From 9dfc2559927d9689a5298fdb33e4d202ba5cef84 Mon Sep 17 00:00:00 2001 From: Rob Harrison <48765695+robjharrison@users.noreply.github.com> Date: Thu, 25 Jul 2024 12:53:26 +0000 Subject: [PATCH] Data refresh 250724 --- ...n's services inspection - 23 july 2024.pdf | Bin 0 -> 194746 bytes ...n's services inspection - 23 july 2024.pdf | Bin 0 -> 209449 bytes ...n's services inspection - 16 july 2024.pdf | Bin 0 -> 215412 bytes ...n's services inspection - 23 july 2024.pdf | Bin 0 -> 244520 bytes ...n's services inspection - 23 july 2024.pdf | Bin 0 -> 212453 bytes index.html | 62 +- ofsted_childrens_services_overview.xlsx | Bin 45463 -> 45371 bytes output.log | 8214 ++++++++--------- 8 files changed, 4138 insertions(+), 4138 deletions(-) create mode 100644 export_data/inspection_reports/80472_hampshire/children's services inspection - 23 july 2024.pdf create mode 100644 export_data/inspection_reports/80487_barnet/children's services inspection - 23 july 2024.pdf create mode 100644 export_data/inspection_reports/80495_greenwich/children's services inspection - 16 july 2024.pdf create mode 100644 export_data/inspection_reports/80512_redbridge/children's services inspection - 23 july 2024.pdf create mode 100644 export_data/inspection_reports/80556_south gloucestershire/children's services inspection - 23 july 2024.pdf diff --git a/export_data/inspection_reports/80472_hampshire/children's services inspection - 23 july 2024.pdf b/export_data/inspection_reports/80472_hampshire/children's services inspection - 23 july 2024.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ea62780650a6b2276ddf802c87754fd1f4f7a5d2 GIT binary patch literal 194746 zcma(22Ut^G(?1G_CcXC>q$^E&Cj!zzIw)02=)Ly{O79{dpddv75kl_}ItT*Ndzao4 zr9=qf#QT1p@Be=1J=eL;POj|D-fQhOYi8EW{AL#1`cKpZMTDeCiMSgv2Pu&V`y+NQ zJ6BR7d3j;u5O1)simkt`yO)!&zO573k6je=*icx<*3*d(?D>FQ*vQ{Ez~0~37YsJ^ z^73bw5dY`7uC1?|rl+G9<{f`8!4B-0W?)4{VZ8uX&t!IFvt-XJMFW6UBQ&r`k zdtMG;ciI2E`3cz1|6jWFeZ3rA+`;T(;u3!+r>JPfF02dow{^fU26I#LpBbCFfP=uk z`o3UCurJut9>XayajAcslM;bF9sXhIU*`S)@%A5{3afYpc>1%8hze`FIQUtxi~a4! zF7i)rcG3TwWd6A+_E$QF>|*~m5&MT8cCmk(i2d6{{NE#s5Ra-zWcz z3XFI$bo>8DzJ_2wuK-`nEHDy!rf260w)e+eX?kE(K!W{0To6_b_E$IZxAg~O9;q8i zvj58nbt4(}e<;C7Tg}V!Z$C8=_J2qeRug3xdGvP%!fIle`To7aw8HS$-U#e(A&il^ zurWB;|KEX>|2?Vvd(!+n2MpUCTx^xSf-NvzAF)fwhzrR`vP+AL2+4?Igo4qNfAos| zUnNxc^$PID4F8W7|MLe%w~T#lJ^j4@&ec9dSj9;A2{_Qj9*j{Y%-jFf<$oFB$NuPl z^6c*$|I0Hq7k7WKudtdsX6jGC_86rR)&YAu`8%_VNl1zR?S;`uu&oCvQSkdtOAD{< zCaOsC^t*2L_60tw01zMDg8Opkd%BaJ-3@tx>y2l1Ri@dN&!0-(p}&);CS*T(p0Klu zhdop*O+Oy)cRzPINHzB>-RPTJouz=3Pk-0i+Fm=z>#Q&caRN*Vcq2H%HQ@Td`^z{5tNzU?7<+9%LfNbERp3Duot}_!4nizZHRrAUZ5#=28->)Qdl zC|lX%NIZx5_<`_g0@gUZ&u%Sj?f67I7JUokHp+I34!~+?*Z2ZTFYxZq^`X4`cY~LK_Sm~EjrmC-+tH4Z4-am5$G>dm|FVW^FeJP!NH-~CNPNv4|Q@|R`@RD z=7__h{`vdW@Rod-DekF@>31BQ+E>{W$AjVmqmEaj(0aYaTKNchbNVe2f70n`I5MDV zeL&lCr&Z4WPvQs1Oq+P!ahyKC0QX2s_n;eH!|$EX<)bxkly#Ooofph`rdt(8bCTX- zNg_utsZVcx9J=V6S!zHz@nMnR#-I1af&Cm|PU^F2E4j5rQy-hLJW*LD! z3%>c2BDOpL_jx|<)xo$ykwgcdEGROV+JG!f`<_XD_$3s&yf!lv#t4c1s9uWp*s}4l#YzsX#_<26oAmF{M zJbkP9%Xe8M+(!MFQ^=>T@LehKub6dh#mBqdQn&w^@-NVe(b$z)Ya3b>sxN<7a;!qlvD&)DJV8U z{;Q+44)cBYc`0}(I9@`GbKx)X#f^zM2+rKeE=D+<-V>^e(+!A3+A>g(R{{q~E51G^ zsd(Z-t{mc_of}thnW9`p@^r^{8IGOBJ?(ETqm{^;9o26{rv&a`Q#xzDr)f7PuJKi( z`~=P8Z7SSp&$g|*92t-jW02|MZ6pi2Viw~dZo@BG)#n&^bK-fL*g^nE^q_e8idOr< z@6XVZmXG3@1rF|Me@wexGrqwaPY>iAm67+;7ikU+jvR?<-#T-t&?J4%GH+7U#J}5A zOv~riX zVPn)&fhP$(o9}0o$dw$U0Ibx;u9J&GDye16s|2*_8tIa42C$7eO@YKEFP`-PgDrab zKgP{QnTeG4^p_|RX(fbkbp)!JD5-<8qQSJjaH5H@2~>Vbd~`Ix zdWkZK`bsu3ZpXY^le*GDUS6=V&7;mEMit+cT7%DttFyQ1uAXAKX`CYc>2>`MiiaK6 zclpP~Vfun^f-)EXv+a!nhhF7#_eaVavYMZXKMIRETD|h0ap(gi4u+GUq1Zp>YuNz} zqrFLhnTAPbd@N%U8LW>N@~;50(k3ac652Qb^9mh6c}(XKo%$F6>!Z5;L&Fg+T+De1 zFd}H&Y*`ZO3>!NLT`%F0i+Yke{VV4T|KncGn99rrAwXBO$x^>wf(45uQZ-7;TLFNa*r_`tpvbWX)%6M9=bk^8f``My0Q#50<>6^u^xlZNIYz10M zMBKAeZ~L-F?mezxdj!xL20^j%=gVU$MKfMr${M=Ldf%HUox;@Q?@hD zl^2v=c$?93aGQR!V2d&;wo2xc`I9i%ceKzTF!U&dJfFIO%2v^{ ziCWtE7hNpmBO5W3QK?F&nPG!2*X$=G$HKPbhbd>@TGwH3p}Fs3Z<9#%Ozbl%cr@}X zzfL{3`X1Q+axA_r?<5c_%f&&a@(g=P$ZRg*)eYHOfaSajqr@WNF#KzF8Vdc)tCk*@ z<=Mq20qadEe(WccsL&^V{T@yR0;iisL7-nObb{ri*p+bu)1D}fi^CtVvbzKsxE7&TIKHP3sECd#;1;XA+c|AH!En=w@)h^J{vNMtnq!7c+9^Te?P^x zkgjVtrhu)!B$=`3qmr+oQp$e$M|{_s1L^P3QDidd#yQjW z00yQ&-ACWFmKbzI7v<94&dEN&nTss+vagMLW*i31%F4j{%9qQhVQU0@_Y2W&oD)*C zZ2y9S4Lz8Sm^egF+}C zct3a!{Xt^1HQPVLd;)OW7UGqnp7v?6z0wqTq={sT4=T@)`L;*b!q>+jas0v|^Jb~= z&HH1nlpTZU>+gW>F5ZY5vdn;oE5G77OS$793wsAeZ_jFJeVgRtD}?QV)hQNQiA}F{ zA8M$!q*D4?5tsVEqgphaSWX zA7xK+qcyn>9=~`4Ov1HqCZ*o7GvG0KOFdOvU0uv0Y17KSAsDqx_*7e2Yx3MKm|-V9 zJFfUo01gAUw?j(#p=tRH{epfn1NmBQ+ft-m zcSKhueY5R@i6^t;O$>G=(p4-$sz2Ive>}NnO3xG^4l+M5ZS?5~6AO}K1ghCIXxSn~ z5N4$lI$f_grVhp$Y3dPD%GqVOoOfz33`v1+9a*$w8O{Y19>{60jfYq>d*!rPg$R4U zohRG(1e-P9ter2JeSEfWo@`{u`cPA-9_{GNf=8<{Y540?6}!ctL1m-{uDh_Ik9v=& z(+Fd|6N>@(IM`0BLUFh->r#^O$=es@hF>xsO1SWzDTD=0FU8r*#BK+i`(XX{7MSQR zP`3D;Wu&Bokaz>1B^yoYT2ifKYm&_C|Te#IzW3b*;2s&;)U$q7E^o8V(0 zFs_)s{QA14ZZJN#nOIQvglnWc;Z>{Cc7a=t&Cf%C5BULP6sk-1#;0eP|EN#{sFVv7ZRIY+&)d6YVr(1NL^hES`gn@)&d zvN5Fu?5!nZuX>b^a{I z2_5ut)fMB3TOZ!BCyKfBA2a$%`~2~-V)pXyb`Tf5vVR$#D3{R59GALU5-l=6S@!1! zCr{OOm?;oF}@O zDv0hRCoLA~^A(|zoEDnBcd_H zB|(k_4a_@K^vkuIw6h)QnrmUD)*s4+zF|KKsT<5&z%5GMQFvn<@dK=#oA3Y9@#O+Cq9oNl?P-IUT6hRsFN) zJfyNZZ}cAZlVK)OO2ON4OV8;@xmg${Te#?Q?8Xt%G06-gZ(Dotf8eURuWg91vWvf;KG;{q%fs8t^DlIl7XA-1eWGIgA6)u3(ca%yrC5-J8NYFavadU`TSMrKAjCK@_= zy1Q-wF#!OM#f*hT3ApPA0096jJj@V(NBPfzg^h!YcMqR{kcb%5ppgQAjrGrvczC$D znAQ=P=Kx$vJgWO5O82M@Z1FjKXhfqjiU>HBYkO!7C*fRTcD~VsM0E5Fj7;1-ynGKH zic3gJNz2HpJW*9s*U;25GBzUB(PTzo>}o6NUa z**WiW^NLGKKYcDMulQ0|-_Y39+|t_C+t)uZI5hliWNLb5c5Z%QacOgF`{&N?-u}TM z;@9usu}%S6VmiDePeC&>Zs#Y+cI774^q#b8iTk z7%7H?BCyW}x`gJ0JUw}G3+C3xym)#=7oQbb$A5Vw{d1e^jV7oF1XsTUBq{PE?f`v2 zs$ipm(5%4<-q*a1bY{(l^!dkE#6kN1e)DuE@Ot zJVZ}|9n>C<^vzJHM!tgdkTwk-HY9~vIQJ#s&+qObty7d(@c|p_4-bD` z9G!+~@nr^7yPKS}DW9!