" + 0.003*"July" + 0.003*"ensure" + 0.003*"plans" -2024-10-07 09:09:12,979 - topic #1 (0.333): 0.015*"’" + 0.009*"Rotherham" + 0.006*"needs" + 0.006*"well" + 0.005*"ensure" + 0.005*"Council" + 0.004*"Metropolitan" + 0.004*"27" + 0.004*"protection" + 0.004*"improve" -2024-10-07 09:09:12,980 - topic #2 (0.333): 0.016*"’" + 0.011*"Rotherham" + 0.007*"needs" + 0.006*"good" + 0.005*"Council" + 0.005*"plans" + 0.005*"well" + 0.005*"However" + 0.005*"ensure" + 0.004*"clear" -2024-10-07 09:09:12,980 - topic diff=0.786865, rho=1.000000 -2024-10-07 09:09:12,980 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:09:12.980459', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:13,862 - Inspection date 2022-06-27 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:09:13,862 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:13,863 - Inspection date 2022-06-27 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:09:13,863 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:13,863 - Inspection date 2022-06-27 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:09:13,863 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:13,863 - Inspection date 2022-06-27 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:09:13,863 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:13,863 - Inspection date 2022-06-27 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:09:13,864 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:13,864 - Inspection date 2022-06-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:09:13,864 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:24,341 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:09:24,344 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions) -2024-10-07 09:09:24,344 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions)", 'datetime': '2024-10-07T09:09:24.344221', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:24,345 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:09:24,345 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:09:24,345 - using serial LDA version on this node -2024-10-07 09:09:24,346 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:09:24,346 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:09:24,349 - -8.047 per-word bound, 264.5 perplexity estimate based on a held-out corpus of 1 documents with 2380 words -2024-10-07 09:09:24,349 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:09:24,351 - topic #0 (0.333): 0.010*"well" + 0.010*"’" + 0.009*"practice" + 0.008*"highly" + 0.006*"strong" + 0.006*"leaders" + 0.006*"needs" + 0.005*"effective" + 0.004*"professionals" + 0.004*"need" -2024-10-07 09:09:24,351 - topic #1 (0.333): 0.014*"’" + 0.013*"well" + 0.011*"practice" + 0.008*"highly" + 0.005*"needs" + 0.005*"strong" + 0.005*"effective" + 0.005*"high" + 0.004*"range" + 0.004*"leaders" -2024-10-07 09:09:24,351 - topic #2 (0.333): 0.016*"well" + 0.011*"practice" + 0.011*"’" + 0.007*"strong" + 0.006*"effective" + 0.005*"needs" + 0.005*"highly" + 0.005*"leaders" + 0.005*"professionals" + 0.004*"high" -2024-10-07 09:09:24,351 - topic diff=0.769015, rho=1.000000 -2024-10-07 09:09:24,352 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:09:24.352040', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:25,389 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:09:25,389 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:25,389 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:09:25,390 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:25,390 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:09:25,390 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:25,390 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:09:25,390 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:25,390 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:09:25,390 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:25,391 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:09:25,391 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:36,056 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:09:36,058 - built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions) -2024-10-07 09:09:36,058 - Dictionary lifecycle event {'msg': "built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions)", 'datetime': '2024-10-07T09:09:36.058564', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:36,059 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:09:36,059 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:09:36,059 - using serial LDA version on this node -2024-10-07 09:09:36,060 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:09:36,060 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:09:36,064 - -8.070 per-word bound, 268.7 perplexity estimate based on a held-out corpus of 1 documents with 2257 words -2024-10-07 09:09:36,064 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:09:36,065 - topic #0 (0.333): 0.014*"’" + 0.008*"well" + 0.008*"plans" + 0.006*"needs" + 0.005*"good" + 0.004*"practice" + 0.004*"parents" + 0.004*"effective" + 0.004*"progress" + 0.004*"risk" -2024-10-07 09:09:36,065 - topic #1 (0.333): 0.010*"’" + 0.008*"plans" + 0.007*"well" + 0.007*"needs" + 0.005*"good" + 0.004*"supported" + 0.004*"effective" + 0.004*"clear" + 0.004*"appropriate" + 0.004*"practice" -2024-10-07 09:09:36,066 - topic #2 (0.333): 0.015*"’" + 0.011*"well" + 0.009*"needs" + 0.008*"plans" + 0.005*"need" + 0.005*"effective" + 0.005*"good" + 0.004*"clear" + 0.004*"practice" + 0.004*"parents" -2024-10-07 09:09:36,066 - topic diff=0.754745, rho=1.000000 -2024-10-07 09:09:36,066 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:09:36.066232', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:37,262 - Inspection date 2019-10-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:09:37,262 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:37,263 - Inspection date 2019-10-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:09:37,263 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:37,263 - Inspection date 2019-10-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:09:37,263 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:37,263 - Inspection date 2019-10-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:09:37,263 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:37,263 - Inspection date 2019-10-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:09:37,263 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:37,264 - Inspection date 2019-10-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:09:37,264 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:48,058 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:09:48,061 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions) -2024-10-07 09:09:48,061 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions)", 'datetime': '2024-10-07T09:09:48.061269', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:48,062 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:09:48,062 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:09:48,062 - using serial LDA version on this node -2024-10-07 09:09:48,063 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:09:48,063 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:09:48,066 - -8.118 per-word bound, 277.8 perplexity estimate based on a held-out corpus of 1 documents with 2088 words -2024-10-07 09:09:48,067 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:09:48,068 - topic #0 (0.333): 0.008*"’" + 0.005*"needs" + 0.005*"well" + 0.003*"plans" + 0.003*"risk" + 0.003*"quality" + 0.003*"health" + 0.003*"information" + 0.003*"timely" + 0.003*"use" -2024-10-07 09:09:48,068 - topic #1 (0.333): 0.014*"’" + 0.006*"well" + 0.005*"quality" + 0.005*"plans" + 0.004*"needs" + 0.004*"benefit" + 0.004*"use" + 0.004*"effective" + 0.004*"always" + 0.004*"changes" -2024-10-07 09:09:48,068 - topic #2 (0.333): 0.012*"’" + 0.005*"quality" + 0.005*"well" + 0.005*"needs" + 0.005*"information" + 0.005*"plans" + 0.004*"effective" + 0.004*"actions" + 0.004*"use" + 0.004*"However" -2024-10-07 09:09:48,068 - topic diff=0.728304, rho=1.000000 -2024-10-07 09:09:48,069 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:09:48.069088', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:09:49,320 - Inspection date 2020-01-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:09:49,320 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:49,320 - Inspection date 2020-01-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:09:49,320 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:49,321 - Inspection date 2020-01-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:09:49,321 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:49,321 - Inspection date 2020-01-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:09:49,321 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:49,321 - Inspection date 2020-01-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:09:49,321 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:09:49,322 - Inspection date 2020-01-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:09:49,322 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:00,715 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:10:00,717 - built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions) -2024-10-07 09:10:00,717 - Dictionary lifecycle event {'msg': "built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions)", 'datetime': '2024-10-07T09:10:00.717427', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:00,718 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:10:00,718 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:10:00,718 - using serial LDA version on this node -2024-10-07 09:10:00,719 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:10:00,719 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:10:00,722 - -8.053 per-word bound, 265.6 perplexity estimate based on a held-out corpus of 1 documents with 2211 words -2024-10-07 09:10:00,723 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:10:00,724 - topic #0 (0.333): 0.023*"’" + 0.011*"Rutland" + 0.008*"needs" + 0.008*"effective" + 0.006*"plans" + 0.006*"positive" + 0.005*"good" + 0.005*"impact" + 0.005*"need" + 0.005*"family" -2024-10-07 09:10:00,724 - topic #1 (0.333): 0.012*"’" + 0.008*"needs" + 0.007*"Rutland" + 0.007*"impact" + 0.006*"effective" + 0.005*"need" + 0.005*"positive" + 0.005*"experiences" + 0.004*"plans" + 0.004*"15" -2024-10-07 09:10:00,724 - topic #2 (0.333): 0.018*"’" + 0.007*"Rutland" + 0.006*"impact" + 0.006*"needs" + 0.006*"positive" + 0.005*"plans" + 0.005*"practice" + 0.005*"PAs" + 0.005*"need" + 0.004*"well" -2024-10-07 09:10:00,724 - topic diff=0.778486, rho=1.000000 -2024-10-07 09:10:00,725 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:10:00.725002', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:01,694 - Inspection date 2024-04-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:10:01,694 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:01,694 - Inspection date 2024-04-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:10:01,694 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:01,695 - Inspection date 2024-04-15 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:10:01,695 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:01,695 - Inspection date 2024-04-15 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:10:01,695 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:01,695 - Inspection date 2024-04-15 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:10:01,695 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:01,696 - Inspection date 2024-04-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:10:01,696 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:12,921 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:10:12,923 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions) -2024-10-07 09:10:12,923 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions)", 'datetime': '2024-10-07T09:10:12.923717', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:12,924 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:10:12,924 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:10:12,925 - using serial LDA version on this node -2024-10-07 09:10:12,925 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:10:12,925 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:10:12,929 - -8.010 per-word bound, 257.9 perplexity estimate based on a held-out corpus of 1 documents with 2253 words -2024-10-07 09:10:12,929 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:10:12,930 - topic #0 (0.333): 0.013*"’" + 0.008*"needs" + 0.008*"plans" + 0.007*"well" + 0.007*"effective" + 0.005*"Salford" + 0.005*"leaders" + 0.005*"practice" + 0.004*"November" + 0.004*"6" -2024-10-07 09:10:12,930 - topic #1 (0.333): 0.012*"’" + 0.008*"plans" + 0.007*"needs" + 0.006*"effective" + 0.006*"well" + 0.005*"progress" + 0.005*"Salford" + 0.005*"practice" + 0.004*"planning" + 0.004*"appropriate" -2024-10-07 09:10:12,930 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.007*"plans" + 0.007*"needs" + 0.006*"Salford" + 0.006*"planning" + 0.006*"effective" + 0.005*"2023" + 0.005*"Council" + 0.005*"experiences" -2024-10-07 09:10:12,931 - topic diff=0.786686, rho=1.000000 -2024-10-07 09:10:12,931 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:10:12.931200', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:13,791 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:10:13,792 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:13,792 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:10:13,792 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:13,792 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:10:13,793 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:13,793 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:10:13,793 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:13,793 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:10:13,793 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:13,793 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:10:13,793 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:23,596 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:10:23,598 - built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions) -2024-10-07 09:10:23,598 - Dictionary lifecycle event {'msg': "built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions)", 'datetime': '2024-10-07T09:10:23.598913', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:23,599 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:10:23,599 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:10:23,600 - using serial LDA version on this node -2024-10-07 09:10:23,600 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:10:23,600 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:10:23,603 - -7.946 per-word bound, 246.5 perplexity estimate based on a held-out corpus of 1 documents with 2066 words -2024-10-07 09:10:23,604 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:10:23,605 - topic #0 (0.333): 0.016*"’" + 0.008*"Sandwell" + 0.007*"plans" + 0.007*"needs" + 0.006*"well" + 0.006*"quality" + 0.005*"progress" + 0.005*"Trust" + 0.005*"9" + 0.005*"20" -2024-10-07 09:10:23,605 - topic #1 (0.333): 0.015*"’" + 0.010*"needs" + 0.007*"Sandwell" + 0.007*"well" + 0.007*"plans" + 0.006*"quality" + 0.005*"education" + 0.005*"number" + 0.005*"many" + 0.004*"good" -2024-10-07 09:10:23,605 - topic #2 (0.333): 0.009*"’" + 0.006*"Sandwell" + 0.006*"plans" + 0.006*"well" + 0.005*"needs" + 0.004*"Trust" + 0.004*"quality" + 0.004*"number" + 0.004*"progress" + 0.004*"training" -2024-10-07 09:10:23,605 - topic diff=0.774216, rho=1.000000 -2024-10-07 09:10:23,605 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:10:23.605896', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:24,636 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:10:24,636 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:24,637 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:10:24,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:24,637 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:10:24,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:24,637 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:10:24,637 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:24,638 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:10:24,638 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:24,638 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:10:24,638 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:35,381 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:10:35,383 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions) -2024-10-07 09:10:35,383 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions)", 'datetime': '2024-10-07T09:10:35.383780', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:35,384 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:10:35,384 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:10:35,385 - using serial LDA version on this node -2024-10-07 09:10:35,385 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:10:35,385 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:10:35,389 - -7.927 per-word bound, 243.3 perplexity estimate based on a held-out corpus of 1 documents with 2300 words -2024-10-07 09:10:35,389 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:10:35,390 - topic #0 (0.333): 0.020*"’" + 0.010*"needs" + 0.006*"oversight" + 0.006*"lack" + 0.005*"management" + 0.005*"4" + 0.005*"plans" + 0.005*"practice" + 0.005*"◼" + 0.005*"always" -2024-10-07 09:10:35,390 - topic #1 (0.333): 0.012*"’" + 0.008*"needs" + 0.006*"practice" + 0.005*"including" + 0.004*"oversight" + 0.004*"many" + 0.004*"lack" + 0.004*"ocal" + 0.004*"protection" + 0.004*"always" -2024-10-07 09:10:35,390 - topic #2 (0.333): 0.014*"’" + 0.009*"needs" + 0.007*"practice" + 0.006*"protection" + 0.005*"oversight" + 0.005*"including" + 0.005*"March" + 0.005*"◼" + 0.005*"many" + 0.005*"management" -2024-10-07 09:10:35,391 - topic diff=0.798565, rho=1.000000 -2024-10-07 09:10:35,391 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:10:35.391148', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:36,319 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:10:36,319 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:36,319 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:10:36,319 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:36,319 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:10:36,320 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:36,320 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:10:36,320 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:36,320 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:10:36,320 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:36,320 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:10:36,320 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:47,608 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:10:47,610 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions) -2024-10-07 09:10:47,610 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions)", 'datetime': '2024-10-07T09:10:47.610949', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:47,612 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:10:47,612 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:10:47,612 - using serial LDA version on this node -2024-10-07 09:10:47,612 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:10:47,612 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:10:47,616 - -8.067 per-word bound, 268.2 perplexity estimate based on a held-out corpus of 1 documents with 2327 words -2024-10-07 09:10:47,616 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:10:47,618 - topic #0 (0.333): 0.021*"’" + 0.014*"Sheffield" + 0.011*"needs" + 0.008*"well" + 0.006*"health" + 0.006*"practice" + 0.005*"leaders" + 0.005*"good" + 0.005*"quality" + 0.005*"adviser" -2024-10-07 09:10:47,618 - topic #1 (0.333): 0.013*"’" + 0.007*"Sheffield" + 0.007*"needs" + 0.006*"leaders" + 0.005*"practice" + 0.005*"well" + 0.004*"receive" + 0.004*"11" + 0.004*"health" + 0.004*"experiences" -2024-10-07 09:10:47,618 - topic #2 (0.333): 0.024*"’" + 0.011*"Sheffield" + 0.007*"needs" + 0.007*"well" + 0.005*"leaders" + 0.005*"practice" + 0.005*"health" + 0.005*"mental" + 0.005*"22" + 0.005*"ensure" -2024-10-07 09:10:47,618 - topic diff=0.776956, rho=1.000000 -2024-10-07 09:10:47,618 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:10:47.618708', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:48,564 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:10:48,564 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:48,564 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:10:48,564 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:48,564 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:10:48,564 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:48,565 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:10:48,565 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:48,565 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:10:48,565 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:48,565 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:10:48,565 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:56,551 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:10:56,554 - built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions) -2024-10-07 09:10:56,554 - Dictionary lifecycle event {'msg': "built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions)", 'datetime': '2024-10-07T09:10:56.554412', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:56,555 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:10:56,555 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:10:56,556 - using serial LDA version on this node -2024-10-07 09:10:56,556 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:10:56,556 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:10:56,562 - -7.961 per-word bound, 249.1 perplexity estimate based on a held-out corpus of 1 documents with 1749 words -2024-10-07 09:10:56,563 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:10:56,565 - topic #0 (0.333): 0.016*"’" + 0.009*"needs" + 0.008*"Shropshire" + 0.005*"well" + 0.005*"progress" + 0.005*"plans" + 0.005*"making" + 0.005*"7" + 0.005*"February" + 0.005*"2022" -2024-10-07 09:10:56,565 - topic #1 (0.333): 0.017*"’" + 0.008*"well" + 0.007*"Shropshire" + 0.007*"needs" + 0.006*"progress" + 0.006*"plans" + 0.005*"making" + 0.005*"training" + 0.005*"2022" + 0.005*"leaders" -2024-10-07 09:10:56,565 - topic #2 (0.333): 0.018*"’" + 0.009*"needs" + 0.007*"well" + 0.006*"progress" + 0.005*"7" + 0.005*"2022" + 0.005*"Shropshire" + 0.005*"plans" + 0.004*"making" + 0.004*"effectively" -2024-10-07 09:10:56,565 - topic diff=0.715719, rho=1.000000 -2024-10-07 09:10:56,566 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:10:56.566168', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:10:57,449 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:10:57,449 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:57,449 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:10:57,449 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:57,450 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:10:57,450 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:57,450 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:10:57,450 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:57,450 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:10:57,450 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:10:57,451 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:10:57,451 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:09,137 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:11:09,140 - built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions) -2024-10-07 09:11:09,140 - Dictionary lifecycle event {'msg': "built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-10-07T09:11:09.140274', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:09,141 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:11:09,141 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:11:09,141 - using serial LDA version on this node -2024-10-07 09:11:09,142 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:11:09,142 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:11:09,145 - -8.047 per-word bound, 264.4 perplexity estimate based on a held-out corpus of 1 documents with 2352 words -2024-10-07 09:11:09,146 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:11:09,147 - topic #0 (0.333): 0.013*"’" + 0.008*"Slough" + 0.007*"plans" + 0.005*"practice" + 0.005*"impact" + 0.005*"quality" + 0.005*"needs" + 0.004*"3" + 0.004*"leaders" + 0.004*"However" -2024-10-07 09:11:09,147 - topic #1 (0.333): 0.019*"’" + 0.009*"Slough" + 0.006*"needs" + 0.006*"quality" + 0.006*"plans" + 0.006*"practice" + 0.005*"leaders" + 0.005*"supported" + 0.005*"senior" + 0.005*"3" -2024-10-07 09:11:09,147 - topic #2 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"quality" + 0.006*"Slough" + 0.006*"practice" + 0.005*"impact" + 0.005*"plans" + 0.004*"3" + 0.004*"23" + 0.004*"PAs" -2024-10-07 09:11:09,147 - topic diff=0.786063, rho=1.000000 -2024-10-07 09:11:09,148 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:11:09.148005', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:10,053 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:11:10,053 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:10,053 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:11:10,053 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:10,053 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:11:10,054 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:10,054 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:11:10,054 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:10,054 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:11:10,054 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:10,054 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:11:10,054 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:20,863 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:11:20,865 - built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions) -2024-10-07 09:11:20,865 - Dictionary lifecycle event {'msg': "built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions)", 'datetime': '2024-10-07T09:11:20.865849', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:20,867 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:11:20,867 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:11:20,867 - using serial LDA version on this node -2024-10-07 09:11:20,867 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:11:20,867 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:11:20,871 - -7.920 per-word bound, 242.2 perplexity estimate based on a held-out corpus of 1 documents with 2163 words -2024-10-07 09:11:20,871 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:11:20,872 - topic #0 (0.333): 0.011*"’" + 0.009*"lack" + 0.006*"2022" + 0.005*"means" + 0.005*"risk" + 0.005*"Solihull" + 0.004*"practice" + 0.004*"quality" + 0.004*"effective" + 0.004*"worker" -2024-10-07 09:11:20,872 - topic #1 (0.333): 0.020*"’" + 0.011*"lack" + 0.010*"2022" + 0.009*"need" + 0.008*"Solihull" + 0.006*"quality" + 0.006*"significant" + 0.005*"practice" + 0.005*"experiences" + 0.005*"effective" -2024-10-07 09:11:20,873 - topic #2 (0.333): 0.013*"’" + 0.011*"lack" + 0.009*"2022" + 0.008*"risk" + 0.006*"experiences" + 0.005*"practice" + 0.005*"effective" + 0.005*"quality" + 0.005*"Solihull" + 0.005*"progress" -2024-10-07 09:11:20,873 - topic diff=0.797496, rho=1.000000 -2024-10-07 09:11:20,873 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:11:20.873300', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:21,797 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:11:21,797 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:21,797 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:11:21,797 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:21,797 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:11:21,798 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:21,798 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:11:21,798 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:21,798 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:11:21,798 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:21,798 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:11:21,798 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:32,106 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:11:32,108 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions) -2024-10-07 09:11:32,109 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions)", 'datetime': '2024-10-07T09:11:32.109001', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:32,109 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:11:32,110 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:11:32,110 - using serial LDA version on this node -2024-10-07 09:11:32,110 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:11:32,110 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:11:32,114 - -7.921 per-word bound, 242.3 perplexity estimate based on a held-out corpus of 1 documents with 2181 words -2024-10-07 09:11:32,114 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:11:32,115 - topic #0 (0.333): 0.014*"’" + 0.009*"needs" + 0.009*"Somerset" + 0.007*"well" + 0.007*"plans" + 0.005*"supported" + 0.005*"progress" + 0.005*"need" + 0.005*"number" + 0.005*"including" -2024-10-07 09:11:32,115 - topic #1 (0.333): 0.019*"’" + 0.009*"well" + 0.009*"needs" + 0.007*"Somerset" + 0.006*"good" + 0.006*"plans" + 0.005*"practice" + 0.005*"leaders" + 0.005*"family" + 0.005*"including" -2024-10-07 09:11:32,115 - topic #2 (0.333): 0.017*"’" + 0.010*"well" + 0.007*"needs" + 0.006*"good" + 0.005*"supported" + 0.005*"plans" + 0.005*"number" + 0.005*"progress" + 0.005*"leaders" + 0.005*"understand" -2024-10-07 09:11:32,116 - topic diff=0.802590, rho=1.000000 -2024-10-07 09:11:32,116 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:11:32.116187', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:32,966 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:11:32,966 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:32,967 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:11:32,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:32,967 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:11:32,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:32,967 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:11:32,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:32,968 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:11:32,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:32,968 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:11:32,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:44,783 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:11:44,785 - built Dictionary<1188 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2751 corpus positions) -2024-10-07 09:11:44,786 - Dictionary lifecycle event {'msg': "built Dictionary<1188 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2751 corpus positions)", 'datetime': '2024-10-07T09:11:44.786082', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:44,787 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:11:44,787 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:11:44,787 - using serial LDA version on this node -2024-10-07 09:11:44,787 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:11:44,788 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:11:44,792 - -8.059 per-word bound, 266.7 perplexity estimate based on a held-out corpus of 1 documents with 2751 words -2024-10-07 09:11:44,792 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:11:44,793 - topic #0 (0.333): 0.018*"’" + 0.012*"needs" + 0.006*"June" + 0.006*"well" + 0.006*"leaders" + 0.006*"2024" + 0.006*"plans" + 0.005*"South" + 0.005*"understand" + 0.005*"quality" -2024-10-07 09:11:44,794 - topic #1 (0.333): 0.019*"’" + 0.011*"needs" + 0.007*"leaders" + 0.007*"2024" + 0.006*"June" + 0.006*"ensure" + 0.006*"effective" + 0.006*"Gloucestershire" + 0.005*"strong" + 0.005*"well" -2024-10-07 09:11:44,794 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"leaders" + 0.006*"2024" + 0.006*"June" + 0.005*"well" + 0.005*"quality" + 0.005*"understand" + 0.005*"progress" + 0.005*"effective" -2024-10-07 09:11:44,794 - topic diff=0.835526, rho=1.000000 -2024-10-07 09:11:44,794 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:11:44.794481', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:45,740 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:11:45,740 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:45,741 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:11:45,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:45,741 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:11:45,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:45,741 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:11:45,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:45,741 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:11:45,742 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:45,742 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:11:45,742 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:55,630 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:11:55,632 - built Dictionary<981 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2189 corpus positions) -2024-10-07 09:11:55,632 - Dictionary lifecycle event {'msg': 'built Dictionary<981 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2189 corpus positions)', 'datetime': '2024-10-07T09:11:55.632437', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:55,633 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:11:55,633 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:11:55,633 - using serial LDA version on this node -2024-10-07 09:11:55,634 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:11:55,634 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:11:55,637 - -7.886 per-word bound, 236.5 perplexity estimate based on a held-out corpus of 1 documents with 2189 words -2024-10-07 09:11:55,637 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:11:55,638 - topic #0 (0.333): 0.023*"’" + 0.010*"needs" + 0.009*"South" + 0.007*"Tyneside" + 0.005*"oversight" + 0.005*"9" + 0.005*"5" + 0.005*"However" + 0.005*"management" + 0.005*"2022" -2024-10-07 09:11:55,639 - topic #1 (0.333): 0.028*"’" + 0.008*"needs" + 0.007*"South" + 0.006*"Tyneside" + 0.006*"2023" + 0.005*"risk" + 0.005*"effective" + 0.005*"5" + 0.005*"practice" + 0.005*"management" -2024-10-07 09:11:55,639 - topic #2 (0.333): 0.021*"’" + 0.009*"Tyneside" + 0.008*"needs" + 0.006*"carers" + 0.006*"South" + 0.005*"However" + 0.005*"oversight" + 0.005*"management" + 0.005*"effective" + 0.004*"14" -2024-10-07 09:11:55,639 - topic diff=0.795319, rho=1.000000 -2024-10-07 09:11:55,639 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:11:55.639547', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:11:56,605 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:11:56,605 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:56,605 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:11:56,605 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:56,605 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:11:56,606 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:56,606 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:11:56,606 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:56,606 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:11:56,606 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:11:56,606 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:11:56,606 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:07,595 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:12:07,597 - built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions) -2024-10-07 09:12:07,597 - Dictionary lifecycle event {'msg': "built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions)", 'datetime': '2024-10-07T09:12:07.597431', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:07,598 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:12:07,598 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:12:07,598 - using serial LDA version on this node -2024-10-07 09:12:07,599 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:12:07,599 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:12:07,603 - -8.152 per-word bound, 284.4 perplexity estimate based on a held-out corpus of 1 documents with 2318 words -2024-10-07 09:12:07,603 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:12:07,604 - topic #0 (0.333): 0.018*"’" + 0.006*"plans" + 0.005*"Southampton" + 0.005*"improve" + 0.004*"timely" + 0.004*"including" + 0.004*"experiences" + 0.004*"June" + 0.004*"well" + 0.004*"2023" -2024-10-07 09:12:07,605 - topic #1 (0.333): 0.013*"’" + 0.005*"5" + 0.005*"plans" + 0.005*"good" + 0.005*"Southampton" + 0.005*"needs" + 0.004*"improve" + 0.004*"progress" + 0.004*"including" + 0.004*"experiences" -2024-10-07 09:12:07,605 - topic #2 (0.333): 0.017*"’" + 0.007*"Southampton" + 0.006*"plans" + 0.006*"progress" + 0.005*"improve" + 0.005*"including" + 0.004*"well" + 0.004*"needs" + 0.004*"16" + 0.004*"provide" -2024-10-07 09:12:07,605 - topic diff=0.743066, rho=1.000000 -2024-10-07 09:12:07,605 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:12:07.605463', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:08,749 - Inspection date 2023-06-05 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:12:08,749 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:08,750 - Inspection date 2023-06-05 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:12:08,750 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:08,750 - Inspection date 2023-06-05 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:12:08,750 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:08,750 - Inspection date 2023-06-05 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:12:08,750 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:08,750 - Inspection date 2023-06-05 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:12:08,750 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:08,751 - Inspection date 2023-06-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:12:08,751 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:18,881 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:12:18,885 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions) -2024-10-07 09:12:18,885 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions)", 'datetime': '2024-10-07T09:12:18.885416', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:18,886 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:12:18,887 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:12:18,887 - using serial LDA version on this node -2024-10-07 09:12:18,888 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:12:18,888 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:12:18,893 - -7.951 per-word bound, 247.5 perplexity estimate based on a held-out corpus of 1 documents with 2086 words -2024-10-07 09:12:18,893 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:12:18,895 - topic #0 (0.333): 0.013*"’" + 0.008*"practice" + 0.007*"quality" + 0.006*"leaders" + 0.005*"planning" + 0.005*"within" + 0.005*"needs" + 0.005*"protection" + 0.005*"number" + 0.005*"risk" -2024-10-07 09:12:18,896 - topic #1 (0.333): 0.014*"’" + 0.010*"planning" + 0.007*"quality" + 0.006*"effective" + 0.006*"practice" + 0.006*"always" + 0.006*"protection" + 0.006*"leaders" + 0.006*"good" + 0.005*"need" -2024-10-07 09:12:18,896 - topic #2 (0.333): 0.012*"’" + 0.007*"practice" + 0.007*"planning" + 0.006*"number" + 0.006*"leaders" + 0.005*"quality" + 0.005*"within" + 0.005*"protection" + 0.004*"carers" + 0.004*"always" -2024-10-07 09:12:18,896 - topic diff=0.777020, rho=1.000000 -2024-10-07 09:12:18,896 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:12:18.896779', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:20,706 - Inspection date 2019-07-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:12:20,706 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:20,706 - Inspection date 2019-07-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:12:20,706 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:20,706 - Inspection date 2019-07-15 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:12:20,707 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:20,707 - Inspection date 2019-07-15 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:12:20,707 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:20,707 - Inspection date 2019-07-15 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:12:20,707 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:20,707 - Inspection date 2019-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:12:20,707 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:33,289 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:12:33,291 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions) -2024-10-07 09:12:33,291 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions)", 'datetime': '2024-10-07T09:12:33.291792', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:33,292 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:12:33,292 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:12:33,293 - using serial LDA version on this node -2024-10-07 09:12:33,293 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:12:33,293 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:12:33,297 - -8.051 per-word bound, 265.1 perplexity estimate based on a held-out corpus of 1 documents with 2218 words -2024-10-07 09:12:33,297 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:12:33,298 - topic #0 (0.333): 0.013*"’" + 0.008*"Helens" + 0.007*"St" + 0.006*"well" + 0.006*"needs" + 0.005*"good" + 0.005*"effective" + 0.005*"10" + 0.005*"need" + 0.005*"21" -2024-10-07 09:12:33,298 - topic #1 (0.333): 0.013*"’" + 0.008*"Helens" + 0.008*"needs" + 0.008*"St" + 0.005*"well" + 0.005*"good" + 0.005*"progress" + 0.004*"2023" + 0.004*"10" + 0.004*"21" -2024-10-07 09:12:33,299 - topic #2 (0.333): 0.019*"’" + 0.008*"St" + 0.007*"progress" + 0.007*"well" + 0.007*"receive" + 0.007*"needs" + 0.007*"Helens" + 0.006*"risk" + 0.006*"need" + 0.006*"21" -2024-10-07 09:12:33,299 - topic diff=0.781198, rho=1.000000 -2024-10-07 09:12:33,299 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:12:33.299337', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:34,238 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:12:34,238 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:34,239 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:12:34,239 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:34,239 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:12:34,239 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:34,239 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:12:34,239 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:34,240 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:12:34,240 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:34,240 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:12:34,240 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:44,998 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:12:45,000 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions) -2024-10-07 09:12:45,000 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions)", 'datetime': '2024-10-07T09:12:45.000918', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:45,001 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:12:45,002 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:12:45,002 - using serial LDA version on this node -2024-10-07 09:12:45,002 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:12:45,002 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:12:45,006 - -7.996 per-word bound, 255.3 perplexity estimate based on a held-out corpus of 1 documents with 2334 words -2024-10-07 09:12:45,006 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:12:45,007 - topic #0 (0.333): 0.019*"’" + 0.010*"needs" + 0.006*"quality" + 0.006*"practice" + 0.006*"ensure" + 0.006*"progress" + 0.005*"Staffordshire" + 0.005*"good" + 0.005*"plans" + 0.005*"oversight" -2024-10-07 09:12:45,007 - topic #1 (0.333): 0.016*"’" + 0.014*"needs" + 0.006*"practice" + 0.006*"progress" + 0.006*"Staffordshire" + 0.006*"health" + 0.006*"oversight" + 0.005*"quality" + 0.005*"6" + 0.005*"ensure" -2024-10-07 09:12:45,008 - topic #2 (0.333): 0.015*"’" + 0.011*"needs" + 0.006*"oversight" + 0.006*"quality" + 0.005*"health" + 0.005*"ensure" + 0.005*"plans" + 0.005*"progress" + 0.005*"Staffordshire" + 0.004*"practice" -2024-10-07 09:12:45,008 - topic diff=0.799545, rho=1.000000 -2024-10-07 09:12:45,008 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:12:45.008268', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:45,967 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:12:45,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:45,967 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:12:45,967 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:45,968 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:12:45,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:45,968 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:12:45,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:45,968 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:12:45,968 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:45,969 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:12:45,969 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:55,798 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:12:55,800 - built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) -2024-10-07 09:12:55,800 - Dictionary lifecycle event {'msg': "built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-10-07T09:12:55.800644', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:55,801 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:12:55,801 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:12:55,802 - using serial LDA version on this node -2024-10-07 09:12:55,802 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:12:55,802 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:12:55,806 - -7.976 per-word bound, 251.7 perplexity estimate based on a held-out corpus of 1 documents with 2316 words -2024-10-07 09:12:55,806 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:12:55,807 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.008*"practice" + 0.007*"needs" + 0.006*"Stockport" + 0.006*"28" + 0.006*"strong" + 0.005*"1" + 0.005*"quality" + 0.004*"leaders" -2024-10-07 09:12:55,807 - topic #1 (0.333): 0.008*"’" + 0.008*"well" + 0.007*"Stockport" + 0.007*"practice" + 0.007*"plans" + 0.006*"needs" + 0.005*"strong" + 0.005*"risk" + 0.005*"ensure" + 0.004*"need" -2024-10-07 09:12:55,807 - topic #2 (0.333): 0.012*"’" + 0.008*"well" + 0.007*"practice" + 0.007*"Stockport" + 0.005*"risk" + 0.005*"strong" + 0.005*"plans" + 0.005*"team" + 0.005*"needs" + 0.005*"leaders" -2024-10-07 09:12:55,807 - topic diff=0.792620, rho=1.000000 -2024-10-07 09:12:55,808 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:12:55.808036', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:12:56,824 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:12:56,825 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:56,825 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:12:56,825 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:56,825 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:12:56,825 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:56,826 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:12:56,826 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:56,826 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:12:56,826 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:12:56,826 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:12:56,826 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:07,739 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:13:07,741 - built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions) -2024-10-07 09:13:07,741 - Dictionary lifecycle event {'msg': "built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions)", 'datetime': '2024-10-07T09:13:07.741538', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:07,742 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:13:07,742 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:13:07,742 - using serial LDA version on this node -2024-10-07 09:13:07,743 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:13:07,743 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:13:07,746 - -7.968 per-word bound, 250.4 perplexity estimate based on a held-out corpus of 1 documents with 2269 words -2024-10-07 09:13:07,746 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:13:07,748 - topic #0 (0.333): 0.019*"’" + 0.007*"plans" + 0.007*"well" + 0.007*"leaders" + 0.006*"needs" + 0.005*"quality" + 0.005*"good" + 0.005*"on-Tees" + 0.004*"Senior" + 0.004*"Stockton" -2024-10-07 09:13:07,748 - topic #1 (0.333): 0.020*"’" + 0.008*"plans" + 0.008*"needs" + 0.007*"leaders" + 0.006*"senior" + 0.005*"Stockton" + 0.005*"6" + 0.005*"well" + 0.005*"carers" + 0.005*"on-Tees" -2024-10-07 09:13:07,748 - topic #2 (0.333): 0.019*"’" + 0.011*"leaders" + 0.008*"plans" + 0.007*"on-Tees" + 0.007*"quality" + 0.007*"Stockton" + 0.007*"well" + 0.006*"good" + 0.006*"senior" + 0.006*"needs" -2024-10-07 09:13:07,748 - topic diff=0.771517, rho=1.000000 -2024-10-07 09:13:07,748 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:13:07.748936', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:08,613 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:13:08,613 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:08,614 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:13:08,614 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:08,614 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:13:08,614 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:08,614 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:13:08,614 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:08,615 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:13:08,615 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:08,615 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:13:08,615 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:19,539 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:13:19,541 - built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions) -2024-10-07 09:13:19,541 - Dictionary lifecycle event {'msg': "built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions)", 'datetime': '2024-10-07T09:13:19.541349', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:19,542 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:13:19,542 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:13:19,542 - using serial LDA version on this node -2024-10-07 09:13:19,543 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:13:19,543 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:13:19,546 - -7.897 per-word bound, 238.4 perplexity estimate based on a held-out corpus of 1 documents with 2165 words -2024-10-07 09:13:19,546 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:13:19,547 - topic #0 (0.333): 0.020*"’" + 0.008*"needs" + 0.008*"plans" + 0.007*"Stoke" + 0.007*"well" + 0.006*"on-Trent" + 0.006*"ensure" + 0.006*"However" + 0.005*"progress" + 0.005*"quality" -2024-10-07 09:13:19,548 - topic #1 (0.333): 0.011*"’" + 0.006*"needs" + 0.006*"Stoke" + 0.006*"However" + 0.006*"on-Trent" + 0.005*"plans" + 0.005*"well" + 0.005*"need" + 0.004*"protection" + 0.004*"timely" -2024-10-07 09:13:19,548 - topic #2 (0.333): 0.018*"’" + 0.009*"needs" + 0.008*"on-Trent" + 0.007*"well" + 0.007*"protection" + 0.007*"However" + 0.006*"Stoke" + 0.006*"ensure" + 0.006*"leaders" + 0.005*"plans" -2024-10-07 09:13:19,548 - topic diff=0.786013, rho=1.000000 -2024-10-07 09:13:19,548 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:13:19.548629', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:20,458 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:13:20,458 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:20,458 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:13:20,458 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:20,459 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:13:20,459 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:20,459 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:13:20,459 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:20,459 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:13:20,459 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:20,459 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:13:20,459 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:33,440 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:13:33,442 - built Dictionary<1126 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2544 corpus positions) -2024-10-07 09:13:33,442 - Dictionary lifecycle event {'msg': 'built Dictionary<1126 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2544 corpus positions)', 'datetime': '2024-10-07T09:13:33.442939', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:33,444 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:13:33,444 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:13:33,444 - using serial LDA version on this node -2024-10-07 09:13:33,444 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:13:33,444 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:13:33,448 - -8.014 per-word bound, 258.5 perplexity estimate based on a held-out corpus of 1 documents with 2544 words -2024-10-07 09:13:33,448 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:13:33,450 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"well" + 0.005*"Suffolk" + 0.004*"parents" + 0.004*"Council" + 0.004*"practice" + 0.003*"3" + 0.003*"good" + 0.003*"7" -2024-10-07 09:13:33,450 - topic #1 (0.333): 0.026*"’" + 0.012*"needs" + 0.011*"Suffolk" + 0.009*"well" + 0.006*"Council" + 0.005*"protection" + 0.005*"practice" + 0.005*"County" + 0.005*"3" + 0.005*"June" -2024-10-07 09:13:33,450 - topic #2 (0.333): 0.019*"’" + 0.011*"Suffolk" + 0.009*"needs" + 0.008*"well" + 0.005*"2024" + 0.005*"parents" + 0.005*"practice" + 0.005*"risks" + 0.005*"protection" + 0.005*"7" -2024-10-07 09:13:33,450 - topic diff=0.825744, rho=1.000000 -2024-10-07 09:13:33,450 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:13:33.450659', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:35,423 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:13:35,423 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:35,423 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:13:35,424 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:35,424 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:13:35,424 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:35,424 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:13:35,424 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:35,424 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:13:35,425 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:35,425 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:13:35,425 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:46,446 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:13:46,448 - built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions) -2024-10-07 09:13:46,448 - Dictionary lifecycle event {'msg': "built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions)", 'datetime': '2024-10-07T09:13:46.448280', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:46,449 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:13:46,449 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:13:46,449 - using serial LDA version on this node -2024-10-07 09:13:46,450 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:13:46,450 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:13:46,453 - -8.051 per-word bound, 265.3 perplexity estimate based on a held-out corpus of 1 documents with 2409 words -2024-10-07 09:13:46,453 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:13:46,455 - topic #0 (0.333): 0.014*"’" + 0.007*"needs" + 0.007*"quality" + 0.006*"Sunderland" + 0.006*"well" + 0.005*"council" + 0.004*"protection" + 0.004*"experienced" + 0.004*"robust" + 0.004*"parents" -2024-10-07 09:13:46,455 - topic #1 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"needs" + 0.006*"practice" + 0.005*"quality" + 0.005*"Sunderland" + 0.004*"training" + 0.004*"experienced" + 0.004*"cared" + 0.004*"highly" -2024-10-07 09:13:46,455 - topic #2 (0.333): 0.018*"’" + 0.008*"well" + 0.008*"quality" + 0.006*"Sunderland" + 0.006*"needs" + 0.006*"experienced" + 0.005*"TfC" + 0.005*"good" + 0.005*"parents" + 0.005*"council" -2024-10-07 09:13:46,455 - topic diff=0.783315, rho=1.000000 -2024-10-07 09:13:46,455 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:13:46.455980', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:47,565 - Inspection date 2021-06-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:13:47,565 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:47,566 - Inspection date 2021-06-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:13:47,566 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:47,566 - Inspection date 2021-06-28 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:13:47,566 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:47,566 - Inspection date 2021-06-28 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:13:47,566 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:47,567 - Inspection date 2021-06-28 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:13:47,567 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:47,567 - Inspection date 2021-06-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:13:47,567 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:57,670 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:13:57,672 - built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions) -2024-10-07 09:13:57,673 - Dictionary lifecycle event {'msg': "built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions)", 'datetime': '2024-10-07T09:13:57.673032', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:57,673 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:13:57,674 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:13:57,674 - using serial LDA version on this node -2024-10-07 09:13:57,674 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:13:57,674 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:13:57,678 - -7.964 per-word bound, 249.7 perplexity estimate based on a held-out corpus of 1 documents with 2111 words -2024-10-07 09:13:57,678 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:13:57,679 - topic #0 (0.333): 0.016*"’" + 0.012*"well" + 0.010*"needs" + 0.008*"practice" + 0.007*"progress" + 0.005*"plans" + 0.005*"However" + 0.005*"good" + 0.005*"effective" + 0.005*"Surrey" -2024-10-07 09:13:57,679 - topic #1 (0.333): 0.012*"’" + 0.008*"needs" + 0.007*"well" + 0.006*"practice" + 0.005*"quality" + 0.005*"carers" + 0.005*"17" + 0.005*"good" + 0.005*"effective" + 0.004*"progress" -2024-10-07 09:13:57,680 - topic #2 (0.333): 0.011*"’" + 0.010*"needs" + 0.008*"progress" + 0.007*"well" + 0.007*"practice" + 0.005*"plans" + 0.005*"quality" + 0.005*"17" + 0.005*"effective" + 0.005*"carers" -2024-10-07 09:13:57,680 - topic diff=0.764727, rho=1.000000 -2024-10-07 09:13:57,680 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:13:57.680412', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:13:58,599 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:13:58,599 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:58,599 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:13:58,600 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:58,600 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:13:58,600 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:58,600 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:13:58,600 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:58,601 