CIK#@HlPnF>rrkaHB}#zD2_a`1ph+DV
zg(myPHvHeb#7B1VF}Y?TJWCHISl}^Oo1_mbYWt_c{;wROau-Y_Hq=P4qPK1y@7r6a
zlvKvlv_5FI<0@=6TFIRWcaMU~*Ni|a-92mzgEKSjD;b&r=9rY}68PEgPZ_VH@qt1?BLg(9PCk)kmePCIsLD02J&5nyQNu-&1udXYQ++{mj{1Q*k}0
zyLbIjXTHFBw~3lz#ul4i-8_G640ndoV}6NrxVoA9rQJVo*T8|f*uLc0rEQ%rPDW;#
zH5CH0LZ$hu5er!i>$M{h<&qag%c*k{KQgib=8Wra4=1{SicB9TAZR^}-ZtqNboR(Un{h
zWim$=S`IBywrL(8&F(#JPaB6``EcIdj$N_beW)by1VdkpdafjpXSh}fe-i1Qzb-bs
zp@Ub2nh}5dnWsOv9a`31MFk@yADHYyA&^E@>CMS>VJ8ci#8{!@H2lKp2!-r3?QIA|
z?dbx!ijW#Ua*GWrLV_P*II_WdEH)gSiTQ4?;->|1mQt;Z$>?NaN0sP=&~7n8&OP0m
z!Z@x;`ik@7EhFikk*UB{ak+#HaNP<|J;2pK1TTNTa;{v0IIRhjrC3pAgqw2MG5^GP
zV`@&M=jEz2D3+J2LKK!c?A_t{1u0&T$U*?_o7LlbXPNqUTgV?@rk;^$?n#VY$u^+S
zz+PdLn}+Xhew-LkM9dT3W14bimWwwG*B1`KQ}P%J4oi_o5=!!&dylBO-a!>JIan(`
z4DElJNo~L#gFE4WD+kkQCXud~sZbtaQi}~3ta*oI>b$8u_UE5nC*#gzzBbLLw!1yy
zo0@1D2T3RD1TU>9o?CGe5vT9cf5LnhyOGDtbf;S~GGD
zsh-qxkEd2bN_FBw|JL|GkKTA_0g_HZR4ae|jHrqvO#FbAVgZG2zpGR$F!zMs_ox-T
zB0oUn%b@-dB70TCvfbI#`OWpiBux{{v_&K33&Tk&pP1M@<_r}k98rK`5L5=+J_8)H
zeBGDTd#|bx>g2yg-`{BihdWT4=?j`TTp$NgckzYO?TUN}R=t-Go$RNHa}=mdmwXVJ}|pBG7**;|kL`1E+?s!xdb2XeZP}o)GJe8vi>sNfJJC6!Y?6>WMs7Gl+;AVv89mJ
zUuMV7&kq7dp@hh|k$5-o+Dm_qibJm6QI`mYEW3bYRE4T0bg6yb9&fL|s3
z1CEHM>zaK}^Bf}leL6w(poLYR>-}6RH|`&kkKihYDiBp60wBYz^r(MAq&9O2oSbhL
zrmKT~VdwA3fB)EaxBGdPqEB(OU|yoQq<(PUJ8^L5nEW%s&B96tfCwDQWE!nRDA)`^
zenz0bAeDc-Nk=`_UuHPS>)BfF^yV%ST8PxFyMqMUPlPW7rA1~Y4`-T`U}6rlPx@!|
z1whH+!u$65W~1OHgE4=&Fc}fRS|I1Bb@@QXADzU34WA=3p{dSVzCj+jlkj1Q1RA^f
zgzrJhrV{Bq>7W%vve`zrsfgf9tf5FLI;G>s9is%y|BlCM(+2
z!lp_6kNFKgGAImBQdWUWjkdUVwhl86}FOyqm8@mdh>YL-}eJsPUg<;Jc
zv0ZHrt}$2%0qB3&mW1?eG5Br_j_XgunkIbLiO^1Y>&^ZB)}G5|q8cCqfyv;$LOC(U
z^nX9O!xs%D758zb?DeqNA0cse|{-O6}byY_UWpB2?vjtBd(
z>DJqJb!tBE4p7aoP)FN6MQWb0`iW~Y!RHpPf@ptBMk1lyuO5LdxueC4XTjv;u~24g
zPt1?^zi|n+s|c1r+BihCCHcT6WLELbvh0IV;u5ier&2U07xLwZ+NX|uB)Bbfphl&_
zESEz&`+m|zH8ZSS0F9!LcdEQU3;AhiE&4FT(7QQ`v^mH@xL?Xu
zv_#Cwh6Sz+=;f<`$CUW}*7wSaiMnm+h
z&;8X+Ers)9U1HM
zAS(>qej$T9YKs*aSEV`Z7y*T&J4)gjEsV_>>ivFuZ0>fg!b-&AGh9MJ#*2tM{_-`~
zNB{WLZT-K(9a5$1aPQHvif)#ahzJ}|$}S@C5qnEvsZc9r`#f;NjeKnH&3bMOh?26Tti{@BluG-=nlv^VMadb+-Y(&U
z*i-73uy~y`6If%m~P91iC&Pb|+;>3E8VC(
zb|x46Vq;Bm4dDy9&pDce1uQz`;QZjP&AWGloK)qhGRY2-gg&MlVco
z^KzILPbrgDQB781r|B?>MahL=78j_tlb`DVnU13AK!!SStztSrj4fa~8iwBJ6HD0{P?H!=@1SJmdneP
zH!ed5RFAuN{l^{}NEtgJJ_SIm=c!{BUKE;n|A
z+1h);kmlCvIGHRTUwSX!xxE$D~)Vm{0p?psXv5Is`64IP|lKS(@L$j1zyy{tRSoi@6QJ5kRb>SSSppu3TvI
zwr-Mj<*Fk#Zcekr`TaxOoK`L>z}`Mv1X{J`LRh_gytRLEYbqQfAC2v{UT={
zob5nB*w;~A@OE24XH_id?pE+56RN?cJo^b9FQNzximh3+yGEI8Ur~J
zDURHuS#Kua?led5k3sz#dR9UplRVQAxul4kvt|Eh
zEfEfU>y^d*zj=HzLE1|d2EDLUWqbHKE^sh}f+GG=h$uf&ylI*ZC5{JV5`TR2v;XGd
zETuZ2P!qKfqEgwUCI(_)(iRrtXVqqzCNxP=5$1ZK#eITkIpC@cwj%RpPg08lK1anS
z&lP{XBi+Rzj`*>5W8dve$I6E1Rg?~@QM-7h$S0KKc(4S>H;=Q9i=?DP+PPY_m>$SP
zk55=z;`zh3!$Ky4NpdrW_>?~9s7|`ZS_#Arz_Cm=96^V
zc(J0FGA#uHM*>WI3UCwvZv~M31lT60hoNFf1C|pb1+gN@QVjT->4}Lsc8*kpo@9SW
zRAG4G#`@MSA7zb!D}1{+y>RK=a&(qlXRl@qJ|DV=m$*tvLC~0XL=UfSM`}epuG~}-
z#ezWh5HSbT_rJakaOZsw`yNeb4g|zun>QHSfk|_{3NVN_h!Org^MV9Oo+7$4t8~kD4eaR
zu=MOy!x?g8nQxvJmn7Jm?m$=14Jnn|sXVzliUduWo71Zh#sO~%oGQEx2}oiYx&p{g
zg&sa{Pn+!*3{@*gAS%Ux??me(>wc6dm?eaN3|_wX!PQSpAV&-v3>d3G;*x&~MBfV+
zXBnhnk{k=M@)h&M3WZhp3TjN_5jK*CpvH6p)VM#KPJ9Ub7vO;znNYC|GeWw9e!Pe@
zv#m?$(*0}@I2XLZ#CI1o0Ld)`J-Dt6dN8;|f&=DF=y+n1x43DG!SM=M@t3@SH=&y*
zOpQ9uBu8TEij>U<2aNpPVyu4@_IaydAj6Qsibhkz9I$aSUgCgRGs8!@DG^6LI
z#zgw(^#j7@-H;xIHfWAqQEJDZoa_@fvSsz3^q&?1t1d}JcGRp|NX&~kY9Qu(#g9Z-
z;ab=c3>$Q@L2_p1*7SE0e{@kRE(Y?$c5q#QlTl++!)O%XEE^RWxKMn)tua~KBMWUn
zKIUmb7ykO;(A~epAY^}OffK0gG|+@c7qx5ipr8|l!XcS2r>ej2#a^MkcB91(C1Ejc1bgY5H_A3M^cbqTwo#6PizFUL4`jj(3+yx
zKH%Twnu6u=lFZC46heo5v=wf4RaMqw@ZfC4r6Z~@kE7LiYEOS{cXxOR?mVq>1oI|i
z7ds}eDwU-=;w;sdam9hx;5xWiN(pXsTE44Hh!EdGY06QEsB=a?-ssdnERY5lS
zY4`cj(vaP1NMe6do3wqkF*hWtiLt{(Qf2x&qKR3wK0}UT&*-pL-`7BAg3OD_#TYYo
zOZzvYjW3(MBO_E1gHwKgfwIm=v{?0FICcuRkG%3GfDxp1k&>Z?B-*~o!0(N$Qb8Oz
z`ifL>KuZYQ|Jcug0m(Hl<^Jasr>vpbw(kkVBWP9n_!58BN#YuFzg7)$Ui+xEPlieg
z8+uhCVvIGb*L~sQ*Q9uB)#kEN-Sq($gMjv(mn7tQ{&4WyWUp8w-nyRaG9&H^SmzZQVa+BwW!Tm3;H&~tx^Vfz)&|Kb*f7^fqu`xI#dYB8=GL!