%i-|tqXC`twT(^3^fOX1YHeBhe%e8K@&5;oF^bLX0;pt;m z1-CuDWKgqLH|$UJ$6#`%r6f^h3SZ3T^Nd{vLAn7lxv;%eD;U- z%ejLJ4KLcTj0gI!uLgS#3NEe+d+z`Y`!*DcYzK;B@YzvI7xURKD;9D>a{#zOoHY2w zNS{0{M|1iAklGj`6;>K-)|;1;5O6b7H+7!>T0P6@vgeN3a1|Njz*;H( z&>fbMcv!guMLqx?4?)BI>nG(^Hrj8b8*hmo2rf-ss;~s5%aCBV;Ja1gBqvi0alLRX zLs5HOnj`4Dk4~Hh)}&#znO3tWbc1UngGLh=HwsH6#=Zu($;!cCh>wuBGkkkAo^|iLj>N?prH1)@aqyqUbs{emE5pI z6?fOXm-`XZ5QhfhC*R8JSZPbiAHJpJSqBEWEV3e|M(IjD_c}8-$xloW%bTO>bZOhm zH#ZD$Q2j;b<-TOvrj3{&!yUjUyDJ|~j-vTwrkWw|0Uz!vVR0CeOo22p7XBFG6J)qr z+gs`w+PXr~P;Uz-;%0YIHcW*xJNBQrId{zmy;}VA)*WRkp?L9IJ+;GrYl6vj$QTin zAYtVT-=lV=_mUH?JLPr0WHIG-4+i!Y@F21~=@K?|@%85#3F8Sp?A@neyo~qNM>>8z z1)REFT3m`C{VKwFZ*x(C8y>F4nMTtmKeNv{W1sEjIpuESdMh&${qzpp>kN(gKPJbJ zpTBzNMfcUc7T{7@?-DEp<^*I4HhP@EGb^D>7wo>}M8uuxX(Aeo7vIgBT%f@+-)95Y zCXWWvpyY0JrIO@LHaddmgPglyC( z0x>FjBe~EVv(esBGj;K{ZC=oWrv49y6d~uAUj{7EVI;AjAkJS~BfDGUr*f5=JIw`j zq%5^EW@@Yioat_>Xo|>18(=urjuJ3wBK|7}1D*B#|J)t#Fp zW*bL?*o>iC52e7JhJU}n7&2EII?5q_< z2%g-|%$td|hBy@{|I!$$aFowHbvs{16U=W;FzrLIFODWC%~u!q+nUOAn7HWqhAjy$ zM@1i?@%vw}y)J^fB71Hm!l{rsyJK56fP=~iNzEDmpEs)<3@T25-Zrz7VWJ(bg)Yfc?FLfg4{!yk;ip}ed@Ch@*^x*=nJ7alDA0w zlT@1kNLT-kwSgG$ZZMmLU|976lGG(t+c1k#DR=Ioo$}(;EY7xw>1@g70aTWH*D4dR zqoyAGG@C6XfV}XER-|%1?a;_8O!hLuy#qK;{9L}rI>%6(aeTbhl?hLa?U38lWfd~Xwi%%`|>ynqO=q_CBmL|^K(_H^ZUB1NFrC{ea#kg{0W;cu~Q@6GzT08dy z_4L)ZSP8t`l2D^7*u`8Gk3x;8DkR!G>E?zXyD%>}gk79VB-nhs1Hd&wOOIB1=)2DtZP1srj_}Tz zv(b-?ZlZc0@k%aNI@8V8&i`j{WGbA}aevc>(S=tB;T3yc<@@~(FiNU6F83OL1|J`P z#h3q=8=6S4G@K4TKlDIe5FVx$20Ttj96@Q1##}wWF(z{R4up45EVz5xeI$L46r8OZ ztBGG(9wjIc5m0-=zk8qSp5+BTe#U{#7Yvir;tJ~_@o4e`ML9SqN_;T@jLoWh;dOr0 zPCSbf8k=)pHu`In?^m*W8qf-3Kno7QA3G6sf)Q>5da}%DrVI((SUx+Kdti(#IHcPO z$;oQK4KS8=x&yf5ZQJAgf*rTRlWdUl2#6lsIvz?RD)pga9d{+0?u*(Vi}iGxAV-5i zKQoBiMD+E1_j@_(H*Xn_@)JWfNu`Fo;w|+p`0)AzEVw`Nt$|K!9)DPfkPx>X05)m~%*%B+5wEGsYhyq8MbLT9TGh7JZ$6SQCD`|Km{hePW4V^0@OV zb<278b1RN9sM%>#f_?0QK&lYhF z4k4I7is-!`&5JCYR)G~yjxMafUOIBT3huO}kKm2{I)dcyudjcO3l#d`6FuP?LC@%X z2Ux`QtI7NwnG+H6*)@A9yD&hoYUlkoh0cB*je6BjVQKKSGr1Ptvh{7GDWJCcKix7$|;_`Fw){Ct7)FywEly-) zuB@E&+)SW}NN+?A3aPt@7xgwGc!>3=kPnAOCOxWtJY0QVdWKhV+sf@}Vm_m~q-HngGM%Wy1I66-~Cge4?#GmLg0##+Xf z3f?Ape8HWMtPux!=tZ^Z4SBt4Rs_CP^{PJDJoRV30wT_Q(prX~IXu|S8w=d3ky6Nf z^;wkImfI?^d40a#tay7)b6ay}T(q&f==&ht0ANgHE2Kvf&3{x#4{{9CwdpS^oo&!Q z5D%+tnz;7LVtHB*yiC+8>U{nT@!qVG7j7ekQu z3MVd=MTKkAUz-;4*tQsR$PJT=jIlvt;(q#)v(J}6dc*_n02KR$O=hpze{j96hRSD~ zzb3qLYII&KU6Fgez;!9|$_A>)-r*sq)HOqio8scZ)kD~A_r(JEDKZGsHxll02Y527 zbO-4E1M5vghUle$_H&&%jrn z*~Hu2gC57@M})xlh0HKF;ZzW{u;UFRx%ymJQaR8ilqSUqy8=xIR&;oEd+F8NVHyH1 zaLjXI(`4ECu#jzksClFV)x?0nJHR%5pLV%TueIWw;K^n;9lcn7zH$jNJU58_d>C*| z`Pc2#+MHBvLX*s6pszao+}t(`>2+T>`KKqb>fQm`DSdT(*(Pgc&~#iU(8}^JksLE0 zCp$n9m8+2Q=@W<69N?;|0OYY7JZ-3eb5`DV+rwf&cD2vaRd(RGIY(4v+-ji~=Lg9K zSvQu=Q%H{t3`|PD9h>$AIX!rtTI8{LEBpIcvZ;xzb~HpguvyRHhr> z{s?Agnz=1NQw0le4D}&VoE!NM>>7XTTuDiZ5()`(v*U1818_I6x&eSkctH}s=lg{h zU>iBfU1FLDX49Hks>8#dR_h0W^IF;T(@p}vczU;ecB0#2xeE3`%H>$z_W=8Nes=(x z4%$sXo*yV+x3brodrl=+ z*~zvmorf^C4WE4@W!UprzZ>Tz78h2UArb_?1N6d36oCs!v7S7;1s7AmiQ&M{tc9J@ zj0u6`5Uv}nmjG4;Fmk#t517=!57~rLxum#^gD=gVO!1gKnt%5W zK!WbJ!4fZI6lxa@PBLmvwG{|ez5JNs_{f*GX|PUquO5?Y&by9Xw~1`S$$QMm_Fs~n(nbsFw%Rg5`dlgCO;nR!298ADbAZm zni82eBIwaVBJ{mOqeC=ZlP>Btc1&)%Xaei0|r&&$KImKKhMXdp~i@HRQ&bC z?W?joz@&#w^o-ew*+~ZCP2WaP_le4&m^$lV87Hv<)7S((y(ih~0vZqNLz}~Wz|TY! zCOD1{fYJq5>LY~X8yOo(&5T>zlG-cs1vzVf-jH>Z0RSXe)>k(~kt4EuLt%S}dyN4; z#la5;y@cEreuP~8BJZSau}uXfDiat!#!7vBOO5op5k}#`pXRex=fWqHJ2UX5%saoV zkMFg6y_1}REOwt`H=+#S#2Y#B{`0l7iZsEhB|a%|7mDSPlG|K6lK>O}Gy&pSxDW`$ zMY`T>k@wPfv`q<6md%{=$BF5>Q0#n)LjNvKeQqHD5NwUZ*^+j6^C0`#hmtpvB&lV1 z8v9DeZWl>t!knAOE8+G?BdIu)LC9V(toKWXwbtI=j9?n2CD3f6I8UvyInzX0)}@L8>jZ0f3t}VxbC?F;3huZY))Zm=jzIJc!HuQK4dlN` zK2x*QJHSu%Imj_92%Y4LqATud!-PPC;ZJh<3mZ(zqCCpHYJz2Z=rsDkx~siktJhyU z;$7bFblU~SM$*s7dmyM);E`ETA=QVEo^^j0EuWIs9a?bWU0}NHN7``!+}$7!G8=HkkYlKqRM!ma%G%4X6V4o3nN`ess+a{hS~Csp?Fi?0HeH z68qZ#u1CY1ua-U{(h@L;Rgg;8et_vTzxV**ePtdqr9`2a|30eF^K*w;Kd=dUjB$32 z?cvHd4vF5qqgw4*5PV7xP?Usl9LOCLhBiOTWl!6ZH+|FEZE+%biU%}vZX&-q>w8(wb)k?@mWs0H0$Ha+;UJ1S9M^M*gXDJm&R?O@Ye=dS^@sd1%J7Rz;TCe znVz4I*y~h=sa;7YM|nH|mF7NPTz-NjM*&+!Sxv| zsT5-aTuE#xO5WDOoIoTtn&1Eg(;RwBvX3XrMPVzFYA{v|DdD&eY`Oy+FITJzkZ&g? z-SfrHALBSM&O97tB);Gxx?IObw)d`yPnwy*)8ZS(dzK; zS!du&OW*wb#J&57=(C?QJS>iS(_a7p1W0T~%HP&OoNR~=4PCB46fb6~Ik;pG=rXO< zk=jh}CN>7EQL?vHFeez3jk^8kaP{fq)1UWESQ)-;+2jka!~#j#sHo z{Was;=cmJmz6=ccxNKXndwkW~m+uh7Na$rO0v7-Ls=8>4`5TAKILGgIYGTJx>YLV` z7%PwiKM&nI$t_*eW@_7)_1G_SP@L^# zrw#yUD$efCt_0I>%nx`m1xHA%6QUFlWc8mlPME9~pUKyXJ?H~;+q2J2pu~cPVAouV z!kApWap9&7CWI#rcZN9WA$iqaL4%Jp+v;Z;bR~*(Id*i6#sYtT+fi29@k`enB4XH1 zM2#SK5N1O_`fwNFgbu$dZHVtcOa~yVxi0zrAMc^}9B_qkQB4^MzfIvD@+2E-57ND; z4*bf)IoAQjg<68DB%J7C7osB07SfEhwob20_1hBvN{H;yrgas^wYeVNC}dqkW9YmJ zwgBA}PV<1duVWoVa>JqV9r7L*dd*t%bJR;af|F&O0`w2pOxIP~S#~@9&_tQ={H?uI zh)dy#Fd-7ypSPQuC-K#14D7=7L*QlChDf)3@~zuXn*<7}2u z1heVuaca-o_O|WNy+eK+^_tGv05>aP-Nx+G%WMDUrsf!8P4Uzo6B;s2u9x@~Pz<_` z^+aA_LfkmaYC}HEMDZ_TY@vmCDqojcp7*QASA!QM%& z@!g}MX%)2Bnh2*MHWs88{K^55O2Fi40!!1|Wze611p<5rE}9?TZx07-5G z4GF&rv=*H%*0z|n_o#e^zv6!S7JG!;u#{pXtdisx0aPbXV=LxU)|~XV;rOvP4OwYH zFN_zm@v*Rxrx6i1C>2QyZz}O|+E9?Sr+L)718Q8oz*vFM#_-OH=>gPtHjc9wu zdptki7Xb>2+RWZe8d~XckIm#zOCIp}o({G0a?LMb@)=K#{2@!g0eapu)lDbWJ3y3` zMdlsgW8$qC2HtN0k%B*o)`?K${_10Fjq)#U#AQI&0O;8DE%Y|AnrZJ+9qGgQJ_|nZ z782e61*BRvu_TAq-5V;rJp|`E-R&l{g;@7sDX*?%C6i zNXUjD9&1eFWm!JOsAeid z$GF(AM}CL>@&%H^j@_q0=hY8yhl*h`kc|c)&8Y-At8*ct_|Y4IhG2T*Spz*P%VB~9 zi`(J4K6HB+5hg_$hJ=J6w71RTGT-|x-A15{W#%l zoDR3LYb(p7@<`?XaGV(fJP}PG?VErgQO}94KfuUCbcA zy_N!&eTo2M-ld65^25aSm%6j;(`C*9_K)Fx++7D%^o@dD>u~_`R#Q41p^+Jm@gxc zQri>6u1jh09ayE3CA6i}JVj3Qi$Wa($|iZwn(8-F(^|sJwn=I2pEZP$nja26R#_TH zJmP#`Ndd`<2*a3kqmE}V7d^`7VthAxG2CGMN}9H&jYty6!&@1QifyhV1uvF(`}D9E zsDDpXu6)NY*Dwa&GVuRSg<&ELdu_G4+ssIo$48B6F<-fRKA4VT=Q(96_MaA8j;J4^rzh>S7qH&K<&q6xvP0~$!5p;XLC6Cl zj(NdA)pm5dnze*Y5I@pv(p>UWnd`NsY(XZ(4FdMf-)L>j1t*$Zm>H^&d%Mm?VtCWz z3;QVupGUX27GBeS3Xi%Gy#st34#!}>+IpQkz*I}+6)C_S|%E!>K$bH0d zdM8$}ou*e;4cjOM5$1p#;p)jh&wq0?