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:13:58,601 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:13:58,601 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:13:58,601 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:09,393 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:14:09,395 - built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions) -2024-10-07 09:14:09,395 - Dictionary lifecycle event {'msg': "built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions)", 'datetime': '2024-10-07T09:14:09.395659', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:09,396 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:14:09,396 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:14:09,396 - using serial LDA version on this node -2024-10-07 09:14:09,397 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:14:09,397 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:14:09,400 - -7.832 per-word bound, 227.9 perplexity estimate based on a held-out corpus of 1 documents with 2229 words -2024-10-07 09:14:09,400 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:14:09,402 - topic #0 (0.333): 0.027*"’" + 0.011*"needs" + 0.010*"Swindon" + 0.009*"need" + 0.008*"well" + 0.007*"always" + 0.006*"plans" + 0.006*"lack" + 0.005*"health" + 0.005*"effective" -2024-10-07 09:14:09,402 - topic #1 (0.333): 0.018*"’" + 0.017*"needs" + 0.009*"well" + 0.008*"Swindon" + 0.007*"always" + 0.007*"need" + 0.006*"plans" + 0.006*"impact" + 0.006*"Council" + 0.005*"effective" -2024-10-07 09:14:09,402 - topic #2 (0.333): 0.020*"’" + 0.010*"needs" + 0.008*"need" + 0.008*"Swindon" + 0.007*"well" + 0.007*"plans" + 0.006*"impact" + 0.005*"July" + 0.005*"effective" + 0.005*"always" -2024-10-07 09:14:09,402 - topic diff=0.825442, rho=1.000000 -2024-10-07 09:14:09,402 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:14:09.402555', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:10,312 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:14:10,312 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:10,312 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:14:10,312 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:10,312 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:14:10,312 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:10,313 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:14:10,313 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:10,313 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:14:10,313 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:10,313 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:14:10,313 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:22,057 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:14:22,059 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions) -2024-10-07 09:14:22,060 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions)", 'datetime': '2024-10-07T09:14:22.060065', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:22,061 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:14:22,061 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:14:22,061 - using serial LDA version on this node -2024-10-07 09:14:22,061 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:14:22,061 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:14:22,065 - -7.941 per-word bound, 245.7 perplexity estimate based on a held-out corpus of 1 documents with 2491 words -2024-10-07 09:14:22,065 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:14:22,066 - topic #0 (0.333): 0.009*"’" + 0.006*"needs" + 0.005*"risk" + 0.005*"4" + 0.004*"practice" + 0.004*"quality" + 0.004*"response" + 0.004*"experienced" + 0.004*"plans" + 0.004*"impact" -2024-10-07 09:14:22,067 - topic #1 (0.333): 0.018*"’" + 0.008*"needs" + 0.006*"Tameside" + 0.006*"practice" + 0.006*"impact" + 0.006*"risk" + 0.005*"2023" + 0.005*"planning" + 0.005*"understand" + 0.005*"quality" -2024-10-07 09:14:22,067 - topic #2 (0.333): 0.018*"’" + 0.011*"needs" + 0.007*"impact" + 0.007*"risk" + 0.006*"quality" + 0.006*"experienced" + 0.005*"response" + 0.005*"2023" + 0.005*"15" + 0.005*"experiences" -2024-10-07 09:14:22,067 - topic diff=0.834386, rho=1.000000 -2024-10-07 09:14:22,067 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:14:22.067453', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:22,995 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:14:22,995 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:22,995 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:14:22,995 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:22,995 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:14:22,995 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:22,996 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:14:22,996 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:22,996 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:14:22,996 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:22,996 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:14:22,996 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:35,147 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:14:35,149 - built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions) -2024-10-07 09:14:35,149 - Dictionary lifecycle event {'msg': "built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions)", 'datetime': '2024-10-07T09:14:35.149696', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:35,150 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:14:35,150 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:14:35,151 - using serial LDA version on this node -2024-10-07 09:14:35,151 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:14:35,151 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:14:35,155 - -7.972 per-word bound, 251.1 perplexity estimate based on a held-out corpus of 1 documents with 2452 words -2024-10-07 09:14:35,155 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:14:35,156 - topic #0 (0.333): 0.023*"’" + 0.013*"needs" + 0.008*"Wrekin" + 0.006*"effective" + 0.006*"Telford" + 0.006*"well" + 0.006*"plans" + 0.006*"benefit" + 0.005*"Family" + 0.005*"provide" -2024-10-07 09:14:35,156 - topic #1 (0.333): 0.024*"’" + 0.010*"needs" + 0.008*"Telford" + 0.007*"Wrekin" + 0.006*"Family" + 0.006*"benefit" + 0.005*"effective" + 0.005*"well" + 0.005*"plans" + 0.005*"3" -2024-10-07 09:14:35,157 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.009*"Telford" + 0.007*"Wrekin" + 0.007*"benefit" + 0.006*"well" + 0.005*"plans" + 0.005*"3" + 0.004*"Family" + 0.004*"PAs" -2024-10-07 09:14:35,157 - topic diff=0.818801, rho=1.000000 -2024-10-07 09:14:35,157 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:14:35.157239', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:36,175 - Inspection date 2024-04-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:14:36,175 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:36,175 - Inspection date 2024-04-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:14:36,175 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:36,175 - Inspection date 2024-04-29 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:14:36,175 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:36,176 - Inspection date 2024-04-29 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:14:36,176 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:36,176 - Inspection date 2024-04-29 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:14:36,176 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:36,176 - Inspection date 2024-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:14:36,176 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:46,559 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:14:46,561 - built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions) -2024-10-07 09:14:46,561 - Dictionary lifecycle event {'msg': "built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions)", 'datetime': '2024-10-07T09:14:46.561844', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:46,562 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:14:46,562 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:14:46,563 - using serial LDA version on this node -2024-10-07 09:14:46,563 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:14:46,563 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:14:46,567 - -8.140 per-word bound, 282.1 perplexity estimate based on a held-out corpus of 1 documents with 2160 words -2024-10-07 09:14:46,567 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:14:46,568 - topic #0 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"carers" + 0.006*"need" + 0.005*"Thurrock" + 0.004*"practice" + 0.004*"impact" + 0.004*"leaders" + 0.004*"vulnerable" + 0.004*"protection" -2024-10-07 09:14:46,568 - topic #1 (0.333): 0.007*"’" + 0.006*"well" + 0.005*"carers" + 0.005*"ensure" + 0.004*"need" + 0.004*"needs" + 0.004*"effective" + 0.003*"leaders" + 0.003*"practice" + 0.003*"parents" -2024-10-07 09:14:46,569 - topic #2 (0.333): 0.015*"’" + 0.010*"well" + 0.005*"needs" + 0.004*"carers" + 0.004*"practice" + 0.004*"need" + 0.004*"ensure" + 0.004*"leaders" + 0.004*"effective" + 0.003*"protection" -2024-10-07 09:14:46,569 - topic diff=0.730897, rho=1.000000 -2024-10-07 09:14:46,569 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:14:46.569362', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:48,233 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:14:48,234 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:48,234 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:14:48,234 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:48,234 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:14:48,234 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:48,235 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:14:48,235 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:48,235 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:14:48,235 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:48,235 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:14:48,235 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:58,027 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:14:58,029 - built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions) -2024-10-07 09:14:58,029 - Dictionary lifecycle event {'msg': "built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions)", 'datetime': '2024-10-07T09:14:58.029350', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:58,030 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:14:58,030 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:14:58,030 - using serial LDA version on this node -2024-10-07 09:14:58,031 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:14:58,031 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:14:58,034 - -8.041 per-word bound, 263.4 perplexity estimate based on a held-out corpus of 1 documents with 2065 words -2024-10-07 09:14:58,034 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:14:58,036 - topic #0 (0.333): 0.020*"’" + 0.011*"well" + 0.007*"Torbay" + 0.007*"needs" + 0.007*"good" + 0.005*"team" + 0.005*"timely" + 0.005*"effective" + 0.005*"plans" + 0.005*"1" -2024-10-07 09:14:58,036 - topic #1 (0.333): 0.017*"’" + 0.008*"Torbay" + 0.007*"well" + 0.006*"good" + 0.005*"effective" + 0.005*"21" + 0.005*"needs" + 0.004*"agencies" + 0.004*"April" + 0.004*"March" -2024-10-07 09:14:58,036 - topic #2 (0.333): 0.012*"’" + 0.009*"well" + 0.007*"Torbay" + 0.006*"needs" + 0.004*"quality" + 0.004*"effective" + 0.004*"progress" + 0.004*"good" + 0.004*"2022" + 0.004*"21" -2024-10-07 09:14:58,036 - topic diff=0.753651, rho=1.000000 -2024-10-07 09:14:58,036 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:14:58.036602', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:14:58,974 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:14:58,974 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:58,974 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:14:58,974 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:58,974 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:14:58,975 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:58,975 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:14:58,975 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:58,975 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:14:58,975 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:14:58,975 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:14:58,975 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:11,233 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:15:11,235 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions) -2024-10-07 09:15:11,236 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions)", 'datetime': '2024-10-07T09:15:11.236007', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:11,237 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:15:11,237 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:15:11,237 - using serial LDA version on this node -2024-10-07 09:15:11,237 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:15:11,237 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:15:11,241 - -7.906 per-word bound, 239.9 perplexity estimate based on a held-out corpus of 1 documents with 2448 words -2024-10-07 09:15:11,241 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:15:11,242 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"plans" + 0.007*"well" + 0.007*"Trafford" + 0.006*"quality" + 0.006*"practice" + 0.005*"2" + 0.004*"team" + 0.004*"November" -2024-10-07 09:15:11,242 - topic #1 (0.333): 0.019*"’" + 0.009*"Trafford" + 0.008*"needs" + 0.007*"leaders" + 0.007*"quality" + 0.006*"well" + 0.006*"plans" + 0.005*"practice" + 0.005*"placed" + 0.005*"ensure" -2024-10-07 09:15:11,243 - topic #2 (0.333): 0.016*"’" + 0.011*"needs" + 0.008*"Trafford" + 0.007*"well" + 0.007*"plans" + 0.006*"quality" + 0.006*"impact" + 0.005*"leaders" + 0.005*"team" + 0.005*"placed" -2024-10-07 09:15:11,243 - topic diff=0.819286, rho=1.000000 -2024-10-07 09:15:11,243 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:15:11.243210', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:12,293 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:15:12,293 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:12,294 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:15:12,294 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:12,294 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:15:12,294 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:12,294 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:15:12,294 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:12,294 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:15:12,295 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:12,295 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:15:12,295 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:24,077 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:15:24,081 - built Dictionary<1162 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2626 corpus positions) -2024-10-07 09:15:24,081 - Dictionary lifecycle event {'msg': 'built Dictionary<1162 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2626 corpus positions)', 'datetime': '2024-10-07T09:15:24.081635', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:24,083 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:15:24,083 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:15:24,084 - using serial LDA version on this node -2024-10-07 09:15:24,084 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:15:24,084 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:15:24,091 - -8.048 per-word bound, 264.6 perplexity estimate based on a held-out corpus of 1 documents with 2626 words -2024-10-07 09:15:24,091 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:15:24,094 - topic #0 (0.333): 0.020*"’" + 0.007*"leaders" + 0.006*"needs" + 0.005*"well" + 0.005*"Walsall" + 0.004*"practice" + 0.004*"risks" + 0.004*"15" + 0.004*"oversight" + 0.004*"supported" -2024-10-07 09:15:24,094 - topic #1 (0.333): 0.024*"’" + 0.008*"leaders" + 0.006*"Walsall" + 0.006*"needs" + 0.006*"well" + 0.006*"information" + 0.005*"4" + 0.005*"good" + 0.005*"oversight" + 0.005*"2021" -2024-10-07 09:15:24,094 - topic #2 (0.333): 0.017*"’" + 0.007*"needs" + 0.005*"leaders" + 0.005*"well" + 0.005*"4" + 0.004*"Senior" + 0.004*"Walsall" + 0.004*"oversight" + 0.004*"information" + 0.004*"positive" -2024-10-07 09:15:24,095 - topic diff=0.822320, rho=1.000000 -2024-10-07 09:15:24,096 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:15:24.096013', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:25,027 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:15:25,027 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:25,027 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:15:25,027 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:25,028 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:15:25,028 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:25,028 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:15:25,028 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:25,028 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:15:25,028 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:25,029 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:15:25,029 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:39,220 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:15:39,222 - built Dictionary<1158 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2700 corpus positions) -2024-10-07 09:15:39,222 - Dictionary lifecycle event {'msg': 'built Dictionary<1158 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2700 corpus positions)', 'datetime': '2024-10-07T09:15:39.222937', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:39,224 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:15:39,224 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:15:39,224 - using serial LDA version on this node -2024-10-07 09:15:39,224 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:15:39,224 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:15:39,228 - -8.022 per-word bound, 259.9 perplexity estimate based on a held-out corpus of 1 documents with 2700 words -2024-10-07 09:15:39,228 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:15:39,230 - topic #0 (0.333): 0.020*"’" + 0.007*"needs" + 0.007*"Warrington" + 0.007*"leaders" + 0.006*"well" + 0.006*"2024" + 0.006*"effective" + 0.006*"practice" + 0.006*"experiences" + 0.005*"14" -2024-10-07 09:15:39,230 - topic #1 (0.333): 0.021*"’" + 0.009*"needs" + 0.008*"experiences" + 0.007*"effective" + 0.006*"Warrington" + 0.005*"well" + 0.005*"leaders" + 0.005*"10" + 0.005*"14" + 0.005*"practice" -2024-10-07 09:15:39,230 - topic #2 (0.333): 0.014*"’" + 0.007*"Warrington" + 0.005*"experiences" + 0.004*"leaders" + 0.004*"effective" + 0.004*"plans" + 0.004*"carers" + 0.004*"practice" + 0.004*"needs" + 0.004*"10" -2024-10-07 09:15:39,230 - topic diff=0.819687, rho=1.000000 -2024-10-07 09:15:39,230 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:15:39.230887', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:40,167 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:15:40,167 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:40,168 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:15:40,168 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:40,168 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:15:40,168 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:40,168 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:15:40,168 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:40,169 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:15:40,169 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:40,169 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:15:40,169 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:49,953 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:15:49,955 - built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions) -2024-10-07 09:15:49,955 - Dictionary lifecycle event {'msg': "built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions)", 'datetime': '2024-10-07T09:15:49.955211', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:49,956 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:15:49,956 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:15:49,956 - using serial LDA version on this node -2024-10-07 09:15:49,956 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:15:49,957 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:15:49,960 - -8.003 per-word bound, 256.6 perplexity estimate based on a held-out corpus of 1 documents with 2113 words -2024-10-07 09:15:49,960 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:15:49,962 - topic #0 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"Warwickshire" + 0.006*"needs" + 0.005*"progress" + 0.005*"plans" + 0.005*"supported" + 0.004*"clear" + 0.004*"22" + 0.004*"good" -2024-10-07 09:15:49,962 - topic #1 (0.333): 0.010*"’" + 0.006*"plans" + 0.006*"Warwickshire" + 0.006*"needs" + 0.006*"practice" + 0.005*"well" + 0.004*"3" + 0.004*"carers" + 0.004*"good" + 0.004*"agencies" -2024-10-07 09:15:49,962 - topic #2 (0.333): 0.012*"’" + 0.007*"needs" + 0.007*"plans" + 0.007*"well" + 0.005*"Warwickshire" + 0.005*"carers" + 0.005*"good" + 0.005*"3" + 0.005*"practice" + 0.004*"information" -2024-10-07 09:15:49,962 - topic diff=0.754255, rho=1.000000 -2024-10-07 09:15:49,962 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:15:49.962692', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:15:50,884 - Inspection date 2021-11-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:15:50,884 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:50,884 - Inspection date 2021-11-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:15:50,884 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:50,885 - Inspection date 2021-11-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:15:50,885 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:50,885 - Inspection date 2021-11-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:15:50,885 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:50,885 - Inspection date 2021-11-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:15:50,885 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:15:50,886 - Inspection date 2021-11-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:15:50,886 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:00,591 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:16:00,593 - built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions) -2024-10-07 09:16:00,593 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions)", 'datetime': '2024-10-07T09:16:00.593280', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:00,594 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:16:00,594 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:16:00,594 - using serial LDA version on this node -2024-10-07 09:16:00,595 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:16:00,595 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:16:00,598 - -8.109 per-word bound, 276.2 perplexity estimate based on a held-out corpus of 1 documents with 2146 words -2024-10-07 09:16:00,598 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:16:00,600 - topic #0 (0.333): 0.012*"’" + 0.006*"West" + 0.005*"Berkshire" + 0.005*"plans" + 0.005*"well" + 0.004*"needs" + 0.004*"early" + 0.004*"need" + 0.004*"18" + 0.003*"ensure" -2024-10-07 09:16:00,600 - topic #1 (0.333): 0.014*"’" + 0.006*"well" + 0.006*"West" + 0.006*"Berkshire" + 0.004*"agency" + 0.004*"18" + 0.004*"needs" + 0.004*"plans" + 0.004*"education" + 0.004*"2022" -2024-10-07 09:16:00,600 - topic #2 (0.333): 0.017*"’" + 0.007*"Berkshire" + 0.007*"West" + 0.006*"well" + 0.005*"need" + 0.004*"working" + 0.004*"14" + 0.004*"needs" + 0.004*"strong" + 0.004*"early" -2024-10-07 09:16:00,600 - topic diff=0.712706, rho=1.000000 -2024-10-07 09:16:00,600 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:16:00.600904', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:01,444 - Inspection date 2022-03-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:16:01,444 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:01,444 - Inspection date 2022-03-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:16:01,445 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:01,445 - Inspection date 2022-03-14 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:16:01,445 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:01,445 - Inspection date 2022-03-14 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:16:01,446 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:01,446 - Inspection date 2022-03-14 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:16:01,446 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:01,446 - Inspection date 2022-03-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:16:01,446 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:11,930 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:16:11,932 - built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions) -2024-10-07 09:16:11,933 - Dictionary lifecycle event {'msg': "built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions)", 'datetime': '2024-10-07T09:16:11.932972', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:11,933 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:16:11,934 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:16:11,934 - using serial LDA version on this node -2024-10-07 09:16:11,934 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:16:11,934 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:16:11,938 - -8.043 per-word bound, 263.8 perplexity estimate based on a held-out corpus of 1 documents with 2224 words -2024-10-07 09:16:11,938 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:16:11,939 - topic #0 (0.333): 0.017*"’" + 0.010*"Northamptonshire" + 0.008*"West" + 0.007*"quality" + 0.006*"practice" + 0.006*"well" + 0.005*"impact" + 0.005*"plans" + 0.005*"need" + 0.005*"needs" -2024-10-07 09:16:11,940 - topic #1 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"quality" + 0.006*"West" + 0.006*"Northamptonshire" + 0.006*"practice" + 0.005*"needs" + 0.005*"2022" + 0.005*"14" + 0.005*"NCT" -2024-10-07 09:16:11,940 - topic #2 (0.333): 0.014*"’" + 0.008*"Northamptonshire" + 0.006*"well" + 0.005*"However" + 0.005*"quality" + 0.005*"needs" + 0.004*"West" + 0.004*"experiences" + 0.004*"NCT" + 0.004*"need" -2024-10-07 09:16:11,940 - topic diff=0.758006, rho=1.000000 -2024-10-07 09:16:11,940 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:16:11.940513', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:12,781 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:16:12,781 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:12,781 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:16:12,782 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:12,782 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:16:12,782 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:12,782 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:16:12,782 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:12,782 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:16:12,782 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:12,783 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:16:12,783 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:25,808 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:16:25,810 - built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) -2024-10-07 09:16:25,811 - Dictionary lifecycle event {'msg': "built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-10-07T09:16:25.810972', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:25,812 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:16:25,812 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:16:25,812 - using serial LDA version on this node -2024-10-07 09:16:25,812 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:16:25,813 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:16:25,817 - -8.124 per-word bound, 279.0 perplexity estimate based on a held-out corpus of 1 documents with 2720 words -2024-10-07 09:16:25,817 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:16:25,818 - topic #0 (0.333): 0.018*"’" + 0.007*"plans" + 0.007*"well" + 0.006*"needs" + 0.005*"Sussex" + 0.005*"West" + 0.005*"number" + 0.004*"13" + 0.004*"quality" + 0.004*"supported" -2024-10-07 09:16:25,818 - topic #1 (0.333): 0.013*"’" + 0.006*"plans" + 0.006*"well" + 0.005*"West" + 0.005*"13" + 0.005*"Sussex" + 0.005*"quality" + 0.004*"health" + 0.004*"needs" + 0.004*"practice" -2024-10-07 09:16:25,818 - topic #2 (0.333): 0.009*"’" + 0.006*"needs" + 0.005*"well" + 0.005*"plans" + 0.005*"supported" + 0.004*"Sussex" + 0.004*"practice" + 0.004*"13" + 0.004*"number" + 0.004*"West" -2024-10-07 09:16:25,819 - topic diff=0.808747, rho=1.000000 -2024-10-07 09:16:25,819 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:16:25.819249', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:26,744 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:16:26,744 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:26,745 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:16:26,745 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:26,745 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:16:26,745 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:26,745 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:16:26,745 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:26,746 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:16:26,746 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:26,746 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:16:26,746 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:39,462 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:16:39,465 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions) -2024-10-07 09:16:39,465 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions)", 'datetime': '2024-10-07T09:16:39.465773', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:39,467 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:16:39,467 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:16:39,468 - using serial LDA version on this node -2024-10-07 09:16:39,468 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:16:39,468 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:16:39,475 - -7.965 per-word bound, 249.9 perplexity estimate based on a held-out corpus of 1 documents with 2451 words -2024-10-07 09:16:39,475 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:16:39,477 - topic #0 (0.333): 0.011*"’" + 0.008*"plans" + 0.006*"Westmorland" + 0.006*"need" + 0.006*"Furness" + 0.006*"needs" + 0.006*"appropriate" + 0.005*"quality" + 0.005*"progress" + 0.004*"protection" -2024-10-07 09:16:39,477 - topic #1 (0.333): 0.014*"’" + 0.006*"plans" + 0.005*"needs" + 0.005*"Furness" + 0.005*"need" + 0.005*"Westmorland" + 0.005*"22" + 0.004*"appropriate" + 0.004*"well" + 0.004*"April" -2024-10-07 09:16:39,478 - topic #2 (0.333): 0.013*"’" + 0.008*"plans" + 0.008*"needs" + 0.007*"Westmorland" + 0.007*"Furness" + 0.006*"appropriate" + 0.006*"need" + 0.006*"quality" + 0.006*"protection" + 0.005*"progress" -2024-10-07 09:16:39,478 - topic diff=0.804874, rho=1.000000 -2024-10-07 09:16:39,478 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:16:39.478426', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:40,507 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:16:40,507 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:40,507 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:16:40,507 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:40,508 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:16:40,508 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:40,508 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:16:40,508 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:40,508 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:16:40,508 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:40,509 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:16:40,509 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:50,932 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:16:50,934 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions) -2024-10-07 09:16:50,934 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions)", 'datetime': '2024-10-07T09:16:50.934221', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:50,935 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:16:50,935 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:16:50,935 - using serial LDA version on this node -2024-10-07 09:16:50,936 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:16:50,936 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:16:50,939 - -7.961 per-word bound, 249.2 perplexity estimate based on a held-out corpus of 1 documents with 2416 words -2024-10-07 09:16:50,939 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:16:50,941 - topic #0 (0.333): 0.013*"’" + 0.008*"practice" + 0.007*"plans" + 0.007*"May" + 0.006*"quality" + 0.006*"needs" + 0.005*"Wigan" + 0.005*"leaders" + 0.005*"appropriate" + 0.004*"increased" -2024-10-07 09:16:50,941 - topic #1 (0.333): 0.010*"’" + 0.007*"quality" + 0.006*"May" + 0.005*"Wigan" + 0.005*"needs" + 0.005*"practice" + 0.005*"plans" + 0.005*"20" + 0.005*"appropriate" + 0.005*"leaders" -2024-10-07 09:16:50,941 - topic #2 (0.333): 0.013*"’" + 0.009*"May" + 0.007*"Wigan" + 0.007*"plans" + 0.006*"needs" + 0.006*"practice" + 0.006*"appropriate" + 0.005*"timely" + 0.005*"9" + 0.004*"2022" -2024-10-07 09:16:50,941 - topic diff=0.792379, rho=1.000000 -2024-10-07 09:16:50,941 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:16:50.941729', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:16:51,887 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:16:51,887 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:51,888 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:16:51,888 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:51,888 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:16:51,888 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:51,888 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:16:51,888 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:51,889 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:16:51,889 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:16:51,889 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:16:51,889 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:02,521 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:17:02,523 - built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions) -2024-10-07 09:17:02,523 - Dictionary lifecycle event {'msg': "built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions)", 'datetime': '2024-10-07T09:17:02.523739', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:02,524 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:17:02,524 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:17:02,525 - using serial LDA version on this node -2024-10-07 09:17:02,525 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:17:02,525 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:17:02,529 - -7.959 per-word bound, 248.8 perplexity estimate based on a held-out corpus of 1 documents with 2600 words -2024-10-07 09:17:02,529 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:17:02,530 - topic #0 (0.333): 0.015*"’" + 0.011*"well" + 0.007*"needs" + 0.006*"progress" + 0.006*"risk" + 0.005*"supported" + 0.005*"plans" + 0.005*"ensure" + 0.005*"parents" + 0.005*"need" -2024-10-07 09:17:02,530 - topic #1 (0.333): 0.012*"’" + 0.010*"well" + 0.007*"Wiltshire" + 0.007*"needs" + 0.006*"parents" + 0.006*"supported" + 0.006*"need" + 0.005*"quality" + 0.005*"ensure" + 0.005*"plans" -2024-10-07 09:17:02,531 - topic #2 (0.333): 0.017*"’" + 0.012*"well" + 0.008*"need" + 0.008*"needs" + 0.007*"including" + 0.006*"Wiltshire" + 0.006*"progress" + 0.006*"risk" + 0.005*"parents" + 0.005*"quality" -2024-10-07 09:17:02,531 - topic diff=0.833399, rho=1.000000 -2024-10-07 09:17:02,531 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:17:02.531539', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:03,410 - Inspection date 2023-09-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:17:03,411 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:03,411 - Inspection date 2023-09-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:17:03,411 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:03,411 - Inspection date 2023-09-25 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:17:03,411 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:03,411 - Inspection date 2023-09-25 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:17:03,412 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:03,412 - Inspection date 2023-09-25 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:17:03,412 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:03,412 - Inspection date 2023-09-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:17:03,412 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:14,988 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:17:14,990 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) -2024-10-07 09:17:14,990 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-10-07T09:17:14.990275', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:14,991 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:17:14,991 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:17:14,991 - using serial LDA version on this node -2024-10-07 09:17:14,991 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:17:14,992 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:17:14,995 - -7.901 per-word bound, 239.0 perplexity estimate based on a held-out corpus of 1 documents with 2233 words -2024-10-07 09:17:14,995 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:17:14,997 - topic #0 (0.333): 0.013*"’" + 0.010*"needs" + 0.009*"Wirral" + 0.008*"plans" + 0.007*"well" + 0.007*"ensure" + 0.006*"practice" + 0.005*"number" + 0.005*"good" + 0.005*"18" -2024-10-07 09:17:14,998 - topic #1 (0.333): 0.008*"’" + 0.007*"needs" + 0.006*"practice" + 0.005*"number" + 0.005*"Wirral" + 0.005*"small" + 0.004*"29" + 0.004*"response" + 0.004*"2023" + 0.004*"18" -2024-10-07 09:17:14,998 - topic #2 (0.333): 0.010*"’" + 0.010*"needs" + 0.009*"ensure" + 0.007*"Wirral" + 0.007*"plans" + 0.006*"practice" + 0.005*"September" + 0.005*"well" + 0.005*"appropriate" + 0.005*"response" -2024-10-07 09:17:14,998 - topic diff=0.808210, rho=1.000000 -2024-10-07 09:17:14,998 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:17:14.998494', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:16,142 - Inspection date 2023-09-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:17:16,142 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:16,142 - Inspection date 2023-09-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:17:16,142 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:16,143 - Inspection date 2023-09-18 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:17:16,143 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:16,143 - Inspection date 2023-09-18 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:17:16,143 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:16,143 - Inspection date 2023-09-18 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:17:16,143 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:16,143 - Inspection date 2023-09-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:17:16,143 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:27,535 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:17:27,537 - built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions) -2024-10-07 09:17:27,537 - Dictionary lifecycle event {'msg': "built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions)", 'datetime': '2024-10-07T09:17:27.537217', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:27,538 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:17:27,538 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:17:27,538 - using serial LDA version on this node -2024-10-07 09:17:27,538 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:17:27,539 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:17:27,542 - -8.059 per-word bound, 266.6 perplexity estimate based on a held-out corpus of 1 documents with 2214 words -2024-10-07 09:17:27,542 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:17:27,544 - topic #0 (0.333): 0.011*"’" + 0.006*"needs" + 0.005*"effective" + 0.005*"progress" + 0.005*"6" + 0.005*"plans" + 0.004*"appropriate" + 0.004*"17" + 0.004*"well" + 0.004*"provided" -2024-10-07 09:17:27,544 - topic #1 (0.333): 0.015*"’" + 0.009*"plans" + 0.007*"effective" + 0.006*"needs" + 0.006*"well" + 0.006*"progress" + 0.006*"17" + 0.005*"impact" + 0.005*"provided" + 0.005*"experiences" -2024-10-07 09:17:27,544 - topic #2 (0.333): 0.010*"’" + 0.006*"effective" + 0.006*"plans" + 0.005*"progress" + 0.005*"needs" + 0.005*"well" + 0.005*"parents" + 0.005*"provided" + 0.004*"ensure" + 0.004*"Wokingham" -2024-10-07 09:17:27,544 - topic diff=0.758640, rho=1.000000 -2024-10-07 09:17:27,544 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:17:27.544814', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:28,388 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:17:28,388 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:28,389 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:17:28,389 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:28,389 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:17:28,389 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:28,389 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:17:28,389 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:28,390 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:17:28,390 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:28,390 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:17:28,390 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:38,602 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:17:38,604 - built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) -2024-10-07 09:17:38,604 - Dictionary lifecycle event {'msg': "built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-10-07T09:17:38.604381', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:38,605 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:17:38,605 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:17:38,605 - using serial LDA version on this node -2024-10-07 09:17:38,606 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:17:38,606 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:17:38,609 - -8.047 per-word bound, 264.5 perplexity estimate based on a held-out corpus of 1 documents with 2233 words -2024-10-07 09:17:38,609 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:17:38,611 - topic #0 (0.333): 0.010*"’" + 0.007*"needs" + 0.005*"effective" + 0.005*"risks" + 0.005*"receive" + 0.005*"leaders" + 0.005*"strong" + 0.005*"supported" + 0.004*"plans" + 0.004*"quality" -2024-10-07 09:17:38,611 - topic #1 (0.333): 0.017*"’" + 0.008*"needs" + 0.007*"Wolverhampton" + 0.006*"risk" + 0.006*"risks" + 0.005*"quality" + 0.005*"receive" + 0.005*"effective" + 0.005*"education" + 0.005*"plans" -2024-10-07 09:17:38,611 - topic #2 (0.333): 0.014*"’" + 0.008*"needs" + 0.007*"effective" + 0.005*"plans" + 0.005*"Wolverhampton" + 0.005*"leaders" + 0.004*"well" + 0.004*"education" + 0.004*"practice" + 0.004*"experiences" -2024-10-07 09:17:38,611 - topic diff=0.740666, rho=1.000000 -2024-10-07 09:17:38,611 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:17:38.611895', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:39,510 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:17:39,511 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:39,511 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:17:39,511 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:39,511 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:17:39,511 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:39,511 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:17:39,512 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:39,512 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:17:39,512 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:39,512 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:17:39,512 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:51,288 - adding document #0 to Dictionary<0 unique tokens: []> -2024-10-07 09:17:51,292 - built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions) -2024-10-07 09:17:51,292 - Dictionary lifecycle event {'msg': "built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions)", 'datetime': '2024-10-07T09:17:51.292498', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:51,294 - using symmetric alpha at 0.3333333333333333 -2024-10-07 09:17:51,294 - using symmetric eta at 0.3333333333333333 -2024-10-07 09:17:51,294 - using serial LDA version on this node -2024-10-07 09:17:51,295 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-10-07 09:17:51,295 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-10-07 09:17:51,301 - -7.939 per-word bound, 245.3 perplexity estimate based on a held-out corpus of 1 documents with 2343 words -2024-10-07 09:17:51,301 - PROGRESS: pass 0, at document #1/1 -2024-10-07 09:17:51,304 - topic #0 (0.333): 0.018*"’" + 0.007*"plans" + 0.006*"well" + 0.006*"Worcestershire" + 0.006*"needs" + 0.006*"progress" + 0.006*"ensure" + 0.006*"leaders" + 0.005*"PAs" + 0.005*"appropriate" -2024-10-07 09:17:51,304 - topic #1 (0.333): 0.020*"’" + 0.010*"well" + 0.009*"needs" + 0.008*"plans" + 0.007*"Worcestershire" + 0.007*"leaders" + 0.007*"progress" + 0.006*"ensure" + 0.006*"appropriate" + 0.005*"26" -2024-10-07 09:17:51,304 - topic #2 (0.333): 0.018*"’" + 0.008*"well" + 0.008*"plans" + 0.007*"Worcestershire" + 0.007*"leaders" + 0.006*"progress" + 0.006*"needs" + 0.005*"Senior" + 0.005*"appropriate" + 0.005*"ensure" -2024-10-07 09:17:51,304 - topic diff=0.803975, rho=1.000000 -2024-10-07 09:17:51,304 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T09:17:51.304964', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-10-07 09:17:52,740 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-10-07 09:17:52,740 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:52,741 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-10-07 09:17:52,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:52,741 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. -2024-10-07 09:17:52,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:52,741 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. -2024-10-07 09:17:52,741 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:52,741 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. -2024-10-07 09:17:52,742 - Index(['judgement', 'grade'], dtype='object') -2024-10-07 09:17:52,742 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-10-07 09:17:52,742 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:28,857 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:32:28,860 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions) +2024-10-14 08:32:28,862 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-10-14T08:32:28.860677', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:32:28,863 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:32:28,864 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:32:28,864 - using serial LDA version on this node +2024-10-14 08:32:28,864 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:32:28,864 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:32:28,869 - -8.101 per-word bound, 274.6 perplexity estimate based on a held-out corpus of 1 documents with 2696 words +2024-10-14 08:32:28,869 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:32:28,871 - topic #0 (0.333): 0.017*"’" + 0.006*"leaders" + 0.006*"within" + 0.005*"needs" + 0.005*"practice" + 0.004*"Barnsley" + 0.004*"11" + 0.004*"15" + 0.003*"senior" + 0.003*"understand" +2024-10-14 08:32:28,871 - topic #1 (0.333): 0.021*"’" + 0.008*"needs" + 0.008*"leaders" + 0.007*"within" + 0.006*"Barnsley" + 0.005*"practice" + 0.005*"plans" + 0.005*"response" + 0.004*"senior" + 0.004*"quality" +2024-10-14 08:32:28,871 - topic #2 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"leaders" + 0.007*"practice" + 0.006*"Barnsley" + 0.005*"within" + 0.004*"11" + 0.004*"plans" + 0.004*"senior" + 0.004*"15" +2024-10-14 08:32:28,871 - topic diff=0.801349, rho=1.000000 +2024-10-14 08:32:28,872 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:32:28.872005', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:32:28,873 - Failed to import jpype dependencies. Fallback to subprocess. +2024-10-14 08:32:28,874 - No module named 'jpype' +2024-10-14 08:32:31,438 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:32:31,438 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:31,438 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:32:31,438 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:31,439 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:32:31,439 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:31,439 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:32:31,439 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:31,439 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:32:31,439 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:31,439 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:32:31,439 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:39,864 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:32:39,866 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions) +2024-10-14 08:32:39,867 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-10-14T08:32:39.867077', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:32:39,868 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:32:39,868 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:32:39,868 - using serial LDA version on this node +2024-10-14 08:32:39,868 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:32:39,868 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:32:39,872 - -8.020 per-word bound, 259.6 perplexity estimate based on a held-out corpus of 1 documents with 2085 words +2024-10-14 08:32:39,872 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:32:39,873 - topic #0 (0.333): 0.010*"’" + 0.007*"well" + 0.007*"needs" + 0.005*"plans" + 0.005*"leaders" + 0.004*"February" + 0.004*"good" + 0.004*"practice" + 0.004*"4" + 0.004*"2022" +2024-10-14 08:32:39,873 - topic #1 (0.333): 0.020*"’" + 0.010*"well" + 0.006*"needs" + 0.006*"plans" + 0.005*"effective" + 0.005*"practice" + 0.005*"leaders" + 0.005*"4" + 0.005*"receive" + 0.005*"Bath" +2024-10-14 08:32:39,874 - topic #2 (0.333): 0.022*"’" + 0.009*"well" + 0.007*"practice" + 0.005*"East" + 0.005*"Somerset" + 0.005*"needs" + 0.005*"North" + 0.005*"clear" + 0.004*"plans" + 0.004*"leaders" +2024-10-14 08:32:39,874 - topic diff=0.744666, rho=1.000000 +2024-10-14 08:32:39,874 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:32:39.874332', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:32:40,910 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:32:40,910 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:40,911 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:32:40,911 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:40,911 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:32:40,911 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:40,911 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:32:40,911 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:40,911 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:32:40,911 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:40,912 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:32:40,912 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:52,002 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:32:52,004 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions) +2024-10-14 08:32:52,005 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-10-14T08:32:52.005155', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:32:52,006 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:32:52,006 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:32:52,006 - using serial LDA version on this node +2024-10-14 08:32:52,007 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:32:52,007 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:32:52,010 - -8.114 per-word bound, 277.1 perplexity estimate based on a held-out corpus of 1 documents with 2585 words +2024-10-14 08:32:52,010 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:32:52,012 - topic #0 (0.333): 0.022*"’" + 0.007*"ensure" + 0.006*"well" + 0.006*"good" + 0.005*"needs" + 0.005*"plans" + 0.005*"education" + 0.005*"supported" + 0.005*"Bedford" + 0.004*"26" +2024-10-14 08:32:52,012 - topic #1 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"Bedford" + 0.007*"well" + 0.005*"ensure" + 0.005*"progress" + 0.005*"plans" + 0.005*"supported" + 0.005*"need" + 0.004*"family" +2024-10-14 08:32:52,012 - topic #2 (0.333): 0.019*"’" + 0.007*"ensure" + 0.006*"needs" + 0.005*"plans" + 0.004*"Borough" + 0.004*"good" + 0.004*"supported" + 0.004*"family" + 0.004*"15" + 0.004*"progress" +2024-10-14 08:32:52,012 - topic diff=0.786860, rho=1.000000 +2024-10-14 08:32:52,012 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:32:52.012912', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:32:52,834 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:32:52,834 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:52,834 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:32:52,834 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:52,834 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:32:52,835 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:52,835 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:32:52,835 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:52,835 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:32:52,835 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:32:52,835 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:32:52,835 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:03,317 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:33:03,319 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions) +2024-10-14 08:33:03,319 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-10-14T08:33:03.319454', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:03,320 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:33:03,320 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:33:03,320 - using serial LDA version on this node +2024-10-14 08:33:03,321 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:33:03,321 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:33:03,326 - -7.966 per-word bound, 250.1 perplexity estimate based on a held-out corpus of 1 documents with 2378 words +2024-10-14 08:33:03,326 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:33:03,329 - topic #0 (0.333): 0.015*"’" + 0.010*"needs" + 0.009*"effective" + 0.007*"well" + 0.006*"plans" + 0.006*"trust" + 0.006*"Birmingham" + 0.005*"progress" + 0.005*"appropriate" + 0.005*"timely" +2024-10-14 08:33:03,329 - topic #1 (0.333): 0.014*"’" + 0.008*"needs" + 0.006*"plans" + 0.006*"well" + 0.005*"impact" + 0.005*"progress" + 0.004*"Birmingham" + 0.004*"effective" + 0.004*"ensure" + 0.004*"20" +2024-10-14 08:33:03,329 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.007*"well" + 0.006*"Birmingham" + 0.006*"3" + 0.006*"trust" + 0.006*"progress" + 0.006*"plans" + 0.005*"effective" + 0.005*"appropriate" +2024-10-14 08:33:03,329 - topic diff=0.789973, rho=1.000000 +2024-10-14 08:33:03,329 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:33:03.329914', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:04,281 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:33:04,281 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:04,282 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:33:04,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:04,282 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:33:04,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:04,282 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:33:04,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:04,282 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:33:04,283 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:04,283 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:33:04,283 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:14,762 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:33:14,767 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions) +2024-10-14 08:33:14,768 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-10-14T08:33:14.767982', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:14,770 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:33:14,770 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:33:14,771 - using serial LDA version on this node +2024-10-14 08:33:14,771 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:33:14,771 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:33:14,777 - -7.962 per-word bound, 249.4 perplexity estimate based on a held-out corpus of 1 documents with 2353 words +2024-10-14 08:33:14,778 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:33:14,780 - topic #0 (0.333): 0.014*"’" + 0.009*"practice" + 0.009*"Blackburn" + 0.008*"needs" + 0.008*"quality" + 0.006*"Darwen" + 0.006*"well" + 0.006*"means" + 0.005*"February" + 0.005*"result" +2024-10-14 08:33:14,780 - topic #1 (0.333): 0.015*"’" + 0.007*"quality" + 0.007*"impact" + 0.007*"practice" + 0.007*"Darwen" + 0.006*"well" + 0.006*"needs" + 0.005*"plans" + 0.005*"planning" + 0.005*"Blackburn" +2024-10-14 08:33:14,781 - topic #2 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"impact" + 0.005*"Darwen" + 0.005*"well" + 0.005*"Blackburn" + 0.005*"quality" + 0.004*"4" + 0.004*"24" + 0.004*"effective" +2024-10-14 08:33:14,781 - topic diff=0.820095, rho=1.000000 +2024-10-14 08:33:14,781 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:33:14.781670', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:15,676 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:33:15,677 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:15,677 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:33:15,677 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:15,681 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:33:15,681 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:15,681 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:33:15,681 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:15,686 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:33:15,686 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:15,686 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:33:15,687 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:26,784 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:33:26,786 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions) +2024-10-14 08:33:26,786 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-10-14T08:33:26.786415', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:26,787 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:33:26,787 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:33:26,787 - using serial LDA version on this node +2024-10-14 08:33:26,788 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:33:26,788 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:33:26,791 - -7.924 per-word bound, 242.9 perplexity estimate based on a held-out corpus of 1 documents with 2392 words +2024-10-14 08:33:26,791 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:33:26,793 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"Blackpool" + 0.006*"progress" + 0.005*"carers" + 0.005*"quality" + 0.005*"effective" + 0.005*"supported" + 0.005*"good" +2024-10-14 08:33:26,793 - topic #1 (0.333): 0.016*"’" + 0.010*"well" + 0.009*"needs" + 0.007*"Blackpool" + 0.006*"effective" + 0.006*"practice" + 0.006*"16" + 0.005*"plans" + 0.005*"supported" + 0.005*"experiences" +2024-10-14 08:33:26,793 - topic #2 (0.333): 0.018*"’" + 0.013*"needs" + 0.009*"well" + 