ze|Oz|eXsZkE~y+@dvb{C5?1b`RV0z_
zw>=(*{c&q#*q?(2efYtp8ciX)=?@VPizDvpUe
zZbUpH&J_LdY_9qyfom%8GI}hgYD7x8POH(wDV&sEXHYO;hGGzr+-*IHrxAlzcGJz#Eoi|
z6(oIaX?T
zckRCYusx|l@|7X2OLpm$;+PfmZ!xf#>?yQguny>isq~N)V|SHZBG(_R#ABLt#PZ_b
zy{gW&r^Mw2;{2jSmrfGItaN|p(+hF(*iV=bNNFb;(}T!i-)p5kxo}&%ntRdnz|#(pqq!;Ul5X^}
zsxmK>NWG8&aPSIhyWM~NS9_;Lo}O87V(tAosDb?4osVIshw#y%@Hgk9OL0+SvHcsm
z+yk)`oXbo&LGV&DYznw-axG-TL`6xCfg4svPjrs?D9r7SiCl0XQirX&wwU(^JZu}B
z>MlRFA8wy-P$dOc;iIo(Z6?7?w?R(m#dyi-t&`e&z}lJ6an64kyH>l0+@B=P!>)
zJ4P>59WeV;s_KBopzr9o;5(|+hf+BpVh{2dDjc8=8)NFW?e1oeC$4bf$5099P$}yR
zDGlT>4*KmVo%eqhZ)%E|4P}+qQ^?`=QTJF@D`YxU3e1X@!l*4lY7yQBbMl*sqC<24
zX?yhGP+-qsYZoQ|*f&(w8oe8;5+e%jJ3XrGN)M`&@f!WJLmPlMdJo$dIhbga#@q+0nQRJ?OGLo0L~yVClSzv6o|eR
zTZX_bm|z@}4qr7zA7#@vU9%O0jU>W}Vbxlfgb^=<3oq$!T&Wz$?
zqP0@w=Wc(6;%FQj;ytnR)g*SEx7n$S>0*R!xrFG7EUe&+^9D^B%#D>gtYanbY
z#SZZ?9wzQm93)V$q&$_wPhF}I12YdC^uunuIo}!&JLYJxF*bfcvNm$mtw-cLtaW&!
z;KZ}HgS6gp64|9xub-sV1yKL7G%qM
z@8)N3T-T$2@+Z!;k}PNe45rC4jzXE}V%;c{)BUhhr@~D8*rbOI-|ohzoSexLPR^t4
z^;ms0#&PZDw7rN6#DvUB0Su6R^4#E|@S6+J2mP1xKHvh8(6bPkli7E74&t{|fmV>P
z*8i>&1VhP@&rr#`&$oYy3SBaJZJ;oubR{-U^cFII-yBi}6C{xQgd;;53v?@mXz)U{
z3B|8+Y^ie{5?bBMo$!~DZaUUkkj&D2tk=!zFK4SdkY|b`PD*RcLRR8PW;qV=RH^5=
zzEO{otR!JVK7hrs;iAw!875d#p9{UaUr0%}j~Tl|aKztUSE!se(kAyQJQx5SFZ2@-
zBnc@4KXLqskcFDEXUVMqrbW}kVrLNW=*$Rz&wmk>By!B}GzR2i^H50NxMhKdNR-vhF>>=GGjvuMH$83!Z3m|Qq0uBcx0w018TenXaol^80?!WAuc
z9t%=aSDT|II%}_PWM59V&f`!{FZJfA<7u^Ncg6$0)!voy;!_Xak~YED{P>*{Y9e;X
zSyR4fSU+eUEDHusgFhd{X$lU^h46>|mog-t!AxUKrqUiOtgZGb7nVf|q9dbifO)3QJqc;%|uq|R*z
z3FJzh8@)@?OCek4tiwMpL5ou6r;z@j|?2xQur_0Sn7DB<<
z(*PmDc7jC2BO-nmWE5qbCu4nof0X9XdPubcBMWR=8>vHPL4#QU8obV>Q9*-tGfWI-
zqmWa3YcF3C=QYj_`SZbekd1A1y*twZ;>Dmu8qorSS=DM%t-u(K@rBlK%1QltdZ3uS
zRrkOCxz%SCj0ZoAZo>*Oq@`xS+|)}Kq^2{}Z&D_@5KQmJrS5+Tkz~(*-xoLRlWh|s
zvW=Vsn&b6Na$94CgTmOlPL!_31sJ*qcB_x
zWfz;dVCzs;*vxeCnJ3kMbal8Bj?UDo>DMW;*D2)8=Q@9Q!4&d5Pw-bJu^Z6DSUihD
z!Khc#U4GlkrRhbDfID_F(%>(EUb`zb8>V@Vt`7VH
zF1Esa5#ng8p(KL9!g?5PhGWPhr#l3Sn8e6jrwq;fvdMt<;=in4vG)8J;^bo5=rNua
zmAFa>G=l~ynY;l+%76Ovhd0xwyF1*4{Z2w$tVMnC;6)TSlME%=-ib(stTA={Ea#n4
zhAa?&g&lT-bs=Ma1_fb4f~*NcuXjZW6O2vlu&A+6smhAQsF95@o1AVI$_=}-vCP{sW|
zA-zmH`&*~J5w0MZ*F|GAmKIS#Txn5cyKGg_rGLG-0rC9)I?vV0^q=|uf`*eX5rmV?BFjlzT&
zDk)~5#ZVAG01-uCebYwlwznFBJV~%{nbcE%1UTFyN+!*>y_w!QIlTuzw*e)E
zLZ~5#jLefi$l0wk9dzl!+FA`Ffz&0FXNIvL=x_=Rh;478{Z=fU7fMoqu(%PhQADz2d)WN3CDp)qZfqnca)BU{Nl?H8k>6R9U!L;)u;(X#ZDU&Cmhx{W})IVuQ25r
z$35eJ4Z%kx>L-y#PZ(ondchb#=8VpB^}z^O=7j@`W{`hOVLs+`r~`tMZ;)mHhg`x+
zejeVd|F>Z5C(N?VrzB+&mjKHwAsAgimCA&lbg?k}C8L%`Yl7Trml;ld($;xb4(xkz
zvBn^RTa!a~*W4Ov+sZk(O#KM*&GzXDLwIX{L6CESvFgN-&H33$>OBxho(1DAfS+T@
zgxMrkfV=3Ahaw`_XbE|&UkJ~9d{P!d_%olf8ggTkdnY#wqjNU>3Ap8!bdvnzQ@2&f
z(y-kkMezF=S|E`3!f@N?nL=X0p7l1(hQ8P;hS2=f^@yBX%XLMD#b|Ti=Sm1Y&+zhp
z^B~ZqpF87hFw9OEIrzs%j7XYp?%)!BF?A(0y@G@jUD_%yAUJYDQo>U!6a?$;i}1(-
zwK5{m=y4~_-x@a{CXBo>8kfPx&Oz$S(`nz%p>yRtH@jnVGZ$K!RM@-TJO0_+shQqr
zvxo0`(Y$SZD~tbxY*hi;1r@NvK=a6dPdII+^IPTQ9VrCO0DuSrr5aImxWZJ{3&A^_
zA6tXFIDx{*H2zvfwQTE6bdmg+V^0zeiXXvF8Wa%e4O}*~hXUGZ_wH6F90!(kzi0Qq
zH6k|AIiVPFbvHV~SnG!cZ}iEFSGDq)fmsX%alJXYY;$%{dPKWu%j50@2BphZe49Yui856G20@56r
zkLV)&~|L3t97j(cJW(m7t*{
za^Uugt&C-PV?yNE2ZxKeeUufCdQzk%VG*wp!!sOqtZ((BQ>&m?_1aX_TZE#}yD8jZ
z-y5qn^zOc-&4^ANcTuv^W>m`@(2qh8a6o^2^Rw-J*PhKyrOohulu8R+x0iRWE}M
zaj3%YCQKvK1w~{9VhXgWbDbl9
z=p_*+Xpq%=>JQKg-|l2chDxM4??hH2$)XhqY!Me7Wu-;|TzSe#9)GgzfXh{*UF&@r6iXo`U=_^hWvQ28ghU>9M{MgrmQYcSl;7C3=DZdcqYBDz=ejt5uchzGskqm&-JM=U3y>!m
zX;@xw&WLZ3Li`g8he&u6XQ>QqLyj3OcS{`m7RiZQi0^1*!sxxqd
z#Fa0QcTB3VGlu9rcy|R~GH_-_rF4pB8WBYA0COv0(@4lJyi;*+rQW7eJ;E+cY;7K`
z1I|m;+NFDc6LIO89;dCK9(7%FD^YT40&P@?N*ybasCd)@8FPOjuaqS4-nj)##BZ1<
zg3|r*F)VhGOJB)|hD`|5%%HL~TT4kQxf(tVMTFNPK}ztU4(drWq7;4?h(PZM5}wQ0
zMQEPKZ=RuyeG-Xl2gbW>o_tRdNXTj~>ClNJ=(R)Qf@*W-FEnHG;|o1!%PNsl
zj%5~gChf*^Y(ih(jYmv5{|Fr--Dv}s0xgN9UGhjWFXQAKjH0K;%#*J!)8+8|@66V}
zh$hp2A?K8y=6vpQXJ_-BFOx9l;Uy!-ong5ZLx&Fs%N!jXM*+#1hJh4{fQmjanr`R}
zmf0^LZ$XPEv8}UHU1s5d^g2OWwyC${zgRLdZxViuaV-f7#vCdB-Am`cS1yq0(df!C
zj(X6&oKieV69kc4lFFP17Macpi`?l1q9g-<3+rA4>(Gt^2|&RIVDr4dwCuK@!X6(s
z4SpKpMrJw^dPniqScBl10{{{7{mHM5pUVbMmfCMZ!Pu@r-UCo#Pz~|9W?i!d=+L=?