>g|Yp&7VL%FneWu2Pj5~%sXIKOxx=RsH{p% za&Po9z2>&)0!Xs57_1xtKt}SvTN#TKBJF=2TYSxeqM^ZM3xY7eM+tv4E5@u#T*Vr!Ss>;?6*_NMX(T9D`Yp1|cpaW?O&6h9Xa-$D}p9H@d6v~MNzO(XV`;lG`*?xBg z#hVrI@?TYU!xRCw#t&CVbiI5iQ#BR>!R{0hDWQ<#GR&eL0%D_F$VxuiX!{jUh<-48 zlCA7<#yPz5Se~l|DDWy{os%6sj3n<5HA|MKEk#zU6i!SBRPsSRxHxf#IPO{X)dRfM z?FgW+ARDbVzvz%|cK}NXy<4KGuE)2zke@#lfslp8&yWKQ$V*d=q(%AthHM4~4~=69)uwc%X>EKs}%a zFRXB5_*IH6GCv}MH||1Ocy9Lmwd%XU&8BRs_f8Dsq#+O#JvJ|pvIAcR$a!F2Re_x>rSQRtX;sQCi|aVL7!mYwH-<{XG{3Rq{Q0NA|y}mb^M&yN?MM;LkQu% zX1?uEfciOfK5-l5eD+7GkPWg>RRK8=$U?fy%dg2Oka``X2WGpjyMg21p;Kw2yGieFHf<{l|gR!91ZP zx|_mFzlW}kCy$>uwn8@nK07Og4Lk}j-;(!sGNTDux0yl2k@Ixd0jMJqYrZK@@$%ed z;yuq)=bj1Q7kmoZQEMsH{3aw%xB;T$g0xRxFjpy>;dCHM<1w1i?1UPN z^sl&IM@F!(8o3ua(Iwu9On|HRu1PdxIaoPq#fH@Q)p@jol_N}50~8P4YQ92Q?*PMT zU+(}5vXEQ4S)`z9-{OIC>4%sMz;awzQwrOl)^iXB9atzj~ z-bn9_vtRcl=+Tu(m0NJ-CHl6|zfw#nKWvNC*D}0j(M6DPqV@eC0Clu=w#<9kfq)M2 zJHmH9e1xyRHr3tJjrQYeE@i2-)QoB&!KMIw{1rq&0QVx;XPQq8*R|hVCp&0n%C4x; zsWCUV_`H`j@d9M12f%&`fG&U*Y&KL2yCJW9_NU)@%Bxq3uDZ=<_(CNg)f64tCsW~9 z2rMwyT2EU#onY9=^Lu;ZhPF}omirBil>Z_JO?V%3)20-|Tf>_>fI8E)W5>j08FG2E z@Fg0%9$}Lx5I}t7wyGtE+dSRNm?SEfjkTx*Pzy^f?pVhpRhl8kJC#qWLbj~TR56>i zvO{B2CR`rwqNitp%q{^Fu zCmuys6Ms>Zap;@J(B-qmnm$}A+E()u zlRZw|>cXfR#_JYeyIZq1Poag8PWqYpQP`5uVlL0-XXpp)fx0P&`ssSA1_Pm{pD+f7 z2ubMS?hw5^(44l!=if4$w)Lz0)@=mM4e8P1cE~0Ngi9Dp-_Gu~MzsHqW(S>nxI%hl z?*Ojr@iw#|=OavJEL?5&gr|A-yp?N8(4&fq;AHRhnS&1L*t?G2ATi)-;9vN7EJEFL6JWhcv;f zPZ^)JZ(a~N-$$~vEicvQ=rqgpFUQY!~PIJ?S1+-CQLy0meTXj(+gwN${ zS}>O{@f0}TL@XLU^8Q}Q^pkohdtt)*0oqJIu;{zN@Nsu;8CPH|qGK z8x_?ax_49DA#8J-rwDSsy2lKA9r-Zh?MA+WLiIfQI?fyPLFrTEID{>Lxd;!|OU}qC z0$@&Ia;8ULXBd-@cfQ&bMp0wxPfiKd#hC+DpMoU^Y8=8UW7=Dn!oKR)8b;(!b-{15 zF~R(L>^k=O)EZN5*oklOrPWamGOR-BFd-^Flk>EE568z&%(_R_uaKd^ZJiRuiO`E{ z7*Ok+ZIBz4v*q+K;;NAq(zDHGncq1>Ju*AN>^ONWi21>PbO%U@xWG&jlbvweDtvth zsP`<~SZB0YUOsHPnm5v9?Kl#R!Tb}=_YQxk8#EuZQM_J1pV9?#R%B^_=fpRpDEKo9 zIlh@T_-*1@nyyB3rt0oN&>apN41va=tZt|yCzoi_>bol{l?#8Z>&%?&ke(|a@uKA{ zU&HG4hW2-VEpO5%5j!zjNi0O#Cmt)Zq5CnJaP>sYE~9XUJkrX-ytC(>skC}uUCnL2 z@t^(;>_G6e?whv=MQCsr7b3N{B68BbxyF`>}B}CU$gFIHA~S->XV-5SH{*pS*v*6Ge$x z@*&|m?KAEdUM#`&y70W7hdMP2kTPq|2P86hc19U}_~C3rumjeePo1ZQf+;9UD~pvU zb_EYgNLhyaNWPXu6L3)k_duf{u7yb6fw94=fGtq8+2uEqV+RQ7A=RHqgQKL7aV484 znGEPZ8|2yHs+e-m4_WSQ^R;j;gnV@z?!qE-KZ=d@F!WL)tQS%jbV9ks9FsV@Y2E0R zIeMsQ^``uSCs1!14uv2wQ5xCYS3VZmEg%^h|@sJ)H zx$Lv(`&K|^*U9v)rDq*gvOMR%e05-Ov4%TADd$TmTLarzhBQzZt>An!bps-YdSwWi70To zge*;;$oYI&GYzt5*`qDNlx<7`s`PXx&%Xr-+UPgd)W2f$7@HZTG5GmXN{-^5CQiXm zqlWe)L2bR*JHXS9=8nde$M6-45w28Kh1neTG#}G{i0CldYVO1AB%41m+Bjnjw%C$& zvBsIQHJS4VDVp3E;rnj%SJv5xJf{&$H}ZTuVdGZZVR4y^j6f6)Ko~mkq2Y4K^e$HT zX;L82dRk{n{j%XV?Ym=Denown#rps@rJormn9vlnv6FTiLWovS-}YL1HMov%);ngm zM*4CjKn1c(3@eZr%GyaOJOXvBDjY5TLsyq@9NI`z>NZK`4xo|U_2X}OivY6%FyQ4| zD)KkF1p@#M0y@1Sdu@I>!N@SFek}Y8==0*lKPqUVS_J-(4LOQ_BMgci{N}f6d)Iv4 zgS<7vB-!|1R64$93aSAxTr@>^=yase0`d;91sO^RC@<0Mn%#_$oZOmz*6}ove$V7S z@jcvu%m#eTB>R{gC>-G(~n-Md_(&&6~)=a#vCLO#YKZ)fZD@ZPBTR-&$Ud5GeRf zqkmY-BeF4Sj>nEP*ciiX@ri-PT|@|cD|gAzF(uAk^%p(*QJ4Wb%XkiIic3RtVfNqD zz#+%0@S8!uU>?@Mp_8_PR(GP6h{bigM-Tf5J-un))=T5QweumMz_Nn7KLl?x%OOp)t+;H^ZPa-#F*(nKv>>_;1N~RN6QyUODUS` zce>&rcH@i6Ltp;@IRLg7cYSru@l!1IH&@SC{K9&|5bV`|Lg9yd1;mpY;8-w~c#hi! zPcJMsa5?L+3~{AH|6$ilGSyHyTkILvFw_nUPFlHO$@*;_%VcPAo{=TZ(_GyJ2={c*FWnJGzz;V-}74?2@>bk?|4aQISbe`aBg|<g{Ci)f+*HEmI0Q@X-7N)zzD|L4kNKU(@|cCybZf3S(?37+E&zgjT3Vf zdS_8HMzCSNq-C-IPwm!%A$nup-EbT$3dEI{guz4KIX;T%avhIjr>jLRY>=@SPF5|d z9Z?xBmM=S6eSYEMt&gQ-z)pdPyNd5)CpaFD#$d1bKUmxF!IW(jy16&y-kCn2R<%rD z$hv3$y6%H|SojmU8uGa=8@Hszc2Toc=p04_Gif8hY-Bv{;0*q-K=&17*J36krPqa~ z-rk5#l;uG49OEZ%UO&^&H$Y_6IYU>3SNLmb@g614%!>?5u&WFPFv;4iYxp6fP-#~t zXmbQX1oSRY8I&n@V15<6AL^Vil~%hj^ME=bA&~iS)mA0h^%YcqbdyDYfDy z%~C^^ZRchNEL@fT=jnKT_k?^atmsZ_fWmJCq+xu(4gbdrkj>nO25nz$0*+b#}KzETaAL{%JPpK3NEcm|znKn@<=d+%@NW@OSV4;#4Hqs9-&Jf@L;Cs2Pi9 zT!N+S+$^^5eoHbeHh7UBbwF;+Mx;f7{}I^dVIYhMS^;I1k5-)lqK7UvgWc7ewei}< zA+j4v^-YF44~Dj4(^)_#`MUDMLrf53w9I6q3q|+klav~#lfBF0^tbM-j&;4Y;`{k> z4#a{aX=w>>19KZ|&4Gu~9$UyaWt10?*5(7s_2%aOeTGel?H4|pl&f5gooQC$-$wHM zi&RWQfA(gf3X!hni^|C2DRD@Q-x|wZG#ad(I7hALaM{DGAIvEq7t*F%YrwW+Q%xSLtn z6({Ud`LDuHEkq5-p{wjo@O^UwLx;?`5M4>)f~=UaHJYPfk}}7;HZ2p|{LVL>Gv=A( z`=6&il=j3*OCTj)zK-aWLdzd_B}M-> zRp2g$5cObNb7;X9aUS23e8}R>cWK#a_}7P`28iQ$EYOnGZhB?r0IP5AIifa3X;sCo z>@K$TGHYgu@;y(tq_bKGea(Lm-tBz~M)BJ9)Uf$8AYGV`;-OOh^@CT9+4f0!&;mZ0 z&vn5YGW&j{9^+nSr&sQ<5z+I!E06=^@~IQxN^;nzcW5Aruk{6%kbF%pY&|zs+2zU~ z`jwtxAJR}f<7yl4agp#4Md7a~0^|8UuLKty@EINdJMi5j3Aab#a&eYpSK{ zrn7J|cTVNK54fokRy<6y#pW`w9(gE%f7hm8bns0JI7`Q^RSgOQiDu=eIh$lmazfcp z>sE)rMn9`y8V$4Fd@Jl2h{%*yQ|cldYj9`f@rUuRS*SKRxTj|E=el!NY2Q&~YghO= zn9zKe!po+7k7>=W1@EpE_(83X#t8kR;hTY}LEtb*ea*lc31)r`(Ton+tl}Gp^(d5S zT-oS%sU{s`e*Y*;ONq<01y_ih^nhu=2gU>?LbVN;H~s7zk8gGP@+ylW(iy0IX@A-C z+&5as9AMLN{j8XY4xGQvXF=vQ95?9y0m9!zupz^cv`MBAQ&Ex#kB_4&#QQA1uRv}X znj!ITt*~xLvN;n}+}~*sh`?s{fF_WzU+^*Ta^UV1U5f=$;n>+jx~gD8vrh8 zuP4W2STGa7Xuq13A0j_GC1-Mv)RHCx*sT@3q`Nxw6p4LDI!L^-wqW*M3#A(mFkh87 zllQMS$sm0|i)f5;g`uM)r3t#ca>Vz+2luj%OdcQoqE-?DUv~Fmt3IR}-P_MUwca@tFR%cO+u`XPBH=7?mq$nyrDUW&%CWl57(;n22;|1i zQuN<-uD^JPSKG}4%Bu>lFVnaRp0CVu=_u{Z(fmA8UCQt_5nSlvE1y>m9&CloCnJOB zFm#T&H;=dbHK`RgDA-UV=AzF&HW7RZQ_Hk|_VAGZ8@2Cy7G0g^)(9A-EGhIW6!-dr zwAyjddYr$$ZsT!ed7qC<)v*44QB3opmQG$S$H>SE5#AG#5Sk5e&sxkHBgFdJxEsPC zEe|A^P-=p%&^fE1Lb*LV+ntfG`J^~P@R@9;#cd`oo^e?^lqhnu36YzPI6N9KBSH)& z78(!PfMZgzLV{;^@@YB2>GQlG1|1$Ifm|m5E)^bvCOS^;K7b7Rb_&jTuc$U2=-#cm z%m3XkfJz~JGD>lA+xrZc8Nw^*7?+-KH9}7M}M8LNXMiEo;@$i~xpBfw! zRA7HYpl^Mdip>@Oqi=V}I&JZv&`s2SWyLa;=+Rv0+c*N^U*~yQA=J@OmVP`}+T&D` zr5>ur7KbdhFlt;)ex-JhA8FWI@^r|71%hkiZC-yIWs|-c3F8Bh?RHf#0H$VS}(4whKMg5~M6%ijkJX4+~Mt~R9kb$VG66hq(=G^{y z<&UP;^D|BXtH)i>Q-nKM*&XG7NRfB3z^0 zd`O}C(cW#(EZb9Tl)w%xi(||Q^u40tx}H+WR*1}SSw0jPDfKm&WIa)#&mFa`I8{}Z z`u(~nweL2Eh$oH5a@Z>yWr18_Gv#BNJ|LH`-wz{M^=HsCkHWA{HrgA_X-%K~usP)p z>oKJH?!buuOnxygV3%(PybujH%S2eMccuZoXa`5oUUs#LIgLag=>)@Xi$see?tlk% ztaCO0iA~jy3-&$cIgrdpExMufz~t>WHj>E$2raJkN?dA!mxJNW!?6ixLjYJ(VI#9| zZE+8omO9k4Mtue*M@u4fBvO{wNTlYgOFk}5U7OS~aPc^%F>m933rnt-7A!JA!TKKf zMidWh8T{}~F1_F~Zd*#TBxvfN$2-F3yhfec#*`vf{=kwM5#Ba}3v$S@4Z_`rBlL{%D_yAv}2Q)Qk(&Om915qVJ zr4d?