0.008*"Blackpool" + 0.005*"effective" + 0.005*"plans" + 0.005*"experiences" + 0.005*"practice" + 0.004*"supported" + 0.004*"including" +2024-10-14 08:33:26,793 - topic diff=0.826983, rho=1.000000 +2024-10-14 08:33:26,793 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:33:26.793703', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:27,666 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:33:27,667 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:27,667 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:33:27,667 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:27,667 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:33:27,667 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:27,667 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:33:27,667 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:27,668 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:33:27,668 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:27,668 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:33:27,668 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:37,281 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:33:37,283 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions) +2024-10-14 08:33:37,284 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-10-14T08:33:37.284071', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:37,285 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:33:37,285 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:33:37,285 - using serial LDA version on this node +2024-10-14 08:33:37,285 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:33:37,285 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:33:37,288 - -7.911 per-word bound, 240.7 perplexity estimate based on a held-out corpus of 1 documents with 2055 words +2024-10-14 08:33:37,288 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:33:37,290 - topic #0 (0.333): 0.021*"’" + 0.010*"needs" + 0.010*"well" + 0.008*"Bolton" + 0.006*"effective" + 0.005*"supported" + 0.005*"plans" + 0.005*"planning" + 0.005*"appropriate" + 0.005*"timely" +2024-10-14 08:33:37,290 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.009*"plans" + 0.008*"Bolton" + 0.008*"well" + 0.005*"need" + 0.005*"response" + 0.005*"supported" + 0.004*"strong" + 0.004*"planning" +2024-10-14 08:33:37,290 - topic #2 (0.333): 0.019*"’" + 0.008*"plans" + 0.008*"needs" + 0.008*"Bolton" + 0.006*"need" + 0.006*"well" + 0.006*"supported" + 0.005*"15" + 0.005*"strong" + 0.005*"11" +2024-10-14 08:33:37,290 - topic diff=0.773391, rho=1.000000 +2024-10-14 08:33:37,290 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:33:37.290589', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:38,160 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:33:38,160 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:38,161 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:33:38,161 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:38,161 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:33:38,161 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:38,161 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:33:38,161 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:38,161 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:33:38,161 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:38,162 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:33:38,162 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:46,921 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:33:46,923 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions) +2024-10-14 08:33:46,923 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-10-14T08:33:46.923205', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:46,924 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:33:46,924 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:33:46,924 - using serial LDA version on this node +2024-10-14 08:33:46,924 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:33:46,924 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:33:46,928 - -8.032 per-word bound, 261.7 perplexity estimate based on a held-out corpus of 1 documents with 2004 words +2024-10-14 08:33:46,928 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:33:46,929 - topic #0 (0.333): 0.012*"’" + 0.005*"quality" + 0.005*"progress" + 0.005*"practice" + 0.004*"time" + 0.004*"impact" + 0.004*"6" + 0.004*"positive" + 0.004*"Poole" + 0.004*"17" +2024-10-14 08:33:46,929 - topic #1 (0.333): 0.022*"’" + 0.007*"practice" + 0.006*"quality" + 0.005*"progress" + 0.005*"Poole" + 0.005*"time" + 0.005*"many" + 0.005*"risk" + 0.005*"Bournemouth" + 0.005*"impact" +2024-10-14 08:33:46,929 - topic #2 (0.333): 0.016*"’" + 0.007*"quality" + 0.005*"Christchurch" + 0.005*"17" + 0.005*"practice" + 0.005*"risk" + 0.005*"progress" + 0.005*"6" + 0.004*"Bournemouth" + 0.004*"2021" +2024-10-14 08:33:46,930 - topic diff=0.763150, rho=1.000000 +2024-10-14 08:33:46,930 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:33:46.930173', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:49,017 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:33:49,018 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:49,018 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:33:49,018 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:49,018 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:33:49,018 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:49,018 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:33:49,018 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:49,018 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:33:49,018 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:49,019 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:33:49,019 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:57,817 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:33:57,819 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions) +2024-10-14 08:33:57,819 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-10-14T08:33:57.819872', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:57,820 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:33:57,820 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:33:57,821 - using serial LDA version on this node +2024-10-14 08:33:57,821 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:33:57,821 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:33:57,824 - -7.855 per-word bound, 231.5 perplexity estimate based on a held-out corpus of 1 documents with 1846 words +2024-10-14 08:33:57,824 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:33:57,825 - topic #0 (0.333): 0.019*"’" + 0.007*"needs" + 0.007*"Bracknell" + 0.006*"Forest" + 0.006*"good" + 0.006*"risk" + 0.006*"quality" + 0.005*"effective" + 0.005*"provided" + 0.005*"well" +2024-10-14 08:33:57,825 - topic #1 (0.333): 0.013*"’" + 0.006*"Forest" + 0.006*"quality" + 0.006*"Bracknell" + 0.005*"good" + 0.005*"provided" + 0.005*"risk" + 0.004*"impact" + 0.004*"progress" + 0.004*"leaders" +2024-10-14 08:33:57,826 - topic #2 (0.333): 0.016*"’" + 0.007*"needs" + 0.007*"risk" + 0.007*"Forest" + 0.007*"effective" + 0.007*"Bracknell" + 0.006*"plans" + 0.006*"progress" + 0.006*"well" + 0.006*"good" +2024-10-14 08:33:57,826 - topic diff=0.768572, rho=1.000000 +2024-10-14 08:33:57,826 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:33:57.826311', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:33:58,653 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:33:58,653 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:58,653 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:33:58,653 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:58,653 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:33:58,653 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:58,654 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:33:58,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:58,654 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:33:58,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:33:58,654 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:33:58,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:08,639 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:34:08,641 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions) +2024-10-14 08:34:08,641 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)", 'datetime': '2024-10-14T08:34:08.641603', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:08,642 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:34:08,642 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:34:08,642 - using serial LDA version on this node +2024-10-14 08:34:08,643 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:34:08,643 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:34:08,646 - -8.090 per-word bound, 272.5 perplexity estimate based on a held-out corpus of 1 documents with 2249 words +2024-10-14 08:34:08,646 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:34:08,648 - topic #0 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"Hove" + 0.006*"needs" + 0.006*"Brighton" + 0.006*"practice" + 0.006*"relationships" + 0.005*"experiences" + 0.005*"progress" + 0.005*"PAs" +2024-10-14 08:34:08,648 - topic #1 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"Brighton" + 0.006*"practice" + 0.006*"well" + 0.005*"progress" + 0.005*"Hove" + 0.005*"receive" + 0.005*"need" + 0.004*"2024" +2024-10-14 08:34:08,648 - topic #2 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"Hove" + 0.006*"needs" + 0.006*"practice" + 0.006*"experiences" + 0.005*"Brighton" + 0.005*"relationships" + 0.005*"progress" + 0.004*"carers" +2024-10-14 08:34:08,648 - topic diff=0.742991, rho=1.000000 +2024-10-14 08:34:08,648 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:34:08.648829', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:09,571 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:34:09,571 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:09,571 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:34:09,572 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:09,572 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:34:09,572 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:09,572 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-10-14 08:34:09,572 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:09,572 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:34:09,572 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:09,572 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:34:09,572 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:22,457 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:34:22,459 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions) +2024-10-14 08:34:22,459 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-10-14T08:34:22.459699', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:22,460 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:34:22,461 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:34:22,461 - using serial LDA version on this node +2024-10-14 08:34:22,461 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:34:22,461 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:34:22,465 - -8.029 per-word bound, 261.3 perplexity estimate based on a held-out corpus of 1 documents with 2647 words +2024-10-14 08:34:22,465 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:34:22,466 - topic #0 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"Bristol" + 0.007*"good" + 0.006*"health" + 0.006*"progress" + 0.005*"16" + 0.005*"leaders" + 0.005*"27" +2024-10-14 08:34:22,467 - topic #1 (0.333): 0.018*"’" + 0.008*"good" + 0.008*"well" + 0.008*"Bristol" + 0.007*"needs" + 0.006*"risk" + 0.005*"need" + 0.005*"receive" + 0.005*"progress" + 0.004*"plans" +2024-10-14 08:34:22,467 - topic #2 (0.333): 0.021*"’" + 0.010*"well" + 0.008*"good" + 0.007*"Bristol" + 0.007*"needs" + 0.005*"always" + 0.005*"progress" + 0.005*"health" + 0.005*"arrangements" + 0.004*"plans" +2024-10-14 08:34:22,467 - topic diff=0.813628, rho=1.000000 +2024-10-14 08:34:22,467 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:34:22.467438', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:23,306 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:34:23,306 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:23,306 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:34:23,306 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:23,307 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:34:23,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:23,307 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:34:23,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:23,307 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:34:23,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:23,307 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:34:23,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:33,752 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:34:33,754 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions) +2024-10-14 08:34:33,755 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-10-14T08:34:33.755017', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:33,756 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:34:33,756 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:34:33,756 - using serial LDA version on this node +2024-10-14 08:34:33,757 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:34:33,757 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:34:33,761 - -8.239 per-word bound, 302.2 perplexity estimate based on a held-out corpus of 1 documents with 2404 words +2024-10-14 08:34:33,761 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:34:33,762 - topic #0 (0.333): 0.009*"’" + 0.006*"plans" + 0.005*"number" + 0.004*"17" + 0.004*"teams" + 0.004*"Buckinghamshire" + 0.004*"6" + 0.004*"many" + 0.004*"protection" + 0.004*"practice" +2024-10-14 08:34:33,762 - topic #1 (0.333): 0.010*"’" + 0.005*"17" + 0.004*"plans" + 0.004*"number" + 0.004*"protection" + 0.004*"6" + 0.004*"Buckinghamshire" + 0.004*"December" + 0.003*"impact" + 0.003*"needs" +2024-10-14 08:34:33,762 - topic #2 (0.333): 0.019*"’" + 0.005*"Buckinghamshire" + 0.005*"plans" + 0.005*"number" + 0.004*"many" + 0.004*"17" + 0.004*"2021" + 0.004*"December" + 0.004*"6" + 0.004*"protection" +2024-10-14 08:34:33,763 - topic diff=0.729880, rho=1.000000 +2024-10-14 08:34:33,763 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:34:33.763146', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:34,653 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:34:34,653 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:34,654 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:34:34,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:34,654 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:34:34,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:34,654 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:34:34,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:34,654 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:34:34,654 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:34,655 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:34:34,655 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:44,705 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:34:44,707 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions) +2024-10-14 08:34:44,707 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-10-14T08:34:44.707683', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:44,708 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:34:44,708 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:34:44,709 - using serial LDA version on this node +2024-10-14 08:34:44,709 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:34:44,709 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:34:44,712 - -7.976 per-word bound, 251.7 perplexity estimate based on a held-out corpus of 1 documents with 2427 words +2024-10-14 08:34:44,713 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:34:44,714 - topic #0 (0.333): 0.014*"’" + 0.008*"2021" + 0.006*"team" + 0.006*"needs" + 0.005*"risk" + 0.005*"impact" + 0.005*"practice" + 0.005*"need" + 0.005*"quality" + 0.004*"protection" +2024-10-14 08:34:44,714 - topic #1 (0.333): 0.007*"’" + 0.006*"protection" + 0.006*"needs" + 0.005*"practice" + 0.005*"team" + 0.005*"2021" + 0.005*"quality" + 0.004*"delay" + 0.004*"impact" + 0.004*"25" +2024-10-14 08:34:44,714 - topic #2 (0.333): 0.011*"’" + 0.008*"protection" + 0.007*"needs" + 0.006*"need" + 0.006*"practice" + 0.006*"2021" + 0.005*"Bury" + 0.005*"impact" + 0.005*"team" + 0.005*"risk" +2024-10-14 08:34:44,714 - topic diff=0.811684, rho=1.000000 +2024-10-14 08:34:44,714 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:34:44.714857', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:45,595 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:34:45,596 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:45,596 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:34:45,596 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:45,596 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:34:45,596 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:45,596 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:34:45,596 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:45,597 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:34:45,597 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:45,597 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:34:45,597 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:55,877 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:34:55,879 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions) +2024-10-14 08:34:55,879 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-10-14T08:34:55.879666', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:55,880 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:34:55,880 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:34:55,881 - using serial LDA version on this node +2024-10-14 08:34:55,881 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:34:55,881 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:34:55,885 - -8.041 per-word bound, 263.3 perplexity estimate based on a held-out corpus of 1 documents with 2389 words +2024-10-14 08:34:55,885 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:34:55,886 - topic #0 (0.333): 0.017*"’" + 0.008*"Calderdale" + 0.006*"ensure" + 0.005*"needs" + 0.005*"progress" + 0.005*"19" + 0.005*"risk" + 0.005*"plans" + 0.005*"well" + 0.004*"understand" +2024-10-14 08:34:55,886 - topic #1 (0.333): 0.020*"’" + 0.012*"needs" + 0.007*"well" + 0.007*"Calderdale" + 0.007*"plans" + 0.006*"progress" + 0.005*"ensure" + 0.005*"risk" + 0.005*"PAs" + 0.004*"parents" +2024-10-14 08:34:55,886 - topic #2 (0.333): 0.023*"’" + 0.011*"needs" + 0.010*"Calderdale" + 0.006*"well" + 0.006*"ensure" + 0.005*"plans" + 0.005*"progress" + 0.005*"parents" + 0.005*"risk" + 0.005*"information" +2024-10-14 08:34:55,886 - topic diff=0.787479, rho=1.000000 +2024-10-14 08:34:55,887 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:34:55.886992', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:34:56,689 - Inspection date 2024-02-19 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:34:56,689 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:56,689 - Inspection date 2024-02-19 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:34:56,690 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:56,690 - Inspection date 2024-02-19 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:34:56,690 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:56,690 - Inspection date 2024-02-19 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:34:56,690 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:56,690 - Inspection date 2024-02-19 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:34:56,690 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:34:56,691 - Inspection date 2024-02-19 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:34:56,691 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:08,177 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:35:08,179 - built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions) +2024-10-14 08:35:08,179 - Dictionary lifecycle event {'msg': "built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions)", 'datetime': '2024-10-14T08:35:08.179939', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:08,180 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:35:08,181 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:35:08,181 - using serial LDA version on this node +2024-10-14 08:35:08,181 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:35:08,181 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:35:08,185 - -8.009 per-word bound, 257.5 perplexity estimate based on a held-out corpus of 1 documents with 2339 words +2024-10-14 08:35:08,185 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:35:08,186 - topic #0 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"leaders" + 0.005*"Cambridgeshire" + 0.005*"effective" + 0.004*"However" + 0.004*"strong" + 0.004*"leadership" + 0.004*"good" + 0.004*"15" +2024-10-14 08:35:08,186 - topic #1 (0.333): 0.017*"’" + 0.007*"Cambridgeshire" + 0.006*"needs" + 0.006*"good" + 0.006*"leaders" + 0.005*"well" + 0.005*"15" + 0.005*"practice" + 0.005*"4" + 0.005*"quality" +2024-10-14 08:35:08,186 - topic #2 (0.333): 0.019*"’" + 0.007*"leaders" + 0.007*"needs" + 0.006*"effective" + 0.006*"Cambridgeshire" + 0.005*"good" + 0.005*"response" + 0.005*"quality" + 0.005*"well" + 0.005*"practice" +2024-10-14 08:35:08,186 - topic diff=0.788921, rho=1.000000 +2024-10-14 08:35:08,187 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:35:08.187004', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:09,072 - Inspection date 2024-03-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:35:09,072 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:09,073 - Inspection date 2024-03-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:35:09,073 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:09,073 - Inspection date 2024-03-04 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:35:09,073 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:09,073 - Inspection date 2024-03-04 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:35:09,073 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:09,073 - Inspection date 2024-03-04 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:35:09,073 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:09,073 - Inspection date 2024-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:35:09,073 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:18,757 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:35:18,759 - built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) +2024-10-14 08:35:18,759 - Dictionary lifecycle event {'msg': "built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-10-14T08:35:18.759836', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:18,760 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:35:18,760 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:35:18,761 - using serial LDA version on this node +2024-10-14 08:35:18,761 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:35:18,761 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:35:18,764 - -7.964 per-word bound, 249.7 perplexity estimate based on a held-out corpus of 1 documents with 2199 words +2024-10-14 08:35:18,765 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:35:18,766 - topic #0 (0.333): 0.014*"’" + 0.010*"well" + 0.009*"needs" + 0.006*"good" + 0.006*"need" + 0.006*"plans" + 0.005*"carers" + 0.005*"Central" + 0.005*"education" + 0.005*"progress" +2024-10-14 08:35:18,766 - topic #1 (0.333): 0.018*"’" + 0.009*"well" + 0.007*"need" + 0.006*"needs" + 0.006*"plans" + 0.006*"carers" + 0.005*"effective" + 0.005*"number" + 0.005*"good" + 0.005*"progress" +2024-10-14 08:35:18,766 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.007*"good" + 0.006*"needs" + 0.006*"progress" + 0.006*"need" + 0.006*"carers" + 0.005*"Central" + 0.005*"plans" + 0.005*"Bedfordshire" +2024-10-14 08:35:18,766 - topic diff=0.782364, rho=1.000000 +2024-10-14 08:35:18,766 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:35:18.766901', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:19,561 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:35:19,561 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:19,561 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:35:19,561 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:19,562 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:35:19,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:19,562 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:35:19,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:19,562 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:35:19,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:19,562 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:35:19,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:30,289 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:35:30,292 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions) +2024-10-14 08:35:30,292 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)", 'datetime': '2024-10-14T08:35:30.292238', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:30,293 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:35:30,293 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:35:30,293 - using serial LDA version on this node +2024-10-14 08:35:30,293 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:35:30,294 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:35:30,297 - -7.978 per-word bound, 252.2 perplexity estimate based on a held-out corpus of 1 documents with 2272 words +2024-10-14 08:35:30,297 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:35:30,298 - topic #0 (0.333): 0.012*"’" + 0.008*"2024" + 0.007*"plans" + 0.007*"needs" + 0.006*"practice" + 0.006*"well" + 0.006*"quality" + 0.005*"need" + 0.005*"Cheshire" + 0.005*"vulnerable" +2024-10-14 08:35:30,298 - topic #1 (0.333): 0.013*"’" + 0.008*"2024" + 0.007*"needs" + 0.007*"well" + 0.007*"practice" + 0.006*"effective" + 0.006*"quality" + 0.006*"plans" + 0.005*"Cheshire" + 0.005*"means" +2024-10-14 08:35:30,299 - topic #2 (0.333): 0.013*"’" + 0.007*"needs" + 0.007*"2024" + 0.007*"plans" + 0.006*"East" + 0.006*"leaders" + 0.006*"well" + 0.006*"Cheshire" + 0.006*"practice" + 0.006*"quality" +2024-10-14 08:35:30,299 - topic diff=0.775923, rho=1.000000 +2024-10-14 08:35:30,299 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:35:30.299331', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:31,222 - Inspection date 2024-02-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:35:31,222 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:31,222 - Inspection date 2024-02-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:35:31,222 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:31,222 - Inspection date 2024-02-26 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:35:31,222 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:31,222 - Inspection date 2024-02-26 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:35:31,223 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:31,223 - Inspection date 2024-02-26 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:35:31,223 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:31,223 - Inspection date 2024-02-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:35:31,223 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:41,574 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:35:41,576 - built Dictionary<1010 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2203 corpus positions) +2024-10-14 08:35:41,576 - Dictionary lifecycle event {'msg': "built Dictionary<1010 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2203 corpus positions)", 'datetime': '2024-10-14T08:35:41.576692', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:41,577 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:35:41,577 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:35:41,578 - using serial LDA version on this node +2024-10-14 08:35:41,578 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:35:41,578 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:35:41,581 - -7.931 per-word bound, 244.1 perplexity estimate based on a held-out corpus of 1 documents with 2203 words +2024-10-14 08:35:41,581 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:35:41,583 - topic #0 (0.333): 0.017*"’" + 0.006*"plans" + 0.006*"needs" + 0.006*"progress" + 0.006*"19" + 0.005*"West" + 0.005*"Chester" + 0.005*"access" + 0.005*"Cheshire" + 0.005*"well" +2024-10-14 08:35:41,583 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.005*"impact" + 0.005*"plans" + 0.005*"needs" + 0.005*"progress" + 0.005*"leaders" + 0.004*"protection" + 0.004*"15" + 0.004*"experiences" +2024-10-14 08:35:41,583 - topic #2 (0.333): 0.016*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"progress" + 0.005*"good" + 0.005*"2024" + 0.005*"impact" + 0.005*"meetings" + 0.005*"practice" + 0.005*"15" +2024-10-14 08:35:41,583 - topic diff=0.786543, rho=1.000000 +2024-10-14 08:35:41,583 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:35:41.583751', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:42,425 - Inspection date 2024-07-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:35:42,426 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:42,426 - Inspection date 2024-07-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:35:42,426 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:42,426 - Inspection date 2024-07-15 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:35:42,426 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:42,426 - Inspection date 2024-07-15 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:35:42,427 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:42,427 - Inspection date 2024-07-15 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:35:42,427 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:42,427 - Inspection date 2024-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:35:42,427 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:53,235 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:35:53,237 - built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions) +2024-10-14 08:35:53,237 - Dictionary lifecycle event {'msg': "built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions)", 'datetime': '2024-10-14T08:35:53.237759', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:53,238 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:35:53,238 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:35:53,239 - using serial LDA version on this node +2024-10-14 08:35:53,239 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:35:53,239 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:35:53,243 - -8.049 per-word bound, 264.8 perplexity estimate based on a held-out corpus of 1 documents with 2639 words +2024-10-14 08:35:53,243 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:35:53,244 - topic #0 (0.333): 0.023*"’" + 0.007*"plans" + 0.006*"needs" + 0.005*"need" + 0.005*"quality" + 0.005*"impact" + 0.005*"practice" + 0.005*"Bradford" + 0.005*"risk" + 0.005*"City" +2024-10-14 08:35:53,244 - topic #1 (0.333): 0.013*"’" + 0.006*"plans" + 0.004*"need" + 0.004*"2" + 0.004*"lack" + 0.004*"◼" + 0.004*"changes" + 0.004*"21" + 0.004*"December" + 0.004*"many" +2024-10-14 08:35:53,244 - topic #2 (0.333): 0.023*"’" + 0.006*"Bradford" + 0.006*"plans" + 0.005*"2" + 0.005*"2022" + 0.005*"Borough" + 0.004*"needs" + 0.004*"December" + 0.004*"risk" + 0.004*"impact" +2024-10-14 08:35:53,245 - topic diff=0.812883, rho=1.000000 +2024-10-14 08:35:53,245 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:35:53.245159', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:35:54,122 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:35:54,122 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:54,122 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:35:54,123 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:54,123 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:35:54,123 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:54,123 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:35:54,123 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:54,123 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:35:54,123 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:35:54,123 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:35:54,124 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:02,233 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:36:02,235 - built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions) +2024-10-14 08:36:02,235 - Dictionary lifecycle event {'msg': "built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions)", 'datetime': '2024-10-14T08:36:02.235261', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:02,236 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:36:02,236 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:36:02,236 - using serial LDA version on this node +2024-10-14 08:36:02,237 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:36:02,237 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:36:02,240 - -7.840 per-word bound, 229.1 perplexity estimate based on a held-out corpus of 1 documents with 1767 words +2024-10-14 08:36:02,240 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:36:02,241 - topic #0 (0.333): 0.012*"’" + 0.011*"needs" + 0.011*"well" + 0.008*"ensure" + 0.006*"effective" + 0.006*"progress" + 0.006*"clear" + 0.005*"supported" + 0.005*"practice" + 0.005*"plans" +2024-10-14 08:36:02,241 - topic #1 (0.333): 0.011*"needs" + 0.010*"’" + 0.008*"well" + 0.007*"ensure" + 0.007*"effective" + 0.006*"clear" + 0.005*"individual" + 0.005*"within" + 0.004*"plans" + 0.004*"understanding" +2024-10-14 08:36:02,241 - topic #2 (0.333): 0.012*"’" + 0.012*"needs" + 0.010*"well" + 0.009*"ensure" + 0.007*"progress" + 0.007*"effective" + 0.007*"good" + 0.006*"clear" + 0.006*"plans" + 0.006*"experiences" +2024-10-14 08:36:02,241 - topic diff=0.751393, rho=1.000000 +2024-10-14 08:36:02,242 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:36:02.242043', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:03,291 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:36:03,291 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:03,292 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:36:03,292 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:03,292 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:36:03,292 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:03,292 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:36:03,292 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:03,292 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:36:03,292 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:03,292 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:36:03,293 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:12,773 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:36:12,775 - built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions) +2024-10-14 08:36:12,775 - Dictionary lifecycle event {'msg': "built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions)", 'datetime': '2024-10-14T08:36:12.775389', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:12,776 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:36:12,776 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:36:12,776 - using serial LDA version on this node +2024-10-14 08:36:12,777 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:36:12,777 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:36:12,780 - -7.907 per-word bound, 240.1 perplexity estimate based on a held-out corpus of 1 documents with 2281 words +2024-10-14 08:36:12,780 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:36:12,781 - topic #0 (0.333): 0.014*"’" + 0.008*"well" + 0.007*"effective" + 0.007*"Wakefield" + 0.007*"good" + 0.007*"quality" + 0.007*"November" + 0.006*"progress" + 0.006*"leaders" + 0.005*"19" +2024-10-14 08:36:12,782 - topic #1 (0.333): 0.014*"’" + 0.007*"November" + 0.007*"leaders" + 0.006*"well" + 0.006*"quality" + 0.006*"practice" + 0.005*"good" + 0.005*"progress" + 0.005*"Wakefield" + 0.005*"plans" +2024-10-14 08:36:12,782 - topic #2 (0.333): 0.021*"’" + 0.010*"Wakefield" + 0.008*"quality" + 0.008*"leaders" + 0.007*"November" + 0.007*"well" + 0.007*"effective" + 0.007*"plans" + 0.006*"good" + 0.005*"receive" +2024-10-14 08:36:12,782 - topic diff=0.804940, rho=1.000000 +2024-10-14 08:36:12,782 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:36:12.782390', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:13,640 - Inspection date 2021-11-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:36:13,640 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:13,640 - Inspection date 2021-11-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:36:13,640 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:13,641 - Inspection date 2021-11-08 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:36:13,641 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:13,641 - Inspection date 2021-11-08 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:36:13,641 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:13,641 - Inspection date 2021-11-08 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:36:13,641 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:13,641 - Inspection date 2021-11-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:36:13,641 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:22,683 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:36:22,685 - built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions) +2024-10-14 08:36:22,685 - Dictionary lifecycle event {'msg': "built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions)", 'datetime': '2024-10-14T08:36:22.685462', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:22,686 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:36:22,686 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:36:22,686 - using serial LDA version on this node +2024-10-14 08:36:22,686 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:36:22,687 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:36:22,690 - -7.865 per-word bound, 233.1 perplexity estimate based on a held-out corpus of 1 documents with 1855 words +2024-10-14 08:36:22,690 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:36:22,691 - topic #0 (0.333): 0.014*"’" + 0.007*"needs" + 0.007*"March" + 0.006*"quality" + 0.005*"However" + 0.005*"effective" + 0.005*"York" + 0.005*"education" + 0.005*"ensure" + 0.005*"18" +2024-10-14 08:36:22,691 - topic #1 (0.333): 0.014*"’" + 0.007*"effective" + 0.007*"March" + 0.006*"needs" + 0.006*"quality" + 0.006*"York" + 0.005*"7" + 0.005*"training" + 0.005*"However" + 0.005*"plans" +2024-10-14 08:36:22,691 - topic #2 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"quality" + 0.007*"March" + 0.006*"ensure" + 0.005*"effective" + 0.005*"plans" + 0.005*"need" + 0.005*"However" + 0.005*"well" +2024-10-14 08:36:22,691 - topic diff=0.762055, rho=1.000000 +2024-10-14 08:36:22,691 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:36:22.691910', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:23,525 - Inspection date 2022-03-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:36:23,525 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:23,525 - Inspection date 2022-03-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:36:23,525 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:23,525 - Inspection date 2022-03-07 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:36:23,525 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:23,525 - Inspection date 2022-03-07 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:36:23,525 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:23,526 - Inspection date 2022-03-07 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:36:23,526 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:23,526 - Inspection date 2022-03-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:36:23,526 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:33,192 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:36:33,194 - built Dictionary<1053 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2351 corpus positions) +2024-10-14 08:36:33,194 - Dictionary lifecycle event {'msg': "built Dictionary<1053 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2351 corpus positions)", 'datetime': '2024-10-14T08:36:33.194539', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:33,195 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:36:33,195 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:36:33,195 - using serial LDA version on this node +2024-10-14 08:36:33,196 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:36:33,196 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:36:33,199 - -7.958 per-word bound, 248.7 perplexity estimate based on a held-out corpus of 1 documents with 2351 words +2024-10-14 08:36:33,199 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:36:33,201 - topic #0 (0.333): 0.012*"’" + 0.007*"needs" + 0.007*"Cornwall" + 0.006*"need" + 0.006*"receive" + 0.005*"effective" + 0.004*"well" + 0.004*"5" + 0.004*"progress" + 0.004*"risk" +2024-10-14 08:36:33,201 - topic #1 (0.333): 0.020*"’" + 0.012*"needs" + 0.007*"need" + 0.007*"Cornwall" + 0.006*"well" + 0.006*"oversight" + 0.005*"effective" + 0.005*"1" + 0.005*"2024" + 0.005*"receive" +2024-10-14 08:36:33,201 - topic #2 (0.333): 0.021*"’" + 0.009*"Cornwall" + 0.008*"well" + 0.007*"need" + 0.006*"needs" + 0.005*"progress" + 0.005*"receive" + 0.005*"5" + 0.004*"approach" + 0.004*"leaders" +2024-10-14 08:36:33,201 - topic diff=0.794861, rho=1.000000 +2024-10-14 08:36:33,201 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:36:33.201904', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:34,170 - Inspection date 2024-07-01 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:36:34,170 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:34,170 - Inspection date 2024-07-01 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:36:34,170 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:34,171 - Inspection date 2024-07-01 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:36:34,171 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:34,171 - Inspection date 2024-07-01 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:36:34,171 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:34,171 - Inspection date 2024-07-01 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:36:34,171 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:34,171 - Inspection date 2024-07-01 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:36:34,171 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:41,911 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:36:41,913 - built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions) +2024-10-14 08:36:41,913 - Dictionary lifecycle event {'msg': "built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions)", 'datetime': '2024-10-14T08:36:41.913541', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:41,914 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:36:41,914 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:36:41,914 - using serial LDA version on this node +2024-10-14 08:36:41,914 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:36:41,914 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:36:41,917 - -7.690 per-word bound, 206.5 perplexity estimate based on a held-out corpus of 1 documents with 1521 words +2024-10-14 08:36:41,917 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:36:41,918 - topic #0 (0.333): 0.015*"’" + 0.011*"Isles" + 0.009*"Scilly" + 0.008*"information" + 0.007*"need" + 0.006*"practice" + 0.006*"needs" + 0.006*"place" + 0.006*"protection" + 0.005*"quality" +2024-10-14 08:36:41,919 - topic #1 (0.333): 0.023*"’" + 0.012*"Isles" + 0.012*"Scilly" + 0.010*"information" + 0.009*"practice" + 0.008*"need" + 0.007*"needs" + 0.007*"protection" + 0.006*"place" + 0.006*"quality" +2024-10-14 08:36:41,919 - topic #2 (0.333): 0.022*"’" + 0.013*"Scilly" + 0.012*"Isles" + 0.009*"practice" + 0.009*"information" + 0.008*"need" + 0.007*"protection" + 0.007*"needs" + 0.006*"quality" + 0.006*"risks" +2024-10-14 08:36:41,919 - topic diff=0.760563, rho=1.000000 +2024-10-14 08:36:41,919 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:36:41.919400', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:42,836 - Inspection date 2023-07-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:36:42,836 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:42,836 - Inspection date 2023-07-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:36:42,836 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:42,836 - Inspection date 2023-07-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:36:42,837 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:42,837 - Inspection date 2023-07-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:36:42,837 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:42,837 - Inspection date 2023-07-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:36:42,837 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:42,837 - Inspection date 2023-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:36:42,837 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:53,997 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:36:53,999 - built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions) +2024-10-14 08:36:53,999 - Dictionary lifecycle event {'msg': "built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions)", 'datetime': '2024-10-14T08:36:53.999441', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:54,000 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:36:54,000 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:36:54,000 - using serial LDA version on this node +2024-10-14 08:36:54,001 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:36:54,001 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:36:54,004 - -7.850 per-word bound, 230.7 perplexity estimate based on a held-out corpus of 1 documents with 2074 words +2024-10-14 08:36:54,004 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:36:54,005 - topic #0 (0.333): 0.019*"’" + 0.010*"Coventry" + 0.008*"well" + 0.007*"plans" + 0.006*"supported" + 0.006*"need" + 0.006*"family" + 0.006*"needs" + 0.005*"strong" + 0.005*"2022" +2024-10-14 08:36:54,005 - topic #1 (0.333): 0.020*"’" + 0.010*"needs" + 0.008*"supported" + 0.008*"well" + 0.008*"Coventry" + 0.006*"plans" + 0.006*"strong" + 0.006*"family" + 0.005*"1" + 0.004*"2022" +2024-10-14 08:36:54,005 - topic #2 (0.333): 0.019*"’" + 0.009*"well" + 0.006*"needs" + 0.006*"Coventry" + 0.006*"supported" + 0.005*"family" + 0.005*"strong" + 0.005*"need" + 0.004*"plans" + 0.004*"1" +2024-10-14 08:36:54,006 - topic diff=0.797633, rho=1.000000 +2024-10-14 08:36:54,006 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:36:54.006141', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:36:54,941 - Inspection date 2022-06-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:36:54,941 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:54,942 - Inspection date 2022-06-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:36:54,942 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:54,942 - Inspection date 2022-06-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:36:54,942 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:54,943 - Inspection date 2022-06-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:36:54,943 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:54,943 - Inspection date 2022-06-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:36:54,943 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:36:54,944 - Inspection date 2022-06-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:36:54,944 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:07,791 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:37:07,794 - built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions) +2024-10-14 08:37:07,794 - Dictionary lifecycle event {'msg': "built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions)", 'datetime': '2024-10-14T08:37:07.794475', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:07,795 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:37:07,795 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:37:07,796 - using serial LDA version on this node +2024-10-14 08:37:07,796 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:37:07,796 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:37:07,800 - -8.084 per-word bound, 271.4 perplexity estimate based on a held-out corpus of 1 documents with 2653 words +2024-10-14 08:37:07,800 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:37:07,801 - topic #0 (0.333): 0.022*"’" + 0.008*"well" + 0.007*"needs" + 0.006*"practice" + 0.006*"leaders" + 0.006*"effective" + 0.005*"Darlington" + 0.005*"October" + 0.005*"supported" + 0.004*"education" +2024-10-14 08:37:07,802 - topic #1 (0.333): 0.018*"’" + 0.008*"October" + 0.007*"well" + 0.007*"Darlington" + 0.006*"practice" + 0.006*"needs" + 0.006*"leaders" + 0.005*"quality" + 0.005*"plans" + 0.005*"education" +2024-10-14 08:37:07,802 - topic #2 (0.333): 0.015*"’" + 0.008*"well" + 0.008*"leaders" + 0.007*"needs" + 0.006*"October" + 0.005*"Darlington" + 0.005*"practice" + 0.005*"10" + 0.005*"effective" + 0.004*"quality" +2024-10-14 08:37:07,802 - topic diff=0.798647, rho=1.000000 +2024-10-14 08:37:07,802 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:37:07.802440', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:08,704 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:37:08,704 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:08,704 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:37:08,705 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:08,705 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:37:08,705 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:08,705 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:37:08,705 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:08,705 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:37:08,705 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:08,705 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:37:08,705 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:19,646 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:37:19,650 - built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions) +2024-10-14 08:37:19,650 - Dictionary lifecycle event {'msg': "built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions)", 'datetime': '2024-10-14T08:37:19.650688', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:19,653 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:37:19,653 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:37:19,653 - using serial LDA version on this node +2024-10-14 08:37:19,653 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:37:19,654 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:37:19,660 - -8.040 per-word bound, 263.2 perplexity estimate based on a held-out corpus of 1 documents with 2396 words +2024-10-14 08:37:19,660 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:37:19,663 - topic #0 (0.333): 0.024*"’" + 0.010*"needs" + 0.007*"Derby" + 0.006*"quality" + 0.006*"progress" + 0.006*"good" + 0.006*"leaders" + 0.006*"well" + 0.006*"need" + 0.006*"receive" +2024-10-14 08:37:19,663 - topic #1 (0.333): 0.022*"’" + 0.008*"Derby" + 0.008*"needs" + 0.007*"receive" + 0.006*"quality" + 0.006*"progress" + 0.006*"plans" + 0.005*"appropriate" + 0.005*"need" + 0.005*"good" +2024-10-14 08:37:19,666 - topic #2 (0.333): 0.015*"’" + 0.010*"needs" + 0.007*"quality" + 0.006*"Derby" + 0.005*"plans" + 0.005*"receive" + 0.004*"well" + 0.004*"leaders" + 0.004*"need" + 0.004*"appropriate" +2024-10-14 08:37:19,666 - topic diff=0.775395, rho=1.000000 +2024-10-14 08:37:19,666 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:37:19.666429', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:20,581 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:37:20,581 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:20,582 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:37:20,582 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:20,582 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:37:20,582 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:20,582 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:37:20,582 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:20,583 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:37:20,583 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:20,583 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:37:20,583 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:29,416 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:37:29,418 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions) +2024-10-14 08:37:29,418 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions)", 'datetime': '2024-10-14T08:37:29.418281', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:29,419 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:37:29,419 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:37:29,419 - using serial LDA version on this node +2024-10-14 08:37:29,419 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:37:29,420 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:37:29,423 - -8.041 per-word bound, 263.4 perplexity estimate based on a held-out corpus of 1 documents with 2035 words +2024-10-14 08:37:29,423 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:37:29,424 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.005*"plans" + 0.005*"Derbyshire" + 0.005*"positive" + 0.004*"health" + 0.004*"good" + 0.004*"10" + 0.004*"November" + 0.004*"needs" +2024-10-14 08:37:29,424 - topic #1 (0.333): 0.017*"’" + 0.008*"well" + 0.008*"Derbyshire" + 0.005*"needs" + 0.005*"positive" + 0.005*"plans" + 0.005*"education" + 0.005*"10" + 0.004*"2023" + 0.004*"progress" +2024-10-14 08:37:29,425 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.007*"Derbyshire" + 0.005*"need" + 0.005*"effective" + 0.005*"leaders" + 0.004*"number" + 0.004*"plans" + 0.004*"education" + 0.004*"good" +2024-10-14 08:37:29,425 - topic diff=0.738010, rho=1.000000 +2024-10-14 08:37:29,425 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:37:29.425229', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:30,427 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:37:30,427 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:30,427 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:37:30,427 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:30,427 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:37:30,428 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:30,428 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:37:30,428 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:30,428 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:37:30,428 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:30,428 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:37:30,428 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:41,274 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:37:41,276 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions) +2024-10-14 08:37:41,276 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions)", 'datetime': '2024-10-14T08:37:41.276958', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:41,278 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:37:41,278 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:37:41,278 - using serial LDA version on this node +2024-10-14 08:37:41,278 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:37:41,278 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:37:41,282 - -8.144 per-word bound, 283.0 perplexity estimate based on a held-out corpus of 1 documents with 2313 words +2024-10-14 08:37:41,282 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:37:41,284 - topic #0 (0.333): 0.010*"’" + 0.006*"well" + 0.005*"health" + 0.005*"progress" + 0.005*"risk" + 0.005*"leaders" + 0.004*"case" + 0.004*"quality" + 0.004*"plans" + 0.004*"protection" +2024-10-14 08:37:41,284 - topic #1 (0.333): 0.007*"’" + 0.006*"well" + 0.005*"leaders" + 0.004*"Devon" + 0.004*"living" + 0.004*"protection" + 0.004*"health" + 0.004*"time" + 0.004*"risk" + 0.004*"progress" +2024-10-14 08:37:41,284 - topic #2 (0.333): 0.011*"’" + 0.005*"well" + 0.005*"risk" + 0.004*"health" + 0.004*"risks" + 0.004*"areas" + 0.004*"progress" + 0.004*"leaders" + 0.004*"right" + 0.003*"practice" +2024-10-14 08:37:41,284 - topic diff=0.728457, rho=1.000000 +2024-10-14 08:37:41,284 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:37:41.284725', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:42,257 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:37:42,257 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:42,258 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:37:42,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:42,258 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:37:42,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:42,258 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:37:42,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:42,258 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:37:42,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:42,259 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:37:42,259 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:52,802 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:37:52,804 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions) +2024-10-14 08:37:52,804 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions)", 'datetime': '2024-10-14T08:37:52.804703', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:52,805 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:37:52,805 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:37:52,806 - using serial LDA version on this node +2024-10-14 08:37:52,806 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:37:52,806 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:37:52,810 - -8.114 per-word bound, 277.0 perplexity estimate based on a held-out corpus of 1 documents with 2429 words +2024-10-14 08:37:52,810 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:37:52,811 - topic #0 (0.333): 0.019*"’" + 0.006*"well" + 0.005*"many" + 0.005*"14" + 0.005*"information" + 0.004*"leaders" + 0.004*"progress" + 0.004*"Doncaster" + 0.004*"protection" + 0.004*"Trust" +2024-10-14 08:37:52,811 - topic #1 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"Doncaster" + 0.005*"leaders" + 0.005*"records" + 0.005*"many" + 0.004*"progress" + 0.004*"arrangements" + 0.004*"quality" + 0.004*"2022" +2024-10-14 08:37:52,812 - topic #2 (0.333): 0.021*"’" + 0.007*"Doncaster" + 0.006*"well" + 0.006*"quality" + 0.005*"plans" + 0.005*"oversight" + 0.005*"progress" + 0.005*"records" + 0.005*"leaders" + 0.004*"information" +2024-10-14 08:37:52,812 - topic diff=0.769365, rho=1.000000 +2024-10-14 08:37:52,812 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:37:52.812283', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:37:54,645 - Inspection date 2022-02-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:37:54,646 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:54,646 - Inspection date 2022-02-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:37:54,646 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:54,646 - Inspection date 2022-02-14 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:37:54,646 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:54,646 - Inspection date 2022-02-14 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:37:54,646 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:54,647 - Inspection date 2022-02-14 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:37:54,647 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:37:54,647 - Inspection date 2022-02-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:37:54,647 