z3w+nSUmvjLtZP3S#iSqYPP-;a*8n9wo|@D9eQQkg-QnCpdUbbLH@o-E`LsE7<^qv_
zA8+@^r#>V2ez)C2kAt=T#y@|5xuR^A@BPQFLHWGj^r34WTU&lq{?4I$zc+tl;y0K@
zb*K0D=EzL^rFMT$|H{+(Zny2PIQn_NC3d;*Plxw*dDmYG``3GU?++i|4`+j~e$(!r
z-Zw^|Yl>CdruP=;z&~`KnD6Oetc{?I82X?S)KQSPKT%M+S}3B$K&aD{|~dPoevHLf)jQLC6m9aAAf4Y
zFc5_AeF~$yEh!155w-(u$*F-tU0Qk*(k2nLevs5Ue)}p;;v|q$kE@yec6L#@*y%R=
z1s{|(6`}<}85m)uGMfs$H_QA1Wg&7Sd20<+sE2?S^<60(6V}74w+?(%5V8a^feBZk
zZH$g#9K;qh4@GjAB(AO3Jf_lbuz%y?n{NP52)V}^B9}aJya(oPB%&iyiV^94d^-T7
zz|evQ69c9N#b<8>ufxrTLAh{h6?+FattWAG?}8eQUDp-ebg-uU6o0N>-iB3kW%j2M
zfa+2TCOq(HeO=Wd5}udDVXg>f?}q6HkCc?(0ub{{gcBtqubT=yhHQpilq+x|0~NQvsNh
zY_K{4?VppVus;IMrIY=oC6f-Z5F3IMb_pc`002+|000pH0000000000004l2nUguO
SJ_7BmlX0C
z^azB9-;N*u`M>;azgv82+SB%U_{FQ}>*cFOb66eM+r!6Sy!xL%e)F^P)#7xn59@k&
zJT!m5c=fqCz5175{PUnUB)x+r*uQuoN)Bkw=`n1|K`}*|t@u@kOPd*&meSJ1B
z+mEkLPi<4LPn)JW?{}}`!o?yy%l9u{_2-M
zKW%^c^YbsuWg6!{e|`St&tKa&x;K+zDc^tk)3@@S-z>|e`7a{B9euSZ)1~<*ip@XE
z;;ThcnEy*s`%jgce=_@C>He>hzyDCThtsb4EZ?`AaWcE{VY_S0;y;|u&HC$)$4_5h
z9$$Zo+}p3SWt>D=4B~%09@p}{)8^Qo<(u{4P%l2V^`~aHYvhMf^m`?w{J@r)J+AK$zv%QIU~1%LF%FzVXidy{-MDi$ilcxAji`
zz@Ptd`Smg?{^`}<|NVczTKxBgd9^gJcIG&lGwZ!`Xqxr)b^cGUp4xhK-mV(&t>^7|
zV-H>TM*2^$>`r(u%?dx7wVwR9cJ+V3e|>5W+hgm!VZZj(KYq2~VoIUj^oM46D}$9}
zD0xOCk0S3y^S7s_-5RZJMn#RXLC`n~1g(UiCEMRngaX$>_B<0CXkMHBeL5aa{*Qd9
z_uJiPPtf|wJc*}vTc4X(|M%f;@kl3(PwT!7=2jurf!p^gp{05?>LOV{ErzfLv&3bfMQbR&J)$fe2AJ=6Kf-a~0
z0k^E%%WxeTT#wR0Awr6M#D%5)^0}gdubU)bU4Qys@w8*m)TFfL)T(Q;v_>?x|Cd>x
zyRx2klGuNYVNK$t{XaOD58HNcqLEF#zth)_(kOxj{N=bgEZl!yosS35yk&1r!C^JF
zv@@sZT$j$A;%|H%FEh|!Yc>neNw`uvot!*Ja5dwZKercg!Gp8==DN{}Gj@Bo-JTvn
z<*6GSMd)1$(eQhfCCS51^g%9@h@bW1b8(kK+(LY9!9`1ajf3@YS<&?u`ra*uDk*AY
zS%TjFpt-O1i68kH)?o7B)~=7&G|X
zfLhHpu2q(T5qmW5Py6{`qTcOc-C~>^cP3HsfVppMRW_k!G|KtAsIn|TB>|Q6r_5V_
zz0|wy`LlPhLch?Qs$aWp)Rp?pugn9O%hUZFCCVggYf%CTsIiYIzg#^!i`^6pt6HDg5s8i^=6kg+KjA9
zx-``?4{}wN)yv%3Qgm+Z;+~F2NT<)X4*9ek0L}%)i1LV+DqzT#i~AVi={I
zid~#3SCj{zgFRZAAjJ!Xv#}VnL_K8EhF>YR(`Nnxhk9cINdE`$dbzHOD;=B>7N(&>VWLXT$iy(F-5dJ
z82{SbA!qoj%fTpNW~ER+>C6?=x(saCpYgu8kACDrySUt5+nMt5;M*
z_&o;C9jQcQa^vP
z&_0Q)*UN$@Lzg++LiSw@U!A^M^AhUon_-WT~mlsTK!*7r_y9@=SfiX=6wZ~7}b?A=>oyW!Awu|d1
z8od-0r`O07PJL$}6I+c~M!l7EzGHux*_VZltb+ptqS3`Snm_VHYH+9B6(wyyo*_*R0n~%M>os@HxsS(bDBGSr(;4Sk8mxSN=MFfPXj0t~*;i{04d#OQoLfAD}Qe1G^YzQcHN_;tqQbpkpGmElZ
zU+D<8X1m
zG}xl>R=<6Idqa^l6_UzgJ(cAue}cDv60SB0Lp6*lA^RZ(55#kSYtEv?j&u7iR+iY6
zaczO?G{F+?kVwR&qfI25xagW0v6@j?1C+X2x2vVO1i$^D!0i2{y%Sa%6=}SLzqdQK
zhk9{ZZFbFSgUOIMbJ%}RlJZ!p(3Cz+!phnND{B=IExA(L#^;oW=YYrikY14PlDOY7
z?#jHw5~S@j8PLev+?P&Uf%}X43UbJYpnz}8xd;~YJczg~q?-96W#PB8vK&Z^ap)gb
z=VPd;kWgZn0xL7uF}Rr%j9PjfOPD^|2+O&4%RW!<6s>deuG)X*bc`IyRlPF~%DTQc
zUZq5G5W2NuwE6zMdYs#(?mwJ=JYUcXs>^1X{5Cl$w#uc0v^sa5y6$1(i?n3p7prlrhT`t2vU#=czRXuO`Ns<
z*u20sjME}sqKXXAXR1{E6NlE~-XW%)-v*-lT0-+xaN~>Q6ykv*zmzO5ZAcpo#UGk0
zBzZxRWk=|87Q(Cfa&Lm0;NLrT!hR{J=37&O(4tvQ3F?0X7*EpL2k*TMD}G$`NgX2j
zdDNl4w8km{)@WrtqWPvsWtLqV5Ik)H9WwV?TkjSW
zB1l*)5es+G?<#QxWVoqC1CFS{al0w*Z|N2JUz&fiT%;6(6bMB6rBA#m+KCL&HrMUD-57nJ86N)51x;Ks77toB{IYi@wWnV9{yenAghyv)-C^uRpH^P)AI
zNgTyUaTH?>A)Iv1C97?bl#tCmVrOs{xNmv3(4j@$VZGu{|Blvg-p^EVN-U){TGr9jaQTV1u3iXv@j5{lC~k^J53YkF0-g
zMWuOZq4{x?&;r=*cvu_bv^us=$JSkTcZO$aRbj!wXi(=R!m5|~*eB_0^1ek)DRtur
z9GlRgob1Dt&D+e)5iuOeDRbb%_ORZ5+OCZ@T+glO1R(N*#GxHga7QxXDVHUd;7O*L
z+7O;CHKdY)Vk`%el8Yn|Q%T(_Nh*J?WCTJF24S#XjK0MpF9sHtq#CDU0ZaK@KQ
z&F=0N?zBRNg-_en`Pgpj#pc+a_@6gUp;i>Dv`?1VNWV7qCGlO>Xoiu-Ps6Tw@6Eu|
zp%40lWqWxDvV$1i>!@3fmS2JgsE91TU6ENR0WMUkfLLTyDK?Jo8WBo>QiOkl3@f84
z)}TD1wzzT)#B4mm3j44Qkq}+hu}hg`L*C??dYlgHJ{!Ayr}C9?TA~A2s8l7T_KD3h
zW?BoUk_f5fne1?Ww?{8Cc$ns3h5<@rm|quh$e+vx`r%kxZ(ZjHZ+#?zA+w+3fMT>x
zthq!8#*1LX@;qxh)j$9cMks%QiR14Jq6ApM!=t?e9z>Zc5hzB5{n0~igm4Gh+Ey}j
z#gvvV%yq?77N1{PGLo`#`Fr;d=0=X~;kia6{OnXnQh>&v>bBl2R`ub01igr~e8*DF
zk;Ji@38^B=Y=GGrmV%s4LBH)c$2$?fy98WOvKu1=&Y5?Pj@!;Qx{QAuBO{lV-o
z3d`3g4>#%g-_-!GI`OQFRdOj7)xQd{y@irKYL3UI;fQ6
z%yOW33#l5Q@B{lLGgzN&f%0C2VrA2Y@^>AG_n|o)YziMUH(Gz^*VUMz!`PWD<`x#1
zIb^7K;s(C$SFVLb=-@#wF>|(n|B&%x`8<;`@OMbbCh+lvLKz_G4y5!TX=@XW-fL%^
zIZA#BD0wM#Nu(;|mlC@sR7*Y*SVg>4)QU8JVH=g!pozJJ4hDS9Z6wt-x8Y#GX?#N`
z+Lv(ouj_VaqJe+=IR(s?BDnaIQMJ#DePesRIIC8)?D4=1?4f+p=kO`m0|PxCmto_e
z$ZZG&>RmLjnd6J;_jNRC8gIIvTO&g<$Qcrfg;JS0Oo`kaD04M|3&AfVVhb7RQfHD#
zMoV8iBSkwA>_LnkVWsPmAE=$#z;z{vK5hoFvxQ3W%q)NP;a(e9CNc6c{^hdUHjBrD
z^`nX6Dfy2$Q*$PfmKlj7gorrcFi-mnuZ|F;VXExcc6UZ2Ad-B>10-t!tgNe=8yU7u
z%S6cHh(Y0L4H^z%NToJO1FMyg7B47_!^S(cJxVCKxVD39`KL
zw3b7D#4&$cRnZknQqfGKQ?{4jgOkE+A{O;}bHk^#s@2zpb3MX_W^583^awua(jb3Hm2UWs4Ztr&mG;=%5=pSA%^ybsYSaB)&Z1eJiq
zoUmLzon+a
zR%d6buo%dFKNx8tZNacTp<`v?>E1g&zK5y;0E%drSlzmW!(Mc8MX6qcnn3>1!wPG%
z=q0~9l*!>xOl!ZQ5UeQ)vgBHGG~3N->>_`vhSo0~$fTLmr<{H(v2mj$pv0Euw4lv#@T&uwB;o
zkFQ#$Dd9a((}R%;{&1yN|jZSN%zIC-O@(Pi(*JZk`;RJgf5y}weJ3oA7YJk
z2V3DKwl5Sn=i;FyU}=VcT8ZQbl7C^7Pjf{iug{Y44s*VL6&GwX!>2wx?#XIqr7b6+oV%
zPkL|%t%u><09Peb0EnY30-f@;-sA&#D56!4YxD*{EC({~E|BUb
z7+wP@MXOGi)2aE}y?OO2Lb0s3$2B6#v`>~@3pC5C7Z|F|&=vXYiE@94=Hz#7BgT~n
z8l8F;+Rz1?l}IOtQQ93LAd^Q1cd!mBW50}9lOAR;8r-pw98wI+$$FMZt~?0XAPiEy
z@(}*RfyuC|N!@4ymPv1toHgpmYl!l^KyBizK#qXN=CE$-#RH+mwgdq=)th9gePZjs
z3eZqth{8gZe9+{2gsFdc3^zgiCHnkDu)v_~&m3$xYgFeXQ`O~Q#k9=jV=MH=in84J
zrrAAtt|)FQ$}s`e{f$&;Nf#PsrckL2_C|Db^?2o*#x7myK5w<>Jda5w?JG;A<#x!D);4k%I(X5~Ab`1lJ;%*r361i{e#J_)xequE&e@%Yl>!`${
zh1EOFl0l;fgULX*K4gYx%;yrWlg|rCa=>F1E)~TNQi$&y9~zd*g^~oJof9NJ)`t&*
zkb+B?Go2u$WkN@ry50GKEIh4FN~UQz$G#$6T)iDrSm&=3tUFK8nKd^dY;t(@M-%s~
z97n-RXrszyhP{6=<{oXEXA@CfKH>zUVr(j(J~2$Gb5)3RWTb5*6W}`CZ!e{HPs3<}
ziYKP=b`Sf<|F_|OqoGlIJibu!dG=e5oRr6wEFul(@glL%RFEa4B3te+ZFJ8HsbQYM
zn;IjJ2BO4XssY~1`;v*=_Drj>$_>6DPO
z8gN84U5F5_la>K&3(_Of0JsPLdwtsPU4_+v^P%A`Y&6@?G)Q<2#JM@<dNJxxrRX$VVF{rL?9-$ts
zlg%I@O3BD(y807G8+8EmB7o2;kR#BCrfpuztXsuoAdgiR-ohAH>L-x{DzPwViG3w3
zS5AL=b4d5Eb5*$8k@{zpL3Yr#h(~`di%?TzFH?WZz4u899x@KT4cvmV=1%)#g_I_;FN1BH5=vAmDgRh2oijFEK`wFH2xeh8ZY!Vam
zcEH>V^~cTAf*?Omw7RUq+5W9BiE`;taF>5PHv#A_7-Yp-EHu2O>b_7pCn&MW0m7Eu
z5C+d=#kK#gKDYpVFd;ycHjx}d4~{O6*fM`cn22?Fe~VTuA~peGn*&A&u@1J<+IL?p
z2gvG;;KhxTyA41_4o^!$VSx+Jth;Y+t(CFf8h=XbRO)K2wElxm8?zFWav#DFFe85<
zxRg9o!qP5cUK!aW3MEp-ng*HQHsd?YW!fG`y%kFl;k^_$#=rea8(xR|NHpdrf#mbQ
z%qVdsei`t@-_bF$>W_O!JMtUj*w?