|zb%(_vySYM3ot0e}_86hr)-lNGhC?{ml*M=4H71G`z z?e;6ZVs0z$yt`5{OZUO<%55@OH73^yol*{9uq-VQ&Z;@sTxXZhYa%twpPWj>-0FTl zyiA`s{f+wmjm(^nvf@5h2594HS#f`$@>d#$A>)ZV7bM$FHT*HTsD9i>>%fy@~HDZDia>P-@()Gwn)%-FN-23V^_`ITjq{U+JPtas=9rzDu}<_FxIMp zkJTe$`vGLYZ7HH3!)DIp@3%e_UL|Jyeqbyq`@KomQb}k+#Mnr1zxQ&CCRk7$2z=|n z2Sg6XqrI0irAR)M+aQ$X<|qbCQ_MouOx~rjJQ9InP>>owMtp56P7lPx)#RA&t$6 zVk`pYaKHVlk_Cr3`iak(Q10ms3U4MH*CenkXPnodnn#jT(RFl}eHSI#Xs%sj9THiA~717oxmgEO4gRgfSEqqsc;twcKGUJkR>nPBg~++p4zfP*B^|Pp?f|M zWS1PQSc+2az8s2c)L*bFnAZsL^!hUV@*~a~$xufC&;H!;xc0H;evQv@#YR+K3Cc?& zvD%f>7$O{2AG1%ckgC=Y&jIqe@R)5M>VdEW1%?EA26jP|45F~t7fL~+%AO|}>uP?$ z95u+1&L?K|zNdSUg)3muV;5F?G*s4kcc2F4HXzIDMvB_*`N_FtGO2bbr)op}Nb{y2 z7q*DU$%z7XaNQ6x1$BPxw?PrZ53$pX?qq65j7J@g6)n!ilmwf$@Q{YtB-=kHBF3R? zQ=?mn`w3g||&Zna6IlKP0kS>iFz`pS9_UCJyW6uLO0l zIgoyR{R>+HAHPnh0#H~3elUby@`VTh>FvD-xzuXhTdNmDXT$oAu4vE3ueswofzT#g zHfQz^5Zw~Uu7BA50r|~R%*5JBrY7+8hy;>c`-_Rnz+nL-S=!6%9N4~18W0ek?Or|X z(~U2mAR%^OSvYqZ=29Fv63PI2P9Cb?zlQHo2*jz@P)-Af zIO;jAucIr<;FaaChU%Z?4y`|pUn$R4I?@C9%pxG%uR!{J!XyI^l<|vRkI>M4vwI>0 z71=R`k_X7NJ!5lLz}UzhU>>&+f_*dB$XG;gPrG8p`>TSjIBCbe{BK6?K~h(k2{boN839bh~jOk|tJ?0l&P-+0WgO`a(D-N!|;tPeWm*+8u zG6D_b#;~2G$79#Y-LsJOvOH#S7p;KISxQsm#msL-PF}c=l}or18Fo}^fDJS}5-0;? zqUC@i82~V(2_Tr(Jh~8tM0X(xz?Z^%^A(%0Nbt#<@z^fpZNTuNMN{P~W!Q-6FIdui z8}K;lDDH+K?tovdV9#|!*xMm)IojQU`IsCN$ZDnD~~ZzkM@{P?(M1YDt~YwVC1 zh%Jo7U%AKg;xc-W?BU>)n(loE0qc|R{KE4YVVVt5wZLU8xpan+0srO&N`#4#4wd$W zljv>b zO7C!s?bXn7RvuCtrExs^_`0tB>2dOgYa)E*76py{n2VQNq1i=BK=%^vV&t2Tl=R$b zpJZFAdE`-ES1Qm?xqQdC0K^L|X?IKm$JF||k-sI9Xj+kD!J=k*2v_4sG2p!^zaF%< z9|oj8?Kaz)GqTB(gWzj4JI~oP6+2wU7*`q^+(Jzif=lmImNK!1hcp4t2AxX3Rv$ne z#LkC^4i!KP!aIzOGM4(4RHvTQrmpwq8nC?O%qf%^r&|P;ot7AxA5erNZ!AW6DNc(A zAv^1Q8a^}z#lCs8t4bJJ3-Z~FJBKW+emT;-&O?(}z+40xXKJFvcI?8fZ*xBrsI*9b zbwbDyPVta$8-}_m5h?u??gWb+-Ebq@T@-FVrdD;i&bPYRl^d#-p|LALuFS=imA3ga zGFTG^EK_xq_J$Lf+;PrGASq&NW!K$M1=)1eiatoyx|e@36|TI>-Z%;rFK*2UVD1Iu zWZeU{1oVmZY$p>a}5jHlW zbmccQdHz6y*;eNZIVEKvKARH&jtF-QW;s^wgMpk@1yNx%KIDOuC`P~U&C1gIYca>+N%SABx!C(!1%vf`(QA4LAa%&|aMZve^yYJ^GBXom= zlF$4(+W>q*X%CtCreLqs?RHMxU}Ly(AFK$6LsOa(_hqy+-@WPQnk*dTL*qmU>h{mR4%k2*zIQSs>Q3*;(LgTF zZ2ok^bZuD4M{7IXmr8L&+(J=Lq#ij!P&|-GX>ACaCy%LCkG=8;^*YH@c#4K1nq!ZE{im#pI9SaJnA4u(hp*CY z9Zy)8*k@Oo&Czv_87%X1?sJF0fjBHLnVql^m4a~U@5FE8t*CaWTT?mI*`d;>CKN*Fe2(j@@-BoG z_tm$sQ(*!EwugCxwUG6^To5X(9QsvO_By{k0IrJWmNunXa>$Yyd6hkyYX8m7`#Ixt zc}CI^k_=lAsomb?@49px-)0x;wpnt8qj`h!{*_0mgI}}zA}Up>C3SV>n}PCT!)fLn z!l$8um&{kx{|u?X*YAEY)exXrj>R5m#!E|VGUaD|a*Zl0wa0|S9r~H`kG5ON*K=Ei zj*g3;+8szhE%t7e+kwL?yX=_Z>__e8X?#~XE3C1pCh zu5*H!B>K9-%xDlA)3u{M1rC(PrqXu2Q+W6fORw5St(NE(|H4-S`(xqXk_`T0;Qt%R z;6Ew)1s`e%K5_GOv2Yf&vfvQ@E4BSEYW}|s`o-G+Pg+79K)2yHU*Ru>1%Sz4@S%m5 z&F}y55Mb9+ROHjKuy=E@5P0b3Y%Qqh3b5fjxY_|UhOY9iUJn2K`PTqIP{GR6!5t7` z;J6Q*63_r}@bvOlu($B!5ETIwCH~{Ru!zu~EQo-Dg6MCtfWI31Yvg}2_FqR9{B@$= zmi`;-0K$Gd;GiOcs(_${gO$9i9U$r;Bq;A?^@}}GSV%|+pjZ6!2LTZw2|)P5{Xa+; zCGLp}%KO^=NzN!PbPo`<@c#!>qommHlj{FT*C+uT#NZ#)jp9Opq=1c!9tZH|mthZo zD;Egdlf2LI>jWGk!hm`KaBM)j;McDK_C^~KVA8(@9R51#Uvdh6oAkePtAhOB-TGT- z;cugUo#VgqtH|H{s`O94{p}+Y< z`QP~CPc0Ph00EW%Shdy`z!Cyn?8PDcTl+&$$4%GO;g>uGu%>>0@;4iPee(OF8*>Q% zw$PO0UlJj|Klz7C{(8s%#gcyzmnx_}`gPi0n}o=pS{uJ-1AMIGrmXr%!@^zgAGQiU z(*N^51AeI;;04?pzqDC6gnuiF{Jy0B@;Zm`pL!ztfc3xM{muHn(y3~CTHAO6yAJO^ zPV*OC7+!fmdBq0!K-m%PqEx5Dc0RrV$8aeF<| zge^pOU*gg%S_;+0ON`wzo_sSIhhDX1B0KnWl%?e-L#E<#%D!z#0GygBGm<>H*g9p? z3-Vk-uGfO41$ln;`o7=%-e~+9gYyMJ+r|0Gh8-%`E&u93I`H$kH)~YwD2}A(d%J{d zG(9&9tHG8{6C z_@k?JQ_0sv;``)O{i*G3`cLEr3lhff5=mzk_|;KztKE+#TokfsTc|!+FbOPf={C&w z=Aq8t?T3U$4q-W!YEsY z+%=8MtAbjLi8RxRT-O)Hw3!c6emN#ZhE_TLJB1-r)PGd)T`z}dPEhWs>y<~%S5k0udE83*1G}>Y z)%h_ivNAtBEQ6s1qp8(ifc zH@~Ti(<^JO9=aZuYs4%6bn^JFY!1&=sZL}v_50F5n`}L2Gq}b0rFaHk@WsW;cf!0U z$XqPk%2|}H20pgmrdB2@wHVQQ=SZZz))gUeN#2f&5bfyc(i+4rFrIVpHJe$<($kFTxD4u+GF*#)1y8G8|NdmX zOgX{rXK}BEG*x35&F(*aI!RvqC_r~}Me6)^s6t@vCtt?$bb$w_yLT1v$mlO@<99z% zI#e?`a!0DLzqd?TgOg0Rw4)(f57sun{J@_)UeznJLDc>-wHh1uXT2{G-j8Yvt zPJM*Vv?ID=&oRQC+H9g&qY(F5fm|=a&dp%FN6}8*Po4SvUxM^Z?c((0lbZ}{OOKvp z#NA!F48}&!<3GR(T%lnqY1Dnc(n71{^?^Y0usa}@n2o2ppK`AM)0*wO=v}7*zuY>9 zA7KRpw>)RCEVG+>5)W~Oc(4{fQ}(|wX>H1M(F$^qKhU_)0l&4ObWBwjDPTXGgPe<>}NI_^T# z_j*dMf;%>w=RE}%J24G>TBKIRbG+rT2!C&u1r^V`DX$hnvS}Au?k76|(sAc!w>mfW z1N(&yvED6;yLh@}8-zMM#HpPa(T#r4=)x|Ih|BfJuX3@J_0#ATtqr$sfZR0;>p{Q)o6UrJw_muSlE0Z_qnA` zVZsP0FiG~o)%l&BWb_@G7sIzKV_ht7NH})i;+wi+a+jx23yzL14g2FG-l|pR50wOU zvi{-fN+Jel^4EG=l5b~DD&Kyfy3<1V^z5zkK_B(F%D#Ji=-K858~SQP#&T1lX$P-?S@m&TIeQ(@G&4n{d##+<`X z@_3D}XfmzBG+nf%N_IvQp1p36TY5iA_K{DW^ch=akl8HFG*+ZyVDCts&Q{4M{RPPY z9U5j2w!^ktyH1mzP0hY3cp7Zo9OUkoE&H+X>R|HVF$hnEPlbh^RhWj#TjYKJn*&6B ziNJReu_rNzUG5j-!{6zfbXRC-TlQj0UOl{(jjvgA=yiu;SE-@G{HbER^v%X2YMF?P zspgl3x{DgQ+kKS9eT5*m&#Bk!f_+8pcRq2W;93C}xpD89$0H8>N7C(1%Q_Nd*awaH z*XY9R(`eh@?@h$P>577m%-UfQb;Hc=G;~G^josMl?{wIIhMo5=r-&rvQ3PC;Y3(>q z9bMaN@8+`)L_IM7_=(Z=8?%(_TSe8|_Y(E<>}o*Cgx6*hPk5W+Wy)ylW(D$kdpt}7 z#;EK582Om0UPdhI{BE&uDywjXKc@Rzo14K`QbS63|1yyV%llaqTkB8V(P9}(AY6J` zOB$agTb7(CCr)3{bnK;kPkU%dytqyBDBUC6#1XwY(_0gCUT@aTT(En%G>o3wg$rDP z{OLJGgr6_LamoEO8t|JfCDZSG0DqO!zPS^7q7bj4gigY>#Dmvvy-H+w@S0mx$VPHv zJ(9YugRI{*&GtQPvv+U8>Bx6vv^uqu%yOr%;E>Q$miQy=fQ`gy(HS<0pU)?CX|-^? zcI1-I7UYvEw&~eE>(@ZJrG0N9>4EMsS%|jULpQ#z;Bmd{yTx}F6)ED5pQLBHtlh>A z6H=qHJwp04vE4Du!PX?U+QNx>S%IY5+H&@Lc_zhKM9%3H_sW^tu%en%j$^tj`o>*4 zgWQ-vvCy%)cw}(H=4Im;yrARdP<8GqS0r)H8G#q=N+jV&F7@$Nd50X!aqk_Q5&TEu z*dvEy5c%&M4SLPZ&2TdyCAuf5XoKYY-`Z)b$-$3=6&6a&$~tF zX;UtF`tq?xzs`yEv!8hln1X@YoElJ?g{`f#!29$geHpTm7AwpT?kFaOj2q!)QH+uU z!naWN?Omg|;sjsI@A7h)M?j-5o0?(+Z8ll8p(bd$YHZ-;bGG=>$jr$ z!Nd5)ebDu0SYd6l&by9))^wl;Lc|x}QiFXuX4R z;a!b>oUsIjX0fqY7%CjSMIye%4y`E>VU@ z&^qlpCNE(v5%QjWaJE=4R`ak8v2W~w&y0vrpU7ofaglJxP@KG)qAhnJ@~WM5Snv0I z2CC0~V$Z2G`Tm^>Q~u<4!*s!ogoN=rPD|G`Vw0uCPB7?KIuJHlL(`1B?lVK}Vuk)PzI1~m zQWFu}z><9&i-bqPTpc_daQi3Rq>~)U#}~Ln@o!