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:02,490 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:38:02,492 - built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions) +2024-10-14 08:38:02,492 - Dictionary lifecycle event {'msg': "built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions)", 'datetime': '2024-10-14T08:38:02.492879', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:02,493 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:38:02,494 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:38:02,494 - using serial LDA version on this node +2024-10-14 08:38:02,494 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:38:02,494 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:38:02,498 - -8.100 per-word bound, 274.3 perplexity estimate based on a held-out corpus of 1 documents with 1942 words +2024-10-14 08:38:02,498 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:38:02,499 - topic #0 (0.333): 0.016*"’" + 0.009*"Dorset" + 0.006*"well" + 0.006*"good" + 0.004*"needs" + 0.004*"quality" + 0.004*"arrangements" + 0.004*"home" + 0.004*"need" + 0.004*"October" +2024-10-14 08:38:02,499 - topic #1 (0.333): 0.009*"’" + 0.007*"Dorset" + 0.006*"good" + 0.006*"well" + 0.004*"need" + 0.004*"arrangements" + 0.004*"2021" + 0.004*"needs" + 0.004*"leaders" + 0.004*"October" +2024-10-14 08:38:02,499 - topic #2 (0.333): 0.015*"’" + 0.007*"Dorset" + 0.006*"good" + 0.005*"well" + 0.005*"8" + 0.005*"arrangements" + 0.005*"needs" + 0.004*"including" + 0.004*"leaders" + 0.004*"27" +2024-10-14 08:38:02,499 - topic diff=0.714790, rho=1.000000 +2024-10-14 08:38:02,500 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:38:02.500072', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:03,430 - Inspection date 2021-09-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:38:03,430 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:03,431 - Inspection date 2021-09-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:38:03,431 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:03,431 - Inspection date 2021-09-27 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:38:03,431 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:03,431 - Inspection date 2021-09-27 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:38:03,431 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:03,431 - Inspection date 2021-09-27 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:38:03,432 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:03,432 - Inspection date 2021-09-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:38:03,432 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:13,572 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:38:13,574 - built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions) +2024-10-14 08:38:13,574 - Dictionary lifecycle event {'msg': "built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions)", 'datetime': '2024-10-14T08:38:13.574748', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:13,575 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:38:13,575 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:38:13,576 - using serial LDA version on this node +2024-10-14 08:38:13,576 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:38:13,576 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:38:13,579 - -8.011 per-word bound, 258.0 perplexity estimate based on a held-out corpus of 1 documents with 2138 words +2024-10-14 08:38:13,579 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:38:13,581 - topic #0 (0.333): 0.012*"’" + 0.009*"needs" + 0.005*"Dudley" + 0.005*"ensure" + 0.005*"always" + 0.004*"plans" + 0.004*"well" + 0.004*"arrangements" + 0.004*"oversight" + 0.004*"practice" +2024-10-14 08:38:13,581 - topic #1 (0.333): 0.012*"’" + 0.009*"needs" + 0.009*"Dudley" + 0.006*"well" + 0.005*"plans" + 0.005*"quality" + 0.005*"always" + 0.005*"October" + 0.004*"progress" + 0.004*"oversight" +2024-10-14 08:38:13,581 - topic #2 (0.333): 0.018*"’" + 0.014*"needs" + 0.009*"Dudley" + 0.006*"arrangements" + 0.006*"well" + 0.006*"always" + 0.005*"plans" + 0.005*"quality" + 0.005*"ensure" + 0.005*"oversight" +2024-10-14 08:38:13,581 - topic diff=0.769745, rho=1.000000 +2024-10-14 08:38:13,581 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:38:13.581657', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:14,409 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:38:14,410 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:14,410 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:38:14,410 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:14,410 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:38:14,410 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:14,410 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:38:14,410 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:14,410 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:38:14,410 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:14,411 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:38:14,411 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:25,270 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:38:25,272 - built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions) +2024-10-14 08:38:25,272 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-10-14T08:38:25.272463', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:25,273 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:38:25,273 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:38:25,273 - using serial LDA version on this node +2024-10-14 08:38:25,274 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:38:25,274 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:38:25,277 - -7.976 per-word bound, 251.8 perplexity estimate based on a held-out corpus of 1 documents with 2278 words +2024-10-14 08:38:25,277 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:38:25,278 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"Durham" + 0.007*"ensure" + 0.007*"May" + 0.005*"well" + 0.005*"practice" + 0.005*"plans" + 0.004*"leaders" + 0.004*"risks" +2024-10-14 08:38:25,279 - topic #1 (0.333): 0.016*"’" + 0.011*"needs" + 0.007*"May" + 0.007*"Durham" + 0.006*"well" + 0.006*"plans" + 0.005*"ensure" + 0.005*"carers" + 0.004*"progress" + 0.004*"risks" +2024-10-14 08:38:25,279 - topic #2 (0.333): 0.014*"’" + 0.011*"needs" + 0.008*"well" + 0.008*"plans" + 0.007*"May" + 0.007*"Durham" + 0.006*"practice" + 0.005*"ensure" + 0.005*"leaders" + 0.004*"family" +2024-10-14 08:38:25,279 - topic diff=0.770080, rho=1.000000 +2024-10-14 08:38:25,279 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:38:25.279474', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:26,136 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:38:26,136 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:26,137 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:38:26,137 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:26,137 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:38:26,137 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:26,137 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:38:26,137 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:26,137 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:38:26,137 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:26,137 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:38:26,138 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:35,846 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:38:35,848 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions) +2024-10-14 08:38:35,848 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions)", 'datetime': '2024-10-14T08:38:35.848305', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:35,849 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:38:35,849 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:38:35,849 - using serial LDA version on this node +2024-10-14 08:38:35,849 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:38:35,849 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:38:35,853 - -7.923 per-word bound, 242.8 perplexity estimate based on a held-out corpus of 1 documents with 2014 words +2024-10-14 08:38:35,853 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:38:35,854 - topic #0 (0.333): 0.021*"’" + 0.010*"needs" + 0.009*"plans" + 0.009*"well" + 0.008*"progress" + 0.007*"East" + 0.006*"Riding" + 0.004*"30" + 0.004*"effective" + 0.004*"quality" +2024-10-14 08:38:35,854 - topic #1 (0.333): 0.016*"’" + 0.009*"plans" + 0.009*"well" + 0.008*"needs" + 0.007*"progress" + 0.007*"Riding" + 0.006*"East" + 0.006*"10" + 0.005*"good" + 0.005*"education" +2024-10-14 08:38:35,854 - topic #2 (0.333): 0.010*"’" + 0.009*"needs" + 0.006*"plans" + 0.006*"well" + 0.005*"progress" + 0.005*"East" + 0.005*"Riding" + 0.005*"10" + 0.005*"partners" + 0.005*"January" +2024-10-14 08:38:35,854 - topic diff=0.774098, rho=1.000000 +2024-10-14 08:38:35,854 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:38:35.854953', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:36,663 - Inspection date 2023-01-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:38:36,664 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:36,664 - Inspection date 2023-01-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:38:36,664 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:36,664 - Inspection date 2023-01-30 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:38:36,664 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:36,664 - Inspection date 2023-01-30 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:38:36,664 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:36,664 - Inspection date 2023-01-30 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:38:36,664 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:36,665 - Inspection date 2023-01-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:38:36,665 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:46,428 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:38:46,430 - built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions) +2024-10-14 08:38:46,431 - Dictionary lifecycle event {'msg': "built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions)", 'datetime': '2024-10-14T08:38:46.431053', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:46,432 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:38:46,432 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:38:46,432 - using serial LDA version on this node +2024-10-14 08:38:46,432 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:38:46,432 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:38:46,436 - -8.075 per-word bound, 269.7 perplexity estimate based on a held-out corpus of 1 documents with 2220 words +2024-10-14 08:38:46,436 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:38:46,437 - topic #0 (0.333): 0.018*"’" + 0.011*"well" + 0.008*"needs" + 0.008*"plans" + 0.008*"East" + 0.007*"Sussex" + 0.007*"progress" + 0.007*"including" + 0.005*"provide" + 0.005*"impact" +2024-10-14 08:38:46,438 - topic #1 (0.333): 0.017*"’" + 0.009*"needs" + 0.009*"well" + 0.008*"plans" + 0.006*"impact" + 0.006*"East" + 0.005*"Sussex" + 0.005*"progress" + 0.005*"experiences" + 0.005*"effective" +2024-10-14 08:38:46,438 - topic #2 (0.333): 0.011*"’" + 0.007*"well" + 0.007*"plans" + 0.005*"needs" + 0.005*"progress" + 0.005*"East" + 0.005*"Sussex" + 0.004*"relationships" + 0.004*"11" + 0.004*"including" +2024-10-14 08:38:46,438 - topic diff=0.765049, rho=1.000000 +2024-10-14 08:38:46,438 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:38:46.438395', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:47,370 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:38:47,371 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:47,371 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:38:47,371 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:47,371 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:38:47,371 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:47,372 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:38:47,372 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:47,372 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:38:47,372 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:47,372 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:38:47,372 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:58,292 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:38:58,295 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions) +2024-10-14 08:38:58,295 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions)", 'datetime': '2024-10-14T08:38:58.295170', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:58,296 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:38:58,296 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:38:58,296 - using serial LDA version on this node +2024-10-14 08:38:58,297 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:38:58,297 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:38:58,300 - -8.008 per-word bound, 257.5 perplexity estimate based on a held-out corpus of 1 documents with 2686 words +2024-10-14 08:38:58,300 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:38:58,302 - topic #0 (0.333): 0.010*"’" + 0.008*"well" + 0.006*"progress" + 0.005*"family" + 0.005*"needs" + 0.005*"understand" + 0.004*"plans" + 0.004*"risk" + 0.004*"parents" + 0.004*"advisers" +2024-10-14 08:38:58,302 - topic #1 (0.333): 0.022*"’" + 0.008*"needs" + 0.007*"well" + 0.006*"progress" + 0.006*"plans" + 0.005*"risk" + 0.005*"family" + 0.005*"practice" + 0.005*"experiences" + 0.005*"new" +2024-10-14 08:38:58,302 - topic #2 (0.333): 0.019*"’" + 0.007*"progress" + 0.006*"plans" + 0.005*"Essex" + 0.005*"‘" + 0.005*"well" + 0.005*"family" + 0.004*"needs" + 0.004*"leaders" + 0.004*"experiences" +2024-10-14 08:38:58,302 - topic diff=0.813133, rho=1.000000 +2024-10-14 08:38:58,302 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:38:58.302692', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:38:59,175 - Inspection date 2023-06-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:38:59,176 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:59,176 - Inspection date 2023-06-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:38:59,176 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:59,176 - Inspection date 2023-06-26 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:38:59,176 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:59,176 - Inspection date 2023-06-26 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:38:59,176 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:59,176 - Inspection date 2023-06-26 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:38:59,176 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:38:59,177 - Inspection date 2023-06-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:38:59,177 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:08,890 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:39:08,893 - built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions) +2024-10-14 08:39:08,893 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions)", 'datetime': '2024-10-14T08:39:08.893473', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:08,894 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:39:08,894 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:39:08,894 - using serial LDA version on this node +2024-10-14 08:39:08,895 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:39:08,895 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:39:08,898 - -8.043 per-word bound, 263.8 perplexity estimate based on a held-out corpus of 1 documents with 2356 words +2024-10-14 08:39:08,899 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:39:08,900 - topic #0 (0.333): 0.013*"’" + 0.007*"effective" + 0.006*"practice" + 0.006*"timely" + 0.006*"good" + 0.006*"needs" + 0.005*"quality" + 0.005*"well" + 0.005*"early" + 0.004*"team" +2024-10-14 08:39:08,900 - topic #1 (0.333): 0.015*"’" + 0.010*"effective" + 0.007*"practice" + 0.007*"good" + 0.007*"quality" + 0.006*"well" + 0.006*"needs" + 0.005*"progress" + 0.005*"improve" + 0.005*"early" +2024-10-14 08:39:08,900 - topic #2 (0.333): 0.013*"’" + 0.008*"effective" + 0.006*"good" + 0.006*"quality" + 0.005*"practice" + 0.005*"timely" + 0.005*"plans" + 0.005*"well" + 0.005*"needs" + 0.004*"need" +2024-10-14 08:39:08,900 - topic diff=0.764182, rho=1.000000 +2024-10-14 08:39:08,900 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:39:08.900924', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:09,791 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:39:09,791 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:09,791 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:39:09,791 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:09,792 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:39:09,792 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:09,792 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:39:09,792 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:09,792 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:39:09,792 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:09,792 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:39:09,792 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:20,276 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:39:20,279 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions) +2024-10-14 08:39:20,279 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions)", 'datetime': '2024-10-14T08:39:20.279461', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:20,280 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:39:20,280 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:39:20,280 - using serial LDA version on this node +2024-10-14 08:39:20,281 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:39:20,281 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:39:20,285 - -8.058 per-word bound, 266.4 perplexity estimate based on a held-out corpus of 1 documents with 2579 words +2024-10-14 08:39:20,285 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:39:20,286 - topic #0 (0.333): 0.014*"’" + 0.007*"needs" + 0.006*"plans" + 0.006*"progress" + 0.005*"well" + 0.005*"February" + 0.005*"2022" + 0.005*"timely" + 0.004*"Gloucestershire" + 0.004*"need" +2024-10-14 08:39:20,286 - topic #1 (0.333): 0.022*"’" + 0.010*"needs" + 0.008*"February" + 0.008*"2022" + 0.007*"plans" + 0.006*"protection" + 0.005*"leaders" + 0.005*"experienced" + 0.005*"good" + 0.005*"family" +2024-10-14 08:39:20,286 - topic #2 (0.333): 0.014*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"2022" + 0.006*"February" + 0.005*"plans" + 0.005*"Gloucestershire" + 0.005*"progress" + 0.005*"experienced" + 0.005*"appropriate" +2024-10-14 08:39:20,286 - topic diff=0.832500, rho=1.000000 +2024-10-14 08:39:20,287 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:39:20.287007', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:21,228 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:39:21,228 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:21,229 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:39:21,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:21,229 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:39:21,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:21,229 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:39:21,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:21,229 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:39:21,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:21,229 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:39:21,230 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:33,224 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:39:33,226 - built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions) +2024-10-14 08:39:33,226 - Dictionary lifecycle event {'msg': "built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions)", 'datetime': '2024-10-14T08:39:33.226509', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:33,227 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:39:33,227 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:39:33,228 - using serial LDA version on this node +2024-10-14 08:39:33,228 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:39:33,228 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:39:33,232 - -8.056 per-word bound, 266.1 perplexity estimate based on a held-out corpus of 1 documents with 2652 words +2024-10-14 08:39:33,232 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:39:33,234 - topic #0 (0.333): 0.016*"’" + 0.006*"needs" + 0.005*"plans" + 0.005*"always" + 0.005*"quality" + 0.005*"need" + 0.004*"24" + 0.004*"recently" + 0.004*"protection" + 0.004*"2024" +2024-10-14 08:39:33,234 - topic #1 (0.333): 0.017*"’" + 0.008*"Halton" + 0.008*"needs" + 0.007*"many" + 0.006*"quality" + 0.006*"including" + 0.006*"need" + 0.005*"lack" + 0.005*"experiences" + 0.005*"Leaders" +2024-10-14 08:39:33,234 - topic #2 (0.333): 0.012*"’" + 0.008*"needs" + 0.006*"protection" + 0.006*"quality" + 0.006*"including" + 0.005*"Halton" + 0.005*"many" + 0.005*"Leaders" + 0.004*"13" + 0.004*"need" +2024-10-14 08:39:33,234 - topic diff=0.804827, rho=1.000000 +2024-10-14 08:39:33,234 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:39:33.234711', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:34,022 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:39:34,023 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:34,023 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:39:34,023 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:34,023 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:39:34,023 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:34,024 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:39:34,024 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:34,024 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:39:34,024 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:34,024 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:39:34,024 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:44,525 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:39:44,527 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2524 corpus positions) +2024-10-14 08:39:44,528 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2524 corpus positions)", 'datetime': '2024-10-14T08:39:44.528109', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:44,529 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:39:44,529 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:39:44,529 - using serial LDA version on this node +2024-10-14 08:39:44,529 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:39:44,529 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:39:44,533 - -7.976 per-word bound, 251.8 perplexity estimate based on a held-out corpus of 1 documents with 2524 words +2024-10-14 08:39:44,533 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:39:44,534 - topic #0 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"plans" + 0.007*"family" + 0.006*"new" + 0.006*"receive" + 0.006*"progress" + 0.005*"practice" + 0.005*"quality" + 0.005*"Hampshire" +2024-10-14 08:39:44,534 - topic #1 (0.333): 0.014*"’" + 0.008*"new" + 0.007*"progress" + 0.007*"family" + 0.006*"well" + 0.006*"plans" + 0.005*"needs" + 0.005*"14" + 0.005*"practice" + 0.005*"quality" +2024-10-14 08:39:44,535 - topic #2 (0.333): 0.014*"’" + 0.007*"family" + 0.006*"new" + 0.006*"well" + 0.006*"quality" + 0.006*"plans" + 0.005*"progress" + 0.005*"needs" + 0.005*"achieve" + 0.004*"10" +2024-10-14 08:39:44,535 - topic diff=0.813907, rho=1.000000 +2024-10-14 08:39:44,535 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:39:44.535316', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:45,378 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:39:45,378 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:45,379 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:39:45,379 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:45,379 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:39:45,379 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:45,379 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:39:45,379 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:45,379 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:39:45,379 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:45,380 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:39:45,380 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:57,364 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:39:57,366 - built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions) +2024-10-14 08:39:57,367 - Dictionary lifecycle event {'msg': "built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions)", 'datetime': '2024-10-14T08:39:57.366967', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:57,368 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:39:57,368 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:39:57,368 - using serial LDA version on this node +2024-10-14 08:39:57,368 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:39:57,368 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:39:57,372 - -8.071 per-word bound, 268.9 perplexity estimate based on a held-out corpus of 1 documents with 2584 words +2024-10-14 08:39:57,372 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:39:57,374 - topic #0 (0.333): 0.016*"’" + 0.006*"Hartlepool" + 0.006*"March" + 0.005*"well" + 0.005*"leaders" + 0.005*"needs" + 0.004*"18" + 0.004*"clear" + 0.004*"22" + 0.004*"family" +2024-10-14 08:39:57,374 - topic #1 (0.333): 0.023*"’" + 0.008*"March" + 0.008*"Hartlepool" + 0.007*"needs" + 0.006*"well" + 0.005*"need" + 0.005*"strong" + 0.005*"18" + 0.005*"effective" + 0.005*"plans" +2024-10-14 08:39:57,374 - topic #2 (0.333): 0.019*"’" + 0.007*"needs" + 0.007*"March" + 0.007*"leaders" + 0.006*"Hartlepool" + 0.006*"well" + 0.005*"plans" + 0.005*"supported" + 0.005*"ensure" + 0.004*"progress" +2024-10-14 08:39:57,374 - topic diff=0.798398, rho=1.000000 +2024-10-14 08:39:57,374 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:39:57.374664', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:39:58,228 - Inspection date 2024-03-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:39:58,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:58,229 - Inspection date 2024-03-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:39:58,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:58,229 - Inspection date 2024-03-18 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:39:58,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:58,229 - Inspection date 2024-03-18 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:39:58,230 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:58,230 - Inspection date 2024-03-18 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:39:58,230 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:39:58,230 - Inspection date 2024-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:39:58,230 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:09,498 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:40:09,501 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) +2024-10-14 08:40:09,501 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-10-14T08:40:09.501237', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:09,502 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:40:09,502 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:40:09,502 - using serial LDA version on this node +2024-10-14 08:40:09,503 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:40:09,503 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:40:09,506 - -8.043 per-word bound, 263.7 perplexity estimate based on a held-out corpus of 1 documents with 2531 words +2024-10-14 08:40:09,506 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:40:09,508 - topic #0 (0.333): 0.018*"’" + 0.005*"lack" + 0.005*"Herefordshire" + 0.005*"practice" + 0.005*"needs" + 0.004*"many" + 0.004*"agency" + 0.004*"management" + 0.004*"progress" + 0.004*"plans" +2024-10-14 08:40:09,508 - topic #1 (0.333): 0.017*"’" + 0.005*"practice" + 0.004*"need" + 0.004*"impact" + 0.004*"Herefordshire" + 0.004*"lack" + 0.004*"plans" + 0.004*"carers" + 0.004*"needs" + 0.004*"oversight" +2024-10-14 08:40:09,508 - topic #2 (0.333): 0.017*"’" + 0.006*"practice" + 0.006*"Herefordshire" + 0.006*"impact" + 0.005*"many" + 0.005*"needs" + 0.005*"lack" + 0.005*"identified" + 0.004*"18" + 0.004*"July" +2024-10-14 08:40:09,508 - topic diff=0.788218, rho=1.000000 +2024-10-14 08:40:09,508 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:40:09.508687', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:10,329 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:40:10,329 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:10,330 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:40:10,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:10,330 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:40:10,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:10,330 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:40:10,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:10,330 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:40:10,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:10,330 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:40:10,331 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:21,441 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:40:21,445 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions) +2024-10-14 08:40:21,445 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions)", 'datetime': '2024-10-14T08:40:21.445725', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:21,447 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:40:21,447 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:40:21,448 - using serial LDA version on this node +2024-10-14 08:40:21,448 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:40:21,449 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:40:21,455 - -8.137 per-word bound, 281.5 perplexity estimate based on a held-out corpus of 1 documents with 2456 words +2024-10-14 08:40:21,455 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:40:21,457 - topic #0 (0.333): 0.025*"’" + 0.007*"Hertfordshire" + 0.006*"well" + 0.005*"needs" + 0.005*"receive" + 0.005*"plans" + 0.005*"positive" + 0.004*"family" + 0.004*"27" + 0.004*"January" +2024-10-14 08:40:21,458 - topic #1 (0.333): 0.022*"’" + 0.006*"Hertfordshire" + 0.005*"well" + 0.005*"needs" + 0.005*"receive" + 0.005*"leaders" + 0.004*"plans" + 0.004*"2023" + 0.004*"know" + 0.004*"23" +2024-10-14 08:40:21,458 - topic #2 (0.333): 0.021*"’" + 0.007*"needs" + 0.007*"well" + 0.007*"Hertfordshire" + 0.005*"receive" + 0.005*"23" + 0.005*"risk" + 0.004*"need" + 0.004*"plans" + 0.004*"‘" +2024-10-14 08:40:21,458 - topic diff=0.790071, rho=1.000000 +2024-10-14 08:40:21,458 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:40:21.458825', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:23,120 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:40:23,121 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:23,121 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:40:23,121 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:23,121 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:40:23,121 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:23,121 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:40:23,121 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:23,121 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:40:23,121 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:23,121 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:40:23,121 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:32,101 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:40:32,103 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions) +2024-10-14 08:40:32,103 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions)", 'datetime': '2024-10-14T08:40:32.103766', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:32,104 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:40:32,104 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:40:32,104 - using serial LDA version on this node +2024-10-14 08:40:32,105 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:40:32,105 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:40:32,108 - -7.953 per-word bound, 247.8 perplexity estimate based on a held-out corpus of 1 documents with 1934 words +2024-10-14 08:40:32,108 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:40:32,109 - topic #0 (0.333): 0.017*"’" + 0.007*"leaders" + 0.006*"needs" + 0.006*"Isle" + 0.005*"3" + 0.005*"supported" + 0.005*"progress" + 0.005*"plans" + 0.005*"well" + 0.004*"Wight" +2024-10-14 08:40:32,109 - topic #1 (0.333): 0.015*"’" + 0.008*"leaders" + 0.006*"protection" + 0.006*"well" + 0.006*"needs" + 0.006*"3" + 0.005*"progress" + 0.005*"plans" + 0.005*"Senior" + 0.005*"Wight" +2024-10-14 08:40:32,110 - topic #2 (0.333): 0.020*"’" + 0.009*"leaders" + 0.006*"well" + 0.005*"practice" + 0.005*"Senior" + 0.005*"good" + 0.005*"Wight" + 0.005*"information" + 0.005*"PAs" + 0.005*"needs" +2024-10-14 08:40:32,110 - topic diff=0.768820, rho=1.000000 +2024-10-14 08:40:32,110 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:40:32.110290', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:33,027 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:40:33,027 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:33,027 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:40:33,027 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:33,027 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:40:33,027 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:33,027 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:40:33,028 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:33,028 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:40:33,028 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:33,028 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:40:33,028 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:44,670 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:40:44,675 - built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions) +2024-10-14 08:40:44,675 - Dictionary lifecycle event {'msg': "built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions)", 'datetime': '2024-10-14T08:40:44.675472', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:44,677 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:40:44,678 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:40:44,678 - using serial LDA version on this node +2024-10-14 08:40:44,679 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:40:44,679 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:40:44,686 - -8.166 per-word bound, 287.2 perplexity estimate based on a held-out corpus of 1 documents with 2888 words +2024-10-14 08:40:44,686 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:40:44,688 - topic #0 (0.333): 0.017*"’" + 0.010*"Kent" + 0.006*"Council" + 0.006*"supported" + 0.005*"needs" + 0.005*"progress" + 0.005*"County" + 0.004*"provide" + 0.004*"impact" + 0.004*"2022" +2024-10-14 08:40:44,689 - topic #1 (0.333): 0.019*"’" + 0.011*"Kent" + 0.010*"needs" + 0.007*"well" + 0.006*"supported" + 0.006*"County" + 0.006*"Council" + 0.005*"practice" + 0.005*"including" + 0.004*"progress" +2024-10-14 08:40:44,689 - topic #2 (0.333): 0.018*"’" + 0.007*"Kent" + 0.007*"well" + 0.005*"needs" + 0.005*"Council" + 0.004*"supported" + 0.004*"progress" + 0.004*"practice" + 0.004*"response" + 0.004*"County" +2024-10-14 08:40:44,689 - topic diff=0.802108, rho=1.000000 +2024-10-14 08:40:44,689 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:40:44.689880', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:45,638 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:40:45,638 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:45,638 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:40:45,638 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:45,638 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:40:45,638 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:45,639 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:40:45,639 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:45,639 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:40:45,639 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:45,639 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:40:45,639 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:54,459 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:40:54,461 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions) +2024-10-14 08:40:54,461 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions)", 'datetime': '2024-10-14T08:40:54.461280', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:54,462 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:40:54,462 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:40:54,462 - using serial LDA version on this node +2024-10-14 08:40:54,462 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:40:54,462 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:40:54,466 - -7.947 per-word bound, 246.7 perplexity estimate based on a held-out corpus of 1 documents with 1970 words +2024-10-14 08:40:54,466 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:40:54,467 - topic #0 (0.333): 0.012*"’" + 0.006*"protection" + 0.006*"planning" + 0.005*"number" + 0.005*"risks" + 0.005*"practice" + 0.005*"need" + 0.005*"small" + 0.005*"management" + 0.004*"Hull" +2024-10-14 08:40:54,467 - topic #1 (0.333): 0.017*"’" + 0.009*"number" + 0.008*"planning" + 0.007*"need" + 0.006*"management" + 0.006*"well" + 0.006*"practice" + 0.005*"Hull" + 0.005*"impact" + 0.005*"progress" +2024-10-14 08:40:54,467 - topic #2 (0.333): 0.017*"’" + 0.007*"protection" + 0.007*"well" + 0.006*"practice" + 0.006*"Hull" + 0.005*"number" + 0.005*"planning" + 0.005*"oversight" + 0.005*"small" + 0.005*"agency" +2024-10-14 08:40:54,467 - topic diff=0.760757, rho=1.000000 +2024-10-14 08:40:54,467 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:40:54.467850', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:40:55,306 - Inspection date 2022-11-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:40:55,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:55,307 - Inspection date 2022-11-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:40:55,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:55,307 - Inspection date 2022-11-14 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:40:55,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:55,307 - Inspection date 2022-11-14 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:40:55,307 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:55,308 - Inspection date 2022-11-14 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:40:55,308 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:40:55,308 - Inspection date 2022-11-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:40:55,308 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:05,565 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:41:05,567 - built Dictionary<963 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2139 corpus positions) +2024-10-14 08:41:05,567 - Dictionary lifecycle event {'msg': "built Dictionary<963 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2139 corpus positions)", 'datetime': '2024-10-14T08:41:05.567947', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:05,569 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:41:05,569 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:41:05,570 - using serial LDA version on this node +2024-10-14 08:41:05,570 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:41:05,571 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:41:05,574 - -7.871 per-word bound, 234.0 perplexity estimate based on a held-out corpus of 1 documents with 2139 words +2024-10-14 08:41:05,574 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:41:05,575 - topic #0 (0.333): 0.025*"’" + 0.008*"plans" + 0.007*"Kirklees" + 0.007*"effective" + 0.006*"needs" + 0.006*"well" + 0.005*"receive" + 0.005*"impact" + 0.005*"ensure" + 0.005*"leaders" +2024-10-14 08:41:05,575 - topic #1 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"plans" + 0.007*"Kirklees" + 0.007*"need" + 0.007*"effective" + 0.007*"impact" + 0.006*"well" + 0.006*"leaders" + 0.005*"timely" +2024-10-14 08:41:05,576 - topic #2 (0.333): 0.014*"’" + 0.006*"effective" + 0.006*"Kirklees" + 0.006*"needs" + 0.005*"well" + 0.005*"plans" + 0.005*"quality" + 0.005*"ensure" + 0.005*"PAs" + 0.005*"impact" +2024-10-14 08:41:05,576 - topic diff=0.799072, rho=1.000000 +2024-10-14 08:41:05,576 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:41:05.576337', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:06,526 - Inspection date 2024-07-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:41:06,527 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:06,527 - Inspection date 2024-07-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:41:06,527 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:06,527 - Inspection date 2024-07-08 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:41:06,527 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:06,527 - Inspection date 2024-07-08 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:41:06,527 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:06,528 - Inspection date 2024-07-08 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:41:06,528 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:06,528 - Inspection date 2024-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:41:06,528 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:14,552 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:41:14,555 - built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions) +2024-10-14 08:41:14,555 - Dictionary lifecycle event {'msg': "built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions)", 'datetime': '2024-10-14T08:41:14.555880', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:14,557 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:41:14,557 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:41:14,557 - using serial LDA version on this node +2024-10-14 08:41:14,558 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:41:14,558 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:41:14,563 - -7.825 per-word bound, 226.8 perplexity estimate based on a held-out corpus of 1 documents with 1837 words +2024-10-14 08:41:14,564 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:41:14,566 - topic #0 (0.333): 0.014*"’" + 0.008*"quality" + 0.007*"needs" + 0.006*"plans" + 0.006*"progress" + 0.005*"need" + 0.005*"Knowsley" + 0.005*"leaders" + 0.005*"good" + 0.004*"experiences" +2024-10-14 08:41:14,566 - topic #1 (0.333): 0.014*"’" + 0.008*"progress" + 0.008*"needs" + 0.007*"plans" + 0.007*"2021" + 0.006*"Knowsley" + 0.006*"quality" + 0.005*"11" + 0.005*"good" + 0.005*"experiences" +2024-10-14 08:41:14,566 - topic #2 (0.333): 0.015*"’" + 0.009*"progress" + 0.008*"plans" + 0.007*"needs" + 0.006*"quality" + 0.006*"Knowsley" + 0.005*"2021" + 0.005*"22" + 0.005*"abuse" + 0.005*"experiences" +2024-10-14 08:41:14,566 - topic diff=0.740288, rho=1.000000 +2024-10-14 08:41:14,567 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:41:14.567192', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:15,408 - Inspection date 2021-10-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:41:15,408 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:15,408 - Inspection date 2021-10-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:41:15,408 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:15,409 - Inspection date 2021-10-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:41:15,409 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:15,409 - Inspection date 2021-10-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:41:15,409 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:15,409 - Inspection date 2021-10-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:41:15,409 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:15,409 - Inspection date 2021-10-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:41:15,409 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:25,110 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:41:25,112 - built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions) +2024-10-14 08:41:25,112 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions)", 'datetime': '2024-10-14T08:41:25.112315', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:25,113 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:41:25,113 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:41:25,113 - using serial LDA version on this node +2024-10-14 08:41:25,114 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:41:25,114 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:41:25,117 - -7.974 per-word bound, 251.4 perplexity estimate based on a held-out corpus of 1 documents with 2263 words +2024-10-14 08:41:25,117 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:41:25,118 - topic #0 (0.333): 0.015*"’" + 0.010*"well" + 0.008*"needs" + 0.006*"need" + 0.006*"practice" + 0.005*"Lancashire" + 0.005*"plans" + 0.005*"supported" + 0.005*"information" + 0.005*"health" +2024-10-14 08:41:25,118 - topic #1 (0.333): 0.018*"’" + 0.009*"well" + 0.008*"need" + 0.007*"Lancashire" + 0.007*"needs" + 0.006*"positive" + 0.006*"plans" + 0.006*"supported" + 0.005*"progress" + 0.005*"parents" +2024-10-14 08:41:25,119 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.007*"needs" + 0.007*"need" + 0.006*"practice" + 0.005*"Lancashire" + 0.005*"health" + 0.005*"information" + 0.005*"live" + 0.004*"supported" +2024-10-14 08:41:25,119 - topic diff=0.782520, rho=1.000000 +2024-10-14 08:41:25,119 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:41:25.119226', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:26,042 - Inspection date 2022-11-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:41:26,042 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:26,042 - Inspection date 2022-11-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:41:26,043 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:26,043 - Inspection date 2022-11-28 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:41:26,043 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:26,043 - Inspection date 2022-11-28 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:41:26,043 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:26,043 - Inspection date 2022-11-28 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:41:26,043 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:26,043 - Inspection date 2022-11-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:41:26,043 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:36,098 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:41:36,100 - built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions) +2024-10-14 08:41:36,100 - Dictionary lifecycle event {'msg': "built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions)", 'datetime': '2024-10-14T08:41:36.100837', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:36,101 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:41:36,101 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:41:36,102 - using serial LDA version on this node +2024-10-14 08:41:36,102 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:41:36,102 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:41:36,105 - -8.009 per-word bound, 257.5 perplexity estimate based on a held-out corpus of 1 documents with 2261 words +2024-10-14 08:41:36,105 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:41:36,107 - topic #0 (0.333): 0.015*"’" + 0.006*"Leeds" + 0.006*"needs" + 0.005*"risk" + 0.005*"well" + 0.004*"protection" + 0.004*"supported" + 0.004*"2022" + 0.004*"practice" + 0.004*"21" +2024-10-14 08:41:36,107 - topic #1 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"Leeds" + 0.006*"risk" + 0.006*"well" + 0.005*"practice" + 0.005*"4" + 0.005*"2022" + 0.004*"plans" + 0.004*"including" +2024-10-14 08:41:36,107 - topic #2 (0.333): 0.018*"’" + 0.008*"Leeds" + 0.007*"needs" + 0.006*"well" + 0.005*"February" + 0.005*"ensure" + 0.005*"protection" + 0.004*"plans" + 0.004*"practice" + 0.004*"4" +2024-10-14 08:41:36,107 - topic diff=0.772852, rho=1.000000 +2024-10-14 08:41:36,107 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:41:36.107764', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:37,020 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:41:37,020 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:37,020 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:41:37,021 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:37,021 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:41:37,021 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:37,021 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:41:37,021 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:37,021 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:41:37,021 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:37,021 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:41:37,021 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:45,690 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:41:45,692 - built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions) +2024-10-14 08:41:45,692 - Dictionary lifecycle event {'msg': "built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions)", 'datetime': '2024-10-14T08:41:45.692585', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:45,693 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:41:45,693 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:41:45,693 - using serial LDA version on this node +2024-10-14 08:41:45,694 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:41:45,694 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:41:45,697 - -7.875 per-word bound, 234.8 perplexity estimate based on a held-out corpus of 1 documents with 1950 words +2024-10-14 08:41:45,697 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:41:45,698 - topic #0 (0.333): 0.015*"’" + 0.006*"2021" + 0.006*"Leicester" + 0.006*"well" + 0.005*"good" + 0.005*"ensure" + 0.004*"Council" + 0.004*"City" + 0.004*"needs" + 0.004*"20" +2024-10-14 08:41:45,698 - topic #1 (0.333): 0.022*"’" + 0.009*"Leicester" + 0.009*"well" + 0.009*"2021" + 0.008*"needs" + 0.007*"ensure" + 0.006*"good" + 0.006*"number" + 0.005*"1" + 0.005*"City" +2024-10-14 08:41:45,698 - topic #2 (0.333): 0.020*"’" + 0.011*"well" + 0.010*"2021" + 0.007*"needs" + 0.007*"Leicester" + 0.006*"good" + 0.006*"20" + 0.005*"1" + 0.005*"September" + 0.005*"number" +2024-10-14 08:41:45,699 - topic diff=0.790137, rho=1.000000 +2024-10-14 08:41:45,699 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:41:45.699181', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:46,657 - Inspection date 2021-09-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:41:46,657 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:46,657 - Inspection date 2021-09-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:41:46,657 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:46,657 - Inspection date 2021-09-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:41:46,658 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:46,658 - Inspection date 2021-09-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:41:46,658 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:46,658 - Inspection date 2021-09-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:41:46,658 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:46,658 - Inspection date 2021-09-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:41:46,658 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:41:59,565 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:41:59,568 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions) +2024-10-14 08:41:59,568 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions)", 'datetime': '2024-10-14T08:41:59.568456', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:41:59,569 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:41:59,569 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:41:59,569 - using serial LDA version on this node +2024-10-14 08:41:59,570 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:41:59,570 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:41:59,574 - -8.105 per-word bound, 275.3 perplexity estimate based on a held-out corpus of 1 documents with 2745 words +2024-10-14 08:41:59,574 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:41:59,575 - topic #0 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"family" + 0.006*"needs" + 0.006*"experiences" + 0.006*"Leicestershire" + 0.005*"need" + 0.005*"progress" + 0.005*"understand" + 0.005*"risk" +2024-10-14 08:41:59,575 - topic #1 (0.333): 0.019*"’" + 0.007*"well" + 0.007*"Leicestershire" + 0.005*"family" + 0.005*"PAs" + 0.005*"risk" + 0.005*"plans" + 0.005*"understand" + 0.004*"experiences" + 0.004*"leaders" +2024-10-14 08:41:59,575 - topic #2 (0.333): 0.017*"’" + 0.010*"well" + 0.007*"need" + 0.006*"Leicestershire" + 0.005*"needs" + 0.005*"understand" + 0.005*"plans" + 0.005*"family" + 0.005*"supported" + 0.005*"progress" +2024-10-14 08:41:59,576 - topic diff=0.810744, rho=1.000000 +2024-10-14 08:41:59,576 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:41:59.576108', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:00,511 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:42:00,511 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:00,512 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:42:00,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:00,512 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:42:00,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:00,512 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:42:00,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:00,513 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:42:00,513 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:00,513 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:42:00,513 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:13,043 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:42:13,046 - built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions) +2024-10-14 08:42:13,046 - Dictionary lifecycle event {'msg': "built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions)", 'datetime': '2024-10-14T08:42:13.046242', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:13,047 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:42:13,047 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:42:13,047 - using serial LDA version on this node +2024-10-14 08:42:13,048 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:42:13,048 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:42:13,052 - -8.193 per-word bound, 292.6 perplexity estimate based on a held-out corpus of 1 documents with 2927 words +2024-10-14 08:42:13,052 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:42:13,053 - topic #0 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"Lincolnshire" + 0.006*"well" + 0.004*"family" + 0.004*"28" + 0.004*"plans" + 0.004*"offer" + 0.004*"progress" + 0.004*"education" +2024-10-14 08:42:13,054 - topic #1 (0.333): 0.027*"’" + 0.008*"Lincolnshire" + 0.008*"needs" + 0.006*"plans" + 0.006*"progress" + 0.005*"well" + 0.005*"family" + 0.005*"24" + 0.004*"need" + 0.004*"28" +2024-10-14 08:42:13,054 - topic #2 (0.333): 0.019*"’" + 0.008*"Lincolnshire" + 0.006*"well" + 0.005*"needs" + 0.004*"2023" + 0.004*"‘" + 0.004*"progress" + 0.004*"education" + 0.003*"plans" + 0.003*"24" +2024-10-14 08:42:13,054 - topic diff=0.790152, rho=1.000000 +2024-10-14 08:42:13,054 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:42:13.054510', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:13,959 - Inspection date 2023-04-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:42:13,959 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:13,960 - Inspection date 2023-04-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:42:13,960 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:13,960 - Inspection date 2023-04-24 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:42:13,960 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:13,960 - Inspection date 2023-04-24 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:42:13,960 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:13,960 - Inspection date 2023-04-24 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:42:13,960 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:13,960 - Inspection date 2023-04-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:42:13,961 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:25,780 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:42:25,783 - built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) +2024-10-14 08:42:25,783 - Dictionary lifecycle event {'msg': "built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-10-14T08:42:25.783301', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:25,784 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:42:25,784 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:42:25,784 - using serial LDA version on this node +2024-10-14 08:42:25,785 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:42:25,785 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:42:25,788 - -7.990 per-word bound, 254.3 perplexity estimate based on a held-out corpus of 1 documents with 2720 words +2024-10-14 08:42:25,788 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:42:25,790 - topic #0 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"always" + 0.006*"Liverpool" + 0.006*"practice" + 0.006*"quality" + 0.006*"need" + 0.005*"PAs" + 0.005*"timely" + 0.005*"protection" +2024-10-14 08:42:25,790 - topic #1 (0.333): 0.016*"’" + 0.007*"needs" + 0.006*"practice" + 0.006*"need" + 0.005*"Liverpool" + 0.005*"quality" + 0.005*"24" + 0.004*"protection" + 0.004*"including" + 0.004*"PAs" +2024-10-14 08:42:25,791 - topic #2 (0.333): 0.023*"’" + 0.007*"need" + 0.007*"practice" + 0.007*"needs" + 0.007*"always" + 0.005*"24" + 0.005*"Liverpool" + 0.005*"quality" + 0.005*"protection" + 0.004*"met" +2024-10-14 08:42:25,791 - topic diff=0.839057, rho=1.000000 +2024-10-14 08:42:25,791 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:42:25.791320', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:26,715 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:42:26,715 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:26,715 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:42:26,715 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:26,716 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:42:26,716 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:26,716 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:42:26,716 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:26,716 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:42:26,716 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:26,716 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:42:26,716 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:38,151 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:42:38,155 - built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions) +2024-10-14 08:42:38,155 - Dictionary lifecycle event {'msg': "built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions)", 'datetime': '2024-10-14T08:42:38.155914', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:38,157 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:42:38,157 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:42:38,157 - using serial LDA version on this node +2024-10-14 08:42:38,157 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:42:38,157 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:42:38,161 - -8.097 per-word bound, 273.8 perplexity estimate based on a held-out corpus of 1 documents with 2610 words +2024-10-14 08:42:38,161 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:42:38,163 - topic #0 (0.333): 0.021*"’" + 0.010*"needs" + 0.007*"good" + 0.006*"plans" + 0.006*"carers" + 