zvO?1of4-O`;V#66@5No`3Ja@YLnlXrZv@{&8f+9l=;H2W7KGf_xuUnY+mWf1cuMUc
zyOW*vdwDYdY%X_GfLSay-u|hExQ;WGh}llES74u+Jd31e7WQxUDXc@7)Wv@+7LH0o
zP_^iX1t5;~>n^umaFSP@A)5FG83kWLkH&|kQkk{vEw%xb7@Lt@VG_%RS#j-z;YAuQ
z!m9kf4xL_qQRy%RkE#wh5D8908^8hB=HR#&oSKx^;k-#O!L1`McMccktsb}S!`rooXu!ylh`0hBr(*#?-%Ino5-bt
z0x(KS%*u#j0k8gXUj1?w2dfmFq=A9OQsS2BEJyF4L){d%jFl=Y^dqLB9`;Q4yEJm9#emZK;d1i5Jq7MK0>kW?kqsFj`oH5Vo6vx-~91sOW9F
zsB2tMMvR(;uj-d1yq14igli8(b(s640N)=`V)z>qoNMS~Z35Zom&iSrEWlurB
z^7$7i#1>)9oU?3d?DxP$${{U7>2Oju2+L04L@M0(i(n+_X8Tbwfn;AMCd`4b#4q!A
zg+k$EHbP-?B)lQW5I%Ti*y3}WS8*Mc`z38VSM7NbbS!_4k*IuSJp4uT$y_B2_mcA5
zfeP7lgQ%5c9F!NN^A)Ud?EKAWcu8sWg7jE~q(fwi!@S3gJ~O@!^nd`#<<fUNgG%
zi2;aQAk1k)%g~I`h4`gjoewAq-=X
z5PV3@p-XsW6!G(O141*YqOZomnKl$_Ux3Yw$|Zkh>1~TZGDcRQOsvR={>*6xz+f8*
zW6*d1Zdf|^$-O`+V0c0c6knO)Vz|p$0ZV8z$T~j7AtUWGw_zFD8g7dnQE0IrG|@L_
zXQhKFfdg3X71z&zAYU08qmwAi(2q{6^@KCol
zY<7S1rPsFfbvG+d92ZJ!fHKoXodaXXlU3aIkR4EH@TZInb1p~@NYoF}I)#|c3>cz+
z-EZpr`&>jF6WmZdB?U-QNPv9jhO7ENp;v~a0w9&h$bOJr6-M<NjH^tNG$a8X|0#mA=RvoMect`!09szbhwvN(RI@(2O8$>NfR;FA6U3e
zJp>m$cj)P80YA+nQbHbW%p_fu6iN8|AfXsnjp6GO77lMu-3&+2JfBxId2j2tSDiR-2CE&>rIsVphgIu&l((`l0#T{p^O89!h^>
zs9~49MN}$%Ua3sJiZV)Y;k!GQIcbdAWpSoA9daMR2{Gy%G7_M0vCWZH=%QLngSS;!^F+-n>J+b^xN9U#}N^m
zK!yJ01S!bJ)sB0l_W`Ks*_nO_u(4xgLi2@sA_Ag9b+Pa-doNG4%zj}`B{?`*?u
zc=2^)ao3EJr2X*Xq#I)lcIcr!?(a7ac9aO{^J-Ub+h+05tR9u2S~^a@&^~{$K?3F=
zTpdyYmL;+f{-#^%{Ht@iyU@}bg<-^>!YGnx-;KU?mS2tqKCuoemMpxZ7z`lHGew+D
zX2~{mf;$wN>c|a;Q?dx@VcYE7Tc^$T$(MJ)LQp+J2$mjCu-K!wKyepYRQCUJ`%lqF
z`}0uaC3L+_1%)#S!{8T=d$#o?F`{Q6s`Bt5F~mKV{lsQP!=;(Y+`@yVoY`ANS3u1T1#Lc=s@5=K5QwY5ySYZrGft3H2FCtlsEJ$_!l
zU~a|J*oOh&S&~4^~$jXfa1Tu?Y6*sr!U-(Q;P|=WgMP0
zIT}Y=DQI<@q&lPg*1o=n%gg}lmX1YgGbXCT-xp--8ClhgWrPDHs0NXI6_}hsgGdY&
z4;mCL!vt66r?s@W$ZUV2aavwb?gyQABR*zLGOa8_>dy0-CNy9MaTg{M!X&5?l52gG
zsDh!u#4t^botgs>01*?xES58*@jUw})o&*c?cL
zIF7Z>7>herdS<%12uHoJkf%Zg{4=5(VIBdp!UA`3w_$;!Et}P+IW3VkFPs4aeF#$t
zW+4{O$mv2;2PY-env(KKj8PT)DKR@G2&zOtV_P+AzdbMkRXQ@6P)jyr7fq*ho@X{h
zJALIby9PR3>CAtX(;S|+Dc)uCn=62nP5w32}`&{dQQ5
zqC^DF43#pUmQhr|rIo58wJGMOX`ZHJaA+tmBLS<-%c
z-Z=Qmhs%HNe(;JV@z>IkXmBZXM6BP0qEmLu)W
z$85{dnt<*8ntqZKe<{(5n=EnFu{Sy)v$Mh2;hN(DLo|mf9uvlKI3Sn60
zptr~87vy?DA`1#w*NgpXXPNkSTSz2dXPA+p>~Vxm$Tpr(&|Vmj`%g(mz7@;hAomH7
zT}*#)gP&F#i5?cr#t`O;kq{GYWo!x|@KTP;sDRkq7zvf_Y(z@x{jos>a@4jYk>uF0
zV7|pz=SjB2q!ybLSn=-2#CcI!