#!NZNN+G0=1t(Uw5T$-HF7en?kY zUVWr>B} zM2~9n$HVFBUrt|e5$w@kG8=$PKWk&tNE54{x!CogDX%NT=8GD`%?=6F^3^))xLv$R zBckY~8z?mig~VK5MzITw+Sn4!z0v;zx0GRg=S=!#MB2RT#@RRNCz@)$cT4R!?s){Z zb%GFJN5)YqBxrmMcwEUK8w)ZB>8UgfFY9GL)k!D+D0@qD)kA%LfI%h64$UqUnq$V)8 zHwNn*bU4CGGof;xg7>KQMxW0{d%Wh*FL+6u_HBOR-eaBHRj zif^jR{$V9YBsi_S{c(ZoS9~2lXMR{T5xzPa?$q=nMiYo0T*R5~>Z;-aT5y>Y=i zkM%~ssD*!q>6IPvCvQb_a~%$r=$3zR(-u9S_MGbRxo}-8)xJIC$ig&q?QI1bNF1*i=69d8)HEqZ!+{ z!uZF4ubH+>`(L};a{B}w->Sx%2t`e2B!(qNX^w{tN@?qOX)!;|^}{6Ks|LJB2AWkC zHi2f$G}YjBi%sEH6>V+>l9GfP2d>#`WY7GUTRv8im+O0nyeryMkE8k6svS!FF#M)& z-1We%&G{s;*v+Gpup>bYhOVWf;y6nh*d6^v>s@Ox=1rEUD*i$`xJu<)X2#l8LP`&& zEd7;nWj!k#(k;5A6MBV`K)>vnJ}nY@iU%~xqRG?PDVYoR@kG-S@bV8sKOU+OFAa22 zPF3NjzSr{oLB16xdIjXj4$u*T@1QLP$ryMJV<>GJ6u*-^L@Z-bNc3yHt~bU<8u2e5u11I zL_~J{HDM;3EFA9+9Jn0=gg)q6hxqnfsyy4bnw^mIQyfD$Y@2 zjVxI)7SoESHg~onK_bNyRn^N@9aB@8^VzQJ-y;t;3#5rdb8Yh4B0eNgd(ZgEgqEih zfJ$gRl1&Fbc`jC@p5JP#X&$pI3X*~o?e~bL+ei7neSF>eG_-UBIpq^Dr9XD6;}alM zC+K|!T2b5lK3gC3@b&!NV|R-Koh$C%%4jlK+NyF(qfBoC*u`k~w+QAkn*@eU-tw^O z^EYl`y1Y2Trdx%Ti0!gylLqAIm+k(UGXU$9(jn`TXkSuyjCL7${@Le3P zl5F*g$&`J4iV{tiJf8LY_Z@1?M`$jkP3)46*D-!O((Dh0@ZBeO;Nw#}`8TEX3!}s4 z1!GR*3ogSQ`l7WTD4(pd1r=ry|HRAjNdCxz7MFT^b@=QtZA@9j?aujG6IBJvsC0uv z7`@0~%aokDhT!?f>@xhr_i~k4cU=eoEV>4%VU67S0(zY5-LohZmm$98qBiuq)=Q9_ zmiOZ>S>X#})8&G5ZWpFf|J^aqNry$hZ)aasOrI^+!{^9!);-bnEDF_;P}0)km;1+M zai41Evb5(3S6^)ATMap?en)mWYsNeL+v3jewA(+DO}{gh|62(upp5b#bqHbMerC#kOEYwuzpET;o%YE;}g?UkW$e9pZ)`=P*D+rTtUk?SezhiDl8l- zEI?}N|DRe^z`U?PIKLIP{-v_@zi4bx0UBG_xVSjD1iv)4u(17r7Y-FJAjyYME&r6j z!h?oWB#e;uVM=~&4-uE>GX$Nb=L9i5w;259@h_RJ-zr=GJ&~>O|4S-c{}kE!tHu^7 z4i?}%94gSCI$Q6s<9Po!FF4HpC~lP%fVh_Y1k@*zHk_R7RGv3Bfku5q-*P*pf_7B7 z5wy91>|98R>r(04SMq%o#twlphp`p*J=`s|ttmDXG^z9|-%MPY7&*eil})}9v`i?< zmzgd6SPY)Kj9jMAXqtG#(~>LC>cPRp|Jffz{ymhZ;A0m~@IwScB6qqpc+;F>Zyf7- z*CFez1b?1Zf=YF2sH^}0S{V2L*^gmDIRO-RI}eHn^XxW^E9%R{8=@p~I1HNl4ZJ?Q ziRJ2?FasKjaAC(sv1e!ZwQ1eCT3THU+P@q#=F) za)$9bw-J_XPJR}N7yuYdW27a#_-8%LBvo7s({)sto|DgBFWaaxu16$%3vffzehV`?7RvX(`2R4G=mk2>06gD* zaD`^98A0t#0V7#R;bRwDoU1{e zqpYU~BPZ-}j*KqUFvM$a8>W6p)6}(|Q<<&K%qn?_m;>j$;8;hlG<-!fU;bQUN@Yf} z3DufNSwZLwjIEO^;DZypRL6(fOs*>k09lidcEHeV!Ixp3V`cyz61NRydK`gaR(Nzg z(-d3zLzXFAGFxZb?S}vJ&d7r2oTjMLW=VxXIW9j7IWUjIPd{IV+Es%U4JQv0*EoA? z-klKLXpU>X)lN#x!WuXjZ%ZEVyBnH2gK9k_tzY=Mh6~eX4Zw<$Hy689FoFQrB@TxB zqTWBg`+>9mi{Nf9anM1XpK>f-a@&(Eu(DznIJQ$&s9AU;5S%C1# zsNE##_^1?xW8;*kl=_?%N|lA~o&|b4>(7HKaJ<}nkcO*Z*+q?GwZ@p`MD$~imqFoo z8bKjI0}>!bxVEu&Z>cZMp_9BeIJDIn+c>o|QS9UP3LRPS+Qt!$fATF)^%HD&3?v1~{I{kpAau;xfIdQw92mF((4+Yhpo~u=B)&s=kd}Up}!x zL=R~0Er4`FJOf91ncz;NDK_>DK3yRM8s;w}?tCTagwBKU1!SertZ6+A%-^c$PJaBu_TJN-qm!)C6j|PB(k&Qf22l}g= z&mM-Pg+O0Gzd*pUENJ(}X>J64VSx0aO3d2Q%KRsirC15)Ph3`ZR@bvKd;?wU?}0`l z2bA5q6=JhjVoBO?L&^&I2JV)pUhiDyuB^)4qkD+|ef?mVV7L=}-3+n+14OmCj;}GKdsS<$SYQB(+g>^9c= z1yLH(x|YU0oh&WSj)%K$mHG;e639IDw?p3P>R0)hjN)V1Uze88S35533520F#9Bbd zbVWpCGj*gSFA4M$KrAyLNY5}qBW4&(+GPi{JY5PVVd(q?RqcHUacdnJQm)I9Oa$bK z+{IZEdbmQ*@ReCDJ7&9hyVe2xdc)13-sHHaC{eSP6g1aHTTzrQ4`=T|jLIRcul7mB zm5bYY&$a10?9Lm2#kJ6hHAIrVCz=7_f)RIlMj5Q=Lvrfi+{ZajHSvu=U?&YyiQ?O!g(EoD2fAibvR*Iz(45`z(Ar(2qR5LJ6wR>3;gH{cw+G9vt z+YQVaT{bm&?58SSyCnfje-qo{r zGatd6yF!6Z<8Hy2uRED@WM%f33D_=tx>U}_FG18dm~NOdo``-e!`!(##Smp*N!IiV zM#B)V{Y&}<6VR&I4P~6@MVqodftE9`K1ho$hBVLQx(q|H17U$uuAxMYNXYsqAZlF; z8MUoizA7@xHx2ysxFW(q5NXKz>owr!(mW=>P{QceoDpuZcWIe!x}~YN-Pg^|jalZq zv@k|Jf$8dmeCLx7VSH3|K52P)59IN|R;Mz&ge+d%p&32kHuIeykm zuA#W|21D#NBzk3(d!SqncYP>u;(>1)uZ)(4S1O$PG7HirCO=Jcdbn}+jQB=nrJxfK zqE2#D>eNG2*v9RKrM*3QKU|L=a|~DotDoAu?Yo1Am)ZTRxiBo5NJoG>;5&f$#P#b! zJBG@}WU0XaMsS_>Rlm=?F&a&aKPo>{-7buT*u-V>xJKUa zUl;1BFh>|rB>CksBUbWyj>ya!7+SBJ7aJD}oJ9;X?!2`2K4mg!zPdwjV=P$piXY7} z2bBnZUW<4V&$CeABf*@0b!)4x@tMT1vR7((VVg)oSSm;i?Qr!Z7<#O@G+q|0cg)Q) ze%WykF|Q;O-t$3EHvM>M(=6M&elghSxbDGQ`1w_)_PL%X#RlK`(7JgyMI?l%;XZ%+ zZ8#seu|HI;eDz`dnu&z3gMqd6X`_4L2fAhdias;8<9k_`elcfkqWTRfzU>UiSZQlm z>v|jrJ%%E=f}!;g)%kd({ft%ZHbt%^d=08DA=H;eG1!u9?z^fO#GZM<8V-iXUut76 z)CFz2p7Yer*;eYN5{qr)E0ED`?ehD>oB6nuDja!XkoDrVI@=V)rV4}>%50?S2LGO8 zH7oXRU{2HSzG?vv_oL4b(|NXRP2Al(C9ZIT-8xaXk4FZP8wYcJ52nj(YL+rCqzl~Z zH?JmW+GKo>%s1Xq%wL{RER7DeX7;%)C=URDa98Fv9r}rd1@&k$+O(0E7jZ!%74;N8 zbbG@iJ8X<1ABH);QJISYkYJ$oKS~hb#@N4Y1;B+PK~PgPA0nd+5Fho8U0=DY$Z(0t zXDjj?QPsISFCr1lJIap2?@|z3L*3f${Wis=p)dp$%tdgV-U?k(q>=FC5*Ef;^0=HE z>Ows6(YtPJ2Qga1>>tCZ+-}od-IQYom<=&sI#~f?%4_IU-{oq4d19cyO@`XegqbjP zi|z=B@OqOyXD=II;;|Z!?xM#?8KEB^<5yKYT(U6LR1d95gK~m+`IUBhwCI}7aS}_j zE^ozw;(BKn2M1aBr2G#Ksx}SsqqvDv3KH(TX9WS$&E~+pU|yToXC9x&P=yY8Z|?X& zqdyYTB;brqcrNoAE0&9QOYT{pB*>kDXJ?le7!kJEX?R`TWk(U-#ngFAaU;iR;}JXS zY}KZ*jHTLSOSb97AIm>>fXqahdU}cO2Cf-B)P0kg9dnOE7rE zD+J~-@c_82b!oK-AjjH0W&mFcz{QU+kE_JY6zw7c^r@m2`*1~Cn{D-Up9fL$ZJUPy zf^vP}Xc!H!rv0jRSGin7JY=(NV61ASA~>%C?j^5^yruf7q~z|jTmJhI2nXnaajIF+ z>^5g_B$08`?&$b>es#Y+tjwT5B9GpaTF2t_fO|ch@DmdkcB>m8tR@iw#YWxTRzTF7 znlA5(R4!%|`|FH(?-D+Z1l{2kXjIl1;!f2FOsB=V$N{bwz_yn50s(N*18t+l+H-@t zNH;Y7DCP-GZx@oU29vI7&ZI?9hFLNb${vC=+9mn?xGC~TJl6T(iT{bfcnZ4=mO;;D znz=L3IYI}B?Un>H95W<+e-Tn|Hq$vo`@&P;;HwoulXZsr84`G{)j zu3!46L&I3emo8I43hG|UBD61;gcpA=B19~DI{U}a2?$Dyb%sa#RF3rz(1089g8wEw zw`2WUk*=z7>|PMhvS@Q49jVOpOZk1dnqH?phsvXphL(qE#={fCr6|KEgy;b%dJdj^ zK<1bM0k?ZuQT7`9=RJ*;+o#`^gQSC?uY*NVdoX}K{nnF|;{a!_S#dT3mGCdd0pEFf zQu&JO`2P>?-a0srCtK7MOBRF0Y{_C~W@fOMnVFfHESAO0%*@PWF*B=Wp@px1o;y1; z@6LU1BksP~js35pqpP~Q@>Esk$^5=^0m?}P{rGCNH?!vTF!mI1Q?q+H63FU@=L^CtsOl3KM)J__;$C@__efEa=^WL0L>X@`6ubwB`zMcDOuJj08>aIOhb@XddEpIPJJZJ-}~>Mq5v)Z{OEob zWb?09cKBBr1*c4BM)L8ssr97sVx>Ed-#m)KuN%R?OXNanzHbmVcB<(*J-uV6axzNh zt6%bM2qB&8uD{T|ZxN#NsNE^yJ;#SE>cQbH&!e=PjA?y{ z{kcf6g}|2Y_cZgcgI?A)TBoANzF+v-W3&sLJMGo|o0N}`yG`G(eGg+Z6YT_hI6UJ- zy%qw}CnLb}AlKsBa1Y?NzrDJ^sb!|Kdye)vU8fw~jXTdML;*@3`1Fm@Ych$6O?