0.005*"London" + 0.005*"21" + 0.005*"practice" + 0.004*"Barking" + 0.004*"e" +2024-10-14 08:42:38,163 - topic #1 (0.333): 0.024*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"information" + 0.005*"plans" + 0.005*"progress" + 0.005*"practice" + 0.004*"timely" + 0.004*"Dagenham" + 0.004*"ensure" +2024-10-14 08:42:38,163 - topic #2 (0.333): 0.021*"’" + 0.006*"needs" + 0.006*"good" + 0.005*"progress" + 0.005*"well" + 0.005*"10" + 0.005*"plans" + 0.005*"practice" + 0.005*"planning" + 0.005*"carers" +2024-10-14 08:42:38,163 - topic diff=0.799752, rho=1.000000 +2024-10-14 08:42:38,163 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:42:38.163647', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:39,063 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:42:39,063 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:39,063 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:42:39,063 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:39,063 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:42:39,063 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:39,063 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:42:39,063 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:39,064 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:42:39,064 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:39,064 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:42:39,064 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:49,824 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:42:49,826 - built Dictionary<1132 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2445 corpus positions) +2024-10-14 08:42:49,826 - Dictionary lifecycle event {'msg': "built Dictionary<1132 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2445 corpus positions)", 'datetime': '2024-10-14T08:42:49.826758', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:49,827 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:42:49,827 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:42:49,828 - using serial LDA version on this node +2024-10-14 08:42:49,828 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:42:49,828 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:42:49,832 - -8.052 per-word bound, 265.4 perplexity estimate based on a held-out corpus of 1 documents with 2445 words +2024-10-14 08:42:49,832 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:42:49,833 - topic #0 (0.333): 0.018*"’" + 0.010*"needs" + 0.008*"Barnet" + 0.006*"plans" + 0.006*"well" + 0.005*"experiences" + 0.004*"effective" + 0.004*"2024" + 0.004*"June" + 0.004*"risk" +2024-10-14 08:42:49,833 - topic #1 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"plans" + 0.007*"needs" + 0.006*"Barnet" + 0.005*"strong" + 0.004*"risk" + 0.004*"experiences" + 0.004*"effective" + 0.004*"14" +2024-10-14 08:42:49,833 - topic #2 (0.333): 0.024*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"Barnet" + 0.007*"plans" + 0.005*"10" + 0.004*"understand" + 0.004*"experiences" + 0.004*"14" + 0.004*"parents" +2024-10-14 08:42:49,834 - topic diff=0.792046, rho=1.000000 +2024-10-14 08:42:49,834 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:42:49.834117', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:42:50,742 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:42:50,742 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:50,742 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:42:50,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:50,743 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:42:50,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:50,743 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:42:50,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:50,743 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:42:50,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:42:50,743 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:42:50,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:02,154 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:43:02,156 - built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions) +2024-10-14 08:43:02,157 - Dictionary lifecycle event {'msg': "built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions)", 'datetime': '2024-10-14T08:43:02.157042', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:02,158 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:43:02,158 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:43:02,158 - using serial LDA version on this node +2024-10-14 08:43:02,158 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:43:02,158 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:43:02,162 - -8.094 per-word bound, 273.3 perplexity estimate based on a held-out corpus of 1 documents with 2563 words +2024-10-14 08:43:02,162 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:43:02,164 - topic #0 (0.333): 0.020*"’" + 0.005*"needs" + 0.005*"well" + 0.005*"Bexley" + 0.005*"plans" + 0.004*"10" + 0.004*"6" + 0.004*"make" + 0.004*"including" + 0.004*"effective" +2024-10-14 08:43:02,164 - topic #1 (0.333): 0.015*"’" + 0.006*"needs" + 0.006*"Bexley" + 0.005*"well" + 0.005*"effective" + 0.005*"need" + 0.004*"plans" + 0.004*"10" + 0.004*"including" + 0.004*"oversight" +2024-10-14 08:43:02,164 - topic #2 (0.333): 0.022*"’" + 0.007*"well" + 0.007*"need" + 0.007*"needs" + 0.007*"effective" + 0.006*"plans" + 0.005*"practice" + 0.005*"progress" + 0.005*"Bexley" + 0.005*"make" +2024-10-14 08:43:02,164 - topic diff=0.788448, rho=1.000000 +2024-10-14 08:43:02,164 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:43:02.164624', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:03,113 - Inspection date 2023-02-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:43:03,113 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:03,114 - Inspection date 2023-02-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:43:03,114 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:03,114 - Inspection date 2023-02-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:43:03,114 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:03,114 - Inspection date 2023-02-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:43:03,114 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:03,114 - Inspection date 2023-02-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:43:03,114 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:03,114 - Inspection date 2023-02-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:43:03,114 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:13,122 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:43:13,124 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions) +2024-10-14 08:43:13,124 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions)", 'datetime': '2024-10-14T08:43:13.124917', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:13,125 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:43:13,126 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:43:13,126 - using serial LDA version on this node +2024-10-14 08:43:13,126 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:43:13,126 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:43:13,130 - -7.928 per-word bound, 243.5 perplexity estimate based on a held-out corpus of 1 documents with 2371 words +2024-10-14 08:43:13,130 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:43:13,131 - topic #0 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"plans" + 0.006*"leaders" + 0.006*"progress" + 0.006*"senior" + 0.006*"However" + 0.005*"quality" + 0.005*"good" + 0.005*"Brent" +2024-10-14 08:43:13,132 - topic #1 (0.333): 0.014*"’" + 0.007*"leaders" + 0.006*"progress" + 0.006*"good" + 0.006*"plans" + 0.006*"well" + 0.005*"needs" + 0.005*"senior" + 0.005*"Brent" + 0.005*"quality" +2024-10-14 08:43:13,132 - topic #2 (0.333): 0.019*"’" + 0.010*"well" + 0.007*"leaders" + 0.007*"progress" + 0.006*"number" + 0.006*"plans" + 0.006*"practice" + 0.006*"Brent" + 0.006*"quality" + 0.006*"good" +2024-10-14 08:43:13,132 - topic diff=0.824346, rho=1.000000 +2024-10-14 08:43:13,132 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:43:13.132435', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:14,035 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:43:14,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:14,036 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:43:14,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:14,036 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:43:14,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:14,036 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:43:14,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:14,037 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:43:14,037 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:14,037 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:43:14,037 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:26,385 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:43:26,387 - built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions) +2024-10-14 08:43:26,388 - Dictionary lifecycle event {'msg': "built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions)", 'datetime': '2024-10-14T08:43:26.388047', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:26,389 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:43:26,389 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:43:26,389 - using serial LDA version on this node +2024-10-14 08:43:26,390 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:43:26,390 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:43:26,394 - -8.182 per-word bound, 290.4 perplexity estimate based on a held-out corpus of 1 documents with 2640 words +2024-10-14 08:43:26,394 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:43:26,395 - topic #0 (0.333): 0.016*"’" + 0.008*"Bromley" + 0.007*"well" + 0.007*"needs" + 0.006*"plans" + 0.005*"education" + 0.004*"leaders" + 0.004*"practice" + 0.004*"health" + 0.004*"13" +2024-10-14 08:43:26,396 - topic #1 (0.333): 0.023*"’" + 0.010*"Bromley" + 0.007*"needs" + 0.007*"well" + 0.006*"leaders" + 0.005*"health" + 0.005*"practice" + 0.005*"17" + 0.005*"plans" + 0.004*"helping" +2024-10-14 08:43:26,396 - topic #2 (0.333): 0.019*"’" + 0.009*"Bromley" + 0.006*"well" + 0.006*"plans" + 0.006*"needs" + 0.005*"leaders" + 0.005*"practice" + 0.004*"education" + 0.004*"YPAs" + 0.004*"strong" +2024-10-14 08:43:26,396 - topic diff=0.772661, rho=1.000000 +2024-10-14 08:43:26,396 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:43:26.396398', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:27,389 - Inspection date 2023-11-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:43:27,389 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:27,389 - Inspection date 2023-11-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:43:27,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:27,390 - Inspection date 2023-11-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:43:27,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:27,390 - Inspection date 2023-11-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:43:27,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:27,390 - Inspection date 2023-11-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:43:27,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:27,390 - Inspection date 2023-11-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:43:27,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:35,372 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:43:35,374 - built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions) +2024-10-14 08:43:35,374 - Dictionary lifecycle event {'msg': "built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions)", 'datetime': '2024-10-14T08:43:35.374299', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:35,375 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:43:35,375 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:43:35,375 - using serial LDA version on this node +2024-10-14 08:43:35,375 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:43:35,375 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:43:35,379 - -8.064 per-word bound, 267.6 perplexity estimate based on a held-out corpus of 1 documents with 1735 words +2024-10-14 08:43:35,379 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:43:35,380 - topic #0 (0.333): 0.010*"’" + 0.007*"Camden" + 0.006*"needs" + 0.006*"well" + 0.005*"protection" + 0.005*"leaders" + 0.005*"29" + 0.005*"practice" + 0.005*"appropriate" + 0.004*"response" +2024-10-14 08:43:35,380 - topic #1 (0.333): 0.011*"’" + 0.008*"Camden" + 0.007*"leaders" + 0.007*"practice" + 0.005*"well" + 0.005*"protection" + 0.004*"25" + 0.004*"response" + 0.004*"appropriate" + 0.004*"needs" +2024-10-14 08:43:35,380 - topic #2 (0.333): 0.011*"’" + 0.006*"leaders" + 0.006*"practice" + 0.005*"Camden" + 0.005*"well" + 0.005*"response" + 0.005*"needs" + 0.004*"meetings" + 0.004*"progress" + 0.004*"protection" +2024-10-14 08:43:35,380 - topic diff=0.699915, rho=1.000000 +2024-10-14 08:43:35,381 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:43:35.381053', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:36,289 - Inspection date 2022-04-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:43:36,290 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:36,290 - Inspection date 2022-04-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:43:36,290 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:36,290 - Inspection date 2022-04-25 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:43:36,290 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:36,290 - Inspection date 2022-04-25 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:43:36,290 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:36,291 - Inspection date 2022-04-25 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:43:36,291 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:36,291 - Inspection date 2022-04-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:43:36,291 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:46,471 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:43:46,473 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions) +2024-10-14 08:43:46,473 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions)", 'datetime': '2024-10-14T08:43:46.473487', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:46,474 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:43:46,474 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:43:46,474 - using serial LDA version on this node +2024-10-14 08:43:46,475 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:43:46,475 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:43:46,478 - -7.986 per-word bound, 253.5 perplexity estimate based on a held-out corpus of 1 documents with 2209 words +2024-10-14 08:43:46,478 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:43:46,479 - topic #0 (0.333): 0.015*"’" + 0.009*"well" + 0.007*"needs" + 0.005*"Croydon" + 0.005*"good" + 0.005*"ensure" + 0.005*"education" + 0.005*"risk" + 0.005*"plans" + 0.005*"improved" +2024-10-14 08:43:46,480 - topic #1 (0.333): 0.007*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"need" + 0.005*"quality" + 0.005*"Croydon" + 0.005*"Senior" + 0.005*"ensure" + 0.004*"effective" + 0.004*"plans" +2024-10-14 08:43:46,480 - topic #2 (0.333): 0.012*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"Senior" + 0.006*"Croydon" + 0.006*"quality" + 0.006*"need" + 0.005*"health" + 0.005*"good" + 0.005*"risk" +2024-10-14 08:43:46,480 - topic diff=0.769191, rho=1.000000 +2024-10-14 08:43:46,480 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:43:46.480368', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:47,499 - Inspection date 2020-02-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:43:47,499 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:47,500 - Inspection date 2020-02-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:43:47,500 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:47,500 - Inspection date 2020-02-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:43:47,500 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:47,500 - Inspection date 2020-02-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:43:47,500 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:47,500 - Inspection date 2020-02-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:43:47,500 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:47,501 - Inspection date 2020-02-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:43:47,501 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:58,241 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:43:58,244 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions) +2024-10-14 08:43:58,244 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions)", 'datetime': '2024-10-14T08:43:58.244212', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:58,245 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:43:58,245 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:43:58,245 - using serial LDA version on this node +2024-10-14 08:43:58,246 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:43:58,246 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:43:58,249 - -8.051 per-word bound, 265.2 perplexity estimate based on a held-out corpus of 1 documents with 2365 words +2024-10-14 08:43:58,249 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:43:58,251 - topic #0 (0.333): 0.020*"’" + 0.009*"Ealing" + 0.009*"well" + 0.007*"needs" + 0.006*"progress" + 0.006*"effective" + 0.006*"3" + 0.006*"plans" + 0.005*"London" + 0.005*"good" +2024-10-14 08:43:58,251 - topic #1 (0.333): 0.015*"’" + 0.008*"Ealing" + 0.007*"well" + 0.006*"plans" + 0.006*"progress" + 0.005*"needs" + 0.005*"need" + 0.004*"including" + 0.004*"London" + 0.004*"effective" +2024-10-14 08:43:58,251 - topic #2 (0.333): 0.015*"’" + 0.007*"Ealing" + 0.005*"well" + 0.005*"need" + 0.005*"progress" + 0.004*"plans" + 0.004*"22" + 0.004*"health" + 0.004*"effective" + 0.004*"experiences" +2024-10-14 08:43:58,251 - topic diff=0.794744, rho=1.000000 +2024-10-14 08:43:58,251 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:43:58.251730', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:43:59,195 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:43:59,195 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:59,195 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:43:59,195 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:59,195 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:43:59,195 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:59,195 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:43:59,195 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:59,196 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:43:59,196 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:43:59,196 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:43:59,196 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:09,791 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:44:09,794 - built Dictionary<1108 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) +2024-10-14 08:44:09,794 - Dictionary lifecycle event {'msg': "built Dictionary<1108 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-10-14T08:44:09.794226', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:09,795 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:44:09,795 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:44:09,795 - using serial LDA version on this node +2024-10-14 08:44:09,796 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:44:09,796 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:44:09,799 - -7.997 per-word bound, 255.5 perplexity estimate based on a held-out corpus of 1 documents with 2531 words +2024-10-14 08:44:09,799 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:44:09,800 - topic #0 (0.333): 0.022*"’" + 0.011*"needs" + 0.008*"well" + 0.007*"Enfield" + 0.006*"plans" + 0.006*"practice" + 0.005*"timely" + 0.005*"need" + 0.005*"education" + 0.004*"good" +2024-10-14 08:44:09,801 - topic #1 (0.333): 0.016*"’" + 0.012*"needs" + 0.010*"well" + 0.008*"plans" + 0.008*"Enfield" + 0.007*"need" + 0.006*"receive" + 0.005*"timely" + 0.005*"protection" + 0.005*"practice" +2024-10-14 08:44:09,801 - topic #2 (0.333): 0.011*"’" + 0.008*"well" + 0.007*"needs" + 0.006*"Enfield" + 0.006*"plans" + 0.005*"receive" + 0.004*"need" + 0.004*"education" + 0.004*"good" + 0.004*"July" +2024-10-14 08:44:09,801 - topic diff=0.805773, rho=1.000000 +2024-10-14 08:44:09,801 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:44:09.801368', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:10,731 - Inspection date 2024-07-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:44:10,731 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:10,732 - Inspection date 2024-07-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:44:10,732 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:10,732 - Inspection date 2024-07-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:44:10,732 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:10,732 - Inspection date 2024-07-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:44:10,732 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:10,732 - Inspection date 2024-07-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:44:10,732 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:10,733 - Inspection date 2024-07-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:44:10,733 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:20,819 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:44:20,821 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2078 corpus positions) +2024-10-14 08:44:20,821 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2078 corpus positions)", 'datetime': '2024-10-14T08:44:20.821608', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:20,822 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:44:20,822 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:44:20,822 - using serial LDA version on this node +2024-10-14 08:44:20,823 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:44:20,823 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:44:20,826 - -7.985 per-word bound, 253.4 perplexity estimate based on a held-out corpus of 1 documents with 2078 words +2024-10-14 08:44:20,826 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:44:20,827 - topic #0 (0.333): 0.018*"’" + 0.010*"Greenwich" + 0.007*"needs" + 0.007*"well" + 0.006*"plans" + 0.005*"3" + 0.005*"progress" + 0.005*"provide" + 0.004*"7" + 0.004*"Royal" +2024-10-14 08:44:20,828 - topic #1 (0.333): 0.015*"’" + 0.011*"Greenwich" + 0.007*"needs" + 0.006*"well" + 0.005*"plans" + 0.005*"7" + 0.005*"3" + 0.005*"progress" + 0.004*"2024" + 0.004*"Royal" +2024-10-14 08:44:20,828 - topic #2 (0.333): 0.019*"’" + 0.011*"Greenwich" + 0.007*"well" + 0.007*"needs" + 0.006*"plans" + 0.005*"June" + 0.005*"provide" + 0.004*"2024" + 0.004*"quality" + 0.004*"Borough" +2024-10-14 08:44:20,828 - topic diff=0.755078, rho=1.000000 +2024-10-14 08:44:20,828 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:44:20.828522', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:21,700 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:44:21,700 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:21,701 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:44:21,701 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:21,701 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:44:21,701 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:21,701 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:44:21,701 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:21,701 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:44:21,701 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:21,702 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:44:21,702 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:34,126 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:44:34,128 - built Dictionary<1222 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2748 corpus positions) +2024-10-14 08:44:34,129 - Dictionary lifecycle event {'msg': 'built Dictionary<1222 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2748 corpus positions)', 'datetime': '2024-10-14T08:44:34.129150', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:34,130 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:44:34,130 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:44:34,130 - using serial LDA version on this node +2024-10-14 08:44:34,131 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:44:34,131 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:44:34,134 - -8.103 per-word bound, 275.0 perplexity estimate based on a held-out corpus of 1 documents with 2748 words +2024-10-14 08:44:34,135 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:44:34,136 - topic #0 (0.333): 0.016*"’" + 0.009*"Hackney" + 0.008*"needs" + 0.006*"carers" + 0.005*"well" + 0.005*"1" + 0.004*"need" + 0.004*"leaders" + 0.004*"education" + 0.004*"Leaders" +2024-10-14 08:44:34,136 - topic #1 (0.333): 0.018*"’" + 0.009*"Hackney" + 0.007*"needs" + 0.006*"carers" + 0.006*"12" + 0.005*"need" + 0.005*"well" + 0.005*"practice" + 0.005*"timely" + 0.004*"leaders" +2024-10-14 08:44:34,136 - topic #2 (0.333): 0.018*"’" + 0.009*"Hackney" + 0.009*"needs" + 0.006*"well" + 0.005*"effective" + 0.005*"12" + 0.004*"July" + 0.004*"timely" + 0.004*"practice" + 0.004*"2024" +2024-10-14 08:44:34,136 - topic diff=0.800796, rho=1.000000 +2024-10-14 08:44:34,136 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:44:34.136954', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:35,045 - Inspection date 2024-07-01 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:44:35,045 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:35,045 - Inspection date 2024-07-01 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:44:35,045 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:35,045 - Inspection date 2024-07-01 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:44:35,046 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:35,046 - Inspection date 2024-07-01 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:44:35,046 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:35,046 - Inspection date 2024-07-01 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:44:35,046 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:35,046 - Inspection date 2024-07-01 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:44:35,046 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:47,877 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:44:47,881 - built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) +2024-10-14 08:44:47,881 - Dictionary lifecycle event {'msg': "built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-10-14T08:44:47.881196', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:47,882 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:44:47,882 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:44:47,882 - using serial LDA version on this node +2024-10-14 08:44:47,883 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:44:47,883 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:44:47,887 - -8.203 per-word bound, 294.6 perplexity estimate based on a held-out corpus of 1 documents with 2905 words +2024-10-14 08:44:47,887 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:44:47,889 - topic #0 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"needs" + 0.006*"receive" + 0.005*"practice" + 0.005*"Hammersmith" + 0.005*"place" + 0.004*"leaders" + 0.004*"15" + 0.004*"Fulham" +2024-10-14 08:44:47,889 - topic #1 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"receive" + 0.005*"needs" + 0.005*"protection" + 0.004*"leaders" + 0.004*"Leaders" + 0.004*"supported" + 0.004*"2024" + 0.004*"Fulham" +2024-10-14 08:44:47,889 - topic #2 (0.333): 0.012*"’" + 0.007*"well" + 0.005*"plans" + 0.005*"receive" + 0.004*"Fulham" + 0.004*"effective" + 0.004*"Hammersmith" + 0.004*"needs" + 0.004*"2024" + 0.004*"March" +2024-10-14 08:44:47,889 - topic diff=0.796885, rho=1.000000 +2024-10-14 08:44:47,889 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:44:47.889588', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:44:48,778 - Inspection date 2024-03-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:44:48,778 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:48,778 - Inspection date 2024-03-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:44:48,778 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:48,778 - Inspection date 2024-03-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:44:48,778 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:48,778 - Inspection date 2024-03-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:44:48,779 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:48,779 - Inspection date 2024-03-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:44:48,779 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:44:48,779 - Inspection date 2024-03-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:44:48,779 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:00,539 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:45:00,542 - built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions) +2024-10-14 08:45:00,542 - Dictionary lifecycle event {'msg': "built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions)", 'datetime': '2024-10-14T08:45:00.542416', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:00,543 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:45:00,543 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:45:00,543 - using serial LDA version on this node +2024-10-14 08:45:00,544 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:45:00,544 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:45:00,548 - -8.170 per-word bound, 288.0 perplexity estimate based on a held-out corpus of 1 documents with 2620 words +2024-10-14 08:45:00,548 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:45:00,549 - topic #0 (0.333): 0.017*"’" + 0.011*"Haringey" + 0.009*"needs" + 0.007*"plans" + 0.006*"well" + 0.005*"good" + 0.005*"progress" + 0.005*"education" + 0.005*"need" + 0.004*"impact" +2024-10-14 08:45:00,549 - topic #1 (0.333): 0.014*"’" + 0.007*"needs" + 0.007*"plans" + 0.006*"well" + 0.006*"Haringey" + 0.005*"progress" + 0.005*"need" + 0.004*"timely" + 0.004*"good" + 0.004*"risk" +2024-10-14 08:45:00,550 - topic #2 (0.333): 0.015*"’" + 0.007*"Haringey" + 0.006*"plans" + 0.006*"needs" + 0.006*"good" + 0.005*"need" + 0.005*"well" + 0.004*"education" + 0.004*"progress" + 0.004*"risk" +2024-10-14 08:45:00,550 - topic diff=0.776474, rho=1.000000 +2024-10-14 08:45:00,550 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:45:00.550307', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:01,459 - Inspection date 2023-02-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:45:01,460 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:01,460 - Inspection date 2023-02-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:45:01,460 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:01,460 - Inspection date 2023-02-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:45:01,460 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:01,460 - Inspection date 2023-02-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:45:01,460 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:01,461 - Inspection date 2023-02-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:45:01,461 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:01,461 - Inspection date 2023-02-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:45:01,461 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:09,367 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:45:09,369 - built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions) +2024-10-14 08:45:09,369 - Dictionary lifecycle event {'msg': "built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions)", 'datetime': '2024-10-14T08:45:09.369333', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:09,370 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:45:09,370 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:45:09,370 - using serial LDA version on this node +2024-10-14 08:45:09,370 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:45:09,370 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:45:09,374 - -7.972 per-word bound, 251.1 perplexity estimate based on a held-out corpus of 1 documents with 1732 words +2024-10-14 08:45:09,374 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:45:09,375 - topic #0 (0.333): 0.016*"’" + 0.013*"good" + 0.009*"well" + 0.008*"needs" + 0.007*"impact" + 0.006*"plans" + 0.006*"protection" + 0.006*"need" + 0.005*"practice" + 0.005*"experiences" +2024-10-14 08:45:09,375 - topic #1 (0.333): 0.009*"good" + 0.008*"well" + 0.008*"needs" + 0.006*"’" + 0.005*"plans" + 0.004*"need" + 0.004*"Harrow" + 0.004*"impact" + 0.004*"early" + 0.004*"experiences" +2024-10-14 08:45:09,375 - topic #2 (0.333): 0.010*"’" + 0.008*"needs" + 0.008*"well" + 0.007*"good" + 0.005*"practice" + 0.005*"early" + 0.005*"experiences" + 0.005*"protection" + 0.004*"plans" + 0.004*"need" +2024-10-14 08:45:09,375 - topic diff=0.713502, rho=1.000000 +2024-10-14 08:45:09,376 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:45:09.376060', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:11,218 - Inspection date 2020-02-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:45:11,218 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:11,218 - Inspection date 2020-02-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:45:11,218 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:11,218 - Inspection date 2020-02-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:45:11,218 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:11,219 - Inspection date 2020-02-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:45:11,219 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:11,219 - Inspection date 2020-02-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:45:11,219 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:11,219 - Inspection date 2020-02-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:45:11,219 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:21,481 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:45:21,484 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions) +2024-10-14 08:45:21,484 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions)", 'datetime': '2024-10-14T08:45:21.484418', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:21,485 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:45:21,485 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:45:21,485 - using serial LDA version on this node +2024-10-14 08:45:21,486 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:45:21,486 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:45:21,489 - -8.013 per-word bound, 258.3 perplexity estimate based on a held-out corpus of 1 documents with 2243 words +2024-10-14 08:45:21,489 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:45:21,491 - topic #0 (0.333): 0.011*"’" + 0.010*"Havering" + 0.006*"quality" + 0.006*"plans" + 0.005*"oversight" + 0.004*"needs" + 0.004*"effective" + 0.004*"well" + 0.003*"many" + 0.003*"2023" +2024-10-14 08:45:21,491 - topic #1 (0.333): 0.019*"’" + 0.010*"Havering" + 0.009*"quality" + 0.007*"plans" + 0.006*"effective" + 0.005*"11" + 0.005*"oversight" + 0.005*"needs" + 0.004*"well" + 0.004*"December" +2024-10-14 08:45:21,491 - topic #2 (0.333): 0.021*"’" + 0.013*"Havering" + 0.010*"quality" + 0.007*"plans" + 0.005*"oversight" + 0.005*"effective" + 0.005*"22" + 0.005*"practice" + 0.005*"needs" + 0.004*"2023" +2024-10-14 08:45:21,491 - topic diff=0.776074, rho=1.000000 +2024-10-14 08:45:21,491 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:45:21.491541', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:22,377 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:45:22,377 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:22,377 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:45:22,377 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:22,377 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:45:22,377 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:22,378 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:45:22,378 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:22,378 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:45:22,378 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:22,378 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:45:22,378 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:32,898 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:45:32,901 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions) +2024-10-14 08:45:32,901 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions)", 'datetime': '2024-10-14T08:45:32.901589', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:32,902 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:45:32,902 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:45:32,903 - using serial LDA version on this node +2024-10-14 08:45:32,903 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:45:32,903 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:45:32,907 - -8.072 per-word bound, 269.1 perplexity estimate based on a held-out corpus of 1 documents with 2511 words +2024-10-14 08:45:32,907 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:45:32,908 - topic #0 (0.333): 0.018*"’" + 0.009*"needs" + 0.009*"well" + 0.008*"plans" + 0.008*"Hillingdon" + 0.004*"6" + 0.004*"need" + 0.004*"2" + 0.004*"team" + 0.004*"2023" +2024-10-14 08:45:32,908 - topic #1 (0.333): 0.010*"’" + 0.008*"needs" + 0.006*"well" + 0.006*"Hillingdon" + 0.006*"plans" + 0.005*"team" + 0.004*"experiences" + 0.004*"leaders" + 0.004*"need" + 0.003*"2" +2024-10-14 08:45:32,908 - topic #2 (0.333): 0.022*"’" + 0.010*"needs" + 0.008*"Hillingdon" + 0.008*"plans" + 0.007*"well" + 0.005*"team" + 0.005*"need" + 0.005*"2" + 0.005*"6" + 0.004*"PAs" +2024-10-14 08:45:32,909 - topic diff=0.798553, rho=1.000000 +2024-10-14 08:45:32,909 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:45:32.909166', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:33,861 - Inspection date 2023-10-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:45:33,861 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:33,862 - Inspection date 2023-10-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:45:33,862 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:33,862 - Inspection date 2023-10-02 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:45:33,862 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:33,862 - Inspection date 2023-10-02 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:45:33,862 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:33,862 - Inspection date 2023-10-02 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:45:33,862 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:33,863 - Inspection date 2023-10-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:45:33,863 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:45,114 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:45:45,116 - built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions) +2024-10-14 08:45:45,116 - Dictionary lifecycle event {'msg': "built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions)", 'datetime': '2024-10-14T08:45:45.116927', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:45,117 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:45:45,118 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:45:45,118 - using serial LDA version on this node +2024-10-14 08:45:45,118 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:45:45,118 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:45:45,122 - -7.997 per-word bound, 255.5 perplexity estimate based on a held-out corpus of 1 documents with 2271 words +2024-10-14 08:45:45,122 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:45:45,123 - topic #0 (0.333): 0.021*"’" + 0.009*"needs" + 0.009*"well" + 0.008*"effective" + 0.007*"Hounslow" + 0.006*"plans" + 0.005*"strong" + 0.005*"timely" + 0.005*"experiences" + 0.005*"20" +2024-10-14 08:45:45,123 - topic #1 (0.333): 0.024*"’" + 0.013*"needs" + 0.010*"well" + 0.008*"effective" + 0.008*"timely" + 0.007*"Hounslow" + 0.005*"plans" + 0.005*"education" + 0.005*"oversight" + 0.004*"progress" +2024-10-14 08:45:45,123 - topic #2 (0.333): 0.011*"well" + 0.010*"needs" + 0.009*"’" + 0.006*"Hounslow" + 0.005*"effective" + 0.005*"16" + 0.005*"timely" + 0.004*"plans" + 0.004*"appropriate" + 0.004*"progress" +2024-10-14 08:45:45,123 - topic diff=0.792595, rho=1.000000 +2024-10-14 08:45:45,124 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:45:45.124081', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:46,053 - Inspection date 2023-10-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:45:46,053 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:46,053 - Inspection date 2023-10-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:45:46,053 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:46,053 - Inspection date 2023-10-16 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:45:46,053 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:46,054 - Inspection date 2023-10-16 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:45:46,054 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:46,054 - Inspection date 2023-10-16 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:45:46,054 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:46,054 - Inspection date 2023-10-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:45:46,054 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:54,473 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:45:54,475 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions) +2024-10-14 08:45:54,476 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions)", 'datetime': '2024-10-14T08:45:54.476128', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:54,477 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:45:54,477 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:45:54,477 - using serial LDA version on this node +2024-10-14 08:45:54,477 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:45:54,477 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:45:54,480 - -7.925 per-word bound, 243.0 perplexity estimate based on a held-out corpus of 1 documents with 1982 words +2024-10-14 08:45:54,481 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:45:54,482 - topic #0 (0.333): 0.011*"’" + 0.010*"well" + 0.009*"needs" + 0.006*"plans" + 0.006*"highly" + 0.006*"good" + 0.006*"effective" + 0.005*"quality" + 0.005*"leaders" + 0.005*"Islington" +2024-10-14 08:45:54,482 - topic #1 (0.333): 0.015*"’" + 0.010*"well" + 0.010*"needs" + 0.007*"plans" + 0.006*"quality" + 0.005*"risk" + 0.005*"leaders" + 0.005*"good" + 0.005*"highly" + 0.005*"Senior" +2024-10-14 08:45:54,482 - topic #2 (0.333): 0.014*"needs" + 0.012*"’" + 0.011*"well" + 0.006*"good" + 0.006*"plans" + 0.006*"highly" + 0.005*"quality" + 0.005*"Islington" + 0.005*"effective" + 0.005*"practice" +2024-10-14 08:45:54,482 - topic diff=0.736633, rho=1.000000 +2024-10-14 08:45:54,482 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:45:54.482687', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:45:56,245 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:45:56,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:56,246 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:45:56,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:56,246 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:45:56,247 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:56,247 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:45:56,247 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:56,247 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:45:56,247 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:45:56,247 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:45:56,247 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:07,127 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:46:07,129 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions) +2024-10-14 08:46:07,129 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions)", 'datetime': '2024-10-14T08:46:07.129895', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:07,130 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:46:07,130 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:46:07,131 - using serial LDA version on this node +2024-10-14 08:46:07,131 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:46:07,131 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:46:07,134 - -7.910 per-word bound, 240.5 perplexity estimate based on a held-out corpus of 1 documents with 2090 words +2024-10-14 08:46:07,134 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:46:07,136 - topic #0 (0.333): 0.013*"’" + 0.009*"well" + 0.007*"needs" + 0.007*"good" + 0.006*"plans" + 0.006*"leaders" + 0.006*"impact" + 0.005*"Lambeth" + 0.005*"progress" + 0.005*"Leaders" +2024-10-14 08:46:07,136 - topic #1 (0.333): 0.014*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"Lambeth" + 0.007*"plans" + 0.007*"good" + 0.006*"need" + 0.006*"impact" + 0.005*"progress" + 0.005*"carers" +2024-10-14 08:46:07,136 - topic #2 (0.333): 0.018*"’" + 0.010*"needs" + 0.009*"plans" + 0.008*"well" + 0.006*"progress" + 0.006*"need" + 0.006*"good" + 0.006*"Lambeth" + 0.005*"leaders" + 0.005*"4" +2024-10-14 08:46:07,136 - topic diff=0.801435, rho=1.000000 +2024-10-14 08:46:07,136 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:46:07.136640', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:08,040 - Inspection date 2022-10-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:46:08,040 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:08,040 - Inspection date 2022-10-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:46:08,041 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:08,041 - Inspection date 2022-10-24 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:46:08,041 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:08,041 - Inspection date 2022-10-24 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:46:08,041 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:08,041 - Inspection date 2022-10-24 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:46:08,041 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:08,041 - Inspection date 2022-10-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:46:08,041 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:18,943 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:46:18,947 - built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions) +2024-10-14 08:46:18,947 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-10-14T08:46:18.947526', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:18,949 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:46:18,949 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:46:18,950 - using serial LDA version on this node +2024-10-14 08:46:18,950 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:46:18,950 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:46:18,955 - -8.050 per-word bound, 265.0 perplexity estimate based on a held-out corpus of 1 documents with 2352 words +2024-10-14 08:46:18,956 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:46:18,957 - topic #0 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"needs" + 0.006*"effective" + 0.006*"Lewisham" + 0.005*"plans" + 0.005*"4" + 0.005*"progress" + 0.005*"good" + 0.005*"ensure" +2024-10-14 08:46:18,957 - topic #1 (0.333): 0.010*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"effective" + 0.006*"Lewisham" + 0.005*"plans" + 0.004*"4" + 0.004*"2023" + 0.004*"arrangements" + 0.004*"health" +2024-10-14 08:46:18,957 - topic #2 (0.333): 0.021*"’" + 0.009*"well" + 0.009*"plans" + 0.007*"needs" + 0.006*"effective" + 0.006*"Lewisham" + 0.005*"progress" + 0.005*"arrangements" + 0.005*"good" + 0.005*"receive" +2024-10-14 08:46:18,957 - topic diff=0.776953, rho=1.000000 +2024-10-14 08:46:18,958 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:46:18.958050', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:19,837 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:46:19,837 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:19,837 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:46:19,837 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:19,838 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:46:19,838 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:19,838 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:46:19,838 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:19,838 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:46:19,838 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:19,839 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:46:19,839 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:28,962 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:46:28,964 - built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions) +2024-10-14 08:46:28,964 - Dictionary lifecycle event {'msg': "built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions)", 'datetime': '2024-10-14T08:46:28.964725', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:28,965 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:46:28,965 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:46:28,966 - using serial LDA version on this node +2024-10-14 08:46:28,966 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:46:28,966 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:46:28,969 - -7.990 per-word bound, 254.3 perplexity estimate based on a held-out corpus of 1 documents with 2032 words +2024-10-14 08:46:28,969 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:46:28,971 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.006*"Merton" + 0.005*"plans" + 0.005*"needs" + 0.005*"progress" + 0.004*"family" + 0.004*"education" + 0.004*"health" + 0.004*"March" +2024-10-14 08:46:28,971 - topic #1 (0.333): 0.016*"’" + 0.007*"Merton" + 0.007*"well" + 0.005*"needs" + 0.004*"ensure" + 0.004*"family" + 0.004*"4" + 0.004*"information" + 0.004*"good" + 0.004*"progress" +2024-10-14 08:46:28,971 - topic #2 (0.333): 0.017*"’" + 0.009*"well" + 0.006*"needs" + 0.006*"Merton" + 0.005*"plans" + 0.004*"ensure" + 0.004*"family" + 0.004*"good" + 0.004*"across" + 0.004*"progress" +2024-10-14 08:46:28,971 - topic diff=0.755215, rho=1.000000 +2024-10-14 08:46:28,971 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:46:28.971579', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:29,799 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:46:29,799 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:29,799 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:46:29,800 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:29,800 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:46:29,800 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:29,800 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:46:29,800 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:29,800 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:46:29,800 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:29,800 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:46:29,800 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:40,780 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:46:40,782 - built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions) +2024-10-14 08:46:40,782 - Dictionary lifecycle event {'msg': "built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions)", 'datetime': '2024-10-14T08:46:40.782801', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:40,783 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:46:40,784 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:46:40,784 - using serial LDA version on this node +2024-10-14 08:46:40,784 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:46:40,784 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:46:40,788 - -8.058 per-word bound, 266.5 perplexity estimate based on a held-out corpus of 1 documents with 2540 words +2024-10-14 08:46:40,788 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:46:40,789 - topic #0 (0.333): 0.017*"’" + 0.008*"plans" + 0.007*"needs" + 0.007*"progress" + 0.007*"Newham" + 0.006*"practice" + 0.006*"need" + 0.005*"effective" + 0.005*"29" + 0.004*"good" +2024-10-14 08:46:40,789 - topic #1 (0.333): 0.024*"’" + 0.010*"needs" + 0.007*"Newham" + 0.006*"practice" + 0.006*"effective" + 0.006*"need" + 0.006*"progress" + 0.005*"good" + 0.005*"plans" + 0.005*"Leaders" +2024-10-14 08:46:40,790 - topic #2 (0.333): 0.014*"’" + 0.006*"Newham" + 0.006*"needs" + 0.006*"plans" + 0.005*"effective" + 0.005*"practice" + 0.005*"progress" + 0.005*"good" + 0.005*"need" + 0.004*"well" +2024-10-14 08:46:40,790 - topic diff=0.780449, rho=1.000000 +2024-10-14 08:46:40,790 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:46:40.790383', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:41,764 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:46:41,764 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:41,764 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:46:41,764 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:41,765 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:46:41,765 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:41,765 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:46:41,765 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:41,765 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:46:41,765 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:41,765 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:46:41,765 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:52,116 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:46:52,121 - built Dictionary<1204 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2389 corpus positions) +2024-10-14 08:46:52,121 - Dictionary lifecycle event {'msg': "built Dictionary<1204 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-10-14T08:46:52.121556', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:52,123 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:46:52,123 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:46:52,124 - using serial LDA version on this node +2024-10-14 08:46:52,124 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:46:52,124 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:46:52,131 - -8.166 per-word bound, 287.2 perplexity estimate based on a held-out corpus of 1 documents with 2389 words +2024-10-14 08:46:52,131 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:46:52,134 - topic #0 (0.333): 0.019*"’" + 0.007*"Redbridge" + 0.006*"practice" + 0.006*"carers" + 0.005*"supported" + 0.005*"needs" + 0.005*"10" + 0.005*"early" + 0.005*"risk" + 0.004*"leaders" +2024-10-14 08:46:52,134 - topic #1 (0.333): 0.007*"’" + 0.006*"Redbridge" + 0.004*"needs" + 0.004*"June" + 0.004*"teams" + 0.004*"information" + 0.004*"parents" + 0.003*"protection" + 0.003*"carers" + 0.003*"supported" +2024-10-14 08:46:52,134 - topic #2 (0.333): 0.013*"’" + 0.007*"Redbridge" + 0.005*"needs" + 0.005*"family" + 0.005*"leaders" + 0.005*"supported" + 0.005*"plans" + 0.004*"effective" + 0.004*"carers" + 0.004*"well" +2024-10-14 08:46:52,134 - topic diff=0.770563, rho=1.000000 +2024-10-14 08:46:52,134 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:46:52.134875', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:46:53,119 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:46:53,119 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:53,120 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:46:53,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:53,120 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:46:53,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:53,120 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:46:53,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:53,120 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:46:53,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:46:53,120 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:46:53,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:01,526 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:47:01,528 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions) +2024-10-14 08:47:01,528 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions)", 'datetime': '2024-10-14T08:47:01.528656', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:01,529 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:47:01,530 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:47:01,530 - using serial LDA version on this node +2024-10-14 08:47:01,530 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:47:01,530 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:47:01,533 - -7.987 per-word bound, 253.7 perplexity estimate based on a held-out corpus of 1 documents with 1818 words +2024-10-14 08:47:01,533 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:47:01,535 - topic #0 (0.333): 0.018*"’" + 0.011*"well" + 0.009*"Richmond" + 0.007*"needs" + 0.006*"need" + 0.006*"good" + 0.005*"supported" + 0.005*"additional" + 0.005*"team" + 0.005*"ensure" +2024-10-14 08:47:01,535 - topic #1 (0.333): 0.013*"’" + 0.009*"well" + 0.008*"Richmond" + 0.006*"good" + 0.006*"team" + 0.006*"needs" + 0.006*"supported" + 0.005*"ensure" + 0.004*"need" + 0.004*"4" +2024-10-14 08:47:01,535 - topic #2 (0.333): 0.015*"’" + 0.013*"well" + 0.008*"needs" + 0.007*"Richmond" + 0.006*"supported" + 0.005*"need" + 0.005*"team" + 0.005*"strong" + 0.004*"February" + 0.004*"31" +2024-10-14 08:47:01,535 - topic diff=0.728900, rho=1.000000 +2024-10-14 08:47:01,535 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:47:01.535852', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:02,560 - Inspection date 2022-01-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:47:02,561 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:02,561 - Inspection date 2022-01-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:47:02,561 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:02,561 - Inspection date 2022-01-31 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:47:02,561 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:02,562 - Inspection date 2022-01-31 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:47:02,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:02,562 - Inspection date 2022-01-31 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:47:02,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:02,562 - Inspection date 2022-01-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:47:02,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:12,027 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:47:12,029 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions) +2024-10-14 08:47:12,029 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions)", 'datetime': '2024-10-14T08:47:12.029689', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:12,030 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:47:12,030 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:47:12,030 - using serial LDA version on this node +2024-10-14 08:47:12,031 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:47:12,031 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:47:12,034 - -7.922 per-word bound, 242.5 perplexity estimate based on a held-out corpus of 1 documents with 1878 words +2024-10-14 08:47:12,034 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:47:12,035 - topic #0 (0.333): 0.011*"’" + 0.008*"Southwark" + 0.005*"good" + 0.005*"well" + 0.005*"needs" + 0.004*"leaders" + 0.004*"plans" + 0.004*"receive" + 0.004*"progress" + 0.004*"30" +2024-10-14 08:47:12,035 - topic #1 (0.333): 0.015*"’" + 0.007*"Southwark" + 0.007*"good" + 0.006*"well" + 0.006*"needs" + 0.006*"progress" + 0.005*"plans" + 0.005*"Leaders" + 0.005*"effective" + 0.005*"leaders" +2024-10-14 08:47:12,035 - topic #2 (0.333): 0.023*"’" + 0.011*"Southwark" + 0.010*"good" + 0.009*"well" + 0.009*"needs" + 0.007*"need" + 0.006*"progress" + 0.006*"strong" + 0.006*"plans" + 