z#rU=t&U1v3eL|*!z}ub4Uh-?>F^HBy(FK3uQ9G0}fEA)LlYt3c=9rT@Jj?suoRGxl
zfJg)lJ)KwIsT^)CJK&Gui
zLK)KXwj>;!lBl2bcrunCo@0!@wBDF?tPNrLD~zS_!u;1^FUOq^eI%ECDu-tNlufRiqJ@%diS1(dU(W?B2JydgHe)@PM
z7q+X7V}HK4+_;QWRIb(z?cFUN+U7Gd%fxAKtq?`2^2}P>7b`qU+LQ{w&5Rueg$>Vp
z`CYe7-a7~}BO@^=i(I^rR)@jUP^z+Jv$^S6N&az
z&rN?}hpH5a8K&ud6T3WWe+Y66Gtq;}kXp<&R&xGan4%7vgq@Eke}CV!_xpC1k8f6c
z7#jcY-S>{1jFIgmCxkbJDI-*7Q8EE$Yr5Nt`D)lLVfL
ztdfp!rDOzJg?ZoM#FHusCc8Q!Nk^D+&3I|auC`e}wA=N^m&|`orH%?h$yi5~+4esU
z5_p@;2zKX?aL5ZZAX1n&jVnqOWJbwF9lyjgack4K9!k;>(g*7hHGdev1yat~E7)HJ
zA%emKHCPm2QMxK7J@>@#RRd>I2+908bgt{y`7EyWw@UJU4qchsiXqM?Znvw={&-k-
zLs!m5eeazj5fy(`h9nWY<7Inl7Mr8%16DkII(j80Jz6uIB6~dhHH}ylZ6ucWQl#|7
zRR-fy6RmV8a!pH=PhQb^_~l5mC8E=Mz1~`vt=>(nP}{YDRzRC$5JC-?y+7#8WEZcv_3XP;#OG
zKr%*u|M&m&UXAych%jN6kV2yH>&7s+^RiPqQcBBL3F|nPG{Ad6f|ErcCRRs)oY&@H
zu2LA3pa(Um6sEO2CJ2S;E57EdNJ{tF=FsZ>;=|Ew^4(mG86m#@%W+{W{lkT2c3nD4
z;T(Sop%JpSJW;bVkLw$^67P+lx+Q**!<9ligq>`r_Yh7vF*AHCA*F1RLiw;4qhC3X
z=%*2FLIT)IqPyr>q2pSHOX50!-o1)uOo+d4ovt*$+LoJH30kI-sHA4)xjw8<&&E>T
zT>wv0tluvSwUVul+)}zkCL!(f^0)4k4NHF&ZoU6QezUF0=5cS|5tV?h2xvn@N@0$B
z<8KTH!E;v-@hB5RjhJr;q$W7Y94*<s5OUToK{Cgjs*g
z#EtRwU;cF4LhoHUeiT${s#_!{q6^8^TN6J7Fna$gH{W>L7)Nidi_TE>OVjV_6XfeW{R_Qf#Jp3J2)H^FN2lEHLkQes8L{MGg6#lfPnO-O%M?~tx8
z(wHA3eUf8|kr@G0F(m!>*HwB?5k_x-uY(@RdV8uLc2nLEZBgO_7_7+z>8231C6Tot
z3&LYKGBok_rohgG7gNP{bDDb`WSfHlrqVH*)!S}x6~j3{IJ9A~NSK;VVxQ374byTh
zjY$y)eT{ZpH)(F%H*2%@JEMP|xF{(5ur}1B)IPChj14tWMs9!ag!T@cI7=n^A(Tyf
zy4h7K540m@<1@EO+sTyhe2@@ng2}l!QGv2ae^zbt4~46!C==7o5xLI<#UvYaWcTv~
zsLtTPN7jmx^RYl;#C_@TE~y(QoPOnv&?<9hr9c_?+x6P$#e?H?x>J93>?|$#!*({k
zhRcO|pX{<@u-ET>Nk<--coes^mjby$#fTE#f1yf29Gn@PtuqEtnZG)f0|^MZAuMFy
zD-oG&MZ|*5n4&Q?!0$R_i7NsbbD}9iii&V6Q#!DVtx!5Ml9b8N8Q+&Fx$)TUjBB}g
zY(5|E2fd`E&1LVn@9Tf_hN6OPzlUZk$l=?CF~IMgv`YA?W2XHBHN}7>L6LE$1k4!`
zClnYn3?gRnXX+9>CTm9g!|Hr|2=Wi1RhUzk9NSQ`K>0R{D-|%QLPkK+bV0EMzO;}d>`{8LHntdGIPE#yc~OT53V(EBkLg-+
zGDCcVbU1fevAS!I;tWGrK&gl&=%({x63m;Ir|t{uW4^^k>4Vj$IwV{r5vBAC1ax@A+Jp3_R->ve?k95TOM^3L%i8
zfn1!fDQ?spNgo5?x08}0;9W>MLDyQyFD-bwLKz`B7IICYQSgYDtZbMo)T6E@Xmho0
z5_RdSAU1AJ(%5g
zfpD*{msPIx$pS>31b#jYf;iqv2kGq{Ke3;Ao~@^pL3u32!U$BfC&Z);x(xRy1Q9M$
z#s^7fPE+*h56HGf#FgJpGZkX%{hcIF0#j>}$j&;AT%jN+Em?sv=d7h}w0qJOKjPkQ
zRB`SPdGCMnQq`D3{eKwsPTP7TwdXv}I4andL{bH;1xL|?0TJKIKPRl)LzK3~19L-Y
z>eV=D=xzLH3?QxW`*L+Kx|9>OM~99PIWy66a%+k~qZ9sN@|RY}%VD+kzfMugz!~Kh
z(|ZYxCnJ;Q;yfv`1kSBF-inT3%U;2RD_+mXl&nr>68NQBk9Os}kj{hJ;3_YQML_sJEzrTWT!*8451VIWbp;|c5#HCme
zsU~dXJe)hBD?hybQ9qOk&nJ_rk0v)WPUwK4l*qvcg;!cO<>mz3jgpOv%Xw3|i$EM{
zW95HlwcD|br47o|
z^4W$ptUxRLbM>y@3>_&uA*+2I3?XITEp_kut-Aa&g(fjuK*o(V9~qQ{VihO`Rb(8C
z6fBo3dpBE~Y5;bK;N-Up+0{c=HHex|1HZ
z5P=gw`mgCgcX=8UFk{gAKRNPnL{O4VkbBh?<>=nQBcl3%Js~Bb8R_#>7+|>Zyp?}T
zM_G&D3g0eH&s`?B82l#Jva4By&&T%hC0aWmp^o|l%q&qX=G{S!c79AeM+69NUx&{``R+LzHc530woH5*Yk9vz^
zY&dsVtLK^&%IzqfOr0Nsrp!&(RkBx591kDRbms$ySKwU=4X
zN*Q-AG~P?whLR9S9&fD&3p3`k+};Ri+lMuBZ6NU+LuN7Y-i|{c0ly_U5a|QbgAwGD
zE=je#cfQEa=0lONOJ4=k6#9Qe)^ad4%=sFGeTnmB%?zKvrnD1|&YvW1)eoVVzJoQ{
z{Kn=?O6+^Uz>H&@rpQ_3#jl8q;t_NRBYq>8cjP^s8b&It(HywH)Sv(uh4B;0B-%A~
zDingE#lqVFYDX<7-5AfX5yYWz%Xokg7DM@v^ne_9>-(ue?cqlXqUL|0d8|#Ce_1^u
zRNhV2QQA7NJ|!N?ADplwPYJ{IiJErG<_iQ5&Sn0e+HHMq=7DNwP~?W|;IWc71Oa^!
z)9Pjlk4XbtJw4pV5O
z@gY+S`tY|8$9DY^i;#aNIgXC9GdyD+UR18Vg91)8W`=6YhWz2S3hxPz|To!
zkus(2sExQqQEh*X9S4#qiV9k9yEZ{QkM_noy+n`VsKS4gu+@o-mqRM;lfJmZMp%^y
zBU6~_Z1v!0q%1z&APQN{o_So+7@IxHychp=-ACq(T&@3c}(Yy|#8n
zm0hpzpC^B6Qvj@Ua2~Rk1e#tLN)9sFRnd^-7wlMAAUP652X}asNQ&W)-FA8J1Vv~b
zD$8Yr6Ar^kX<`lT!d7Wk!BqT8JH|5vqpSPA{;X}Cmo22n8caipXuY8=7Cm{_>euy-
z4}g=>(ZGk0cnxdPHfy8si~6u$m&0j@s=ol)2ub>0aT>3;$JJ&{
zh(>?rA`qhlQ8U&fQYJ_jF6N-V66P&Pe#;HVM61mPVN8$X_+!6z?@?h^D>Om!WDZH?
z!TA7O3>TKQhKRpRPV3m!GB1L5
z5NAxhPOHiOs`h9*z+X@?U*>40;-aJM-%ScRiGLbV^m#$od$uduhrPb1y7An$~FqIkqOiUp!Q
z0Ya}4-Vt(|n1faECR<=BjeHKqfO(O!ls+0!yP2Y$leKAfr>4GBH!Kq)^3!$0MxK9-
z8{ZJxg;;aG!h#$EPvqTJ5>`MMoG{V2$0~B&(feRLZa2+C;%$|juNW{A&5)N|0032D
z^+G{r7;kZa7cU
z6&S(xSh9eVRh5^|8-Fne=E)3rd%aiIpF5e#e3c!)~92;_=kG`^v{cZy
zCz)+a_8ZZm>Tx>uNleDAcQg^@l+)%v^+Y`7Bn+$*aGVpFrcCJk&qSu1%o~@JhWDD&
zY9e!65@L?fs7ny$Gd&7>rR;g#Sle{c({w1;1VJ|08?qQGoO2~l>VmH5OsY6os>l54
zfcnLsz3I%Y^~9wEqU@?Y*M@%+M7Ok;^9v#M*n61u^rYyF=GrID!tl^045ytR-pTA;
zfATt<ARkQ>lYT!TcR@G>HD|~_kSI5Sx|7;pbYuB~))*mLPDF!X
zALW>lh72<)qMAPv=VR=S2XDxa;p|XBqjh7@>KGq91}#dcc&c|6)^mR^l%*ia>}9S(
zS-y^!^P+rm@F$!acD&woi<@w+!5R3$gvw&bRX!7G$og9*I1PEN0!3$Di{LL&630+T
z`4R+Y4zdv17Dc@UG6*vULAMK44s7AYR+6EGSLqvZpy693KE5(xyPAC7(Z$ogk(0SM
z>|WjJYL!KnD^WW=fpDhr}+p6N!Uj-FnlzBOdk}
zjE6TZL_=E-HA$^1Jc*VIdaN6
zLQ0Ey*c)XY>$`tJIxij=WBUiJ4nL{r@`zXfZ{~XaX?to$#!N|3XE2d-y%cpB#JC2n
zfZ=je+ASOMZ`nPZ6m||11{+u;fl~I^*Z!Xg%IQPj7F7#El&(>~p$ahu(XI`oOmDoQ
zI#3J?S)jgSvZeP
zqFo2fgi4end?J*Q&X}_HY$`{z)6bhOL5S
zp-zzE|D4=D=Lr8lOY(t)I|#fF})2hR9$x7}Rsjd&fKG?*6~A0UmJ(go`~$T{3A
z`$mV~*=whlK5(faYl1NyOME{c+sE5M7lBL^2x{XRU(hOl%>I=q7(H;t89!`4Y*%#<
z=&-hSO1g;c?2ujdH@6C9E}`zVkjxL>Gja=jbIcV1j!Z>TKYeQ~9OSB_+X)HP
zZ$44%<}!JX5h}tc0u3-z*D%08JGrDZu|GdXGe4M0ZeDqvd{0kGIYO#yNiWvEqz*_Mw9h+rr)bPq{ne
zIozEm+e@=t@Wr&HHmAgNj&L_J+^AHn_`A)w+Pz+ugH
zEXS-$vP`sA;`E!7@MFJP?-{X-pkE;H=K>*^lcs6?@Hj4~s>ts|qpFks3HeBS|C;h}r>V%=Y$9U8=6Vk0Oi~=3H`u237$&Hl@
zIJ7}D0*M4^Fg_1}@i@5a_FDKhd?hj&fGZ<^)vl?vsRKla3^W}8#zcsvlw-*7wg5Ad
zhs$zYhFqtx6C6ozhO`qI%u)66N9U5oH|n;5fTRyXa$dBsyVM-kKRX_Nc0cCa2!;vQ
zht~Yvda++^4^4Y$U>2=~I~5#go2#D`mRA?wKOYxu^Vf^~sIE`y&4)9U1OBhW1umreKJRoL>}wDfS2CA{efBzFRZShC>XE@B5`z~Yj2*?)G5s!x;V^JWG8^05o>V=|^fpaWh%yk0;4D4SU
zh(;#SgK2;syiK-I(SvsNCSJ3_$ho<@6f9-8ron@2r&i?%QYBdMQliv0*xtcn`7|6UqD>
zF=~$^-$G;~xAVx*CJm#1D>x6w!Br(nLFrd<4m&PKE*SP%BUIvNpOoCy0Z}-KQ!BaO
zX3^dTnKQrZ^5F%8%(E=UKN&}E$P?oL&2xpA9Vl)lu%hoevHc?gUEN6KAw7%4!wMzg
z1(tY|pW=M1XzI|ep*R(2C*kd2xh+yEvA-EuF~1Vy^499bk5Y|)A)B+XESbTUa`_}(
zDP5PsnTw|(!Bp%}fJC>7B#-)1WHB`0-ALRp&vSBR)EBU}<>reJXIu8g5d{
zV7_!3L!gRrgdBGayh8FN1YCDru=l2PFNo5RyO&TpStR-KA?)P2cKB;Ul_q#d$$29n
zCsreTAuX}0`ZdEYoo4L#S{4L)j{qe(F-Cad(9G(@|EktKwuU&6e$c#e4
zpAaL7Lf-*iQvL*E5L+y5%+#x*BpvHkuOd!kRjJ7KLW||$Mi+EG;Ea(Vc^cP_{??2<
z@H@A4^Si(SGd@FQAc%;HFA&nNNK!A6@8DDlcm^*wt|SnDoNZ^nRIVeK-$j!&)EH4m
zT#Zp=yKH&UrGdQ>=L*~O$&!rRU$ZX?>SCoOr-zPMmIK>DSnm=g__C2SmuInlQZ5O<#$PdVtLRXT!M
zC!8Q%ZkN-48s3O9kC~z%oU6v^$ky7+&
z>}NsR3B@dTI%LO!7;-$0*|Hd|en&^{eRj6R`UI?tROn}+HOtY`2e6Xh6dqEKr|uEq
z`4mftd@#-=&jEH-lUsVoI$@pr#`Af-`8%@D+t`7Bjwv_iTG2Ryhn`~UxosY|_u7Ii
zj(aFG$wen{p95I9~FU4{MbnDiV1=M!Qf;b-Z#MBKY)d3$0@mkg%Aai
z{Tn&v0Oepet!!`Tr$uJZ!