{Dl z6_v@74gN#DzdJO4_} zmRk5pv@>;yd5rP)tA~~o%{bB&i4llHHy(;DbWQ!IyHRg`f z2W4>v^Zkuh(;uPC%aPYTJDEN3d^k@*56l45ni^nRSC^G)7aiw#_~dKNu(WoyDz{04x1!T-^ab?r zK#d)(iDiOHJ;rL!OBjc@eeE#d{kQjaJm|N^t^n99S|>z$qElP2-c|iga41JdM$&-^ z3Hp9vw7A^h*GK7RS_60fj=+!Q?N^|61{@Q%xjVzbjRvQj)HN@+I`eR2!k5GJUyvsV zf)F4Ty|4E)Hf8N(%ZHkiku}@tiA*<138~N< ztz9`=l9@1ZpyW_L5GNg+vB_H72z+B_tC^oV1*R^8b1E(mlIlQw1!rg0b> zMj<3|hMf2nH`@;zPZ~A=r-$#$-h@Rz`0ItgUL_eDYSdR4Sh`HO8QU#6{{VxzlI=DP+eO8tak1z9X_^$W1FERJ%(Ip+{Pj5C^Q(`mf z>sAMcjMlhq4`*KF7C}#RIo~>Z%zd2H5{{*A2(or3lvZPBR)zIzX10VczuoVN9O=Su*ACwuj1X8EiRP%M zZjscXz#ORE<0KKIGE2*YcO38ghRo2$9R$Lcb7OX4_riJJZl&2WP+`M+6WqE`eHy|}UJjRf zxcuyTAZ2&t*Y=0owS|bi? z=C)T=T6?&gipD&|iMprq{fg5Bd5QchN8SVH%cnbDS8CPLkarJm>^IG<3WV3HwttyCx4ebW_}$spNWVpUqq7fe zuR8VVqPGVRxY-nuKE}rf;oT5&Dlt%zRas(2> z=TFe@J%_-qn1$7YR1dBn@PYEn^Bwd9q~^EZUApF5LM~Fe-%cqZL{m*PA%qP*52fXD zHW8p|VoOV-X1gO`k!FtQ>H~zv8rmlfFJ3R@9qL9r$`|+P*R~#DE6*d(YE5PmRaB>5 zWPob)WB|eiz7mEfkowWHb6`L0;ua9Jx4=6S{fcYGmp>6uu9;}#&J9070JmT3GqC2* z$Myuw6G9T-&?YIY0b>V0rLr8X>pjli#$@C%TE0#F4I9$O<%P?49++YDWf`UEB(GuZ zuB+_;`mhbRu0f2GwUfVtE*r6N?{#ZF-2lgchZya$OTgjNj z0=ew^*bMFyh)sa(IKK+u?Fj6MW;r<(pSA0ZCSVsB;Wgiq*bAOvp$HIm-9N>@82F7X zdrJasUoA?&Yxjft0q()!CUYD4FSp%ri$s}Al?Af44i!8_hArtDFMH@nlP}- zF!US@dn3FbKE9`Js5QDD4a+L`aSi`~nM_Uh1`s{EuZrL1BK2)*J{&9kq;tU?gHOdw z8^n$hs02rx&>ghdRs6N{6pJdGw4`JA}WPL~zZBcl} z`@FK=j^pD)>d52vf|q)={0&IJZgHS5DbVW)U9J5}1rWWTdJL^3ZEMRJc&L}8*)|g- z;r=|q23RFea1tP-0~Rrn^0r-lp&yV(8aX}MmI2lkpas6ARlO~ifTlW$mYbBW0*iK? zpUoKr*~GQmb#tWg1Nawm*IV(Y{?zw9@1Mzgub)Y>!GN|9%LSkpdk*O1LECYALzw~f z+hw%?3d2vp4`!aeet?AAI>)WZ@BLgplkTos;%1i;wzSx_FZ_WC|;29Fg(zo-By(@%v1>2o7{_4wQNG zCUh+FYc` z>nGaO*G%#dzY8_JH>&JzrkV!7oo2mX_SxvbAkp!=EBAaF_vcsS->L8eq3{0c4z;{T z7+k4&KIn@PkZ`v2c`|j0lSU|Dg2!4TFg7ozthZ){aP@jGEW#J@_1nU$({7kvlSV?~ zx|Dpf2e>_86xtBvxDHmFNbO40yXHmZeE^7R7L;$gXY{M(0K%RkPoq}N~! z5Culds|rDrCL1~l;6wNMt*h;*#ooCaFLugf1~-W*9-lt1{z_rHZua)DZaZ;AiONcMdES=r2^8##c%}X|^AP@){b~SkQcV~c)T|EkG&{QcR2MleyEcrfkbe;s7Smjmp>IC6aYrEAive8caABf;LfjB zKur*{e9rWjeK@`nhEWYt1&MFkS!Ic18y>xyK>eTH>if&y_RzT=niU(u2MCN^D4o*Y zg9h58+cI2e>`$l1de??$dT7X$uG9x_V5GXz%&%Gbq4O9)4rM?lS!lvI9D|P{IeaNo zJVR%mf#+J@+=2#-guUYKYVjku>q#`tH)iqi)2+>~vgISbA0#G7j*%uvlKHb%9N9fl zy8+AJRQ*-{hVTuK`ZOK*1X<4jmKMB8eDLW8u!mkduk#8WJ*+vWD#p(v*NtKYD&jZ9 zW-34*0q6Zv-{tjs`R_kK=-(5i_3Bjsb=0qSe3?xbmj02=F4T-?;-ikXxvCE%8f zW4&1Cqm^$+`*wX(hM;sAz=3fK>;Q+3>juMfnRncv+7IBh7U(h4LwTRo#0qK3LV30Vbcf z9cV#(GhR*KO1ojbxd2m3MQ;0DxawVzWNgp6abEbFQv>^lGGY=kIeXrqda>z;m)qf; zY96I;nN3?&UZh(xRC31g6E=#AzgECHdV+hvU)64q1{uwt>GBG+W|)IjJJVGJe8z`I z?rLU{R?Z&?0n7b4D4Omw!)ukgc#0n`0X#lLmYv--JW>FJCVi1yaoIBGqxp7-i}GL zwZ3Ma`rtK~Q6dt1c@p5jXz0bqo2u(c{zdA1&2Ckbmr%XcM_DY1e)Qp2onfSpk>RMg zUJ}7x*ZKRWffs#uvt8i)vf-27jnv-WjBH)NDPsF~eRDagSwB7<&$^FTZx0`2S>~VvZDE)<4U*q?e;+J{OFdwg2euO&I5{5LjU3hg4n13S=R-x#1m`Zz z_DBSFH7U)FTtG9J4e1egS@FW+ZUiilwb_}dgFra=tckwh;vD6^A}7O4kGoGEKm9F1 zTooSl7U>l&?xF85*&JRUU|_H4V$G%c2MJJ9YXt_KPK;J(1d#`7LN&Rr1);xlxyF1K z7u{pSzdAGU?4?Z~2USJKl+vyfd@J$Zn+(IhBSU=)x6cmrzP+;ETx_8&UEft?j21Ee zus)10AYZ15^pko9f3SE9>=fL8qgx)#ro8FSC^mP>3~wAQZ0-2&rnf~!>Zg};DnMWa z3^2EOK0crp<5e=xT&-OtHnkWICgh@Yej1`)vMZSh?ah<{yWOP*u4ayYP3r+HOsNU5 zl>;!8MG|jWs5;V7-Pi7FwaWOdk!aOGDu)Qx0z!ek<7hR(zq?6@-E(3Cpnrz~W_o_H zg8WxF{vWLIUsi1WA!Gjz&i=KA>t8uv2_WYSMCZ-^V(6V{l}yZBtPLFhfnfigZ~ZsO zFVo-f>wiXm|KN`Q49))e&Y#oKB4YXrL00-_4Eew%YWkG|LpPiQ~htzzkhz^???LI(ZB!xLj12mU=B{s|4S;s#K8K` zP62kte>ep=I2r!IpffVFa{j@N|HCQp?-_KCzkTO#P5}lWLdy!|zF9em*x4EXC!fH7 z;JW{yyZ=D8|LI@{`bBIppW5?N&#qQ zVEGf2{}QtQ$!PJfVe&6@_CKH6|GHH;fi3Y5)x%%QBmbd#VB+{kv#_u*{-ar#*nk#@ zzkdF|Xcie0gTL-uAg=x&)`$Pe62Qg^v;+XH3`{`L1Q9zE$G^4`%YP#Dnf^ZqYX2X_ zvzh)M!LynFC3^lk&oYPPat$7mdp2Gcn%xCceWA6;H?R zm#dqak_De zejmiF%bT~3?d_ghqg}E9G|@a<5xJyRD*JDH!vV@>*V}K;m?hpHa(-uh{BKj2yr=JP z9V0o96*gq3$0OsvG2g0>J)iXO!iYC8NxL(GK`WvdwRQag3&s%uf110{m8?k z?Z3>(dT&Q`^&$uz!+i&2(rUjf90zkeX69`5yx8p0eC&Jw9(i%|3)=oo;{3r8H;>{N zIY5D8d*X&C$9(j9iJ9g)(eG0!S7K?W*CDUsV!3>U)L@gLsXlH$_%L(Gq>YE9;i)MW z<&8~4JW zMsDb$I~=v}i&*z!ht^l|xOexHZYPn|sqHBmkkrQci_})TsTh8h+6XsH*uLhuHhSW{ zeU)gPmoGly1WbS}T}wZ&?~QiT&BtxnduB!%sSe2KMQazX#%H;I&h^b8eK!+-?)d$K z!2z5IlY$-Ma`z>GT412vH;I%{r~5bD8^eS^I{tM`C~*o>U;hCA^jLUX!{_ezjgpz0 zOa5uV*YW^((~bCA&=Z0-nVtOQ$>-oBOonaCgwZWksA_@E;#49C{Kj?-ntZ`gKDwQqj{AtEuwS+58x?)3B5_b|Hz}G? z*8Ai@!E-T&`U3Es12={33=ZB6{RUI7J}Y6-#GYUrm&9pDk?_u_j1T`VfpxFKuk9H$ zX`1P+J%n6oK;7o{I8DM%YffeApz|PAMVLEy6hT zq#W$$>@^#LwWE(KbXRpLMn^smWM!h<{WVuQ!@>bFUQ(n{XttNX3;3Z

6OLYCW_N7CO@cw0+Mw)3r6U!@J`g zqlIX!bru?uK9MSRQ(z^{o7No%Ra*bKYA|hC^D78yvI+}3$CM|yg-ysytgB)cN-n*9 z0ftIDR{;0$geFlTod0w`&egVMwhs=Oh`U65=-Wew;$Yr6BwKN}v!yjsqhKn7ojiI+ ze7)kaDo?kw&$+@>WSGxS9aA+ky?D{l*2hlR-XiyccxsTVFLfyE@iB`jrxqSY6s=95 zz5M5vCB|`<`Q4m}Sy14%)~xg-d|XVA5C&>lE!^IWiLl{@%Y_qyoil4!Ks~48Q?C!u6PI?-+S*B!*w%D zEo8MVGAHawC)_w@pnP^zHLyg($MX}ls{*>VtZ)T_#{Q8RbXE`T<~D%UK4 zVaQ4Az`}sEPAV6}O-D_L_aWWiJI*nek0%LZ3KZCi)IatwrUE@jT^-(3_e9+W?>mQm z;$N)#WWC8$02MpK!Yw-Y%+5@klq1uo3$??nrH`_Ipf2H<;YF#_IwN$k=*jW>d@tXq z-8X!?HROs$no{7z`&_}R8;1hq=eDvuw&2@5XMSzg0?Wcx-CQHdx-(DE1yz-yR>0TI zgw&GAZI$nHxS!zG&Pm(IX>1ho3I+8TlZ3pm8sh;N8n|jFR@zl|)y$XLy((L2tJGyb zG4ZZ=xKd0_~?1sjqtVc|?@E^I|Jmx+A4gG`2oLn?b0#dBRUt*P-$e z&srFw4X_gvXO@u(gl7n>lN#{`xBomdPChdsfxFv$Hes*^c{(K=T+Qshl62Wx~h&l zJwKbj1ikn3-cE|GTXZNKA#%R%C((;gl$x4Q*+V?WOR+#QX!T>LSgxZdf+v6?}|T@v}4wKD!tAfmp+Wp;+BvMEzzk6}=_mZh=^01FsMU7Lf16_tpX zk?fc+YOVb`K4a^_>bl8Lc&NyWY6=<9hq31nIP?_`&v)r5SPB3XF#s&V6S30D%5F1)ds{uq1mn=j4|^FYjV_mr-_nwI zC4wkV5*wjJM3Om24G1tzeFa)OwqQb&j?|=Fkr*k6Ay8VmsOfi}E7A;jTHlst*x4~> zNOuClB3is0%2YkFe$@=F*eu@4~obk>xvZYx03~)N&VX7JH}^A?1n8h>{h@_ zB*0STObP~Va&GixrB!0GykE_DuUKP$N!mBq#R|i)umCr+UmI`$&XBUJg}|(If~FpR zpS;Gi23q8$-Ri`#451Qhj3*0NOv|adS*VkJH|RvI8?+Gv+gwQgqt;q8D0@_ zush3I+oM?Ox_BYrx?2d!HlTm$c1ByrV_(6o$f3((HF4#AqZr2O4uQ5ch%LfhF~1*2 zJwh>|7aHQMN98hKG%Xe|n&-LxH4vt1Oc|D6HImW^W6D4ydNAHQya&$AnC7=Fbz$Ms zNxRu5X{@BxUusS#3U934Ul8n8ly>kNnjN!LnLrN(E@M_{ zf06YW`&`E+2ktyb6F~wbd%@ zm$yS#T8(yl8Vs+h z=%{Ejs1ajoHHvesfydIZzvdlGt;-}LdGXXr-Bl77m@<*~!2*TcnK!nI%dh}y>qau6kjYkRWP;+oZPofB=YoixQVjV>-bY@hD_B7!YBXA& z@12A)^S13GNnP4xyv6(pSgQy;5>JS1 z@{CNHre%s(CP(l@049N5RVjUSYU|Q8_D#s#O+Qyz?sUXdZ)cqiCzHkjU0B>-ibZ{V zh(d2}-5Q5D(d#PL$}x=Q@hEltez1$t5iSuT$$)T+tK++!%C}Oe4g&ZEsRgl~ z_E|wK!4l?U4|?UPsrKu5LSqAb<%QvTU@eaaF(zQYuqScj$h1%qS}|}ez|Oy7vdG*% zi=6i0m_qaxU5tii;HRMf7BP&tDWUe@^F@ZmuL~;q9SdX(!