0.006*"effective" +2024-10-14 08:47:12,036 - topic diff=0.763111, rho=1.000000 +2024-10-14 08:47:12,036 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:47:12.036122', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:13,203 - Inspection date 2022-09-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:47:13,204 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:13,204 - Inspection date 2022-09-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:47:13,204 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:13,204 - Inspection date 2022-09-26 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:47:13,204 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:13,204 - Inspection date 2022-09-26 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:47:13,204 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:13,205 - Inspection date 2022-09-26 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:47:13,205 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:13,205 - Inspection date 2022-09-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:47:13,205 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:21,225 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:47:21,227 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions) +2024-10-14 08:47:21,227 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions)", 'datetime': '2024-10-14T08:47:21.227924', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:21,228 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:47:21,228 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:47:21,229 - using serial LDA version on this node +2024-10-14 08:47:21,229 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:47:21,229 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:47:21,232 - -7.992 per-word bound, 254.6 perplexity estimate based on a held-out corpus of 1 documents with 1847 words +2024-10-14 08:47:21,232 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:47:21,234 - topic #0 (0.333): 0.021*"’" + 0.008*"well" + 0.007*"Sutton" + 0.006*"effective" + 0.006*"needs" + 0.006*"good" + 0.005*"progress" + 0.005*"receive" + 0.005*"6" + 0.004*"supported" +2024-10-14 08:47:21,234 - topic #1 (0.333): 0.015*"’" + 0.006*"needs" + 0.006*"Sutton" + 0.005*"progress" + 0.005*"well" + 0.004*"need" + 0.004*"receive" + 0.004*"leaders" + 0.004*"home" + 0.004*"effective" +2024-10-14 08:47:21,234 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"receive" + 0.004*"Sutton" + 0.004*"good" + 0.004*"progress" + 0.004*"10" + 0.004*"6" + 0.004*"supported" +2024-10-14 08:47:21,234 - topic diff=0.739021, rho=1.000000 +2024-10-14 08:47:21,234 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:47:21.234542', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:23,246 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:47:23,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:23,247 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:47:23,247 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:23,247 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:47:23,247 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:23,249 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:47:23,249 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:23,250 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:47:23,250 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:23,250 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:47:23,250 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:33,388 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:47:33,392 - built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions) +2024-10-14 08:47:33,392 - Dictionary lifecycle event {'msg': "built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions)", 'datetime': '2024-10-14T08:47:33.392453', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:33,394 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:47:33,394 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:47:33,395 - using serial LDA version on this node +2024-10-14 08:47:33,395 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:47:33,395 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:47:33,402 - -8.129 per-word bound, 280.0 perplexity estimate based on a held-out corpus of 1 documents with 2465 words +2024-10-14 08:47:33,402 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:47:33,404 - topic #0 (0.333): 0.010*"’" + 0.005*"effective" + 0.005*"‘" + 0.005*"plans" + 0.005*"good" + 0.004*"need" + 0.004*"well" + 0.004*"progress" + 0.004*"practice" + 0.004*"needs" +2024-10-14 08:47:33,405 - topic #1 (0.333): 0.019*"’" + 0.007*"good" + 0.007*"plans" + 0.006*"effective" + 0.006*"‘" + 0.006*"well" + 0.005*"early" + 0.005*"need" + 0.004*"progress" + 0.004*"practice" +2024-10-14 08:47:33,405 - topic #2 (0.333): 0.014*"’" + 0.007*"good" + 0.006*"practice" + 0.006*"plans" + 0.006*"effective" + 0.006*"well" + 0.006*"including" + 0.006*"‘" + 0.005*"risk" + 0.005*"need" +2024-10-14 08:47:33,405 - topic diff=0.782085, rho=1.000000 +2024-10-14 08:47:33,405 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:47:33.405605', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:34,486 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:47:34,486 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:34,487 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:47:34,487 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:34,487 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:47:34,487 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:34,487 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:47:34,487 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:34,487 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:47:34,487 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:34,488 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:47:34,488 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:45,341 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:47:45,343 - built Dictionary<1061 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2398 corpus positions) +2024-10-14 08:47:45,344 - Dictionary lifecycle event {'msg': "built Dictionary<1061 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2398 corpus positions)", 'datetime': '2024-10-14T08:47:45.344122', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:45,345 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:47:45,345 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:47:45,345 - using serial LDA version on this node +2024-10-14 08:47:45,345 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:47:45,345 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:47:45,349 - -7.959 per-word bound, 248.9 perplexity estimate based on a held-out corpus of 1 documents with 2398 words +2024-10-14 08:47:45,349 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:47:45,350 - topic #0 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"plans" + 0.007*"Waltham" + 0.007*"Forest" + 0.006*"progress" + 0.005*"Leaders" + 0.004*"leaders" + 0.004*"July" +2024-10-14 08:47:45,350 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"well" + 0.007*"plans" + 0.005*"12" + 0.005*"8" + 0.005*"Waltham" + 0.005*"leaders" + 0.005*"2024" + 0.004*"timely" +2024-10-14 08:47:45,351 - topic #2 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"needs" + 0.006*"plans" + 0.006*"Forest" + 0.005*"effective" + 0.005*"Waltham" + 0.005*"leaders" + 0.005*"progress" + 0.005*"education" +2024-10-14 08:47:45,351 - topic diff=0.785417, rho=1.000000 +2024-10-14 08:47:45,351 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:47:45.351245', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:46,323 - Inspection date 2024-07-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:47:46,323 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:46,323 - Inspection date 2024-07-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:47:46,324 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:46,324 - Inspection date 2024-07-08 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:47:46,324 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:46,324 - Inspection date 2024-07-08 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:47:46,324 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:46,324 - Inspection date 2024-07-08 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:47:46,324 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:46,324 - Inspection date 2024-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:47:46,325 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:54,237 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:47:54,239 - built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions) +2024-10-14 08:47:54,239 - Dictionary lifecycle event {'msg': "built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions)", 'datetime': '2024-10-14T08:47:54.239563', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:54,240 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:47:54,240 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:47:54,240 - using serial LDA version on this node +2024-10-14 08:47:54,241 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:47:54,241 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:47:54,244 - -7.852 per-word bound, 231.0 perplexity estimate based on a held-out corpus of 1 documents with 1772 words +2024-10-14 08:47:54,244 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:47:54,245 - topic #0 (0.333): 0.008*"’" + 0.006*"progress" + 0.005*"protection" + 0.005*"well" + 0.005*"Senior" + 0.005*"effective" + 0.005*"needs" + 0.004*"supported" + 0.004*"practice" + 0.004*"Wandsworth" +2024-10-14 08:47:54,245 - topic #1 (0.333): 0.009*"’" + 0.007*"needs" + 0.007*"well" + 0.005*"protection" + 0.005*"team" + 0.005*"quality" + 0.005*"supported" + 0.005*"ensure" + 0.005*"Senior" + 0.005*"Wandsworth" +2024-10-14 08:47:54,245 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"practice" + 0.006*"progress" + 0.005*"7" + 0.005*"Wandsworth" + 0.005*"18" + 0.005*"effective" + 0.005*"However" + 0.005*"Senior" +2024-10-14 08:47:54,245 - topic diff=0.757967, rho=1.000000 +2024-10-14 08:47:54,245 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:47:54.245869', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:47:55,257 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:47:55,257 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:55,257 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:47:55,257 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:55,257 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:47:55,257 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:55,257 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:47:55,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:55,258 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:47:55,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:47:55,258 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:47:55,258 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:03,567 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:48:03,569 - built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions) +2024-10-14 08:48:03,570 - Dictionary lifecycle event {'msg': "built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions)", 'datetime': '2024-10-14T08:48:03.569994', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:03,571 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:48:03,571 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:48:03,571 - using serial LDA version on this node +2024-10-14 08:48:03,571 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:48:03,571 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:48:03,575 - -8.156 per-word bound, 285.2 perplexity estimate based on a held-out corpus of 1 documents with 2101 words +2024-10-14 08:48:03,575 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:48:03,576 - topic #0 (0.333): 0.015*"’" + 0.008*"practice" + 0.007*"needs" + 0.005*"highly" + 0.005*"well" + 0.004*"many" + 0.004*"shared" + 0.004*"number" + 0.003*"Westminster" + 0.003*"direct" +2024-10-14 08:48:03,576 - topic #1 (0.333): 0.007*"’" + 0.005*"highly" + 0.005*"practice" + 0.004*"well" + 0.004*"needs" + 0.004*"across" + 0.004*"family" + 0.003*"direct" + 0.003*"interventions" + 0.003*"supported" +2024-10-14 08:48:03,577 - topic #2 (0.333): 0.015*"’" + 0.007*"practice" + 0.007*"needs" + 0.006*"highly" + 0.005*"well" + 0.005*"across" + 0.004*"many" + 0.004*"family" + 0.004*"plans" + 0.004*"experiences" +2024-10-14 08:48:03,577 - topic diff=0.697576, rho=1.000000 +2024-10-14 08:48:03,577 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:48:03.577322', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:04,745 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:48:04,745 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:04,745 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:48:04,746 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:04,746 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:48:04,746 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:04,746 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:48:04,746 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:04,747 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:48:04,747 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:04,747 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:48:04,747 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:16,263 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:48:16,265 - built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions) +2024-10-14 08:48:16,266 - Dictionary lifecycle event {'msg': "built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions)", 'datetime': '2024-10-14T08:48:16.266159', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:16,267 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:48:16,267 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:48:16,267 - using serial LDA version on this node +2024-10-14 08:48:16,268 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:48:16,268 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:48:16,271 - -8.103 per-word bound, 274.8 perplexity estimate based on a held-out corpus of 1 documents with 2593 words +2024-10-14 08:48:16,272 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:48:16,273 - topic #0 (0.333): 0.020*"’" + 0.007*"need" + 0.007*"Luton" + 0.006*"effective" + 0.006*"needs" + 0.006*"plans" + 0.005*"ensure" + 0.005*"impact" + 0.005*"progress" + 0.005*"good" +2024-10-14 08:48:16,273 - topic #1 (0.333): 0.010*"’" + 0.004*"need" + 0.004*"needs" + 0.004*"plans" + 0.004*"good" + 0.003*"leaders" + 0.003*"progress" + 0.003*"quality" + 0.003*"impact" + 0.003*"well" +2024-10-14 08:48:16,273 - topic #2 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"plans" + 0.006*"need" + 0.005*"good" + 0.005*"receive" + 0.005*"effective" + 0.005*"quality" + 0.005*"Luton" + 0.005*"progress" +2024-10-14 08:48:16,273 - topic diff=0.826241, rho=1.000000 +2024-10-14 08:48:16,273 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:48:16.273960', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:17,132 - Inspection date 2022-07-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:48:17,132 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:17,133 - Inspection date 2022-07-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:48:17,133 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:17,133 - Inspection date 2022-07-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:48:17,133 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:17,133 - Inspection date 2022-07-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:48:17,134 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:17,134 - Inspection date 2022-07-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:48:17,134 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:17,134 - Inspection date 2022-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:48:17,134 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:25,101 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:48:25,103 - built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions) +2024-10-14 08:48:25,103 - Dictionary lifecycle event {'msg': "built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions)", 'datetime': '2024-10-14T08:48:25.103617', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:25,104 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:48:25,104 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:48:25,104 - using serial LDA version on this node +2024-10-14 08:48:25,105 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:48:25,105 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:48:25,108 - -7.769 per-word bound, 218.1 perplexity estimate based on a held-out corpus of 1 documents with 1938 words +2024-10-14 08:48:25,108 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:48:25,109 - topic #0 (0.333): 0.023*"’" + 0.009*"Manchester" + 0.008*"needs" + 0.008*"well" + 0.007*"always" + 0.007*"supported" + 0.007*"plans" + 0.006*"effective" + 0.006*"education" + 0.005*"disabled" +2024-10-14 08:48:25,109 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.008*"Manchester" + 0.006*"always" + 0.005*"well" + 0.005*"disabled" + 0.005*"April" + 0.005*"supported" + 0.004*"protection" + 0.004*"planning" +2024-10-14 08:48:25,109 - topic #2 (0.333): 0.022*"’" + 0.013*"Manchester" + 0.011*"needs" + 0.007*"supported" + 0.007*"well" + 0.006*"protection" + 0.006*"always" + 0.005*"family" + 0.005*"education" + 0.005*"plans" +2024-10-14 08:48:25,109 - topic diff=0.813128, rho=1.000000 +2024-10-14 08:48:25,109 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:48:25.109833', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:26,127 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:48:26,127 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:26,127 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:48:26,127 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:26,127 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:48:26,127 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:26,128 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:48:26,128 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:26,128 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:48:26,128 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:26,128 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:48:26,128 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:34,950 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:48:34,951 - built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions) +2024-10-14 08:48:34,952 - Dictionary lifecycle event {'msg': "built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions)", 'datetime': '2024-10-14T08:48:34.952129', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:34,953 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:48:34,953 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:48:34,953 - using serial LDA version on this node +2024-10-14 08:48:34,953 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:48:34,953 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:48:34,956 - -7.883 per-word bound, 236.1 perplexity estimate based on a held-out corpus of 1 documents with 1857 words +2024-10-14 08:48:34,956 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:48:34,958 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.008*"practice" + 0.008*"Medway" + 0.008*"quality" + 0.007*"leaders" + 0.006*"needs" + 0.006*"impact" + 0.005*"risk" + 0.005*"oversight" +2024-10-14 08:48:34,958 - topic #1 (0.333): 0.013*"’" + 0.008*"Medway" + 0.008*"practice" + 0.007*"well" + 0.006*"quality" + 0.006*"leaders" + 0.006*"needs" + 0.005*"progress" + 0.005*"experiences" + 0.005*"oversight" +2024-10-14 08:48:34,958 - topic #2 (0.333): 0.015*"’" + 0.011*"Medway" + 0.008*"quality" + 0.008*"practice" + 0.007*"oversight" + 0.007*"well" + 0.006*"needs" + 0.006*"impact" + 0.005*"leaders" + 0.005*"good" +2024-10-14 08:48:34,958 - topic diff=0.758795, rho=1.000000 +2024-10-14 08:48:34,958 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:48:34.958545', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:35,842 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:48:35,842 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:35,842 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:48:35,842 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:35,842 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:48:35,842 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:35,843 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:48:35,843 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:35,843 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:48:35,843 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:35,843 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:48:35,843 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:47,333 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:48:47,335 - built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions) +2024-10-14 08:48:47,335 - Dictionary lifecycle event {'msg': "built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-10-14T08:48:47.335529', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:47,336 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:48:47,336 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:48:47,336 - using serial LDA version on this node +2024-10-14 08:48:47,337 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:48:47,337 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:48:47,343 - -8.000 per-word bound, 256.1 perplexity estimate based on a held-out corpus of 1 documents with 2278 words +2024-10-14 08:48:47,343 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:48:47,345 - topic #0 (0.333): 0.014*"’" + 0.007*"plans" + 0.006*"needs" + 0.006*"well" + 0.005*"effective" + 0.005*"progress" + 0.005*"Middlesbrough" + 0.004*"24" + 0.004*"13" + 0.004*"means" +2024-10-14 08:48:47,345 - topic #1 (0.333): 0.012*"’" + 0.008*"effective" + 0.007*"Middlesbrough" + 0.007*"needs" + 0.006*"practice" + 0.006*"plans" + 0.006*"well" + 0.005*"means" + 0.005*"place" + 0.005*"progress" +2024-10-14 08:48:47,346 - topic #2 (0.333): 0.014*"’" + 0.008*"plans" + 0.008*"Middlesbrough" + 0.007*"well" + 0.007*"effective" + 0.006*"practice" + 0.006*"progress" + 0.005*"24" + 0.005*"needs" + 0.005*"place" +2024-10-14 08:48:47,346 - topic diff=0.780314, rho=1.000000 +2024-10-14 08:48:47,346 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:48:47.346319', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:48,220 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:48:48,221 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:48,221 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:48:48,221 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:48,221 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:48:48,221 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:48,221 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:48:48,221 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:48,222 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:48:48,222 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:48,222 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:48:48,222 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:58,536 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:48:58,538 - built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions) +2024-10-14 08:48:58,538 - Dictionary lifecycle event {'msg': "built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions)", 'datetime': '2024-10-14T08:48:58.538461', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:58,539 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:48:58,539 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:48:58,539 - using serial LDA version on this node +2024-10-14 08:48:58,540 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:48:58,540 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:48:58,543 - -8.040 per-word bound, 263.2 perplexity estimate based on a held-out corpus of 1 documents with 2328 words +2024-10-14 08:48:58,543 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:48:58,545 - topic #0 (0.333): 0.015*"’" + 0.007*"need" + 0.006*"well" + 0.006*"Keynes" + 0.005*"Milton" + 0.005*"practice" + 0.005*"leaders" + 0.005*"good" + 0.004*"effective" + 0.004*"25" +2024-10-14 08:48:58,545 - topic #1 (0.333): 0.014*"’" + 0.006*"Keynes" + 0.005*"need" + 0.005*"practice" + 0.005*"plans" + 0.005*"Milton" + 0.005*"well" + 0.004*"education" + 0.004*"5" + 0.004*"team" +2024-10-14 08:48:58,545 - topic #2 (0.333): 0.015*"’" + 0.007*"Milton" + 0.006*"well" + 0.006*"Keynes" + 0.005*"leaders" + 0.005*"25" + 0.005*"good" + 0.005*"October" + 0.005*"plans" + 0.005*"5" +2024-10-14 08:48:58,545 - topic diff=0.778561, rho=1.000000 +2024-10-14 08:48:58,545 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:48:58.545730', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:48:59,467 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:48:59,467 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:59,468 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:48:59,468 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:59,468 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:48:59,468 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:59,468 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:48:59,468 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:59,468 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:48:59,468 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:48:59,468 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:48:59,469 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:09,059 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:49:09,061 - built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions) +2024-10-14 08:49:09,061 - Dictionary lifecycle event {'msg': "built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions)", 'datetime': '2024-10-14T08:49:09.061963', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:09,062 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:49:09,063 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:49:09,063 - using serial LDA version on this node +2024-10-14 08:49:09,063 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:49:09,063 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:49:09,066 - -7.875 per-word bound, 234.7 perplexity estimate based on a held-out corpus of 1 documents with 2076 words +2024-10-14 08:49:09,066 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:49:09,068 - topic #0 (0.333): 0.017*"’" + 0.011*"plans" + 0.009*"needs" + 0.008*"Newcastle" + 0.007*"good" + 0.007*"management" + 0.006*"well" + 0.006*"protection" + 0.006*"making" + 0.006*"need" +2024-10-14 08:49:09,068 - topic #1 (0.333): 0.014*"’" + 0.008*"plans" + 0.008*"good" + 0.007*"protection" + 0.007*"needs" + 0.006*"well" + 0.006*"ensure" + 0.006*"Newcastle" + 0.005*"progress" + 0.005*"making" +2024-10-14 08:49:09,068 - topic #2 (0.333): 0.016*"’" + 0.011*"plans" + 0.007*"Newcastle" + 0.007*"well" + 0.007*"protection" + 0.007*"needs" + 0.006*"progress" + 0.006*"response" + 0.006*"ensure" + 0.005*"good" +2024-10-14 08:49:09,068 - topic diff=0.781758, rho=1.000000 +2024-10-14 08:49:09,068 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:49:09.068489', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:10,006 - Inspection date 2021-11-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:49:10,006 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:10,006 - Inspection date 2021-11-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:49:10,006 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:10,007 - Inspection date 2021-11-29 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:49:10,007 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:10,007 - Inspection date 2021-11-29 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:49:10,007 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:10,007 - Inspection date 2021-11-29 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:49:10,007 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:10,007 - Inspection date 2021-11-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:49:10,008 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:21,161 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:49:21,166 - built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions) +2024-10-14 08:49:21,166 - Dictionary lifecycle event {'msg': "built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions)", 'datetime': '2024-10-14T08:49:21.166428', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:21,167 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:49:21,167 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:49:21,168 - using serial LDA version on this node +2024-10-14 08:49:21,168 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:49:21,168 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:49:21,172 - -8.123 per-word bound, 278.8 perplexity estimate based on a held-out corpus of 1 documents with 2655 words +2024-10-14 08:49:21,172 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:49:21,173 - topic #0 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"Norfolk" + 0.007*"practice" + 0.006*"needs" + 0.006*"carers" + 0.005*"supported" + 0.005*"leaders" + 0.004*"plans" + 0.004*"7" +2024-10-14 08:49:21,173 - topic #1 (0.333): 0.021*"’" + 0.008*"well" + 0.007*"Norfolk" + 0.007*"carers" + 0.006*"needs" + 0.006*"range" + 0.005*"supported" + 0.005*"plans" + 0.004*"effective" + 0.004*"practice" +2024-10-14 08:49:21,173 - topic #2 (0.333): 0.013*"’" + 0.008*"Norfolk" + 0.006*"well" + 0.005*"practice" + 0.005*"carers" + 0.005*"supported" + 0.004*"including" + 0.004*"18" + 0.004*"leaders" + 0.004*"plans" +2024-10-14 08:49:21,174 - topic diff=0.786128, rho=1.000000 +2024-10-14 08:49:21,174 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:49:21.174180', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:22,086 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:49:22,086 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:22,086 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:49:22,086 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:22,087 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:49:22,087 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:22,087 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:49:22,087 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:22,087 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:49:22,087 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:22,087 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:49:22,087 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:31,688 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:49:31,690 - built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions) +2024-10-14 08:49:31,690 - Dictionary lifecycle event {'msg': "built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions)", 'datetime': '2024-10-14T08:49:31.690568', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:31,691 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:49:31,691 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:49:31,691 - using serial LDA version on this node +2024-10-14 08:49:31,692 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:49:31,692 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:49:31,695 - -7.889 per-word bound, 237.1 perplexity estimate based on a held-out corpus of 1 documents with 2045 words +2024-10-14 08:49:31,695 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:49:31,696 - topic #0 (0.333): 0.006*"’" + 0.006*"risk" + 0.005*"leaders" + 0.005*"practice" + 0.004*"need" + 0.004*"plans" + 0.004*"Lincolnshire" + 0.004*"planning" + 0.004*"making" + 0.003*"delay" +2024-10-14 08:49:31,696 - topic #1 (0.333): 0.019*"’" + 0.009*"practice" + 0.009*"risk" + 0.007*"planning" + 0.007*"needs" + 0.006*"leaders" + 0.006*"need" + 0.005*"North" + 0.005*"2021" + 0.005*"oversight" +2024-10-14 08:49:31,697 - topic #2 (0.333): 0.011*"’" + 0.007*"practice" + 0.007*"leaders" + 0.006*"needs" + 0.006*"many" + 0.005*"planning" + 0.005*"October" + 0.005*"East" + 0.005*"quality" + 0.005*"need" +2024-10-14 08:49:31,697 - topic diff=0.801638, rho=1.000000 +2024-10-14 08:49:31,697 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:49:31.697228', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:32,633 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:49:32,633 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:32,633 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:49:32,634 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:32,634 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:49:32,634 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:32,634 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:49:32,634 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:32,634 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:49:32,634 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:32,634 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:49:32,634 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:41,568 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:49:41,570 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions) +2024-10-14 08:49:41,570 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions)", 'datetime': '2024-10-14T08:49:41.570884', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:41,571 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:49:41,572 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:49:41,572 - using serial LDA version on this node +2024-10-14 08:49:41,572 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:49:41,572 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:49:41,576 - -8.065 per-word bound, 267.8 perplexity estimate based on a held-out corpus of 1 documents with 2174 words +2024-10-14 08:49:41,576 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:49:41,577 - topic #0 (0.333): 0.021*"’" + 0.009*"‘" + 0.007*"family" + 0.006*"Lincolnshire" + 0.006*"10" + 0.005*"approach" + 0.005*"October" + 0.005*"need" + 0.005*"well" + 0.005*"North" +2024-10-14 08:49:41,577 - topic #1 (0.333): 0.017*"’" + 0.006*"‘" + 0.005*"North" + 0.005*"family" + 0.004*"need" + 0.004*"well" + 0.004*"2022" + 0.004*"council" + 0.004*"leaders" + 0.004*"Lincolnshire" +2024-10-14 08:49:41,577 - topic #2 (0.333): 0.021*"’" + 0.006*"leaders" + 0.005*"approach" + 0.005*"North" + 0.005*"well" + 0.005*"‘" + 0.005*"Lincolnshire" + 0.005*"family" + 0.005*"14" + 0.004*"practice" +2024-10-14 08:49:41,577 - topic diff=0.762484, rho=1.000000 +2024-10-14 08:49:41,577 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:49:41.577880', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:42,463 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:49:42,463 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:42,463 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:49:42,463 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:42,463 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:49:42,464 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:42,464 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:49:42,464 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:42,464 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:49:42,464 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:42,464 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:49:42,464 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:51,753 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:49:51,755 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions) +2024-10-14 08:49:51,756 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions)", 'datetime': '2024-10-14T08:49:51.756067', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:51,757 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:49:51,757 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:49:51,757 - using serial LDA version on this node +2024-10-14 08:49:51,757 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:49:51,757 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:49:51,761 - -8.030 per-word bound, 261.3 perplexity estimate based on a held-out corpus of 1 documents with 2204 words +2024-10-14 08:49:51,761 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:49:51,762 - topic #0 (0.333): 0.021*"’" + 0.008*"Northamptonshire" + 0.008*"North" + 0.007*"well" + 0.006*"quality" + 0.006*"practice" + 0.005*"impact" + 0.005*"NCT" + 0.005*"Leaders" + 0.005*"3" +2024-10-14 08:49:51,762 - topic #1 (0.333): 0.014*"’" + 0.007*"Northamptonshire" + 0.006*"North" + 0.006*"quality" + 0.006*"well" + 0.005*"NCT" + 0.005*"needs" + 0.005*"practice" + 0.005*"3" + 0.004*"Leaders" +2024-10-14 08:49:51,762 - topic #2 (0.333): 0.014*"’" + 0.009*"Northamptonshire" + 0.005*"well" + 0.005*"plans" + 0.005*"needs" + 0.005*"need" + 0.005*"Leaders" + 0.004*"impact" + 0.004*"North" + 0.004*"quality" +2024-10-14 08:49:51,763 - topic diff=0.745852, rho=1.000000 +2024-10-14 08:49:51,763 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:49:51.763195', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:49:52,647 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:49:52,648 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:52,648 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:49:52,648 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:52,648 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:49:52,648 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:52,648 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:49:52,648 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:52,648 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:49:52,649 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:49:52,649 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:49:52,649 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:04,023 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:50:04,025 - built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions) +2024-10-14 08:50:04,025 - Dictionary lifecycle event {'msg': "built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions)", 'datetime': '2024-10-14T08:50:04.025682', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:04,026 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:50:04,027 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:50:04,027 - using serial LDA version on this node +2024-10-14 08:50:04,027 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:50:04,027 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:50:04,031 - -8.063 per-word bound, 267.4 perplexity estimate based on a held-out corpus of 1 documents with 2902 words +2024-10-14 08:50:04,031 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:50:04,032 - topic #0 (0.333): 0.012*"’" + 0.007*"needs" + 0.006*"quality" + 0.006*"always" + 0.006*"practice" + 0.006*"Somerset" + 0.006*"progress" + 0.005*"North" + 0.005*"number" + 0.005*"24" +2024-10-14 08:50:04,033 - topic #1 (0.333): 0.019*"’" + 0.008*"quality" + 0.007*"needs" + 0.006*"risk" + 0.006*"number" + 0.006*"Somerset" + 0.006*"North" + 0.006*"plans" + 0.005*"always" + 0.005*"practice" +2024-10-14 08:50:04,033 - topic #2 (0.333): 0.019*"’" + 0.007*"quality" + 0.006*"always" + 0.006*"needs" + 0.006*"North" + 0.006*"Somerset" + 0.005*"need" + 0.005*"experienced" + 0.005*"effective" + 0.005*"well" +2024-10-14 08:50:04,033 - topic diff=0.829794, rho=1.000000 +2024-10-14 08:50:04,033 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:50:04.033450', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:05,813 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:50:05,814 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:05,814 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:50:05,814 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:05,814 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:50:05,815 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:05,815 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:50:05,815 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:05,815 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:50:05,815 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:05,815 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:50:05,815 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:16,511 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:50:16,513 - built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions) +2024-10-14 08:50:16,513 - Dictionary lifecycle event {'msg': "built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions)", 'datetime': '2024-10-14T08:50:16.513850', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:16,515 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:50:16,515 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:50:16,515 - using serial LDA version on this node +2024-10-14 08:50:16,515 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:50:16,515 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:50:16,519 - -8.223 per-word bound, 298.8 perplexity estimate based on a held-out corpus of 1 documents with 2518 words +2024-10-14 08:50:16,519 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:50:16,521 - topic #0 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"needs" + 0.005*"quality" + 0.004*"progress" + 0.004*"make" + 0.004*"need" + 0.004*"leaders" + 0.004*"understand" + 0.004*"impact" +2024-10-14 08:50:16,521 - topic #1 (0.333): 0.014*"’" + 0.005*"well" + 0.005*"leaders" + 0.005*"make" + 0.004*"need" + 0.004*"quality" + 0.003*"early" + 0.003*"good" + 0.003*"family" + 0.003*"needs" +2024-10-14 08:50:16,521 - topic #2 (0.333): 0.020*"’" + 0.008*"well" + 0.006*"leaders" + 0.006*"need" + 0.005*"impact" + 0.005*"quality" + 0.005*"make" + 0.004*"early" + 0.004*"needs" + 0.004*"protection" +2024-10-14 08:50:16,521 - topic diff=0.740340, rho=1.000000 +2024-10-14 08:50:16,522 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:50:16.521997', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:17,461 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:50:17,461 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:17,461 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:50:17,461 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:17,462 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:50:17,462 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:17,462 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:50:17,462 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:17,462 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:50:17,462 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:17,462 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:50:17,462 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:28,773 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:50:28,776 - built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions) +2024-10-14 08:50:28,776 - Dictionary lifecycle event {'msg': "built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions)", 'datetime': '2024-10-14T08:50:28.776261', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:28,777 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:50:28,777 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:50:28,777 - using serial LDA version on this node +2024-10-14 08:50:28,778 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:50:28,778 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:50:28,782 - -8.145 per-word bound, 283.1 perplexity estimate based on a held-out corpus of 1 documents with 2759 words +2024-10-14 08:50:28,782 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:50:28,783 - topic #0 (0.333): 0.013*"’" + 0.007*"practice" + 0.006*"well" + 0.005*"North" + 0.004*"family" + 0.004*"3" + 0.004*"Yorkshire" + 0.004*"needs" + 0.004*"carers" + 0.004*"Leaders" +2024-10-14 08:50:28,783 - topic #1 (0.333): 0.023*"’" + 0.010*"well" + 0.009*"Yorkshire" + 0.007*"needs" + 0.007*"family" + 0.007*"North" + 0.006*"practice" + 0.005*"3" + 0.005*"2023" + 0.005*"‘" +2024-10-14 08:50:28,783 - topic #2 (0.333): 0.023*"’" + 0.007*"well" + 0.006*"North" + 0.006*"‘" + 0.005*"practice" + 0.005*"needs" + 0.004*"family" + 0.004*"7" + 0.004*"July" + 0.004*"supported" +2024-10-14 08:50:28,784 - topic diff=0.817309, rho=1.000000 +2024-10-14 08:50:28,784 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:50:28.784180', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:29,664 - Inspection date 2023-07-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:50:29,664 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:29,665 - Inspection date 2023-07-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:50:29,665 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:29,665 - Inspection date 2023-07-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:50:29,665 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:29,665 - Inspection date 2023-07-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:50:29,665 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:29,665 - Inspection date 2023-07-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:50:29,665 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:29,665 - Inspection date 2023-07-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:50:29,666 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:42,096 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:50:42,099 - built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions) +2024-10-14 08:50:42,099 - Dictionary lifecycle event {'msg': "built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions)", 'datetime': '2024-10-14T08:50:42.099486', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:42,100 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:50:42,100 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:50:42,101 - using serial LDA version on this node +2024-10-14 08:50:42,101 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:50:42,101 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:50:42,105 - -8.067 per-word bound, 268.1 perplexity estimate based on a held-out corpus of 1 documents with 2884 words +2024-10-14 08:50:42,105 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:50:42,106 - topic #0 (0.333): 0.017*"’" + 0.008*"family" + 0.007*"leaders" + 0.006*"experiences" + 0.006*"needs" + 0.005*"progress" + 0.005*"strong" + 0.005*"well" + 0.005*"within" + 0.005*"practice" +2024-10-14 08:50:42,107 - topic #1 (0.333): 0.011*"’" + 0.006*"family" + 0.005*"needs" + 0.005*"strong" + 0.005*"leaders" + 0.005*"well" + 0.004*"experiences" + 0.004*"effective" + 0.004*"Northumberland" + 0.004*"24" +2024-10-14 08:50:42,107 - topic #2 (0.333): 0.023*"’" + 0.008*"family" + 0.007*"needs" + 0.007*"strong" + 0.007*"experiences" + 0.007*"leaders" + 0.006*"Northumberland" + 0.006*"well" + 0.005*"effective" + 0.005*"receive" +2024-10-14 08:50:42,107 - topic diff=0.853199, rho=1.000000 +2024-10-14 08:50:42,107 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:50:42.107519', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:43,303 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:50:43,303 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:43,304 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:50:43,304 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:43,304 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:50:43,304 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:43,304 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:50:43,304 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:43,304 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:50:43,304 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:43,304 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:50:43,305 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:54,334 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:50:54,336 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) +2024-10-14 08:50:54,336 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-10-14T08:50:54.336909', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:54,337 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:50:54,338 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:50:54,338 - using serial LDA version on this node +2024-10-14 08:50:54,338 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:50:54,338 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:50:54,342 - -8.025 per-word bound, 260.5 perplexity estimate based on a held-out corpus of 1 documents with 2316 words +2024-10-14 08:50:54,342 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:50:54,343 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.006*"Nottingham" + 0.005*"effective" + 0.005*"plans" + 0.005*"oversight" + 0.005*"2022" + 0.005*"impact" + 0.004*"practice" + 0.004*"protection" +2024-10-14 08:50:54,343 - topic #1 (0.333): 0.012*"’" + 0.008*"needs" + 0.006*"plans" + 0.005*"effective" + 0.005*"Nottingham" + 0.004*"However" + 0.004*"practice" + 0.004*"risk" + 0.004*"City" + 0.004*"oversight" +2024-10-14 08:50:54,344 - topic #2 (0.333): 0.016*"’" + 0.008*"needs" + 0.006*"Nottingham" + 0.005*"impact" + 0.005*"11" + 0.005*"effective" + 0.005*"plans" + 0.005*"City" + 0.005*"July" + 0.004*"risk" +2024-10-14 08:50:54,344 - topic diff=0.764233, rho=1.000000 +2024-10-14 08:50:54,344 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:50:54.344323', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:50:55,245 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:50:55,245 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:55,245 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:50:55,245 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:55,245 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:50:55,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:55,246 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-10-14 08:50:55,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:55,246 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:50:55,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:50:55,246 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:50:55,246 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:05,628 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:51:05,630 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions) +2024-10-14 08:51:05,630 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions)", 'datetime': '2024-10-14T08:51:05.630713', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:05,631 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:51:05,631 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:51:05,632 - using serial LDA version on this node +2024-10-14 08:51:05,632 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:51:05,632 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:51:05,635 - -8.005 per-word bound, 256.9 perplexity estimate based on a held-out corpus of 1 documents with 2129 words +2024-10-14 08:51:05,635 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:51:05,637 - topic #0 (0.333): 0.015*"’" + 0.008*"well" + 0.008*"needs" + 0.006*"Nottinghamshire" + 0.005*"effective" + 0.005*"plans" + 0.004*"practice" + 0.004*"20" + 0.004*"risks" + 0.004*"leaders" +2024-10-14 08:51:05,637 - topic #1 (0.333): 0.020*"’" + 0.010*"well" + 0.008*"needs" + 0.007*"plans" + 0.006*"Nottinghamshire" + 0.006*"24" + 0.005*"leaders" + 0.005*"Leaders" + 0.005*"ensure" + 0.004*"provide" +2024-10-14 08:51:05,637 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"Nottinghamshire" + 0.005*"Leaders" + 0.005*"plans" + 0.005*"effective" + 0.005*"practice" + 0.005*"20" + 0.004*"2024" +2024-10-14 08:51:05,637 - topic diff=0.758152, rho=1.000000 +2024-10-14 08:51:05,637 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:51:05.637775', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:06,561 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:51:06,561 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:06,562 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:51:06,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:06,562 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:51:06,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:06,562 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:51:06,562 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:06,562 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:51:06,563 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:06,563 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:51:06,563 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:18,027 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:51:18,029 - built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions) +2024-10-14 08:51:18,029 - Dictionary lifecycle event {'msg': "built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions)", 'datetime': '2024-10-14T08:51:18.029903', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:18,031 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:51:18,031 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:51:18,031 - using serial LDA version on this node +2024-10-14 08:51:18,031 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:51:18,031 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:51:18,035 - -8.077 per-word bound, 269.9 perplexity estimate based on a held-out corpus of 1 documents with 2441 words +2024-10-14 08:51:18,035 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:51:18,037 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.006*"needs" + 0.006*"Oldham" + 0.006*"plans" + 0.005*"PAs" + 0.005*"progress" + 0.005*"practice" + 0.005*"leaders" + 0.005*"quality" +2024-10-14 08:51:18,037 - topic #1 (0.333): 0.017*"’" + 0.010*"plans" + 0.009*"well" + 0.007*"Oldham" + 0.006*"needs" + 0.006*"leaders" + 0.006*"practice" + 0.006*"PAs" + 0.005*"effective" + 0.005*"timely" +2024-10-14 08:51:18,037 - topic #2 (0.333): 0.009*"’" + 0.007*"plans" + 0.006*"well" + 0.006*"practice" + 0.006*"PAs" + 0.006*"needs" + 0.005*"leaders" + 0.005*"progress" + 0.005*"quality" + 0.005*"Oldham" +2024-10-14 08:51:18,037 - topic diff=0.783030, rho=1.000000 +2024-10-14 08:51:18,037 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:51:18.037693', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:18,868 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:51:18,868 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:18,868 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:51:18,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:18,869 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:51:18,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:18,869 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:51:18,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:18,869 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:51:18,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:18,869 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:51:18,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:29,623 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:51:29,625 - built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions) +2024-10-14 08:51:29,625 - Dictionary lifecycle event {'msg': "built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions)", 'datetime': '2024-10-14T08:51:29.625549', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:29,626 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:51:29,626 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:51:29,626 - using serial LDA version on this node +2024-10-14 08:51:29,627 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:51:29,627 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:51:29,630 - -7.996 per-word bound, 255.2 perplexity estimate based on a held-out corpus of 1 documents with 2294 words +2024-10-14 08:51:29,630 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:51:29,632 - topic #0 (0.333): 0.022*"’" + 0.008*"needs" + 0.008*"Oxfordshire" + 0.008*"good" + 0.007*"well" + 0.006*"quality" + 0.005*"risk" + 0.005*"supported" + 0.005*"progress" + 0.005*"receive" +2024-10-14 08:51:29,632 - topic #1 (0.333): 0.022*"’" + 0.011*"needs" + 0.008*"Oxfordshire" + 0.007*"well" + 0.007*"risk" + 0.005*"practice" + 0.005*"12" + 0.005*"supported" + 0.005*"education" + 0.005*"receive" +2024-10-14 08:51:29,632 - topic #2 (0.333): 0.012*"’" + 0.010*"needs" + 0.006*"supported" + 0.006*"well" + 0.004*"23" + 0.004*"12" + 0.004*"risk" + 0.004*"good" + 0.004*"2024" + 0.004*"arrangements" +2024-10-14 08:51:29,632 - topic diff=0.786134, rho=1.000000 +2024-10-14 08:51:29,632 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:51:29.632685', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:30,519 - Inspection date 2024-02-12 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:51:30,519 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:30,519 - Inspection date 2024-02-12 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:51:30,519 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:30,519 - Inspection date 2024-02-12 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:51:30,519 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:30,520 - Inspection date 2024-02-12 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:51:30,520 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:30,520 - Inspection date 2024-02-12 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:51:30,520 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:30,520 - Inspection date 2024-02-12 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:51:30,520 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:39,296 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:51:39,298 - built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions) +2024-10-14 08:51:39,298 - Dictionary lifecycle event {'msg': "built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions)", 'datetime': '2024-10-14T08:51:39.298904', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:39,299 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:51:39,299 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:51:39,300 - using serial LDA version on this node +2024-10-14 08:51:39,300 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:51:39,300 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:51:39,303 - -7.878 per-word bound, 235.2 perplexity estimate based on a held-out corpus of 1 documents with 1737 words +2024-10-14 08:51:39,303 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:51:39,304 - topic #0 (0.333): 0.013*"needs" + 0.013*"’" + 0.007*"need" + 0.006*"Peterborough" + 0.006*"plans" + 0.006*"well" + 0.005*"2023" + 0.005*"8" + 0.005*"progress" + 0.005*"27" +2024-10-14 08:51:39,305 - topic #1 (0.333): 0.016*"’" + 0.016*"needs" + 0.008*"Peterborough" + 0.006*"need" + 0.006*"2023" + 0.006*"well" + 0.006*"progress" + 0.005*"good" + 0.005*"supported" + 0.005*"27" +2024-10-14 08:51:39,305 - topic #2 (0.333): 0.014*"’" + 0.011*"needs" + 0.008*"need" + 0.007*"Peterborough" + 0.007*"2023" + 0.006*"well" + 0.006*"progress" + 0.006*"8" + 0.005*"receive" + 0.005*"supported" +2024-10-14 08:51:39,305 - topic diff=0.730058, rho=1.000000 +2024-10-14 08:51:39,305 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:51:39.305448', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:40,281 - Inspection date 2023-11-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:51:40,281 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:40,281 - Inspection date 2023-11-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:51:40,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:40,282 - Inspection date 2023-11-27 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:51:40,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:40,282 - Inspection date 2023-11-27 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:51:40,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:40,282 - Inspection date 2023-11-27 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:51:40,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:40,282 - Inspection date 2023-11-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:51:40,282 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:53,362 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:51:53,365 - built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) +2024-10-14 08:51:53,365 - Dictionary lifecycle event {'msg': "built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-10-14T08:51:53.365490', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:53,366 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:51:53,366 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:51:53,367 - using serial LDA version on this node +2024-10-14 08:51:53,367 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:51:53,367 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:51:53,371 - -8.082 per-word bound, 271.0 perplexity estimate based on a held-out corpus of 1 documents with 2905 words +2024-10-14 08:51:53,371 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:51:53,372 - topic #0 (0.333): 0.014*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"Plymouth" + 0.007*"practice" + 0.006*"appropriate" + 0.005*"22" + 0.005*"education" + 0.005*"2024" + 0.005*"January" +2024-10-14 08:51:53,372 - topic #1 (0.333): 0.013*"’" + 0.008*"needs" + 0.007*"well" + 0.006*"Plymouth" + 0.005*"plans" + 0.005*"City" + 0.005*"quality" + 0.004*"education" + 0.004*"effective" + 0.004*"2024" +2024-10-14 08:51:53,373 - topic #2 (0.333): 0.011*"’" + 0.008*"needs" + 0.006*"Plymouth" + 0.006*"well" + 0.006*"2" + 0.005*"22" + 0.005*"plans" + 0.004*"City" + 0.004*"practice" + 0.004*"timely" +2024-10-14 08:51:53,373 - topic diff=0.836126, rho=1.000000 +2024-10-14 08:51:53,373 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:51:53.373318', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:51:54,314 - Inspection date 2024-01-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:51:54,314 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:54,314 - Inspection date 2024-01-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:51:54,314 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:54,314 - Inspection date 2024-01-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:51:54,315 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:54,315 - Inspection date 2024-01-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:51:54,315 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:54,315 - Inspection date 2024-01-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:51:54,315 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:51:54,315 - Inspection date 2024-01-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:51:54,315 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:06,465 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:52:06,468 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions) +2024-10-14 08:52:06,468 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions)", 'datetime': '2024-10-14T08:52:06.468175', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:06,469 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:52:06,469 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:52:06,469 - using serial LDA version on this node +2024-10-14 08:52:06,470 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:52:06,470 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:52:06,473 - -8.107 per-word bound, 275.7 perplexity estimate based on a held-out corpus of 1 documents with 2738 words +2024-10-14 08:52:06,473 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:52:06,475 - topic #0 (0.333): 0.020*"’" + 0.009*"care-experienced" + 0.008*"Portsmouth" + 0.007*"well" + 0.007*"needs" + 0.006*"health" + 0.006*"practice" + 0.005*"plans" + 0.005*"foster" + 0.005*"family" +2024-10-14 08:52:06,475 - topic #1 (0.333): 0.010*"’" + 0.005*"care-experienced" + 0.004*"well" + 0.004*"health" + 0.004*"needs" + 0.004*"family" + 0.004*"carers" + 0.003*"supported" + 0.003*"19" + 0.003*"offer" +2024-10-14 08:52:06,475 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.008*"care-experienced" + 0.007*"needs" + 0.007*"family" + 0.006*"Portsmouth" + 0.006*"plans" + 0.005*"leaders" + 0.005*"receive" + 0.005*"risk" +2024-10-14 08:52:06,475 - topic diff=0.826362, rho=1.000000 +2024-10-14 08:52:06,475 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:52:06.475845', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:07,598 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:52:07,598 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:07,599 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:52:07,599 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:07,599 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:52:07,599 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:07,599 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:52:07,599 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:07,600 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:52:07,600 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:07,600 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:52:07,600 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:18,352 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:52:18,354 - built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions) +2024-10-14 08:52:18,354 - Dictionary lifecycle event {'msg': "built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions)", 'datetime': '2024-10-14T08:52:18.354926', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:18,356 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:52:18,356 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:52:18,356 - using serial LDA version on this node +2024-10-14 08:52:18,356 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:52:18,356 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:52:18,360 - -8.159 per-word bound, 285.8 perplexity estimate based on a held-out corpus of 1 documents with 2562 words +2024-10-14 08:52:18,360 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:52:18,362 - topic #0 (0.333): 0.015*"’" + 0.006*"needs" + 0.006*"Reading" + 0.006*"plans" + 0.006*"PAs" + 0.005*"well" + 0.005*"clear" + 0.004*"3" + 0.004*"effective" + 0.004*"22" +2024-10-14 08:52:18,362 - topic #1 (0.333): 0.012*"’" + 0.008*"needs" + 0.005*"progress" + 0.005*"plans" + 0.004*"2024" + 0.004*"well" + 0.004*"PAs" + 0.004*"Reading" + 0.004*"risk" + 0.004*"clear" +2024-10-14 08:52:18,362 - topic #2 (0.333): 0.014*"’" + 0.006*"needs" + 0.006*"progress" + 0.006*"PAs" + 0.005*"arrangements" + 0.005*"timely" + 0.004*"well" + 0.004*"3" + 0.004*"risk" + 0.004*"plans" +2024-10-14 08:52:18,362 - topic diff=0.762826, rho=1.000000 +2024-10-14 08:52:18,362 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:52:18.362750', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:19,329 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:52:19,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:19,330 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:52:19,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:19,330 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:52:19,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:19,330 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:52:19,330 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:19,331 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:52:19,331 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:19,331 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:52:19,331 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:29,965 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:52:29,968 - built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions) +2024-10-14 08:52:29,968 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions)", 'datetime': '2024-10-14T08:52:29.968213', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:29,969 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:52:29,969 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:52:29,969 - using serial LDA version on this node +2024-10-14 08:52:29,970 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:52:29,970 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:52:29,973 - -8.004 per-word bound, 256.8 perplexity estimate based on a held-out corpus of 1 documents with 2515 words +2024-10-14 08:52:29,973 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:52:29,975 - topic #0 (0.333): 0.017*"’" + 0.007*"leaders" + 0.006*"However" + 0.006*"consistently" + 0.005*"needs" + 0.005*"carers" + 0.005*"plans" + 0.005*"20" + 0.004*"response" + 0.004*"2022" +2024-10-14 08:52:29,975 - topic #1 (0.333): 0.017*"’" + 0.006*"plans" + 0.006*"leaders" + 0.006*"needs" + 0.005*"However" + 0.005*"practice" + 0.005*"2022" + 0.005*"risk" + 0.005*"Redcar" + 0.005*"20" +2024-10-14 08:52:29,975 - topic #2 (0.333): 0.018*"’" + 0.006*"consistently" + 0.005*"needs" + 0.005*"leaders" + 0.005*"However" + 0.005*"plans" + 0.005*"practice" + 0.005*"risk" + 0.005*"20" + 0.005*"1" +2024-10-14 08:52:29,975 - topic diff=0.799354, rho=1.000000 +2024-10-14 08:52:29,975 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:52:29.975647', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:30,882 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:52:30,883 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:30,883 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:52:30,883 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:30,883 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:52:30,883 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:30,883 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-10-14 08:52:30,884 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:30,884 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:52:30,884 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:30,884 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:52:30,884 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:42,600 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:52:42,602 - built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions) +2024-10-14 08:52:42,602 - Dictionary lifecycle event {'msg': "built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions)", 'datetime': '2024-10-14T08:52:42.602875', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:42,604 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:52:42,604 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:52:42,604 - using serial LDA version on this node +2024-10-14 08:52:42,604 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:52:42,604 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:52:42,608 - -8.025 per-word bound, 260.4 perplexity estimate based on a held-out corpus of 1 documents with 2656 words +2024-10-14 08:52:42,608 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:52:42,609 - topic #0 (0.333): 0.020*"’" + 0.012*"experienced" + 0.010*"needs" + 0.008*"practice" + 0.006*"plans" + 0.006*"response" + 0.006*"3" + 0.005*"need" + 0.005*"quality" + 0.005*"consistently" +2024-10-14 08:52:42,609 - topic #1 (0.333): 0.020*"’" + 0.008*"experienced" + 0.008*"practice" + 0.006*"response" + 0.006*"needs" + 0.006*"good" + 0.006*"plans" + 0.005*"PAs" + 0.005*"quality" + 0.005*"consistently" +2024-10-14 08:52:42,610 - topic #2 (0.333): 0.020*"’" + 0.009*"experienced" + 0.007*"practice" + 0.007*"needs" + 0.006*"consistently" + 0.006*"plans" + 0.005*"response" + 0.005*"Rochdale" + 0.005*"quality" + 0.005*"good" +2024-10-14 08:52:42,610 - topic diff=0.815381, rho=1.000000 +2024-10-14 08:52:42,610 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:52:42.610183', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:43,632 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:52:43,632 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:43,632 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:52:43,633 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:43,633 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:52:43,633 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:43,633 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:52:43,633 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:43,633 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:52:43,633 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:43,633 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:52:43,633 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:54,595 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:52:54,597 - built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions) +2024-10-14 08:52:54,597 - Dictionary lifecycle event {'msg': "built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions)", 'datetime': '2024-10-14T08:52:54.597733', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:54,598 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:52:54,598 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:52:54,599 - using serial LDA version on this node +2024-10-14 08:52:54,599 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:52:54,599 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:52:54,603 - -8.064 per-word bound, 267.6 perplexity estimate based on a held-out corpus of 1 documents with 2366 words +2024-10-14 08:52:54,603 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:52:54,604 - topic #0 (0.333): 0.013*"’" + 0.010*"Rotherham" + 0.007*"needs" + 0.006*"well" + 0.005*"good" + 0.005*"ensure" + 0.004*"Metropolitan" + 0.004*"clear" + 0.004*"plans" + 0.004*"1" +2024-10-14 08:52:54,604 - topic #1 (0.333): 0.016*"’" + 0.008*"Rotherham" + 0.006*"needs" + 0.005*"well" + 0.005*"However" + 0.004*"good" + 0.004*"ensure" + 0.004*"Council" + 0.004*"Borough" + 0.004*"27" +2024-10-14 08:52:54,604 - topic #2 (0.333): 0.015*"’" + 0.008*"Rotherham" + 0.006*"needs" + 0.006*"plans" + 0.005*"Council" + 0.005*"good" + 0.005*"well" + 0.005*"ensure" + 0.005*"However" + 0.004*"Metropolitan" +2024-10-14 08:52:54,604 - topic diff=0.770536, rho=1.000000 +2024-10-14 08:52:54,604 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:52:54.604922', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:52:55,451 - Inspection date 2022-06-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:52:55,451 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:55,452 - Inspection date 2022-06-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:52:55,452 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:55,452 - Inspection date 2022-06-27 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:52:55,452 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:55,452 - Inspection date 2022-06-27 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:52:55,452 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:55,452 - Inspection date 2022-06-27 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:52:55,452 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:52:55,452 - Inspection date 2022-06-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:52:55,452 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:05,293 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:53:05,296 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions) +2024-10-14 08:53:05,296 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions)", 'datetime': '2024-10-14T08:53:05.296151', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:05,297 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:53:05,297 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:53:05,297 - using serial LDA version on this node +2024-10-14 08:53:05,297 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:53:05,297 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:53:05,301 - -8.052 per-word bound, 265.3 perplexity estimate based on a held-out corpus of 1 documents with 2380 words +2024-10-14 08:53:05,301 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:53:05,302 - topic #0 (0.333): 0.014*"well" + 0.010*"practice" + 0.009*"’" + 0.006*"needs" + 0.006*"strong" + 0.005*"highly" + 0.005*"effective" + 0.004*"leaders" + 0.004*"ensure" + 0.004*"high" +2024-10-14 08:53:05,302 - topic #1 (0.333): 0.011*"’" + 0.010*"well" + 0.009*"practice" + 0.007*"highly" + 0.005*"strong" + 0.005*"high" + 0.005*"leaders" + 0.004*"needs" + 0.004*"effective" + 0.004*"range" +2024-10-14 08:53:05,303 - topic #2 (0.333): 0.015*"well" + 0.014*"’" + 0.012*"practice" + 0.009*"highly" + 0.007*"strong" + 0.006*"effective" + 0.005*"needs" + 0.005*"leaders" + 0.005*"progress" + 0.004*"risk" +2024-10-14 08:53:05,303 - topic diff=0.776705, rho=1.000000 +2024-10-14 08:53:05,303 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:53:05.303282', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:06,332 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:53:06,332 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:06,332 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:53:06,332 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:06,333 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:53:06,333 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:06,333 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:53:06,333 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:06,333 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:53:06,333 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:06,333 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:53:06,333 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:16,074 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:53:16,076 - built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions) +2024-10-14 08:53:16,076 - Dictionary lifecycle event {'msg': "built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions)", 'datetime': '2024-10-14T08:53:16.076652', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:16,077 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:53:16,077 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:53:16,078 - using serial LDA version on this node +2024-10-14 08:53:16,078 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:53:16,078 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:53:16,081 - -8.064 per-word bound, 267.7 perplexity estimate based on a held-out corpus of 1 documents with 2257 words +2024-10-14 08:53:16,081 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:53:16,083 - topic #0 (0.333): 0.009*"’" + 0.008*"well" + 0.006*"needs" + 0.005*"plans" + 0.004*"good" + 0.004*"risk" + 0.004*"information" + 0.003*"effective" + 0.003*"supported" + 0.003*"appropriate" +2024-10-14 08:53:16,083 - topic #1 (0.333): 0.016*"’" + 0.011*"well" + 0.008*"needs" + 0.008*"plans" + 0.006*"good" + 0.005*"effective" + 0.005*"clear" + 0.005*"need" + 0.004*"practice" + 0.004*"progress" +2024-10-14 08:53:16,083 - topic #2 (0.333): 0.013*"’" + 0.009*"plans" + 0.008*"needs" + 0.007*"well" + 0.005*"parents" + 0.005*"good" + 0.005*"practice" + 0.004*"supported" + 0.004*"effective" + 0.004*"clear" +2024-10-14 08:53:16,083 - topic diff=0.761399, rho=1.000000 +2024-10-14 08:53:16,083 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:53:16.083755', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:17,172 - Inspection date 2019-10-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:53:17,173 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:17,173 - Inspection date 2019-10-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:53:17,173 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:17,173 - Inspection date 2019-10-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:53:17,173 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:17,173 - Inspection date 2019-10-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:53:17,173 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:17,174 - Inspection date 2019-10-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:53:17,174 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:17,174 - Inspection date 2019-10-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:53:17,174 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:27,052 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:53:27,054 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions) +2024-10-14 08:53:27,054 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions)", 'datetime': '2024-10-14T08:53:27.054867', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:27,055 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:53:27,056 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:53:27,056 - using serial LDA version on this node +2024-10-14 08:53:27,056 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:53:27,056 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:53:27,060 - -8.119 per-word bound, 278.0 perplexity estimate based on a held-out corpus of 1 documents with 2088 words +2024-10-14 08:53:27,060 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:53:27,061 - topic #0 (0.333): 0.010*"’" + 0.005*"needs" + 0.005*"effective" + 0.005*"well" + 0.004*"information" + 0.004*"health" + 0.004*"use" + 0.004*"quality" + 0.004*"informed" + 0.004*"plans" +2024-10-14 08:53:27,061 - topic #1 (0.333): 0.015*"’" + 0.005*"well" + 0.005*"quality" + 0.004*"plans" + 0.004*"needs" + 0.004*"benefit" + 0.004*"use" + 0.004*"information" + 0.004*"management" + 0.004*"always" +2024-10-14 08:53:27,061 - topic #2 (0.333): 0.009*"’" + 0.006*"well" + 0.005*"quality" + 0.005*"plans" + 0.005*"needs" + 0.004*"actions" + 0.004*"benefit" + 0.004*"timely" + 0.004*"effective" + 0.003*"use" +2024-10-14 08:53:27,062 - topic diff=0.715731, rho=1.000000 +2024-10-14 08:53:27,062 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:53:27.062145', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:28,183 - Inspection date 2020-01-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:53:28,184 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:28,184 - Inspection date 2020-01-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:53:28,184 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:28,184 - Inspection date 2020-01-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:53:28,184 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:28,184 - Inspection date 2020-01-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:53:28,184 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:28,185 - Inspection date 2020-01-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:53:28,185 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:28,185 - Inspection date 2020-01-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:53:28,185 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:39,027 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:53:39,029 - built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions) +2024-10-14 08:53:39,029 - Dictionary lifecycle event {'msg': "built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions)", 'datetime': '2024-10-14T08:53:39.029371', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:39,030 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:53:39,030 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:53:39,030 - using serial LDA version on this node +2024-10-14 08:53:39,031 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:53:39,031 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:53:39,034 - -8.050 per-word bound, 265.1 perplexity estimate based on a held-out corpus of 1 documents with 2211 words +2024-10-14 08:53:39,034 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:53:39,036 - topic #0 (0.333): 0.021*"’" + 0.009*"Rutland" + 0.006*"needs" + 0.006*"effective" + 0.005*"impact" + 0.005*"need" + 0.005*"positive" + 0.004*"15" + 0.004*"plans" + 0.004*"ensure" +2024-10-14 08:53:39,036 - topic #1 (0.333): 0.017*"’" + 0.009*"Rutland" + 0.008*"needs" + 0.007*"effective" + 0.006*"impact" + 0.006*"need" + 0.006*"positive" + 0.006*"plans" + 0.006*"good" + 0.005*"practitioners" +2024-10-14 08:53:39,036 - topic #2 (0.333): 0.018*"’" + 0.009*"Rutland" + 0.008*"needs" + 0.007*"impact" + 0.006*"effective" + 0.006*"positive" + 0.005*"plans" + 0.005*"26" + 0.005*"need" + 0.005*"well" +2024-10-14 08:53:39,036 - topic diff=0.763896, rho=1.000000 +2024-10-14 08:53:39,036 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:53:39.036670', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:39,896 - Inspection date 2024-04-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:53:39,897 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:39,897 - Inspection date 2024-04-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:53:39,897 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:39,897 - Inspection date 2024-04-15 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:53:39,897 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:39,897 - Inspection date 2024-04-15 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:53:39,898 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:39,898 - Inspection date 2024-04-15 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:53:39,898 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:39,898 - Inspection date 2024-04-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:53:39,898 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:50,187 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:53:50,189 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions) +2024-10-14 08:53:50,189 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions)", 'datetime': '2024-10-14T08:53:50.189428', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:50,190 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:53:50,190 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:53:50,190 - using serial LDA version on this node +2024-10-14 08:53:50,191 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:53:50,191 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:53:50,194 - -8.008 per-word bound, 257.4 perplexity estimate based on a held-out corpus of 1 documents with 2253 words +2024-10-14 08:53:50,194 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:53:50,195 - topic #0 (0.333): 0.014*"’" + 0.006*"well" + 0.006*"effective" + 0.006*"plans" + 0.005*"Salford" + 0.005*"experiences" + 0.004*"needs" + 0.004*"practice" + 0.004*"6" + 0.004*"10" +2024-10-14 08:53:50,196 - topic #1 (0.333): 0.011*"’" + 0.009*"well" + 0.009*"needs" + 0.008*"plans" + 0.007*"effective" + 0.006*"Salford" + 0.005*"planning" + 0.005*"progress" + 0.004*"6" + 0.004*"strong" +2024-10-14 08:53:50,196 - topic #2 (0.333): 0.016*"’" + 0.008*"plans" + 0.008*"needs" + 0.006*"effective" + 0.006*"Salford" + 0.006*"practice" + 0.005*"well" + 0.005*"leaders" + 0.005*"planning" + 0.005*"quality" +2024-10-14 08:53:50,196 - topic diff=0.790512, rho=1.000000 +2024-10-14 08:53:50,196 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:53:50.196487', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:53:51,094 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:53:51,094 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:51,094 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:53:51,094 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:51,094 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:53:51,095 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:51,095 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:53:51,095 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:51,095 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:53:51,095 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:53:51,095 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:53:51,095 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:00,287 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:54:00,289 - built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions) +2024-10-14 08:54:00,290 - Dictionary lifecycle event {'msg': "built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions)", 'datetime': '2024-10-14T08:54:00.290143', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:00,291 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:54:00,291 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:54:00,291 - using serial LDA version on this node +2024-10-14 08:54:00,291 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:54:00,291 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:54:00,295 - -7.942 per-word bound, 245.9 perplexity estimate based on a held-out corpus of 1 documents with 2066 words +2024-10-14 08:54:00,295 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:54:00,296 - topic #0 (0.333): 0.016*"’" + 0.010*"needs" + 0.009*"Sandwell" + 0.007*"plans" + 0.007*"well" + 0.006*"quality" + 0.005*"9" + 0.005*"20" + 0.004*"Trust" + 0.004*"progress" +2024-10-14 08:54:00,296 - topic #1 (0.333): 0.012*"’" + 0.008*"plans" + 0.008*"needs" + 0.007*"Sandwell" + 0.006*"well" + 0.006*"quality" + 0.006*"number" + 0.005*"Trust" + 0.005*"education" + 0.005*"progress" +2024-10-14 08:54:00,296 - topic #2 (0.333): 0.013*"’" + 0.006*"well" + 0.006*"plans" + 0.005*"needs" + 0.005*"quality" + 0.005*"Sandwell" + 0.004*"Trust" + 0.004*"20" + 0.004*"receive" + 0.004*"number" +2024-10-14 08:54:00,296 - topic diff=0.764491, rho=1.000000 +2024-10-14 08:54:00,297 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:54:00.296982', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:01,191 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:54:01,191 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:01,192 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:54:01,192 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:01,192 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:54:01,192 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:01,192 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:54:01,192 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:01,192 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:54:01,192 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:01,192 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:54:01,193 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:11,396 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:54:11,398 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions) +2024-10-14 08:54:11,398 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions)", 'datetime': '2024-10-14T08:54:11.398812', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:11,399 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:54:11,399 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:54:11,400 - using serial LDA version on this node +2024-10-14 08:54:11,400 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:54:11,400 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:54:11,403 - -7.928 per-word bound, 243.6 perplexity estimate based on a held-out corpus of 1 documents with 2300 words +2024-10-14 08:54:11,403 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:54:11,405 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.005*"including" + 0.005*"practice" + 0.005*"Sefton" + 0.005*"oversight" + 0.005*"management" + 0.005*"protection" + 0.004*"always" + 0.004*"identified" +2024-10-14 08:54:11,405 - topic #1 (0.333): 0.017*"’" + 0.008*"needs" + 0.006*"oversight" + 0.006*"practice" + 0.006*"◼" + 0.005*"response" + 0.005*"many" + 0.005*"timely" + 0.005*"protection" + 0.005*"management" +2024-10-14 08:54:11,405 - topic #2 (0.333): 0.014*"’" + 0.010*"needs" + 0.007*"practice" + 0.006*"lack" + 0.005*"4" + 0.005*"many" + 0.005*"oversight" + 0.005*"including" + 0.005*"protection" + 0.005*"always" +2024-10-14 08:54:11,405 - topic diff=0.788327, rho=1.000000 +2024-10-14 08:54:11,405 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:54:11.405734', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:12,279 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:54:12,279 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:12,280 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:54:12,280 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:12,280 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:54:12,280 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:12,280 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:54:12,280 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:12,280 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:54:12,281 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:12,281 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:54:12,281 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:22,994 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:54:22,996 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions) +2024-10-14 08:54:22,996 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions)", 'datetime': '2024-10-14T08:54:22.996631', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:22,997 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:54:22,997 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:54:22,998 - using serial LDA version on this node +2024-10-14 08:54:22,998 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:54:22,998 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:54:23,002 - -8.065 per-word bound, 267.8 perplexity estimate based on a held-out corpus of 1 documents with 2327 words +2024-10-14 08:54:23,002 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:54:23,003 - topic #0 (0.333): 0.018*"’" + 0.011*"Sheffield" + 0.007*"needs" + 0.006*"leaders" + 0.006*"practice" + 0.006*"well" + 0.005*"quality" + 0.004*"experiences" + 0.004*"ensure" + 0.004*"health" +2024-10-14 08:54:23,003 - topic #1 (0.333): 0.026*"’" + 0.012*"Sheffield" + 0.010*"needs" + 0.008*"well" + 0.007*"health" + 0.006*"practice" + 0.005*"leaders" + 0.005*"mental" + 0.005*"good" + 0.005*"adviser" +2024-10-14 08:54:23,003 - topic #2 (0.333): 0.012*"’" + 0.008*"Sheffield" + 0.006*"needs" + 0.005*"leaders" + 0.005*"well" + 0.004*"plans" + 0.004*"health" + 0.004*"2023" + 0.004*"quality" + 0.004*"experiences" +2024-10-14 08:54:23,003 - topic diff=0.788800, rho=1.000000 +2024-10-14 08:54:23,004 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:54:23.004131', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:23,869 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:54:23,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:23,869 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:54:23,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:23,869 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:54:23,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:23,870 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:54:23,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:23,870 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:54:23,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:23,870 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:54:23,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:31,851 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:54:31,853 - built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions) +2024-10-14 08:54:31,853 - Dictionary lifecycle event {'msg': "built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions)", 'datetime': '2024-10-14T08:54:31.853223', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:31,854 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:54:31,854 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:54:31,854 - using serial LDA version on this node +2024-10-14 08:54:31,854 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:54:31,854 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:54:31,857 - -7.958 per-word bound, 248.7 perplexity estimate based on a held-out corpus of 1 documents with 1749 words +2024-10-14 08:54:31,858 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:54:31,859 - topic #0 (0.333): 0.019*"’" + 0.008*"well" + 0.008*"needs" + 0.007*"Shropshire" + 0.007*"plans" + 0.006*"2022" + 0.005*"progress" + 0.005*"need" + 0.005*"making" + 0.005*"practice" +2024-10-14 08:54:31,859 - topic #1 (0.333): 0.013*"’" + 0.008*"needs" + 0.006*"Shropshire" + 0.006*"progress" + 0.005*"making" + 0.005*"well" + 0.005*"plans" + 0.004*"training" + 0.004*"practice" + 0.004*"11" +2024-10-14 08:54:31,859 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"Shropshire" + 0.006*"well" + 0.006*"progress" + 0.005*"2022" + 0.005*"7" + 0.005*"making" + 0.004*"effective" + 0.004*"plans" +2024-10-14 08:54:31,859 - topic diff=0.716166, rho=1.000000 +2024-10-14 08:54:31,859 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:54:31.859773', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:32,766 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:54:32,766 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:32,767 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:54:32,767 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:32,767 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:54:32,767 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:32,767 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:54:32,768 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:32,768 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:54:32,768 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:32,768 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:54:32,768 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:43,849 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:54:43,851 - built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions) +2024-10-14 08:54:43,851 - Dictionary lifecycle event {'msg': "built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-10-14T08:54:43.851686', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:43,852 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:54:43,852 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:54:43,853 - using serial LDA version on this node +2024-10-14 08:54:43,853 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:54:43,853 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:54:43,857 - -8.043 per-word bound, 263.7 perplexity estimate based on a held-out corpus of 1 documents with 2352 words +2024-10-14 08:54:43,857 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:54:43,858 - topic #0 (0.333): 0.015*"’" + 0.009*"Slough" + 0.008*"quality" + 0.006*"plans" + 0.006*"needs" + 0.005*"practice" + 0.005*"impact" + 0.005*"3" + 0.005*"However" + 0.005*"supported" +2024-10-14 08:54:43,858 - topic #1 (0.333): 0.018*"’" + 0.008*"plans" + 0.007*"Slough" + 0.006*"practice" + 0.006*"needs" + 0.005*"quality" + 0.005*"3" + 0.005*"leaders" + 0.005*"PAs" + 0.005*"impact" +2024-10-14 08:54:43,858 - topic #2 (0.333): 0.014*"’" + 0.007*"Slough" + 0.007*"needs" + 0.004*"leaders" + 0.004*"practice" + 0.004*"need" + 0.004*"23" + 0.004*"senior" + 0.004*"plans" + 0.004*"supported" +2024-10-14 08:54:43,858 - topic diff=0.786141, rho=1.000000 +2024-10-14 08:54:43,859 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:54:43.859004', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:44,649 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:54:44,649 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:44,649 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:54:44,649 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:44,650 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:54:44,650 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:44,650 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:54:44,650 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:44,650 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:54:44,650 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:44,650 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:54:44,650 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:54,783 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:54:54,785 - built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions) +2024-10-14 08:54:54,785 - Dictionary lifecycle event {'msg': "built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions)", 'datetime': '2024-10-14T08:54:54.785711', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:54,786 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:54:54,786 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:54:54,787 - using serial LDA version on this node +2024-10-14 08:54:54,787 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:54:54,787 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:54:54,790 - -7.919 per-word bound, 242.0 perplexity estimate based on a held-out corpus of 1 documents with 2163 words +2024-10-14 08:54:54,790 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:54:54,792 - topic #0 (0.333): 0.015*"’" + 0.011*"lack" + 0.009*"2022" + 0.007*"need" + 0.007*"Solihull" + 0.006*"risk" + 0.005*"effective" + 0.005*"practice" + 0.005*"quality" + 0.005*"significant" +2024-10-14 08:54:54,792 - topic #1 (0.333): 0.014*"’" + 0.011*"lack" + 0.009*"2022" + 0.006*"quality" + 0.006*"risk" + 0.005*"delay" + 0.005*"Solihull" + 0.005*"worker" + 0.005*"significant" + 0.005*"means" +2024-10-14 08:54:54,792 - topic #2 (0.333): 0.016*"’" + 0.009*"lack" + 0.006*"2022" + 0.006*"experiences" + 0.006*"practice" + 0.006*"Solihull" + 0.006*"need" + 0.005*"quality" + 0.005*"risk" + 0.005*"significant" +2024-10-14 08:54:54,792 - topic diff=0.788260, rho=1.000000 +2024-10-14 08:54:54,792 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:54:54.792764', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:54:55,681 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:54:55,681 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:55,682 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:54:55,682 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:55,682 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:54:55,682 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:55,682 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:54:55,682 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:55,683 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:54:55,683 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:54:55,683 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:54:55,683 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:05,470 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:55:05,472 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions) +2024-10-14 08:55:05,472 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions)", 'datetime': '2024-10-14T08:55:05.472866', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:05,474 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:55:05,474 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:55:05,474 - using serial LDA version on this node +2024-10-14 08:55:05,474 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:55:05,474 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:55:05,478 - -7.928 per-word bound, 243.5 perplexity estimate based on a held-out corpus of 1 documents with 2181 words +2024-10-14 08:55:05,478 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:55:05,479 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.008*"Somerset" + 0.007*"plans" + 0.006*"good" + 0.006*"leaders" + 0.006*"well" + 0.005*"including" + 0.005*"effective" + 0.005*"need" +2024-10-14 08:55:05,479 - topic #1 (0.333): 0.019*"’" + 0.012*"well" + 0.008*"needs" + 0.007*"Somerset" + 0.006*"plans" + 0.006*"leaders" + 0.006*"supported" + 0.005*"need" + 0.005*"practice" + 0.005*"including" +2024-10-14 08:55:05,479 - topic #2 (0.333): 0.019*"’" + 0.008*"well" + 0.007*"needs" + 0.006*"good" + 0.005*"supported" + 0.005*"18" + 0.005*"Somerset" + 0.005*"number" + 0.005*"practice" + 0.005*"progress" +2024-10-14 08:55:05,479 - topic diff=0.806895, rho=1.000000 +2024-10-14 08:55:05,479 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:55:05.479941', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:06,382 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:55:06,383 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:06,383 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:55:06,383 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:06,383 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:55:06,383 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:06,383 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:55:06,383 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:06,384 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:55:06,384 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:06,384 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:55:06,384 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:17,750 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:55:17,753 - built Dictionary<1188 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2751 corpus positions) +2024-10-14 08:55:17,753 - Dictionary lifecycle event {'msg': "built Dictionary<1188 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2751 corpus positions)", 'datetime': '2024-10-14T08:55:17.753459', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:17,754 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:55:17,754 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:55:17,754 - using serial LDA version on this node +2024-10-14 08:55:17,755 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:55:17,755 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:55:17,759 - -8.055 per-word bound, 266.0 perplexity estimate based on a held-out corpus of 1 documents with 2751 words +2024-10-14 08:55:17,759 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:55:17,760 - topic #0 (0.333): 0.023*"’" + 0.010*"needs" + 0.007*"leaders" + 0.006*"2024" + 0.006*"well" + 0.006*"June" + 0.005*"ensure" + 0.005*"strong" + 0.004*"South" + 0.004*"3" +2024-10-14 08:55:17,760 - topic #1 (0.333): 0.016*"’" + 0.010*"needs" + 0.008*"June" + 0.007*"2024" + 0.006*"leaders" + 0.006*"understand" + 0.006*"effective" + 0.006*"well" + 0.006*"progress" + 0.006*"ensure" +2024-10-14 08:55:17,760 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.006*"leaders" + 0.005*"plans" + 0.005*"June" + 0.005*"2024" + 0.005*"effective" + 0.004*"ensure" + 0.004*"quality" + 0.004*"progress" +2024-10-14 08:55:17,760 - topic diff=0.840963, rho=1.000000 +2024-10-14 08:55:17,760 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:55:17.760932', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:18,679 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:55:18,679 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:18,680 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:55:18,680 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:18,680 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:55:18,680 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:18,680 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:55:18,680 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:18,680 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:55:18,680 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:18,681 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:55:18,681 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:28,058 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:55:28,060 - built Dictionary<981 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2189 corpus positions) +2024-10-14 08:55:28,060 - Dictionary lifecycle event {'msg': 'built Dictionary<981 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2189 corpus positions)', 'datetime': '2024-10-14T08:55:28.060155', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:28,061 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:55:28,061 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:55:28,061 - using serial LDA version on this node +2024-10-14 08:55:28,061 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:55:28,061 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:55:28,064 - -7.887 per-word bound, 236.7 perplexity estimate based on a held-out corpus of 1 documents with 2189 words +2024-10-14 08:55:28,065 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:55:28,066 - topic #0 (0.333): 0.023*"’" + 0.012*"needs" + 0.008*"Tyneside" + 0.008*"South" + 0.006*"oversight" + 0.005*"9" + 0.005*"2022" + 0.005*"effective" + 0.005*"management" + 0.005*"15" +2024-10-14 08:55:28,066 - topic #1 (0.333): 0.026*"’" + 0.008*"needs" + 0.008*"South" + 0.007*"Tyneside" + 0.006*"However" + 0.005*"management" + 0.005*"5" + 0.005*"plans" + 0.005*"oversight" + 0.005*"carers" +2024-10-14 08:55:28,066 - topic #2 (0.333): 0.022*"’" + 0.006*"needs" + 0.005*"South" + 0.005*"Tyneside" + 0.005*"carers" + 0.004*"effective" + 0.004*"risk" + 0.004*"2023" + 0.004*"practice" + 0.004*"oversight" +2024-10-14 08:55:28,066 - topic diff=0.799860, rho=1.000000 +2024-10-14 08:55:28,066 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:55:28.066731', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:29,015 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:55:29,016 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:29,016 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:55:29,016 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:29,016 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:55:29,016 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:29,016 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:55:29,017 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:29,017 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:55:29,017 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:29,017 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:55:29,017 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:39,568 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:55:39,570 - built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions) +2024-10-14 08:55:39,571 - Dictionary lifecycle event {'msg': "built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions)", 'datetime': '2024-10-14T08:55:39.570987', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:39,572 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:55:39,572 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:55:39,572 - using serial LDA version on this node +2024-10-14 08:55:39,572 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:55:39,572 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:55:39,576 - -8.151 per-word bound, 284.2 perplexity estimate based on a held-out corpus of 1 documents with 2318 words +2024-10-14 08:55:39,576 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:55:39,578 - topic #0 (0.333): 0.011*"’" + 0.005*"improve" + 0.005*"Southampton" + 0.005*"5" + 0.005*"needs" + 0.005*"provide" + 0.005*"plans" + 0.004*"16" + 0.004*"2023" + 0.004*"experiences" +2024-10-14 08:55:39,578 - topic #1 (0.333): 0.021*"’" + 0.007*"plans" + 0.006*"Southampton" + 0.006*"including" + 0.005*"progress" + 0.005*"needs" + 0.005*"experiences" + 0.004*"improve" + 0.004*"good" + 0.004*"June" +2024-10-14 08:55:39,578 - topic #2 (0.333): 0.013*"’" + 0.005*"plans" + 0.005*"progress" + 0.005*"Southampton" + 0.005*"5" + 0.005*"leaders" + 0.004*"2023" + 0.004*"improve" + 0.004*"June" + 0.004*"including" +2024-10-14 08:55:39,578 - topic diff=0.750112, rho=1.000000 +2024-10-14 08:55:39,578 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:55:39.578530', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:40,366 - Inspection date 2023-06-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:55:40,367 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:40,367 - Inspection date 2023-06-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:55:40,367 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:40,367 - Inspection date 2023-06-05 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:55:40,367 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:40,368 - Inspection date 2023-06-05 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:55:40,368 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:40,368 - Inspection date 2023-06-05 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:55:40,368 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:40,368 - Inspection date 2023-06-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:55:40,368 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:50,075 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:55:50,078 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions) +2024-10-14 08:55:50,078 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions)", 'datetime': '2024-10-14T08:55:50.078211', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:50,079 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:55:50,079 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:55:50,079 - using serial LDA version on this node +2024-10-14 08:55:50,079 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:55:50,079 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:55:50,083 - -7.952 per-word bound, 247.6 perplexity estimate based on a held-out corpus of 1 documents with 2086 words +2024-10-14 08:55:50,083 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:55:50,084 - topic #0 (0.333): 0.015*"’" + 0.009*"planning" + 0.008*"quality" + 0.006*"practice" + 0.006*"within" + 0.006*"effective" + 0.006*"always" + 0.006*"protection" + 0.005*"number" + 0.005*"risk" +2024-10-14 08:55:50,084 - topic #1 (0.333): 0.014*"’" + 0.007*"planning" + 0.007*"practice" + 0.007*"leaders" + 0.006*"quality" + 0.005*"number" + 0.005*"needs" + 0.005*"protection" + 0.005*"well" + 0.004*"risks" +2024-10-14 08:55:50,084 - topic #2 (0.333): 0.011*"’" + 0.007*"practice" + 0.007*"leaders" + 0.007*"planning" + 0.005*"good" + 0.005*"protection" + 0.005*"quality" + 0.005*"number" + 0.005*"need" + 0.004*"progress" +2024-10-14 08:55:50,084 - topic diff=0.773334, rho=1.000000 +2024-10-14 08:55:50,085 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:55:50.085077', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:55:52,034 - Inspection date 2019-07-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:55:52,034 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:52,035 - Inspection date 2019-07-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:55:52,035 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:52,035 - Inspection date 2019-07-15 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:55:52,035 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:52,035 - Inspection date 2019-07-15 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:55:52,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:52,036 - Inspection date 2019-07-15 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:55:52,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:55:52,036 - Inspection date 2019-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:55:52,036 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:03,967 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:56:03,969 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions) +2024-10-14 08:56:03,970 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions)", 'datetime': '2024-10-14T08:56:03.970056', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:03,971 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:56:03,971 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:56:03,971 - using serial LDA version on this node +2024-10-14 08:56:03,971 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:56:03,971 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:56:03,975 - -8.056 per-word bound, 266.1 perplexity estimate based on a held-out corpus of 1 documents with 2218 words +2024-10-14 08:56:03,975 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:56:03,976 - topic #0 (0.333): 0.015*"’" + 0.009*"needs" + 0.008*"St" + 0.007*"well" + 0.007*"Helens" + 0.006*"progress" + 0.005*"receive" + 0.005*"need" + 0.005*"10" + 0.004*"risk" +2024-10-14 08:56:03,977 - topic #1 (0.333): 0.012*"’" + 0.007*"St" + 0.007*"needs" + 0.006*"Helens" + 0.006*"receive" + 0.006*"well" + 0.006*"progress" + 0.005*"21" + 0.005*"good" + 0.005*"10" +2024-10-14 08:56:03,977 - topic #2 (0.333): 0.019*"’" + 0.009*"Helens" + 0.008*"St" + 0.006*"well" + 0.006*"progress" + 0.006*"need" + 0.006*"good" + 0.006*"21" + 0.006*"10" + 0.006*"risk" +2024-10-14 08:56:03,977 - topic diff=0.774092, rho=1.000000 +2024-10-14 08:56:03,977 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:56:03.977357', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:04,994 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:56:04,995 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:04,995 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:56:04,995 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:04,995 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:56:04,995 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:04,995 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:56:04,996 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:04,996 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:56:04,996 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:04,996 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:56:04,996 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:15,492 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:56:15,494 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions) +2024-10-14 08:56:15,495 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions)", 'datetime': '2024-10-14T08:56:15.495111', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:15,496 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:56:15,496 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:56:15,496 - using serial LDA version on this node +2024-10-14 08:56:15,496 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:56:15,496 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:56:15,500 - -8.002 per-word bound, 256.4 perplexity estimate based on a held-out corpus of 1 documents with 2334 words +2024-10-14 08:56:15,500 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:56:15,501 - topic #0 (0.333): 0.017*"’" + 0.012*"needs" + 0.007*"Staffordshire" + 0.006*"practice" + 0.005*"health" + 0.005*"ensure" + 0.005*"oversight" + 0.005*"progress" + 0.005*"well" + 0.004*"impact" +2024-10-14 08:56:15,501 - topic #1 (0.333): 0.011*"’" + 0.009*"needs" + 0.007*"quality" + 0.006*"ensure" + 0.006*"practice" + 0.005*"health" + 0.005*"plans" + 0.005*"oversight" + 0.005*"Staffordshire" + 0.004*"progress" +2024-10-14 08:56:15,501 - topic #2 (0.333): 0.022*"’" + 0.012*"needs" + 0.007*"progress" + 0.006*"oversight" + 0.006*"quality" + 0.005*"health" + 0.005*"6" + 0.005*"practice" + 0.005*"ensure" + 0.005*"plans" +2024-10-14 08:56:15,502 - topic diff=0.800137, rho=1.000000 +2024-10-14 08:56:15,502 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:56:15.502156', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:16,357 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:56:16,358 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:16,358 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:56:16,358 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:16,358 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:56:16,358 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:16,359 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:56:16,359 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:16,359 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:56:16,359 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:16,360 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:56:16,360 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:25,717 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:56:25,719 - built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) +2024-10-14 08:56:25,719 - Dictionary lifecycle event {'msg': "built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-10-14T08:56:25.719443', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:25,720 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:56:25,720 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:56:25,720 - using serial LDA version on this node +2024-10-14 08:56:25,721 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:56:25,721 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:56:25,724 - -7.978 per-word bound, 252.2 perplexity estimate based on a held-out corpus of 1 documents with 2316 words +2024-10-14 08:56:25,724 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:56:25,726 - topic #0 (0.333): 0.010*"’" + 0.010*"well" + 0.006*"Stockport" + 0.006*"needs" + 0.006*"practice" + 0.006*"strong" + 0.006*"plans" + 0.005*"quality" + 0.005*"leaders" + 0.005*"risk" +2024-10-14 08:56:25,726 - topic #1 (0.333): 0.011*"’" + 0.008*"practice" + 0.007*"well" + 0.006*"Stockport" + 0.006*"needs" + 0.005*"strong" + 0.005*"ensure" + 0.005*"team" + 0.005*"risk" + 0.005*"plans" +2024-10-14 08:56:25,726 - topic #2 (0.333): 0.012*"’" + 0.008*"well" + 0.007*"Stockport" + 0.007*"practice" + 0.005*"needs" + 0.005*"strong" + 0.004*"plans" + 0.004*"risk" + 0.004*"28" + 0.004*"range" +2024-10-14 08:56:25,726 - topic diff=0.791638, rho=1.000000 +2024-10-14 08:56:25,726 