zy3VkFvAL(t3vvok4!S^;?7T5f?{Rf!8Y)V%5_7Ln)G^`^v{bBqveXC*BTP}V={4vj
z0Y+6oJAUk!K5lDZS}S%5e!A=qO;7WnFK4KW3`
zEXVetzBl-`g>>+rx~b-y?b8zm_12moK?7qVi9k7ibdm~h-FF>CC@N~WA>voLt>yg~
zDc5sJ#2Kk@Dc=@HBL}qpXuOeaP;&g$Qya2PJK_%>{Nw1}P+;lN&ThLTurI;p>31!E
zraHI^dodEk#t(4@0(`IRw_WBbBp~b<>2%GS=90%8I$kI+KN7n0V>6W*4U3fgi|Mae
zV2!0ZamVyx^W#q1#x)i}%pZAEHm>7;l%1>8RjiY)+e0VTd9HV-`fi@IA}+D(ot36%
zfh~k({;3mf+!P0uqg0F#W3*1U)=(M*km)Qrh(dDl;wW?4R=+MLaU=vgXsbMW4~B+4
zQuou(L;y$yH=Au9S(be)$DVYPpKt6{!lCm6>`8+JA|ry!igu8|eA!>;gciYnvhsKI
z|M!N)CPXKMB(4fary(m%v#1dA#{B6j>ZsO;lP0=AXEq^lih$@k!V5d;fXx>F0^{<`
z*}Cv-l1anMP%vT^II$Yt$&3m-&s8U>wz)w%FG!_-tq+e$Jv!;9A~RAQt>YY6V1yR@w!ptbQF%Er6
zLm#-YKCz`B^e0KGIf8PBZDfET97o}JUqc49U+7Dm&Wx{uMg79a1&LykpYW^;R~3wM
zu_!U*m&nhOaCObT#SBLCirdpPSQpVcg;uDN7lXCb=lpAm$7-ZckBv6L7)48H5@+
z*AqRJ=70w|K9S;xuK4lBONU}dhsQuC54Bd3R50~~}+~XHikQJb5B<~>bi*J&MC+EHV
zrW0?(Zzhwh=%qz}lGRw{LeGYo2miGY5Df@fW+vhZK8#DaZ(YV;ZReh9C?aAMYFAQ2-Da1(}%|;)((u0MLW&$NFw&{epD%&8NMP_xtxjDF*je
z9=V^a=-zA0r0@f^J*?WMJ~dkGNvP*wgkJc2RF!>`DR
zqzL*Tb6I$QpFbzn4Dsp&a0&=K$<&mS#m#yQxT9A%AXOo3*2Mni!8YLhRIO*aGZ5Ft
z>0$N?s!-e3_tGjSCg?_8DAl#%^usoa6bxvDGaeOWJT|qr*k6~CE^fncCKsT
zs(~>t8#UjN1`^VmYesY=4|?m;0o6F#B-q`f<{g;;ZFj~*FAF1xH$<^JnDqBs<7GCH
zyGxNjsa-hZJ*srgF=uX+x6n9NCYz`zlUp@tTftP;AeFZ}gxe1)7L#Kt`Ib%v*`y6L
zl#c;_>3$jxm~#3NDMZ@Sdgufi5lg=0QD$Bz%Q@6UN0gbxUtI^y;pyLfYT6f(W;&pp
z(#f`QD9E^o}^r~>WFiN@n3M&P)m
zsmypJk?QoY$f!Oit4c~%!MaAHN4S+|5IKbNX35}BY!3U9QR{`a01C^Svjpy%#JAb1
zQytFt%Ez}DlHQUHhs&$Z@w&8dfA8w|t0Q)swarJPv-G3gc~{5D3V@@hbA5h)Xtp1J
zHxI{43%S*uoh10azMMD5)?9S*e%_x@vBqkP_9
z`q0+<#+ERZpE-?Vg#}DuOqr+FfX?9QVYa`H6EjOuc(|ZeJ;2*kA%=dg!zvpDUoUNtDeScaV
z@k+dI@ag@&S#N8zle2%p+l2SFYad94ygzl>@9P#0)4n#V^B&Oo__SSlJNo)`I{)(j
z0kfE$4-N%8;5*YMldP*Be@??N5QOhMMdW*8Cj|;tl1hMjq7o8CMcgcVn_9#_vJGk8
z9ye{%R_cl4dS<_!UAdfXRh#^R^U~-F|vlL*qDa$BKI2$o{(`34m8S#;a$9b0HlQ)1<{%XUZoH>;Yy@jjRqd2;^UXI4D
z>#}Y#SY!Sie=c6%hgDOlccQZpZ9k5_rUE=d19
-2024-10-07 08:47:16,406 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)
-2024-10-07 08:47:16,409 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-10-07T08:47:16.406718', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:16,411 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:47:16,411 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:47:16,411 - using serial LDA version on this node
-2024-10-07 08:47:16,412 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:47:16,412 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:47:16,416 - -8.108 per-word bound, 276.0 perplexity estimate based on a held-out corpus of 1 documents with 2696 words
-2024-10-07 08:47:16,416 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:47:16,418 - topic #0 (0.333): 0.017*"’" + 0.007*"leaders" + 0.007*"needs" + 0.006*"practice" + 0.006*"within" + 0.004*"2023" + 0.004*"progress" + 0.004*"plans" + 0.004*"senior" + 0.004*"need"
-2024-10-07 08:47:16,418 - topic #1 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"Barnsley" + 0.005*"leaders" + 0.005*"practice" + 0.005*"within" + 0.004*"11" + 0.004*"experiences" + 0.004*"senior" + 0.004*"15"
-2024-10-07 08:47:16,418 - topic #2 (0.333): 0.021*"’" + 0.009*"needs" + 0.008*"leaders" + 0.007*"within" + 0.007*"Barnsley" + 0.006*"practice" + 0.005*"plans" + 0.005*"response" + 0.005*"family" + 0.004*"appropriate"
-2024-10-07 08:47:16,418 - topic diff=0.803082, rho=1.000000
-2024-10-07 08:47:16,418 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:16.418854', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:16,421 - Failed to import jpype dependencies. Fallback to subprocess.