<^O#QRmue7RJl?YG{L6miNj zxnuiOO*Sg>ySmyVt*qgsZ*^so9lZX9R(xCEnglI`WW(m9u~K3K6tM6+WafJERjU=r zoiL+7>#R|ui(!-3YrfQMGLcUbgAq=6RSve&W<@jn_H%2xmqI6>G}c#uQErBL`4RM! zxa^%B+l6F5APll}LD0X%h*L34OA4<~}15)}yno2ko=kUCuT zlj&J3A{~?MuPX&C3&YX8R^GPi63pgC={(ZRHK*z*RK0~pF*33WqgjN>`ps{H!~8G4 zva>FA$W|2uVac(RY_a(kcFg);Dbr1fO%a8($+`;M()lx(`vb7c<&u-L=<*EYMi|0O zZytq*c5$cpAB6LMwNcw6P_d@FkwJpK&@@xPB#vJ#3jiJ){aa*i`KF+~uD(&f*?nO{ zFNZOMSJ`obTV%*xf>R;A4W=R+n?^6MMb4nw9Dv%ucQcnYOqlE!DcP4z+=3Hhns#sG z@5_C^Njs|ShV%KBsYSF^A;6oBq^{+gOX770<%{)O`|Us=t7vT)XK@<7fyX|GmgG28 zH6YIXSoQ#Rx4=iTrh{jbllw9Nua%k+=SK=({u_4@a!mpE^gY!KI!1lk8A6(Jmy}`V zDAVLec1Jm;^NCT^SJ39*PIg#GmL7j$J5hH%tZs=k|?(n5_=RAYFw|R)+59y1KDpx z-CQI=Xi}Qq3|1it;bU_@Xppmba7>D4^THv185ooRg+2&l9IW)trN0KnI8vXC6Miyp zF^V&`qk_7MXtr)XPA@|^^soHrS+SiSf_Bxwa9fc$kKQYLE2&~wCQ?YQ3gPkU19#cc z2;a;MfNV9&())G4$|HHydVvU{A{;Iwq>5#?NIn4 za%C9I>kz!n48!npwbwZv#?}6A;3P{rnb5@rFC=D~GCSINscGd|Q6_Bq3EpWnhSofr zN!dwDs&cnZ-b~ZEOoFSf#T~RSTQaauJZQ>fj9yXN#O;aPYcwpjp}Dq~_FI5sh)ZYA z=^XsRAv1&P+*;~Z9edDV$)Uu@uqEqbMwqa+CXed*v4)F@yL-2X6U5@D92#>}H~G(@ zJHGD1B+%WDKMRIBD2dP4S$jG;*2U)Lmj(uk>+s4p*oIDibDfJ>Aex+J+lc+7c$-w? z)=SE{vWIE5phZh`WxbWlOFUaS4@HB;d$%kz_2o(b-Z!{E*U0-!7%8Tk2 z30={Cn{}^KlHrs(jLte~kFQM$xGoNzlW$d-1a-xJNejrz<~@Q*5~-OIi+bx-=E5*e zUmA?S?sQl9#14CfyxkYe0vq;%?1HYuy{iU=h?8smSwxN;zUz+rWk2*Ujg`g>@_M-oTyaWVa^?%X87}Jt-AhSc?$fgeMyQsO z6&EtpgYy2tzE_n;$rG|0h|mJhu`WKJ1!oP{`9Hb>!**p0HC@(5y;B1EHwJVizde$dVOsVOPGD0tJC#vGa|)4l`Pr zRSx`g%bB;YCd>;2kwxcWDJ4oVunF~BWk-j=ToW>#S*05ZpdJ)M%$wDDT*SBpqQ`gi&(pblc zFuC}}l&@14R~M6Zd>$Xm#k9*&CKbT^?R$+)hq`T4^7H+B9^dQZ`|hE_#)nrOWre8L z($BZ!1*0hXw=VU{$fK9*pCg2PWiL5=NlRv>gfmdtQETvhy)y>%%* z`cOgoaR0cn1MvC^~?;c8X{HV z#r~z)WE~=v85GDiFf?m1Xj|D8qmjF{UYfqHU&Zhp;%E74ztWFHKe`62Oct*Ex&icT zx~bOev3DM^_ePb9|9+c(^ zg1jnS%8+8FJ5GTw?$>uSwdahtbkavdBFr#dur-oML;0Z4`+SxeX3v*r`n#boa1QKS zJ({7}+e6HR9|fA!N0!wjx1J(3`!ydNeT0e#pKJH2{NV(0J{@s(p0alE<^N{AaN`)i zI8XAa6sCvy2EqpC+_oA|RHV$ooo(ltvwqgwW4!Il10SC}fv#=0WK{+kUxF68cJKRE z!Y+39eruqZ_x1U3VTPaL<2@(JvcOc-<#A!;cTN*4CK=OA7f2yD0@@-V^`ePLdL8WW zNK1sz&>0kN0VTYz*^SF8XZUAb-m2mqz%?Nk}GM~lCdYsG_FG^ zjZB*?*kzw3q=h$JAjOWpR+F+Z_Gh_w`Zi>Pqf5Hg_N#>&!LGbB4K+_N@0&TFD0#60 zchyhS_)%ZKa=^@C!q#kl0@!Hb605g(!48GjDXMM}+8M}}Z`0^u^Tuw!YIdVYNh#TI zM6AJ7)Ol4&>(){wsmDdgDhy3HlMtk4k1g|_bUU_wpno1U-Qq(lwxM1#X%V`HJc(`0 z98J_P%r>atmvZde;b!ffkLz#Xdx(L*(5)%UaH%)%4BN`aS>N;rJHVNOZRtL&yxR>W{BD;z&eN)+vGTfPS9a^;${+`rQOzy|;nnD%@>S&F*D`D&)z z+2n3dwme8x3-LVgw>Y|3M-AKrUGxvo+$l}bYP+Wjx2`FUqEJ_Sjd-?z#Eq`!pS@90 z+!32+TbN2axI?S8UgoIi2$aZ-t?vO$q`W3_*E;HFpIDn92w!t;2z@L)AtV=65gN*M^E=|3AVya<zIGr8L6^UJI(bsX-*#+e z3&{&{G2?wl1KW=}RUM3^oe2#(U(aNwJQp_3i%ns$@cHWjG?R3EXv9vm`NIMCj!Cnb zTbjhx>tvL;{sd0kC=5SUuZm!JES*0CjsztQ&-6$ZLlw<0=h0cF)K}`VQdndA1<7(o zGcjmAA~ge&9dRsW{C)Y&KK8Ir9wqbNDIna~rGD7_hLYz^n^lfuv~!zKMk>Bp6hDqL*pi70JgDCnQpvyE1}_Y*sx8k+QeK1u7K z_nXv0OapF)^sKj^d1O_eaKw=OVPYa!Qz;iHX9E&1hv!*sQmr^4BzCCM){&Cog~T=w zp%HS5Q&oo*bFWe2z%_?t*OR95W9cf>FI)x>s#Lu(BZ!uxp<2^cc3%x0N%8Al*aGLc zI*uX)xWL6*CtE9m=nt|?E(sKw*DC`oKN!%~u|0_r^IwAt=|;kyse)k4u2Wqa6j5zM z*Op(MgQ2b^-RalUr*8)1}QMW%*xTu zZP?I?EB81CYe&B#LFIneTFG_RSbpWnmGk`)j{7Ces^xd`A+4I&=1AcoM+Yi!^G-;~ zZGYVe94v%+v!WnhAH>qvAZ+Ln)pj*#huzWe2K;MGw#?etU{LswS+wn{2tIO>_TeqiyXHhsb_%)R)}6LB*`wx$6m?Qy%|)g{U=k7;~jBR<^a8nnoa3{lyA81`xyYqkHSQ+ZN?C5a?(+cJfAn zDtfXZSWI7RK*jddDNWI_LaPIRmf|YXw`+&h|M+R&e9D1GDp)S-hbT>T@XG6k&+9@Y zGCLAnAGJkamXh?wmNaoMVg_DL(M|Wp;Lup4)1J&k5>G#`8vvEVKE)x|P27kshqV^T zq>yqNGpouWYi^Zv^-U_B_`yj9)wCdupN!cgj(4&z$V>wFad{(18l?WSYbpof8PG4z-R`s*@0}mfCrK9HNVwI>xLhu~_c5n1~R7xju=6ExK`WGombJy>uY} zHjeBUe?G^(P;8Ug@5;n!4nw+K{;7Ki7M{I*7m(M=)?VRWK*0bKuadngY;6DG)uQ2Q zihSrj-HX%(&64vtdxrq_SeZ#$2o8%=Db(Zu4QF2$$~ z9MV0qu%%LU*Wu2~^kY__Xl@;bAdgi((C-Zr5nz}$IBeV(b%}QWLh-_>ms6gaK!)3)O<0&_D z>jY^BY>L&{90lR9IQ7pfK2F}QnnVp~#l$iSTL<81dU})%=RdV*WOq=mjR*m5q;euJ z`ihZtOJYl({F3gHJ}Dq*;`5Er{LW+V8)>G5VYP-aU+~dDN*7$zR0kzzWZj8lKGKfB ztZx==VhrgU;%RBhERKh;<7VJ6M&mtVo)LKF+FF~TU1GRKoNpplOgG#y%sg7WG$1xj zsCk=ldRq}CCWKQ_P@lt+E>L>`Lk2vSVstem>m!Y^N4@M^^tz|K2nR)OLKw?bh(NDI zTjNbUuv88tPuG%lV>V;}EWOI<*YyiXh4f4J(+*AyZh)KVvj-HLWtHH< zmFIB<)v~yzR+Uefr0oZGKfrL-L5g&y+h$6llP%ZzVYwsQFfDCagTx4T{HH#{q#BE) zH5hVmEt9V>iakSQKws5XK8O^VSSdkF%&+-xicC2Wt55BukBkv@A~MU&Fd36C0BluZ z8Z=A3BYa*-7xMnL{epDzLW8&>Eh4yVckw)sSrE0n3ZQ|_x}iSC|8`yP^zvK=5;eDk z$qV{14BI@S)0TO1M{*|8u@UE&uLHBiwM3bd!$q6l|?u*ZI3LUCyrj1`UKRa{U)N zS(*;PN~a9&-w zEXr`TGjUG87$^+z$lhSlCmS*k%Am(XX3zV`{75}#*EGR`z*6XLl0qf~pbaK6s%PPD zlUm!&)Ybab=Bm-v*UcP+wG4QI?+%2cp5F<4gOZ zgnSMg6}&&RI5jm(I`^!{{y0IgF#*N>ZG2Jb(Ix!_*Z&Hp+QSI}UsBD{uUr+XSdTQQ z2wW5g3tWE^U}E%s8$H#X^3y~pH@>@2|8O94Utz^hv?$v$Hcj!{w*@U{1K0gtg7qP> z_Kr^&h_0c#hvk{8_5v=t^N5*fTQt4H{nBz!i72w0%9pU*bi_04%XLQfZV6Bu(HjD$ z#6gZD)d{`dekM$$KkKj!*xZ4Cp2p-ROHRlNf4Z1tFF$%&RyLS$CF5)$ z#f@T5kJ*}Q<*+hd{;U)%+Gj%#-E#Z>{+??wjnFhaWnQR+#9HdO6noaMP`a@hOEXMZgJu5(Fx2f<-v)Ca9mb7Tj}Jey z{e3r@eA3>q$DLz|=$I+Ul7Hbjw0V@7T#nMSjVN1_Tjc(QkR%y_R%FvH-T(X?k? zmbSTayV4kOu;v)l(0%E$n_piY|BHvfq)~9+uxszDUixM=l9`iF$a$Cd^;F@3C6q=I z)QN3OVvas=YnY?iU!(f&hbi#oFi2*vEgXx%+dHV97NMlW728SEsOcvsu7?o`kO(Nkwrd=Cdc7;Cwc|;Zxo*ODiu>ZBJi8 zsR5Cmt1wx?CPa8Jj^vsI$HqBclV@NVlIIw<<>}B*xBC3sNWM%R@#uC<3G?o^-i}vJ z>Guekd8fG&S(#^8aMMFmY8z`K_#&oCsW7DhJmE6 zo0NpW_@>R{7-Eu?rN?t0eP)B2u8Zfo(qip@kMmE#rhDN{u=L{(lEnRFcAs2gab^oF z_84F{;#bC8VbXNUrJ1~CjmGz=A9^y;L*va%3@}=!n?P+h3;Zd6Xvvpp5Rh~=UF`4O z_x;>fO}b^JwQDZj>tfwlk>cf5F0}E91IqH)Fg$|1UDy#Y65+C$Fu&TARC~dp$b@sR z+sQeTRKO@Q=3QjAR6)6>95ko@SeoLg=PXJ)^-9McA}YMotj;~PO2YQcom}%{dEE17 z>M&n>iyYf36|_l)&i+Q%T$%0rL6~o&q_hdEX?hK|j9EoE!}(8W`mmdfYJ^%psX3x2 zVat5o4oWdsHwP(D@81?dk^4c8YhpMJ5ID)~4WDKp1u;%ftvIxaj?L2#_lXS8x(n;+ zZv87L