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:56:25.726585', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:26,676 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:56:26,676 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:26,677 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:56:26,677 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:26,677 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:56:26,677 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:26,677 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:56:26,677 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:26,677 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:56:26,677 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:26,678 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:56:26,678 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:36,870 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:56:36,872 - built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions) +2024-10-14 08:56:36,872 - Dictionary lifecycle event {'msg': "built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions)", 'datetime': '2024-10-14T08:56:36.872564', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:36,873 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:56:36,873 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:56:36,873 - using serial LDA version on this node +2024-10-14 08:56:36,874 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:56:36,874 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:56:36,877 - -7.966 per-word bound, 250.0 perplexity estimate based on a held-out corpus of 1 documents with 2269 words +2024-10-14 08:56:36,877 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:56:36,879 - topic #0 (0.333): 0.022*"’" + 0.009*"leaders" + 0.008*"plans" + 0.007*"quality" + 0.006*"well" + 0.006*"on-Tees" + 0.006*"needs" + 0.006*"Stockton" + 0.005*"senior" + 0.005*"carers" +2024-10-14 08:56:36,879 - topic #1 (0.333): 0.016*"’" + 0.008*"plans" + 0.007*"leaders" + 0.007*"good" + 0.007*"needs" + 0.007*"well" + 0.006*"Stockton" + 0.006*"on-Tees" + 0.006*"quality" + 0.004*"17" +2024-10-14 08:56:36,879 - topic #2 (0.333): 0.019*"’" + 0.009*"leaders" + 0.009*"plans" + 0.007*"needs" + 0.006*"well" + 0.005*"good" + 0.005*"Stockton" + 0.005*"on-Tees" + 0.005*"senior" + 0.005*"quality" +2024-10-14 08:56:36,879 - topic diff=0.772602, rho=1.000000 +2024-10-14 08:56:36,879 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:56:36.879512', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:37,808 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:56:37,808 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:37,808 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:56:37,808 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:37,809 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:56:37,809 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:37,809 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:56:37,809 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:37,809 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:56:37,809 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:37,809 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:56:37,809 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:48,031 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:56:48,033 - built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions) +2024-10-14 08:56:48,033 - Dictionary lifecycle event {'msg': "built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions)", 'datetime': '2024-10-14T08:56:48.033392', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:48,034 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:56:48,034 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:56:48,034 - using serial LDA version on this node +2024-10-14 08:56:48,035 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:56:48,035 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:56:48,038 - -7.903 per-word bound, 239.4 perplexity estimate based on a held-out corpus of 1 documents with 2165 words +2024-10-14 08:56:48,038 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:56:48,039 - topic #0 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"protection" + 0.007*"well" + 0.007*"However" + 0.007*"on-Trent" + 0.006*"plans" + 0.006*"ensure" + 0.005*"Stoke" + 0.005*"14" +2024-10-14 08:56:48,039 - topic #1 (0.333): 0.016*"’" + 0.007*"Stoke" + 0.007*"on-Trent" + 0.007*"plans" + 0.006*"needs" + 0.006*"well" + 0.006*"However" + 0.005*"progress" + 0.005*"protection" + 0.005*"ensure" +2024-10-14 08:56:48,039 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"Stoke" + 0.007*"well" + 0.007*"on-Trent" + 0.006*"plans" + 0.006*"However" + 0.005*"ensure" + 0.005*"3" + 0.005*"quality" +2024-10-14 08:56:48,039 - topic diff=0.779175, rho=1.000000 +2024-10-14 08:56:48,040 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:56:48.040045', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:56:48,916 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:56:48,916 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:48,916 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:56:48,916 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:48,916 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:56:48,916 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:48,917 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:56:48,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:48,917 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:56:48,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:56:48,917 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:56:48,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:01,161 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:57:01,163 - built Dictionary<1126 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2544 corpus positions) +2024-10-14 08:57:01,163 - Dictionary lifecycle event {'msg': 'built Dictionary<1126 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2544 corpus positions)', 'datetime': '2024-10-14T08:57:01.163799', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:01,164 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:57:01,164 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:57:01,165 - using serial LDA version on this node +2024-10-14 08:57:01,165 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:57:01,165 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:57:01,169 - -8.023 per-word bound, 260.1 perplexity estimate based on a held-out corpus of 1 documents with 2544 words +2024-10-14 08:57:01,169 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:57:01,170 - topic #0 (0.333): 0.018*"’" + 0.012*"Suffolk" + 0.010*"needs" + 0.009*"well" + 0.005*"protection" + 0.005*"3" + 0.005*"practice" + 0.005*"Council" + 0.004*"County" + 0.004*"plans" +2024-10-14 08:57:01,170 - topic #1 (0.333): 0.020*"’" + 0.009*"well" + 0.008*"Suffolk" + 0.008*"needs" + 0.005*"leaders" + 0.004*"County" + 0.004*"2024" + 0.004*"practice" + 0.004*"7" + 0.004*"June" +2024-10-14 08:57:01,170 - topic #2 (0.333): 0.023*"’" + 0.012*"needs" + 0.009*"Suffolk" + 0.006*"well" + 0.005*"practice" + 0.005*"Council" + 0.005*"parents" + 0.005*"plans" + 0.005*"risks" + 0.005*"protection" +2024-10-14 08:57:01,170 - topic diff=0.813485, rho=1.000000 +2024-10-14 08:57:01,171 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:57:01.171005', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:03,541 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:57:03,541 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:03,541 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:57:03,541 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:03,541 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:57:03,541 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:03,541 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:57:03,541 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:03,542 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:57:03,542 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:03,542 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:57:03,542 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:14,125 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:57:14,127 - built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions) +2024-10-14 08:57:14,128 - Dictionary lifecycle event {'msg': "built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions)", 'datetime': '2024-10-14T08:57:14.128149', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:14,129 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:57:14,129 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:57:14,129 - using serial LDA version on this node +2024-10-14 08:57:14,129 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:57:14,130 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:57:14,133 - -8.049 per-word bound, 264.8 perplexity estimate based on a held-out corpus of 1 documents with 2409 words +2024-10-14 08:57:14,133 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:57:14,134 - topic #0 (0.333): 0.012*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"quality" + 0.005*"Sunderland" + 0.005*"good" + 0.004*"practice" + 0.004*"council" + 0.004*"protection" + 0.004*"parents" +2024-10-14 08:57:14,135 - topic #1 (0.333): 0.020*"’" + 0.008*"quality" + 0.008*"well" + 0.007*"needs" + 0.007*"Sunderland" + 0.006*"experienced" + 0.006*"TfC" + 0.005*"practice" + 0.005*"robust" + 0.005*"parents" +2024-10-14 08:57:14,135 - topic #2 (0.333): 0.011*"’" + 0.005*"well" + 0.005*"needs" + 0.005*"quality" + 0.004*"Sunderland" + 0.004*"highly" + 0.004*"protection" + 0.004*"risk" + 0.004*"experienced" + 0.003*"result" +2024-10-14 08:57:14,135 - topic diff=0.805220, rho=1.000000 +2024-10-14 08:57:14,135 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:57:14.135563', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:15,350 - Inspection date 2021-06-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:57:15,354 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:15,354 - Inspection date 2021-06-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:57:15,355 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:15,355 - Inspection date 2021-06-28 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:57:15,355 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:15,355 - Inspection date 2021-06-28 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:57:15,355 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:15,356 - Inspection date 2021-06-28 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:57:15,356 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:15,356 - Inspection date 2021-06-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:57:15,356 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:24,830 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:57:24,832 - built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions) +2024-10-14 08:57:24,832 - Dictionary lifecycle event {'msg': "built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions)", 'datetime': '2024-10-14T08:57:24.832480', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:24,833 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:57:24,833 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:57:24,833 - using serial LDA version on this node +2024-10-14 08:57:24,834 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:57:24,834 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:57:24,837 - -7.968 per-word bound, 250.3 perplexity estimate based on a held-out corpus of 1 documents with 2111 words +2024-10-14 08:57:24,837 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:57:24,838 - topic #0 (0.333): 0.011*"’" + 0.008*"well" + 0.008*"needs" + 0.006*"progress" + 0.006*"carers" + 0.005*"quality" + 0.005*"effective" + 0.005*"practice" + 0.005*"17" + 0.005*"plans" +2024-10-14 08:57:24,838 - topic #1 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"well" + 0.006*"practice" + 0.005*"plans" + 0.005*"progress" + 0.004*"However" + 0.004*"effective" + 0.004*"good" + 0.004*"quality" +2024-10-14 08:57:24,839 - topic #2 (0.333): 0.013*"’" + 0.011*"needs" + 0.011*"well" + 0.009*"practice" + 0.008*"progress" + 0.005*"plans" + 0.005*"good" + 0.005*"17" + 0.005*"carers" + 0.005*"quality" +2024-10-14 08:57:24,839 - topic diff=0.761882, rho=1.000000 +2024-10-14 08:57:24,839 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:57:24.839352', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:25,818 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:57:25,818 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:25,818 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:57:25,818 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:25,818 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:57:25,819 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:25,819 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:57:25,819 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:25,819 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:57:25,819 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:25,819 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:57:25,819 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:35,604 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:57:35,606 - built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions) +2024-10-14 08:57:35,606 - Dictionary lifecycle event {'msg': "built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions)", 'datetime': '2024-10-14T08:57:35.606931', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:35,607 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:57:35,608 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:57:35,608 - using serial LDA version on this node +2024-10-14 08:57:35,608 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:57:35,608 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:57:35,611 - -7.825 per-word bound, 226.8 perplexity estimate based on a held-out corpus of 1 documents with 2229 words +2024-10-14 08:57:35,611 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:57:35,613 - topic #0 (0.333): 0.025*"’" + 0.013*"needs" + 0.010*"Swindon" + 0.008*"need" + 0.007*"well" + 0.006*"impact" + 0.006*"plans" + 0.006*"many" + 0.005*"lack" + 0.005*"always" +2024-10-14 08:57:35,613 - topic #1 (0.333): 0.014*"’" + 0.010*"needs" + 0.009*"well" + 0.008*"Swindon" + 0.007*"need" + 0.006*"impact" + 0.006*"effective" + 0.005*"Borough" + 0.005*"health" + 0.005*"always" +2024-10-14 08:57:35,613 - topic #2 (0.333): 0.025*"’" + 0.015*"needs" + 0.009*"Swindon" + 0.009*"need" + 0.008*"well" + 0.008*"always" + 0.008*"plans" + 0.006*"health" + 0.005*"Council" + 0.005*"practice" +2024-10-14 08:57:35,613 - topic diff=0.826250, rho=1.000000 +2024-10-14 08:57:35,613 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-10-14T08:57:35.613530', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:36,588 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:57:36,588 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:36,588 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:57:36,588 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:36,588 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:57:36,589 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:36,589 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:57:36,589 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:36,589 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:57:36,589 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:36,589 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:57:36,589 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:47,687 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:57:47,690 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions) +2024-10-14 08:57:47,690 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions)", 'datetime': '2024-10-14T08:57:47.690339', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:47,691 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:57:47,691 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:57:47,691 - using serial LDA version on this node +2024-10-14 08:57:47,692 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:57:47,692 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:57:47,696 - -7.947 per-word bound, 246.8 perplexity estimate based on a held-out corpus of 1 documents with 2491 words +2024-10-14 08:57:47,696 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:57:47,697 - topic #0 (0.333): 0.015*"’" + 0.011*"needs" + 0.007*"impact" + 0.006*"risk" + 0.005*"practice" + 0.005*"December" + 0.005*"planning" + 0.005*"experienced" + 0.005*"response" + 0.005*"Tameside" +2024-10-14 08:57:47,697 - topic #1 (0.333): 0.016*"’" + 0.007*"risk" + 0.006*"needs" + 0.006*"quality" + 0.006*"impact" + 0.006*"practice" + 0.006*"2023" + 0.005*"4" + 0.004*"need" + 0.004*"experienced" +2024-10-14 08:57:47,697 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.006*"experienced" + 0.006*"quality" + 0.006*"response" + 0.005*"impact" + 0.005*"risk" + 0.005*"understand" + 0.005*"2023" + 0.005*"4" +2024-10-14 08:57:47,697 - topic diff=0.821978, rho=1.000000 +2024-10-14 08:57:47,698 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:57:47.698049', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:57:48,673 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:57:48,674 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:48,674 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:57:48,674 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:48,674 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:57:48,674 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:48,674 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:57:48,674 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:48,675 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:57:48,675 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:57:48,675 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:57:48,675 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:00,296 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:58:00,298 - built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions) +2024-10-14 08:58:00,299 - Dictionary lifecycle event {'msg': "built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions)", 'datetime': '2024-10-14T08:58:00.298999', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:00,300 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:58:00,300 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:58:00,300 - using serial LDA version on this node +2024-10-14 08:58:00,300 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:58:00,300 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:58:00,304 - -7.973 per-word bound, 251.2 perplexity estimate based on a held-out corpus of 1 documents with 2452 words +2024-10-14 08:58:00,304 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:58:00,305 - topic #0 (0.333): 0.023*"’" + 0.011*"needs" + 0.008*"Wrekin" + 0.008*"Telford" + 0.007*"effective" + 0.006*"benefit" + 0.006*"Family" + 0.005*"well" + 0.005*"plans" + 0.004*"3" +2024-10-14 08:58:00,305 - topic #1 (0.333): 0.022*"’" + 0.012*"needs" + 0.009*"Telford" + 0.008*"Wrekin" + 0.007*"benefit" + 0.006*"well" + 0.006*"plans" + 0.005*"3" + 0.005*"live" + 0.005*"PAs" +2024-10-14 08:58:00,305 - topic #2 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"Wrekin" + 0.006*"Telford" + 0.005*"well" + 0.005*"Family" + 0.005*"plans" + 0.005*"effective" + 0.005*"benefit" + 0.005*"leaders" +2024-10-14 08:58:00,305 - topic diff=0.822039, rho=1.000000 +2024-10-14 08:58:00,306 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:58:00.306095', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:01,541 - Inspection date 2024-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:58:01,541 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:01,542 - Inspection date 2024-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:58:01,542 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:01,542 - Inspection date 2024-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:58:01,542 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:01,542 - Inspection date 2024-04-29 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:58:01,542 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:01,542 - Inspection date 2024-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:58:01,542 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:01,543 - Inspection date 2024-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:58:01,543 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:11,475 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:58:11,479 - built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions) +2024-10-14 08:58:11,480 - Dictionary lifecycle event {'msg': "built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions)", 'datetime': '2024-10-14T08:58:11.479992', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:11,482 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:58:11,482 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:58:11,482 - using serial LDA version on this node +2024-10-14 08:58:11,483 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:58:11,483 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:58:11,489 - -8.140 per-word bound, 282.1 perplexity estimate based on a held-out corpus of 1 documents with 2160 words +2024-10-14 08:58:11,489 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:58:11,491 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.005*"carers" + 0.005*"need" + 0.004*"practice" + 0.004*"impact" + 0.004*"effective" + 0.004*"needs" + 0.004*"ensure" + 0.003*"leaders" +2024-10-14 08:58:11,492 - topic #1 (0.333): 0.011*"’" + 0.008*"well" + 0.005*"carers" + 0.004*"needs" + 0.004*"need" + 0.004*"ensure" + 0.004*"practice" + 0.004*"Thurrock" + 0.004*"plans" + 0.004*"protection" +2024-10-14 08:58:11,492 - topic #2 (0.333): 0.015*"’" + 0.008*"well" + 0.006*"carers" + 0.005*"need" + 0.005*"needs" + 0.004*"effective" + 0.004*"leaders" + 0.004*"ensure" + 0.004*"Thurrock" + 0.004*"practice" +2024-10-14 08:58:11,492 - topic diff=0.730410, rho=1.000000 +2024-10-14 08:58:11,492 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:58:11.492726', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:13,388 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:58:13,389 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:13,389 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:58:13,389 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:13,389 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:58:13,389 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:13,389 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:58:13,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:13,390 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:58:13,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:13,390 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:58:13,390 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:22,473 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:58:22,477 - built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions) +2024-10-14 08:58:22,477 - Dictionary lifecycle event {'msg': "built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions)", 'datetime': '2024-10-14T08:58:22.477520', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:22,479 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:58:22,479 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:58:22,480 - using serial LDA version on this node +2024-10-14 08:58:22,480 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:58:22,480 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:58:22,486 - -8.039 per-word bound, 262.9 perplexity estimate based on a held-out corpus of 1 documents with 2065 words +2024-10-14 08:58:22,486 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:58:22,489 - topic #0 (0.333): 0.016*"’" + 0.011*"well" + 0.007*"Torbay" + 0.007*"good" + 0.006*"needs" + 0.005*"progress" + 0.005*"timely" + 0.005*"effective" + 0.005*"plans" + 0.004*"21" +2024-10-14 08:58:22,489 - topic #1 (0.333): 0.021*"’" + 0.008*"well" + 0.008*"Torbay" + 0.006*"good" + 0.006*"effective" + 0.005*"needs" + 0.005*"team" + 0.004*"21" + 0.004*"2022" + 0.004*"1" +2024-10-14 08:58:22,489 - topic #2 (0.333): 0.010*"’" + 0.008*"well" + 0.007*"Torbay" + 0.006*"needs" + 0.004*"good" + 0.004*"education" + 0.004*"plans" + 0.004*"effective" + 0.004*"ensure" + 0.004*"April" +2024-10-14 08:58:22,489 - topic diff=0.754652, rho=1.000000 +2024-10-14 08:58:22,490 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:58:22.490108', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:23,552 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:58:23,552 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:23,553 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:58:23,553 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:23,553 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:58:23,553 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:23,553 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:58:23,553 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:23,553 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:58:23,553 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:23,554 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:58:23,554 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:35,303 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:58:35,305 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions) +2024-10-14 08:58:35,305 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions)", 'datetime': '2024-10-14T08:58:35.305620', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:35,306 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:58:35,306 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:58:35,306 - using serial LDA version on this node +2024-10-14 08:58:35,307 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:58:35,307 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:58:35,310 - -7.913 per-word bound, 241.1 perplexity estimate based on a held-out corpus of 1 documents with 2448 words +2024-10-14 08:58:35,310 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:58:35,312 - topic #0 (0.333): 0.014*"’" + 0.010*"needs" + 0.007*"Trafford" + 0.006*"quality" + 0.006*"well" + 0.006*"plans" + 0.005*"ensure" + 0.005*"placed" + 0.005*"2" + 0.004*"family" +2024-10-14 08:58:35,312 - topic #1 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"Trafford" + 0.006*"well" + 0.005*"quality" + 0.005*"plans" + 0.005*"worker" + 0.005*"placed" + 0.005*"leaders" + 0.004*"practice" +2024-10-14 08:58:35,312 - topic #2 (0.333): 0.018*"’" + 0.009*"needs" + 0.009*"Trafford" + 0.009*"plans" + 0.008*"well" + 0.007*"leaders" + 0.007*"quality" + 0.006*"practice" + 0.006*"team" + 0.005*"impact" +2024-10-14 08:58:35,312 - topic diff=0.831038, rho=1.000000 +2024-10-14 08:58:35,312 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:58:35.312564', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:36,228 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:58:36,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:36,229 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:58:36,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:36,229 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:58:36,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:36,229 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:58:36,229 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:36,230 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:58:36,230 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:36,230 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:58:36,230 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:47,545 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:58:47,547 - built Dictionary<1162 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2626 corpus positions) +2024-10-14 08:58:47,547 - Dictionary lifecycle event {'msg': 'built Dictionary<1162 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2626 corpus positions)', 'datetime': '2024-10-14T08:58:47.547418', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:47,548 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:58:47,548 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:58:47,548 - using serial LDA version on this node +2024-10-14 08:58:47,549 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:58:47,549 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:58:47,552 - -8.047 per-word bound, 264.5 perplexity estimate based on a held-out corpus of 1 documents with 2626 words +2024-10-14 08:58:47,553 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:58:47,554 - topic #0 (0.333): 0.024*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"leaders" + 0.006*"Walsall" + 0.005*"Senior" + 0.005*"information" + 0.005*"oversight" + 0.005*"4" + 0.004*"positive" +2024-10-14 08:58:47,554 - topic #1 (0.333): 0.016*"’" + 0.006*"leaders" + 0.005*"4" + 0.005*"needs" + 0.004*"Walsall" + 0.004*"well" + 0.004*"oversight" + 0.003*"information" + 0.003*"Senior" + 0.003*"plans" +2024-10-14 08:58:47,554 - topic #2 (0.333): 0.022*"’" + 0.008*"leaders" + 0.006*"needs" + 0.005*"Walsall" + 0.005*"well" + 0.005*"good" + 0.004*"information" + 0.004*"supported" + 0.004*"2021" + 0.004*"oversight" +2024-10-14 08:58:47,554 - topic diff=0.820071, rho=1.000000 +2024-10-14 08:58:47,554 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:58:47.554880', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:58:48,573 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:58:48,574 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:48,574 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:58:48,574 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:48,574 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:58:48,574 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:48,574 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:58:48,574 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:48,575 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:58:48,575 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:58:48,575 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:58:48,575 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:01,904 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:59:01,906 - built Dictionary<1158 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2700 corpus positions) +2024-10-14 08:59:01,906 - Dictionary lifecycle event {'msg': 'built Dictionary<1158 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2700 corpus positions)', 'datetime': '2024-10-14T08:59:01.906737', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:01,907 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:59:01,908 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:59:01,908 - using serial LDA version on this node +2024-10-14 08:59:01,908 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:59:01,908 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:59:01,912 - -8.030 per-word bound, 261.4 perplexity estimate based on a held-out corpus of 1 documents with 2700 words +2024-10-14 08:59:01,912 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:59:01,914 - topic #0 (0.333): 0.025*"’" + 0.008*"Warrington" + 0.007*"effective" + 0.007*"needs" + 0.007*"experiences" + 0.007*"well" + 0.006*"leaders" + 0.006*"plans" + 0.006*"carers" + 0.005*"10" +2024-10-14 08:59:01,914 - topic #1 (0.333): 0.014*"’" + 0.007*"needs" + 0.006*"experiences" + 0.006*"Warrington" + 0.005*"June" + 0.005*"well" + 0.005*"effective" + 0.005*"2024" + 0.005*"leaders" + 0.004*"supported" +2024-10-14 08:59:01,914 - topic #2 (0.333): 0.014*"’" + 0.007*"needs" + 0.006*"Warrington" + 0.006*"experiences" + 0.006*"14" + 0.006*"leaders" + 0.005*"practice" + 0.005*"effective" + 0.005*"protection" + 0.004*"supported" +2024-10-14 08:59:01,914 - topic diff=0.817386, rho=1.000000 +2024-10-14 08:59:01,914 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:59:01.914569', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:02,868 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:59:02,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:02,869 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:59:02,869 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:02,870 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:59:02,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:02,870 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:59:02,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:02,870 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:59:02,870 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:02,871 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:59:02,871 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:12,240 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:59:12,242 - built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions) +2024-10-14 08:59:12,242 - Dictionary lifecycle event {'msg': "built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions)", 'datetime': '2024-10-14T08:59:12.242455', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:12,243 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:59:12,243 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:59:12,243 - using serial LDA version on this node +2024-10-14 08:59:12,244 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:59:12,244 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:59:12,247 - -7.998 per-word bound, 255.7 perplexity estimate based on a held-out corpus of 1 documents with 2113 words +2024-10-14 08:59:12,247 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:59:12,248 - topic #0 (0.333): 0.013*"’" + 0.007*"well" + 0.007*"Warwickshire" + 0.006*"plans" + 0.005*"needs" + 0.005*"practice" + 0.005*"December" + 0.004*"clear" + 0.004*"effective" + 0.004*"3" +2024-10-14 08:59:12,248 - topic #1 (0.333): 0.011*"’" + 0.007*"needs" + 0.007*"plans" + 0.007*"well" + 0.006*"Warwickshire" + 0.005*"practice" + 0.005*"good" + 0.005*"22" + 0.005*"carers" + 0.005*"progress" +2024-10-14 08:59:12,249 - topic #2 (0.333): 0.010*"’" + 0.007*"needs" + 0.005*"well" + 0.005*"carers" + 0.005*"plans" + 0.005*"3" + 0.004*"Warwickshire" + 0.004*"good" + 0.004*"Senior" + 0.004*"practice" +2024-10-14 08:59:12,249 - topic diff=0.758290, rho=1.000000 +2024-10-14 08:59:12,249 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:59:12.249306', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:13,119 - Inspection date 2021-11-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:59:13,119 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:13,119 - Inspection date 2021-11-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:59:13,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:13,120 - Inspection date 2021-11-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:59:13,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:13,120 - Inspection date 2021-11-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:59:13,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:13,120 - Inspection date 2021-11-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:59:13,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:13,120 - Inspection date 2021-11-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:59:13,120 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:22,178 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:59:22,180 - built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions) +2024-10-14 08:59:22,180 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions)", 'datetime': '2024-10-14T08:59:22.180525', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:22,181 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:59:22,181 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:59:22,181 - using serial LDA version on this node +2024-10-14 08:59:22,182 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:59:22,182 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:59:22,185 - -8.109 per-word bound, 276.1 perplexity estimate based on a held-out corpus of 1 documents with 2146 words +2024-10-14 08:59:22,185 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:59:22,187 - topic #0 (0.333): 0.013*"’" + 0.006*"West" + 0.006*"Berkshire" + 0.004*"well" + 0.004*"plans" + 0.004*"early" + 0.004*"need" + 0.004*"needs" + 0.003*"progress" + 0.003*"quality" +2024-10-14 08:59:22,187 - topic #1 (0.333): 0.012*"’" + 0.007*"well" + 0.007*"West" + 0.005*"Berkshire" + 0.004*"plans" + 0.004*"need" + 0.004*"practice" + 0.004*"needs" + 0.004*"working" + 0.004*"agency" +2024-10-14 08:59:22,187 - topic #2 (0.333): 0.018*"’" + 0.007*"Berkshire" + 0.006*"West" + 0.006*"well" + 0.004*"14" + 0.004*"needs" + 0.004*"need" + 0.004*"18" + 0.004*"2022" + 0.004*"working" +2024-10-14 08:59:22,187 - topic diff=0.716684, rho=1.000000 +2024-10-14 08:59:22,187 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:59:22.187826', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:23,057 - Inspection date 2022-03-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:59:23,057 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:23,057 - Inspection date 2022-03-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:59:23,057 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:23,058 - Inspection date 2022-03-14 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:59:23,058 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:23,058 - Inspection date 2022-03-14 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:59:23,058 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:23,058 - Inspection date 2022-03-14 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:59:23,058 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:23,058 - Inspection date 2022-03-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:59:23,058 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:32,876 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:59:32,878 - built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions) +2024-10-14 08:59:32,878 - Dictionary lifecycle event {'msg': "built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions)", 'datetime': '2024-10-14T08:59:32.878705', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:32,879 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:59:32,880 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:59:32,880 - using serial LDA version on this node +2024-10-14 08:59:32,880 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:59:32,880 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:59:32,884 - -8.045 per-word bound, 264.1 perplexity estimate based on a held-out corpus of 1 documents with 2224 words +2024-10-14 08:59:32,884 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:59:32,885 - topic #0 (0.333): 0.019*"’" + 0.011*"Northamptonshire" + 0.007*"West" + 0.007*"quality" + 0.006*"needs" + 0.006*"well" + 0.005*"practice" + 0.005*"experiences" + 0.005*"plans" + 0.004*"3" +2024-10-14 08:59:32,885 - topic #1 (0.333): 0.018*"’" + 0.007*"Northamptonshire" + 0.007*"well" + 0.006*"West" + 0.006*"quality" + 0.005*"impact" + 0.005*"practice" + 0.005*"needs" + 0.005*"14" + 0.004*"NCT" +2024-10-14 08:59:32,886 - topic #2 (0.333): 0.014*"’" + 0.007*"quality" + 0.006*"West" + 0.006*"well" + 0.005*"practice" + 0.005*"Northamptonshire" + 0.005*"NCT" + 0.005*"3" + 0.004*"plans" + 0.004*"need" +2024-10-14 08:59:32,886 - topic diff=0.758614, rho=1.000000 +2024-10-14 08:59:32,886 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:59:32.886215', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:33,743 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:59:33,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:33,743 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:59:33,743 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:33,744 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:59:33,744 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:33,744 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:59:33,744 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:33,744 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:59:33,744 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:33,744 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:59:33,744 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:45,577 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:59:45,580 - built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) +2024-10-14 08:59:45,580 - Dictionary lifecycle event {'msg': "built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-10-14T08:59:45.580378', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:45,581 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:59:45,581 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:59:45,581 - using serial LDA version on this node +2024-10-14 08:59:45,582 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:59:45,582 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:59:45,586 - -8.121 per-word bound, 278.4 perplexity estimate based on a held-out corpus of 1 documents with 2720 words +2024-10-14 08:59:45,586 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:59:45,587 - topic #0 (0.333): 0.011*"’" + 0.005*"needs" + 0.005*"well" + 0.004*"plans" + 0.004*"supported" + 0.004*"practice" + 0.004*"Sussex" + 0.004*"education" + 0.004*"24" + 0.003*"13" +2024-10-14 08:59:45,587 - topic #1 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"plans" + 0.006*"West" + 0.006*"Sussex" + 0.006*"needs" + 0.005*"quality" + 0.005*"number" + 0.005*"13" + 0.005*"health" +2024-10-14 08:59:45,587 - topic #2 (0.333): 0.013*"’" + 0.006*"plans" + 0.006*"needs" + 0.005*"well" + 0.005*"13" + 0.004*"Sussex" + 0.004*"West" + 0.004*"number" + 0.004*"clear" + 0.004*"planning" +2024-10-14 08:59:45,588 - topic diff=0.813420, rho=1.000000 +2024-10-14 08:59:45,588 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:59:45.588187', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:46,456 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:59:46,456 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:46,457 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:59:46,457 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:46,457 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:59:46,457 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:46,457 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:59:46,457 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:46,457 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:59:46,458 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:46,458 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:59:46,458 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:58,648 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 08:59:58,653 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions) +2024-10-14 08:59:58,653 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions)", 'datetime': '2024-10-14T08:59:58.653496', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:58,655 - using symmetric alpha at 0.3333333333333333 +2024-10-14 08:59:58,655 - using symmetric eta at 0.3333333333333333 +2024-10-14 08:59:58,655 - using serial LDA version on this node +2024-10-14 08:59:58,656 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 08:59:58,656 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 08:59:58,662 - -7.970 per-word bound, 250.7 perplexity estimate based on a held-out corpus of 1 documents with 2451 words +2024-10-14 08:59:58,662 - PROGRESS: pass 0, at document #1/1 +2024-10-14 08:59:58,664 - topic #0 (0.333): 0.013*"’" + 0.008*"plans" + 0.007*"needs" + 0.006*"Furness" + 0.006*"Westmorland" + 0.006*"appropriate" + 0.006*"need" + 0.005*"protection" + 0.005*"well" + 0.004*"3" +2024-10-14 08:59:58,664 - topic #1 (0.333): 0.011*"’" + 0.008*"plans" + 0.007*"Westmorland" + 0.007*"needs" + 0.006*"Furness" + 0.006*"need" + 0.006*"appropriate" + 0.006*"protection" + 0.006*"quality" + 0.005*"progress" +2024-10-14 08:59:58,666 - topic #2 (0.333): 0.014*"’" + 0.007*"plans" + 0.006*"Furness" + 0.005*"appropriate" + 0.005*"Westmorland" + 0.005*"need" + 0.005*"needs" + 0.005*"quality" + 0.005*"April" + 0.005*"well" +2024-10-14 08:59:58,666 - topic diff=0.800839, rho=1.000000 +2024-10-14 08:59:58,666 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T08:59:58.666557', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 08:59:59,824 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 08:59:59,824 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:59,824 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 08:59:59,824 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:59,825 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 08:59:59,825 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:59,825 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-10-14 08:59:59,825 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:59,825 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 08:59:59,825 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 08:59:59,825 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 08:59:59,825 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:10,303 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 09:00:10,307 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions) +2024-10-14 09:00:10,307 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions)", 'datetime': '2024-10-14T09:00:10.307717', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:10,309 - using symmetric alpha at 0.3333333333333333 +2024-10-14 09:00:10,309 - using symmetric eta at 0.3333333333333333 +2024-10-14 09:00:10,310 - using serial LDA version on this node +2024-10-14 09:00:10,310 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 09:00:10,310 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 09:00:10,316 - -7.962 per-word bound, 249.3 perplexity estimate based on a held-out corpus of 1 documents with 2416 words +2024-10-14 09:00:10,317 - PROGRESS: pass 0, at document #1/1 +2024-10-14 09:00:10,319 - topic #0 (0.333): 0.014*"’" + 0.008*"May" + 0.007*"practice" + 0.007*"plans" + 0.006*"Wigan" + 0.006*"needs" + 0.006*"leaders" + 0.005*"appropriate" + 0.005*"quality" + 0.004*"9" +2024-10-14 09:00:10,319 - topic #1 (0.333): 0.014*"’" + 0.008*"May" + 0.006*"plans" + 0.006*"quality" + 0.006*"appropriate" + 0.006*"practice" + 0.006*"Wigan" + 0.005*"needs" + 0.005*"focused" + 0.005*"9" +2024-10-14 09:00:10,319 - topic #2 (0.333): 0.008*"’" + 0.007*"plans" + 0.007*"needs" + 0.006*"practice" + 0.006*"quality" + 0.005*"Wigan" + 0.005*"May" + 0.005*"timely" + 0.004*"2022" + 0.004*"appropriate" +2024-10-14 09:00:10,319 - topic diff=0.795072, rho=1.000000 +2024-10-14 09:00:10,320 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T09:00:10.320037', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:11,462 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 09:00:11,462 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:11,463 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 09:00:11,463 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:11,463 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 09:00:11,463 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:11,463 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-10-14 09:00:11,463 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:11,463 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 09:00:11,463 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:11,463 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 09:00:11,464 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:21,565 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 09:00:21,570 - built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions) +2024-10-14 09:00:21,570 - Dictionary lifecycle event {'msg': "built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions)", 'datetime': '2024-10-14T09:00:21.570354', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:21,572 - using symmetric alpha at 0.3333333333333333 +2024-10-14 09:00:21,572 - using symmetric eta at 0.3333333333333333 +2024-10-14 09:00:21,573 - using serial LDA version on this node +2024-10-14 09:00:21,573 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 09:00:21,573 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 09:00:21,579 - -7.954 per-word bound, 248.0 perplexity estimate based on a held-out corpus of 1 documents with 2600 words +2024-10-14 09:00:21,580 - PROGRESS: pass 0, at document #1/1 +2024-10-14 09:00:21,582 - topic #0 (0.333): 0.018*"’" + 0.010*"well" + 0.009*"needs" + 0.007*"need" + 0.007*"Wiltshire" + 0.006*"progress" + 0.006*"plans" + 0.006*"including" + 0.006*"ensure" + 0.006*"parents" +2024-10-14 09:00:21,582 - topic #1 (0.333): 0.016*"’" + 0.014*"well" + 0.007*"need" + 0.006*"risk" + 0.006*"progress" + 0.006*"parents" + 0.006*"needs" + 0.006*"supported" + 0.006*"Wiltshire" + 0.006*"including" +2024-10-14 09:00:21,582 - topic #2 (0.333): 0.007*"’" + 0.006*"well" + 0.005*"needs" + 0.005*"risk" + 0.004*"supported" + 0.004*"including" + 0.004*"need" + 0.004*"plans" + 0.004*"leaders" + 0.003*"parents" +2024-10-14 09:00:21,582 - topic diff=0.860314, rho=1.000000 +2024-10-14 09:00:21,583 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T09:00:21.582987', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:22,537 - Inspection date 2023-09-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 09:00:22,537 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:22,537 - Inspection date 2023-09-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 09:00:22,537 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:22,538 - Inspection date 2023-09-25 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 09:00:22,538 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:22,538 - Inspection date 2023-09-25 / Column 'in_care' not found in the DataFrame. +2024-10-14 09:00:22,538 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:22,538 - Inspection date 2023-09-25 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 09:00:22,538 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:22,538 - Inspection date 2023-09-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 09:00:22,538 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:33,580 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 09:00:33,582 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) +2024-10-14 09:00:33,582 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-10-14T09:00:33.582548', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:33,583 - using symmetric alpha at 0.3333333333333333 +2024-10-14 09:00:33,583 - using symmetric eta at 0.3333333333333333 +2024-10-14 09:00:33,584 - using serial LDA version on this node +2024-10-14 09:00:33,584 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 09:00:33,584 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 09:00:33,587 - -7.906 per-word bound, 239.9 perplexity estimate based on a held-out corpus of 1 documents with 2233 words +2024-10-14 09:00:33,587 - PROGRESS: pass 0, at document #1/1 +2024-10-14 09:00:33,589 - topic #0 (0.333): 0.007*"’" + 0.007*"needs" + 0.005*"Wirral" + 0.005*"practice" + 0.004*"well" + 0.004*"ensure" + 0.004*"small" + 0.004*"appropriate" + 0.004*"effective" + 0.004*"plans" +2024-10-14 09:00:33,589 - topic #1 (0.333): 0.013*"’" + 0.010*"needs" + 0.009*"plans" + 0.009*"ensure" + 0.008*"Wirral" + 0.007*"practice" + 0.006*"well" + 0.006*"good" + 0.005*"response" + 0.005*"2023" +2024-10-14 09:00:33,589 - topic #2 (0.333): 0.010*"’" + 0.010*"needs" + 0.007*"Wirral" + 0.006*"ensure" + 0.006*"practice" + 0.005*"number" + 0.005*"well" + 0.005*"PAs" + 0.004*"response" + 0.004*"18" +2024-10-14 09:00:33,589 - topic diff=0.829671, rho=1.000000 +2024-10-14 09:00:33,589 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T09:00:33.589682', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:34,511 - Inspection date 2023-09-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 09:00:34,511 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:34,511 - Inspection date 2023-09-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 09:00:34,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:34,512 - Inspection date 2023-09-18 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 09:00:34,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:34,512 - Inspection date 2023-09-18 / Column 'in_care' not found in the DataFrame. +2024-10-14 09:00:34,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:34,512 - Inspection date 2023-09-18 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 09:00:34,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:34,512 - Inspection date 2023-09-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 09:00:34,512 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:45,069 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 09:00:45,071 - built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions) +2024-10-14 09:00:45,071 - Dictionary lifecycle event {'msg': "built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions)", 'datetime': '2024-10-14T09:00:45.071538', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:45,072 - using symmetric alpha at 0.3333333333333333 +2024-10-14 09:00:45,072 - using symmetric eta at 0.3333333333333333 +2024-10-14 09:00:45,072 - using serial LDA version on this node +2024-10-14 09:00:45,073 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 09:00:45,073 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 09:00:45,076 - -8.058 per-word bound, 266.5 perplexity estimate based on a held-out corpus of 1 documents with 2214 words +2024-10-14 09:00:45,076 - PROGRESS: pass 0, at document #1/1 +2024-10-14 09:00:45,078 - topic #0 (0.333): 0.014*"’" + 0.008*"plans" + 0.006*"well" + 0.006*"impact" + 0.005*"17" + 0.005*"quality" + 0.005*"progress" + 0.005*"effective" + 0.005*"needs" + 0.005*"experiences" +2024-10-14 09:00:45,078 - topic #1 (0.333): 0.011*"’" + 0.006*"needs" + 0.006*"effective" + 0.006*"plans" + 0.004*"provided" + 0.004*"progress" + 0.004*"oversight" + 0.004*"17" + 0.004*"Borough" + 0.004*"6" +2024-10-14 09:00:45,078 - topic #2 (0.333): 0.012*"’" + 0.007*"effective" + 0.007*"provided" + 0.006*"progress" + 0.006*"plans" + 0.006*"needs" + 0.006*"well" + 0.005*"experiences" + 0.005*"good" + 0.005*"Wokingham" +2024-10-14 09:00:45,078 - topic diff=0.757473, rho=1.000000 +2024-10-14 09:00:45,078 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T09:00:45.078660', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:45,916 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 09:00:45,916 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:45,916 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 09:00:45,916 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:45,917 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 09:00:45,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:45,917 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. +2024-10-14 09:00:45,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:45,917 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 09:00:45,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:45,917 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 09:00:45,917 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:55,644 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 09:00:55,646 - built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) +2024-10-14 09:00:55,647 - Dictionary lifecycle event {'msg': "built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-10-14T09:00:55.646973', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:55,648 - using symmetric alpha at 0.3333333333333333 +2024-10-14 09:00:55,648 - using symmetric eta at 0.3333333333333333 +2024-10-14 09:00:55,648 - using serial LDA version on this node +2024-10-14 09:00:55,648 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 09:00:55,648 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 09:00:55,652 - -8.057 per-word bound, 266.3 perplexity estimate based on a held-out corpus of 1 documents with 2233 words +2024-10-14 09:00:55,652 - PROGRESS: pass 0, at document #1/1 +2024-10-14 09:00:55,653 - topic #0 (0.333): 0.015*"’" + 0.007*"needs" + 0.005*"effective" + 0.005*"Wolverhampton" + 0.005*"risks" + 0.004*"receive" + 0.004*"leaders" + 0.004*"quality" + 0.004*"foster" + 0.004*"practice" +2024-10-14 09:00:55,653 - topic #1 (0.333): 0.014*"’" + 0.008*"needs" + 0.006*"Wolverhampton" + 0.006*"effective" + 0.006*"supported" + 0.005*"risks" + 0.005*"plans" + 0.004*"strong" + 0.004*"practice" + 0.004*"leaders" +2024-10-14 09:00:55,653 - topic #2 (0.333): 0.013*"’" + 0.008*"needs" + 0.006*"effective" + 0.005*"plans" + 0.005*"quality" + 0.005*"receive" + 0.005*"Wolverhampton" + 0.005*"risk" + 0.005*"education" + 0.005*"leaders" +2024-10-14 09:00:55,654 - topic diff=0.737994, rho=1.000000 +2024-10-14 09:00:55,654 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T09:00:55.654185', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:00:56,558 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 09:00:56,558 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:56,558 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 09:00:56,558 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:56,558 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 09:00:56,558 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:56,559 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. +2024-10-14 09:00:56,559 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:56,559 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 09:00:56,559 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:00:56,559 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 09:00:56,559 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:01:07,804 - adding document #0 to Dictionary<0 unique tokens: []> +2024-10-14 09:01:07,806 - built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions) +2024-10-14 09:01:07,806 - Dictionary lifecycle event {'msg': "built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions)", 'datetime': '2024-10-14T09:01:07.806781', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:01:07,807 - using symmetric alpha at 0.3333333333333333 +2024-10-14 09:01:07,807 - using symmetric eta at 0.3333333333333333 +2024-10-14 09:01:07,808 - using serial LDA version on this node +2024-10-14 09:01:07,808 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-10-14 09:01:07,808 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-10-14 09:01:07,811 - -7.940 per-word bound, 245.6 perplexity estimate based on a held-out corpus of 1 documents with 2343 words +2024-10-14 09:01:07,812 - PROGRESS: pass 0, at document #1/1 +2024-10-14 09:01:07,813 - topic #0 (0.333): 0.024*"’" + 0.010*"well" + 0.008*"Worcestershire" + 0.008*"needs" + 0.007*"plans" + 0.007*"ensure" + 0.006*"leaders" + 0.006*"progress" + 0.005*"living" + 0.005*"appropriate" +2024-10-14 09:01:07,813 - topic #1 (0.333): 0.018*"’" + 0.009*"needs" + 0.008*"plans" + 0.008*"leaders" + 0.007*"progress" + 0.007*"well" + 0.006*"appropriate" + 0.005*"ensure" + 0.005*"Worcestershire" + 0.005*"However" +2024-10-14 09:01:07,813 - topic #2 (0.333): 0.012*"’" + 0.008*"plans" + 0.007*"Worcestershire" + 0.007*"well" + 0.006*"progress" + 0.005*"leaders" + 0.005*"Senior" + 0.005*"needs" + 0.005*"15" + 0.005*"PAs" +2024-10-14 09:01:07,813 - topic diff=0.804421, rho=1.000000 +2024-10-14 09:01:07,813 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-14T09:01:07.813839', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-10-14 09:01:08,814 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-10-14 09:01:08,815 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:01:08,815 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-10-14 09:01:08,815 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:01:08,815 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. +2024-10-14 09:01:08,816 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:01:08,816 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. +2024-10-14 09:01:08,816 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:01:08,816 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. +2024-10-14 09:01:08,816 - Index(['judgement', 'grade'], dtype='object') +2024-10-14 09:01:08,816 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-10-14 09:01:08,816 - Index(['judgement', 'grade'], dtype='object')