-2024-10-07 08:47:16,421 - No module named 'jpype'
-2024-10-07 08:47:18,967 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:47:18,967 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:18,967 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:47:18,967 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:18,968 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:47:18,968 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:18,968 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:47:18,968 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:18,968 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:47:18,969 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:18,969 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:47:18,969 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:28,208 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:47:28,210 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)
-2024-10-07 08:47:28,210 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-10-07T08:47:28.210886', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:28,211 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:47:28,211 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:47:28,212 - using serial LDA version on this node
-2024-10-07 08:47:28,212 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:47:28,212 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:47:28,216 - -8.025 per-word bound, 260.4 perplexity estimate based on a held-out corpus of 1 documents with 2085 words
-2024-10-07 08:47:28,216 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:47:28,217 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"practice" + 0.005*"clear" + 0.005*"4" + 0.005*"plans" + 0.004*"‘" + 0.004*"protection" + 0.004*"leaders"
-2024-10-07 08:47:28,217 - topic #1 (0.333): 0.016*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"practice" + 0.006*"leaders" + 0.006*"plans" + 0.005*"impact" + 0.005*"North" + 0.004*"effective" + 0.004*"Bath"
-2024-10-07 08:47:28,217 - topic #2 (0.333): 0.022*"’" + 0.010*"well" + 0.006*"needs" + 0.005*"receive" + 0.005*"plans" + 0.005*"East" + 0.005*"practice" + 0.005*"effective" + 0.005*"28" + 0.005*"Somerset"
-2024-10-07 08:47:28,217 - topic diff=0.747855, rho=1.000000
-2024-10-07 08:47:28,218 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:28.218102', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:29,207 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:47:29,207 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:29,208 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:47:29,208 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:29,208 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:47:29,208 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:29,208 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:47:29,208 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:29,209 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:47:29,209 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:29,209 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:47:29,209 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:41,178 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:47:41,180 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)
-2024-10-07 08:47:41,180 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-10-07T08:47:41.180691', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:41,181 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:47:41,181 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:47:41,182 - using serial LDA version on this node
-2024-10-07 08:47:41,182 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:47:41,182 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:47:41,186 - -8.115 per-word bound, 277.3 perplexity estimate based on a held-out corpus of 1 documents with 2585 words
-2024-10-07 08:47:41,186 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:47:41,188 - topic #0 (0.333): 0.012*"’" + 0.005*"needs" + 0.005*"Bedford" + 0.005*"well" + 0.004*"plans" + 0.004*"ensure" + 0.004*"education" + 0.004*"Borough" + 0.004*"26" + 0.004*"good"
-2024-10-07 08:47:41,188 - topic #1 (0.333): 0.021*"’" + 0.007*"ensure" + 0.007*"needs" + 0.006*"well" + 0.006*"supported" + 0.005*"Bedford" + 0.005*"plans" + 0.005*"family" + 0.005*"need" + 0.005*"education"
-2024-10-07 08:47:41,188 - topic #2 (0.333): 0.020*"’" + 0.007*"needs" + 0.006*"good" + 0.006*"ensure" + 0.005*"well" + 0.005*"progress" + 0.005*"plans" + 0.005*"Borough" + 0.005*"Bedford" + 0.004*"supported"
-2024-10-07 08:47:41,188 - topic diff=0.798113, rho=1.000000
-2024-10-07 08:47:41,189 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:41.189007', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:42,095 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:47:42,096 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:42,096 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:47:42,096 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:42,096 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:47:42,096 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:42,097 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:47:42,097 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:42,097 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:47:42,097 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:42,097 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:47:42,097 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:54,342 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:47:54,345 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)
-2024-10-07 08:47:54,345 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-10-07T08:47:54.345188', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:54,346 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:47:54,346 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:47:54,346 - using serial LDA version on this node
-2024-10-07 08:47:54,346 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:47:54,347 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:47:54,350 - -7.972 per-word bound, 251.1 perplexity estimate based on a held-out corpus of 1 documents with 2378 words
-2024-10-07 08:47:54,350 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:47:54,352 - topic #0 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"effective" + 0.006*"well" + 0.006*"trust" + 0.005*"progress" + 0.004*"Birmingham" + 0.004*"appropriate" + 0.004*"risk" + 0.004*"plans"
-2024-10-07 08:47:54,352 - topic #1 (0.333): 0.017*"’" + 0.011*"needs" + 0.008*"well" + 0.006*"Birmingham" + 0.006*"effective" + 0.006*"plans" + 0.005*"progress" + 0.005*"trust" + 0.005*"appropriate" + 0.005*"risk"
-2024-10-07 08:47:54,352 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.007*"plans" + 0.007*"effective" + 0.006*"3" + 0.005*"Birmingham" + 0.005*"progress" + 0.005*"leaders" + 0.005*"well" + 0.005*"trust"
-2024-10-07 08:47:54,352 - topic diff=0.804554, rho=1.000000
-2024-10-07 08:47:54,352 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:47:54.352731', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:47:55,315 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:47:55,315 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:55,315 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:47:55,315 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:47:55,316 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:47:55,316 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:47:55,316 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:47:55,316 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:47:55,317 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:06,578 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:48:06,580 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)
-2024-10-07 08:48:06,580 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-10-07T08:48:06.580234', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:06,581 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:48:06,581 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:48:06,582 - using serial LDA version on this node
-2024-10-07 08:48:06,582 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:48:06,582 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:48:06,586 - -7.963 per-word bound, 249.6 perplexity estimate based on a held-out corpus of 1 documents with 2353 words
-2024-10-07 08:48:06,586 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:48:06,587 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"practice" + 0.008*"quality" + 0.007*"impact" + 0.006*"Darwen" + 0.006*"well" + 0.006*"Blackburn" + 0.005*"planning" + 0.005*"receive"
-2024-10-07 08:48:06,587 - topic #1 (0.333): 0.011*"’" + 0.008*"Blackburn" + 0.007*"impact" + 0.006*"practice" + 0.005*"quality" + 0.005*"well" + 0.005*"needs" + 0.005*"planning" + 0.005*"Darwen" + 0.005*"result"
-2024-10-07 08:48:06,587 - topic #2 (0.333): 0.011*"’" + 0.007*"needs" + 0.007*"Darwen" + 0.006*"quality" + 0.006*"practice" + 0.006*"Blackburn" + 0.006*"well" + 0.005*"means" + 0.005*"plans" + 0.005*"result"
-2024-10-07 08:48:06,588 - topic diff=0.818977, rho=1.000000
-2024-10-07 08:48:06,588 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:06.588142', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:07,494 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:48:07,494 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:07,495 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:48:07,495 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:07,495 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:48:07,495 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:07,495 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:48:07,495 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:07,496 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:48:07,496 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:07,496 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:48:07,496 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:18,909 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:48:18,911 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)
-2024-10-07 08:48:18,912 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-10-07T08:48:18.912045', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:18,913 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:48:18,913 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:48:18,913 - using serial LDA version on this node
-2024-10-07 08:48:18,913 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:48:18,913 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:48:18,917 - -7.923 per-word bound, 242.7 perplexity estimate based on a held-out corpus of 1 documents with 2392 words
-2024-10-07 08:48:18,917 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:48:18,918 - topic #0 (0.333): 0.017*"’" + 0.012*"needs" + 0.009*"well" + 0.008*"Blackpool" + 0.007*"effective" + 0.005*"plans" + 0.005*"supported" + 0.005*"practice" + 0.005*"5" + 0.005*"team"
-2024-10-07 08:48:18,918 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.008*"well" + 0.006*"Blackpool" + 0.006*"effective" + 0.006*"supported" + 0.005*"practice" + 0.005*"16" + 0.005*"progress" + 0.005*"carers"
-2024-10-07 08:48:18,919 - topic #2 (0.333): 0.015*"’" + 0.010*"well" + 0.008*"needs" + 0.007*"Blackpool" + 0.006*"16" + 0.005*"plans" + 0.005*"timely" + 0.005*"homes" + 0.005*"quality" + 0.005*"practice"
-2024-10-07 08:48:18,919 - topic diff=0.827000, rho=1.000000
-2024-10-07 08:48:18,919 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:18.919348', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:19,880 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:48:19,881 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:19,881 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:48:19,881 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:19,881 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:48:19,882 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:19,882 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:48:19,882 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:19,882 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:48:19,883 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:19,883 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:48:19,883 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:30,432 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:48:30,434 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)
-2024-10-07 08:48:30,434 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-10-07T08:48:30.434689', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:30,435 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:48:30,435 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:48:30,436 - using serial LDA version on this node
-2024-10-07 08:48:30,436 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:48:30,436 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:48:30,439 - -7.909 per-word bound, 240.4 perplexity estimate based on a held-out corpus of 1 documents with 2055 words
-2024-10-07 08:48:30,439 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:48:30,441 - topic #0 (0.333): 0.017*"’" + 0.010*"Bolton" + 0.008*"needs" + 0.007*"well" + 0.006*"supported" + 0.006*"plans" + 0.005*"planning" + 0.005*"11" + 0.005*"protection" + 0.004*"strong"
-2024-10-07 08:48:30,441 - topic #1 (0.333): 0.023*"’" + 0.009*"well" + 0.009*"plans" + 0.008*"needs" + 0.007*"Bolton" + 0.006*"11" + 0.005*"effective" + 0.005*"need" + 0.005*"strong" + 0.005*"timely"
-2024-10-07 08:48:30,441 - topic #2 (0.333): 0.016*"’" + 0.011*"needs" + 0.008*"well" + 0.007*"Bolton" + 0.007*"plans" + 0.006*"need" + 0.005*"planning" + 0.005*"supported" + 0.005*"effective" + 0.005*"response"
-2024-10-07 08:48:30,441 - topic diff=0.772443, rho=1.000000
-2024-10-07 08:48:30,442 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:30.442035', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:31,376 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:48:31,376 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:31,376 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:48:31,376 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:48:31,377 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:48:31,377 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:48:31,377 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:31,377 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:48:31,378 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:40,776 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:48:40,778 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)
-2024-10-07 08:48:40,778 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-10-07T08:48:40.778699', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:40,779 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:48:40,779 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:48:40,780 - using serial LDA version on this node
-2024-10-07 08:48:40,780 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:48:40,780 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:48:40,783 - -8.030 per-word bound, 261.4 perplexity estimate based on a held-out corpus of 1 documents with 2004 words
-2024-10-07 08:48:40,784 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:48:40,785 - topic #0 (0.333): 0.018*"’" + 0.007*"quality" + 0.005*"practice" + 0.005*"6" + 0.005*"time" + 0.005*"Bournemouth" + 0.005*"Poole" + 0.004*"Christchurch" + 0.004*"impact" + 0.004*"right"
-2024-10-07 08:48:40,785 - topic #1 (0.333): 0.015*"’" + 0.006*"quality" + 0.006*"Christchurch" + 0.006*"progress" + 0.005*"practice" + 0.005*"impact" + 0.005*"risk" + 0.005*"6" + 0.004*"However" + 0.004*"2021"
-2024-10-07 08:48:40,785 - topic #2 (0.333): 0.020*"’" + 0.006*"practice" + 0.005*"progress" + 0.005*"17" + 0.005*"Bournemouth" + 0.005*"Poole" + 0.005*"December" + 0.005*"well" + 0.004*"risk" + 0.004*"time"
-2024-10-07 08:48:40,785 - topic diff=0.744346, rho=1.000000
-2024-10-07 08:48:40,786 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:40.786125', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:42,847 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:48:42,848 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:42,848 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:48:42,848 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:42,848 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:48:42,848 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:42,849 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:48:42,849 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:42,849 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:48:42,849 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:42,849 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:48:42,849 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:52,416 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:48:52,417 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)
-2024-10-07 08:48:52,418 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-10-07T08:48:52.418008', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:52,418 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:48:52,419 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:48:52,419 - using serial LDA version on this node
-2024-10-07 08:48:52,419 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:48:52,419 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:48:52,422 - -7.854 per-word bound, 231.4 perplexity estimate based on a held-out corpus of 1 documents with 1846 words
-2024-10-07 08:48:52,422 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:48:52,424 - topic #0 (0.333): 0.009*"’" + 0.007*"Bracknell" + 0.006*"good" + 0.005*"well" + 0.005*"plans" + 0.005*"needs" + 0.005*"Forest" + 0.005*"quality" + 0.005*"need" + 0.004*"risk"
-2024-10-07 08:48:52,424 - topic #1 (0.333): 0.014*"’" + 0.008*"Bracknell" + 0.006*"needs" + 0.006*"risk" + 0.006*"good" + 0.005*"Forest" + 0.005*"plans" + 0.005*"well" + 0.005*"need" + 0.005*"education"
-2024-10-07 08:48:52,424 - topic #2 (0.333): 0.022*"’" + 0.008*"Forest" + 0.008*"needs" + 0.008*"risk" + 0.008*"quality" + 0.007*"effective" + 0.006*"provided" + 0.006*"progress" + 0.006*"good" + 0.005*"Bracknell"
-2024-10-07 08:48:52,424 - topic diff=0.776951, rho=1.000000
-2024-10-07 08:48:52,424 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:48:52.424835', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:48:53,340 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:48:53,340 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:53,341 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:48:53,341 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:53,341 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:48:53,341 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:53,341 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:48:53,341 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:53,342 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:48:53,342 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:48:53,342 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:48:53,342 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:03,881 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:49:03,883 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)
-2024-10-07 08:49:03,884 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)", 'datetime': '2024-10-07T08:49:03.884016', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:03,885 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:49:03,885 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:49:03,885 - using serial LDA version on this node
-2024-10-07 08:49:03,885 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:49:03,885 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:49:03,889 - -8.087 per-word bound, 271.9 perplexity estimate based on a held-out corpus of 1 documents with 2249 words
-2024-10-07 08:49:03,889 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:49:03,891 - topic #0 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"Brighton" + 0.005*"Hove" + 0.005*"experiences" + 0.005*"relationships" + 0.004*"needs" + 0.004*"practice" + 0.004*"progress" + 0.004*"March"
-2024-10-07 08:49:03,891 - topic #1 (0.333): 0.013*"’" + 0.006*"progress" + 0.006*"Hove" + 0.005*"practice" + 0.005*"Brighton" + 0.005*"well" + 0.005*"relationships" + 0.005*"needs" + 0.005*"experiences" + 0.004*"receive"
-2024-10-07 08:49:03,891 - topic #2 (0.333): 0.020*"’" + 0.009*"well" + 0.009*"needs" + 0.008*"Hove" + 0.007*"Brighton" + 0.007*"practice" + 0.005*"relationships" + 0.005*"experiences" + 0.005*"11" + 0.005*"progress"
-2024-10-07 08:49:03,891 - topic diff=0.775504, rho=1.000000
-2024-10-07 08:49:03,891 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:03.891712', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:04,847 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:49:04,847 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:04,847 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:49:04,847 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:04,847 - Inspection date None / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:49:04,847 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:04,848 - Inspection date None / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:49:04,848 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:04,848 - Inspection date None / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:49:04,848 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:04,848 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:49:04,848 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:18,642 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:49:18,644 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)
-2024-10-07 08:49:18,644 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-10-07T08:49:18.644613', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:18,645 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:49:18,645 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:49:18,646 - using serial LDA version on this node
-2024-10-07 08:49:18,646 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:49:18,646 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:49:18,652 - -8.037 per-word bound, 262.7 perplexity estimate based on a held-out corpus of 1 documents with 2647 words
-2024-10-07 08:49:18,655 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:49:18,657 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.007*"good" + 0.007*"needs" + 0.006*"Bristol" + 0.005*"health" + 0.005*"leaders" + 0.004*"progress" + 0.004*"2023" + 0.004*"plans"
-2024-10-07 08:49:18,658 - topic #1 (0.333): 0.021*"’" + 0.009*"good" + 0.007*"needs" + 0.007*"well" + 0.006*"Bristol" + 0.006*"progress" + 0.005*"16" + 0.005*"need" + 0.005*"health" + 0.005*"27"
-2024-10-07 08:49:18,658 - topic #2 (0.333): 0.021*"’" + 0.011*"well" + 0.009*"Bristol" + 0.008*"needs" + 0.007*"good" + 0.006*"plans" + 0.005*"receive" + 0.005*"always" + 0.005*"health" + 0.005*"progress"
-2024-10-07 08:49:18,658 - topic diff=0.823577, rho=1.000000
-2024-10-07 08:49:18,658 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:18.658746', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:19,615 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:49:19,615 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:19,615 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:49:19,615 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:19,616 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:49:19,616 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:19,616 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:49:19,616 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:19,616 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:49:19,616 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:19,617 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:49:19,617 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:30,730 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:49:30,733 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)
-2024-10-07 08:49:30,734 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-10-07T08:49:30.734134', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:30,735 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:49:30,736 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:49:30,736 - using serial LDA version on this node
-2024-10-07 08:49:30,737 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:49:30,737 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:49:30,745 - -8.242 per-word bound, 302.8 perplexity estimate based on a held-out corpus of 1 documents with 2404 words
-2024-10-07 08:49:30,745 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:49:30,746 - topic #0 (0.333): 0.014*"’" + 0.005*"plans" + 0.005*"Buckinghamshire" + 0.005*"17" + 0.004*"many" + 0.004*"6" + 0.004*"December" + 0.004*"protection" + 0.004*"well" + 0.004*"number"
-2024-10-07 08:49:30,747 - topic #1 (0.333): 0.010*"’" + 0.004*"number" + 0.004*"Buckinghamshire" + 0.004*"17" + 0.004*"plans" + 0.004*"protection" + 0.004*"6" + 0.003*"practice" + 0.003*"many" + 0.003*"2021"
-2024-10-07 08:49:30,747 - topic #2 (0.333): 0.015*"’" + 0.006*"plans" + 0.006*"number" + 0.004*"17" + 0.004*"2021" + 0.004*"Buckinghamshire" + 0.004*"many" + 0.004*"practice" + 0.004*"protection" + 0.003*"6"
-2024-10-07 08:49:30,747 - topic diff=0.724755, rho=1.000000
-2024-10-07 08:49:30,747 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:30.747663', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:31,729 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:49:31,729 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:31,729 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:49:31,729 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:49:31,730 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:49:31,730 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:49:31,730 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:31,730 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:49:31,731 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:42,465 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:49:42,467 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)
-2024-10-07 08:49:42,467 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-10-07T08:49:42.467311', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:42,468 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:49:42,468 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:49:42,468 - using serial LDA version on this node
-2024-10-07 08:49:42,469 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:49:42,469 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:49:42,472 - -7.978 per-word bound, 252.1 perplexity estimate based on a held-out corpus of 1 documents with 2427 words
-2024-10-07 08:49:42,473 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:49:42,474 - topic #0 (0.333): 0.010*"’" + 0.007*"protection" + 0.006*"2021" + 0.006*"practice" + 0.005*"impact" + 0.005*"needs" + 0.005*"need" + 0.005*"quality" + 0.005*"5" + 0.004*"team"
-2024-10-07 08:49:42,474 - topic #1 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"2021" + 0.007*"protection" + 0.006*"team" + 0.006*"practice" + 0.006*"risk" + 0.005*"quality" + 0.005*"Bury" + 0.005*"new"
-2024-10-07 08:49:42,474 - topic #2 (0.333): 0.007*"’" + 0.006*"2021" + 0.005*"team" + 0.005*"needs" + 0.005*"protection" + 0.005*"need" + 0.004*"October" + 0.004*"impact" + 0.004*"progress" + 0.004*"Bury"
-2024-10-07 08:49:42,474 - topic diff=0.818605, rho=1.000000
-2024-10-07 08:49:42,475 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-10-07T08:49:42.475002', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:43,477 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame.
-2024-10-07 08:49:43,477 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:43,477 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame.
-2024-10-07 08:49:43,477 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:43,477 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame.
-2024-10-07 08:49:43,478 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:43,478 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame.
-2024-10-07 08:49:43,478 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:43,478 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame.
-2024-10-07 08:49:43,478 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:43,478 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame.
-2024-10-07 08:49:43,479 - Index(['judgement', 'grade'], dtype='object')
-2024-10-07 08:49:54,761 - adding document #0 to Dictionary<0 unique tokens: []>
-2024-10-07 08:49:54,763 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)
-2024-10-07 08:49:54,764 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-10-07T08:49:54.764065', 'gensim': '4.3.3', 'python': '3.10.13 (main, Jul 11 2024, 16:23:02) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1025-azure-x86_64-with-glibc2.31', 'event': 'created'}
-2024-10-07 08:49:54,765 - using symmetric alpha at 0.3333333333333333
-2024-10-07 08:49:54,765 - using symmetric eta at 0.3333333333333333
-2024-10-07 08:49:54,765 - using serial LDA version on this node
-2024-10-07 08:49:54,765 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000
-2024-10-07 08:49:54,765 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-2024-10-07 08:49:54,769 - -8.026 per-word bound, 260.7 perplexity estimate based on a held-out corpus of 1 documents with 2389 words
-2024-10-07 08:49:54,769 - PROGRESS: pass 0, at document #1/1
-2024-10-07 08:49:54,771 - topic #0 (0.333): 0.024*"’" + 0.011*"needs" + 0.010*"Calderdale" + 0.008*"well" + 0.006*"ensure" + 0.006*"progress" + 0.006*"plans" + 0.005*"19" + 0.005*"information" + 0.005*"parents"
-2024-10-07 08:49:54,771 - topic #1 (0.333): 0.020*"’" + 0.009*"needs" + 0.008*"Calderdale" + 0.007*"plans" + 0.006*"risk" + 0.005*"parents" + 0.005*"progress" + 0.005*"well" + 0.005*"experiences" + 0.005*"ensure"
-2024-10-07 08:49:54,771 - topic #2 (0.333): 0.015*"’" + 0.008*"needs" + 0.006*"Calderdale" + 0.005*"ensure" + 0.005*"progress" + 0.005*"well" + 0.005*"plans" + 0.004*"risk" + 0.004*"information" + 0.004*"experiences"
-2024-10-07 08:49:54,771 - topic diff=0.784350, rho=1.000000
-2024-10-07 08:49:54,771 - LdaModel lifecycle event {'msg': 'trained LdaModel |