EwQ?!{G@uHbA+A5-hP}aE`R@(0OrlheSQUl1=^qbT25a#tSv)AkK3t&cy*&Eg{eZI1O%v9!Nu2>&eL{{MH5 z_0J0F|89%N?wRWNHCFyi+ty_AYI#gK8w2+@$ngw*Lh0Sd~`-qetUs-E(`^U3R$1VTmz%(oPDI!-!%DMtUx=^L0YXc^g72+YjCIb@Dlk$C4+l zP7KMD*c^>8bU^x|T^I7${gO5}s&jMod^QuJ{{HpKucP}JyZbn2^zGQ_F68)JEX_C@ zEo=bh9vqF|52Ohf<4ShHWooO_wTDHvWa)|!X}u7*I@X=(;_;qI7Y|8vi#AcTEgA#i zHFib>yvKT{r{-s?14ni$XI>5Abj^f*-P(Wx;t2leFlf^dO;ET%rvY;EH{tGb1(b>f zCLQOAb?3Suy_=BcU=&wCsu`YUw^k^N((49JDBN|W9_tox?Ij_5ehL2dWAzK!dtbe; zx4T)|>A|NbQ>3M9z7Hpd#%?;_G>$so>?otTz+%E8or9sdb^xi+M=|<)6Z4yvuWTkK zN_Z3)In*^uXgqL|-KC#&Ldo;xi2K=)8tv4rllw<#OJ@uQ-8*s?i&Nd5kT1c!)9ZZ; zT4%UzE=UXYwn!p&r)oMOm#+19wx7$_!VIWxgh&-QBy(Xc*M6v1n>}jxsx*<$ z51Sc>%fmRr;qZoc0OcN(;sdtM6^~>T(Nsredz@~;tL2P%g9MGEr#i)zbsY^_J0BPb zXTDt*Jgqq-2DMPo)?wmZ_54OmgJ}RFX(hG}a zf3ZQ(ee%=8aDH`Re9O>pf=G~^=$W(Gx|OiL1QW{?AW=o%@coikzDM4o(%`VPf&2Zu zfO|C_%<;4-ZB4U)!J1`G7oa^HZXOaN=zPP~YD2Qi88xgrhQ#sw9nSB8t(pS8D_WhH z1{HrTrG9K_qd}?A3&NWgU%NF513>=9}<=MN3l zuhZU*nG^9T_fRfNJNXyM7C~iEKf$Tq7BwDVH2hEF3|N}GtWt7c7-2}@^3W-?&SRnL za|TJ%UL(IThrPxh$GhhZ9)!gA>GE-PBPv_Ua5yE{HGLMuflFeWv z?DhI>k6DaI{%bvAqcKP}hb=Nzx=9Ub8Jgw16ME&EI1Y|AKqRpF7sXjI30p|##saJ# zpE9XG*6tWm0*Tdf7jz-IAJqw3@}>H&Sv(qa@z}{pXB7N+24hepiTlgfF^=in1P>;P zs*SeVBEgloz19*5ZIyh!OTv{xF^$~H;hVfl&M^wYU9AKZjMZG1cwW~u zUBKf!-DzS(3duq9%A???w@91ssJl2BrXNeqwV#>MgBbep0#KYL8_optrS(=!YWL4L zRE`v_<|(P5S@)aHWkE6Ir_D~=d?Fn$5*t8M%D0!!&R1-B@91-r z@#H1q-73N?jpdq!jcQ2w?KjF294A0}A(K+lgJoj|9^?T1pMUTNy<)cN`-x%Vnbe{A z^nsV$y6b1HwBgn2F3n`btO;`N(J((PRY@{bj`{JgX`)$BK7%gkn$YBBz7e>+IzZ7M z^{o?IEX5hiNNR{t>jtaq&^K$F!ohofFIV0}CZQHhO+jjSE+qP}nwr$&XPoHy>J9j20lbhW6cK(2>50&@*rSjCX)>6*t zkW^CPhd?>???>dZnLUX%1@EO=$_O)pI;PjC6qcpGuU>nojCcw|)HQ|-P)z~ir6HEB zJ0q>-w$DV%Enx)O0hC*KkwSbGTf5Cx2SC5m%S3zZmuDa;k<&@ucG9HJ9N-2O-+c`; zN4dzqm{S`2q%_AJnfb%pzBJsZ6;?@a-@5#?JeLKop|JJ2|Zo}Lz z-9W|!?zxfDQOq_ifeWk6H*EQ-OfGU?pF}YnARm~P;0i~wzARoZ|DXI(-GwYbcTl#u zl~Kme&V>52T_38*BVY{j)Zf$E<8$vnbHdLKfIKE*Ypu7-Tqvi{ z`;aYQ-;u3{;n*xA*yELJaf*{OA9hA-@WA9OnckR7AbB@~VdAOy`PvR=(C$AAE+@GX zJA~bUs>1XKx92SA0~(&)2hw1lLUUIOWSP)nw|qzGCZ0Nh+~q~apQCc}#I1gLZ16G1 zJG(Cm-J9zt*a3m-u+R_2fT=4$(#%>`tR)sqJmnnXCV5_&aqHlWp_=Uizj=7g&^#8# zrBh1HVWz|G8}wkK0%I!zTF3a_LcnIa!n1n#oBdo8p65xHk#cCl#|3_dF}M!8T!*=$ z#w%mM&EG@{WAF_m!MTa~mM>r^a-O^=QS-UW{D7JXIR9U93k2(o4=BEH@n!XRM8#-F zp#$GZo8qr@KpF93C8D6QX01NA^UPh6`0+#r$LCL0s2ic1^6~4p`Z!Z{h`sVoUDu>5i_Vn5Xv{QFyM3%qGvw*F zMN%kcuNM&nQii~B=8K`}qU25%Y186(7G)C?xT3W( zra;?AJ;ld<+2yv`SeBaU-oPp5)Xs#0l`1_r=krGKkRySnRF%s6JI= zldv{dSoO~AquGw?Ocm*w&#iEm@5)JaJA@~5Qn^vedMORP1rR2N)-d@c7YX#XdV+j) zM0ojJJVNtTreHX@$6T^IQY3JheCm^f&23Oxoi)!RcFH3qJ$bnuZNOOd=5?*Fkhxwq zYB^Sn(8saR6EOpxY!jw^0bcx-cWFD7-ILO9I_FiS(;lFjaQX3hzIRkvVXX4Tnl#&l zGkS=yl^HSYQaCyz4O9cF5&wQISv&3GHBP+Vxd)w1-2h>@DvP@<3ua zqpqa|8&F|{yDRLxF*r-R?EcPlzP{OazM+b=xE#z?F9Sga-WucB9DDse)Ev5h`rWR~ z+QCdSMebV!J4YWm$ysKcs|vC%oi+hxe=>~OxZS~f`TO7AHnNlvYLBXo*U#+9m&FS7 zn>cDL$t=*t`7GasDGZgp^;t(yC$>7da`2|_P4>Z?W8%jKcedpLoU+d=?N zm4zjjX&|6#yph@YP;Cvg?Wj*W05mmD!b0R@tM#y zVz*~~Hg0<~YHDFjlFf$^PAe<53HJwYx%kz8A^}cRh9Rl*yS?7b+ButByeAKRdPC&Uzm3ThPo@ul>&Ygkkhs*FD;L}Mt?2JOj zyeB&`h#2^G$BD-47Z^D0+!Z-Q@7+Q!pHSgWKlgD!FEnp9VR*zPco#fDakop1<5?vp zznmo9uc75{H|pUQE#&!jzp#06ooKgAF|If7g;27u3ha`l-p3ofzvr zLMy`UemUNQ=WE}y+se;ErnbgtL3!FV zim1CF%5oDHr*jZ7O14lh4rU}>Xn$Tz7>#ojWslUP`rd>yJKw=DLUEg>|Lb1 zXUE5>>L0*Ze{gdxXAXl(i$U}?--z9210)D_)XxJXKy*=UoPyNa8r75M7oX7STa~%( z5wj5=MWxEzUyoqLQ!~}jX+W>Yj4Fn-%6~MNEP~NP^ds#wpFIAwLR$y=>&yey@S?h3 zO57GaoI+C@dT4?WHr6Nj$P|IJtJDbI^lONhYYSmJp#8f%R0pe5MaCNTQmdXT+vk6B zoIOcBFW_V5Ko!--GklSoUfeqwO1le3IO?bC-m8<>IqR#=K6OdkN?RMl^F>C}u^SGE zDdLbMK1Xzx%U*{+pV#eU>fQxhoOacE9l%CyFe8F+X5~9gM!;l2eB6BQkQ1C?idD!G z$8hX%;yo++doBJjB#+I$=ODQN^R!Q1T(1c}4%oRpPKUfP*XvxzWd&!#iPgHRhj2hZ zpHn;TdT9Gj>?y>NJW;7NfmJ)OUH4BdzvXmxNt?)^pQA%r*J1xETrT=D0(2W{Yp0#C zR}l6G&W2`Q*EZXciys&g0gZ%nfc^JL7mOBasT5tF;$YOahK6vmYDm#NNoXJCcXU{w zOxzl71rcnf`IL@U#jFoT<~fW$tDd0yo!XDUNsgBf>Smj^7mw2wp(cjZqlc|W(l)Um zHhpsmRjFKS303i@Ugz&fR+ej|co>DMf@2?cr5#{WkR`@Z&+kxh6qC_z?%LI|6DXY@c_-WQs*n%Yj<7+9BUCV;6)m6;7&K#yGXTmUrw23qqw#L6g|GX7~5&3}!${^w%*@7(r(1Jw0D3LyRubwZZ^2kQEdTmEmLE_znh|EEqkq_q=M zAcEk7YySPqOADBRn0SlG=C4UQ*2v^(S_qHu$AAnCGc=)K^gfPzddkmj%z(H#GyJ-Q z(kAtC%PT4>y5HN^U27^xHb^dly+5wDE{esMKb!`>TRUiD{%vjX;w*IhBkrgaORuE5 z=E=sv=zKIxx0*lixLM7(*{Sb%!3Aoru(kc}?z$rw3HL?`_B#rpiln|~#LMDAPr$Bnht{saTzmh}lT2AZe?K3`fM|XXUH@zE zdi%5eKG)DjmEm&Tt!ABIu1^u* zw~iZbTw5A*)~+5LVRc3;@rqefhw#1H|LD-tyC^) zIzJG0A6nvY9_oTfRFJ5|xX~=R!mKWY_bz|}2paSC2wqw9CI!ble8!qjyS2eBuG_1$ zCIWH}ed$GW!w1oewa#0sbs=Kpklw8U=)tw;+fZJXhqfA3qwkds)mg)@Xl9;v*_^xW zc6Q{Ih2k?O`qB0+9k1C7?!=MO_jJ#_`-m^Fsq;S;yS+c4yWHaaN|9}0gZHRZzx#)A zE8}dYlcPziJ)N+BKF@%04ba5;_9uft_-0xs&}=-ymP849fS!*F#=EIjKVVw4Qrco0 z@RA`TTJfj)mmaw;c#MBT@)fkWCs@j7F?eW^yG8R_GY)_Ojd@)@7xC~NA8t|*lR`b6 zU$@*1H$F1q*qVhy=U*8|yi?3wNa!QUklWbz0EAw;U4|fYU0kM^ue$I3O&f@px1;-U z;5u#(`?iTpN?K)JbncgUhG z95n~6+i{}VXj(8>airuK(-?zuFleqN>KJe%oJ0o7OiR@hHGh5m38Qe_&e zPl99&&;RG8Ng(z>IM80prfU?#N7n`ze1v&4i_1%ll@8o`Vb(e6{5ZvNZLl>qcSHYm`kMY(?d!-Wm0FlMG#L=twi^XWGo+ zHP0qbp-(hBxm+wH;ksD(@>)XCjvpO%d|wPue=*Wq@^JqgoDzZvC+U@TU<1r(M6Ug} zAQ^$>?u{rK&t``*euh(SY}Hyo?N+x@m-uLdqlm<{Nj(zm$n80CfqM_Aq$r5ECnBw~ zb;x&^9fUu-ZQVc`7%q6AB3~?+SDU4ux~ZWz&Eu?EktO~QlnAOnLeRgw^{pcRpY$;f zU-HX5XR}06b{v{<;y-Q7rQ!NXuKG&^dfqX~Z472IGssPqr*BJ_EiUU>4v+kI=tQ@0 zycsOKo^eO^3!&m+jv>6X<{1NI{NN$E{F&uS^(eJs2w2S2k;U4Kx`bP6@QVgt{NQ2v zw|`vwb9M_ko#Y-B9J-o{GlEcc4DtCKvrI2sq8S0jDL8k%Gb(j%?y?M`UD)jC`|DaY ztQRL$=0A#-LYIUCkN?`T%_hj*Yp*lQPZ~1v9vg-VOTrCuMG&A+4pMAf(ep^@1P-z= zM1Xo{%LleHqTu@gDEsU*JrWFNlz^irajL=_z&)pDnO`Zz_?y9Xr=3*#mhU;a!QmRj zDcI0+L@w=pRk~8JkO$g(jQ3IcNqElBK(rS5zeLcbE&(vao+Cv#lkEmM`OM((492bM zMU$_7cC(H28GW+jW`t$lc}F9!`(}~DVk;BLNd(8qKxzz@^SOnDNojtHmdP8YSwJhv zMA{L;wrD}UyN+ql*`htPAOd+@+fP7CW5hbDRspFV{xC#HX?t^Y8-tMuBb9$RZ%j+5 z-l^okp({E_HqYr`-NlM{9r0cHd5@==&*kGHyOlq9vQoMnxAL|@CE zNxkYqBe2h@U2f>&m2JlTea6kK;2&~UN>*&esYM&sVHR@GMy<$u<43K(uieXYS2>Wc zy8}IY-aYf_-;Qf_68)%0+ku-{=2_~f{`saeuQ)GNvwHF94BcRHv-DGZTa>uKka_nN zI&9tPV~hl1gnNp6q9THQWHr=xD?)=T5qHz@sRyrw-g8u3(n<;g7Um>Z2 zoWTW>Do1R_OYW=$GvRSj`RVS!asmprj)>cFm^GQjll}x9{z+j@&%(WE`$wL+HJW+8cbwxoH z6`A9Hv!C-CT9Y{?c^{e1V;`C^I&_ptYz?`wz5daU`t215agyJq*Bb}icS>sEkC_>8 z|5!fIK{YD^eSLb-$u^e!;rlBv!4k!vWR%4QI|OaPJkj(U!?OL8r{cha zX{<7=4Tz9t1Wg$tb*rhSqcOp3{|gWY9pw?BDY~O*V$ypUrh?JgoOU;9=eKG}Fl~Do zlNGsiv$D~Ldw<-_=wKl>dH^8sN$BS^AYb7+RqZAf{h??Zll z^m8R~VtlPW1dXsQPrsz2>B!q;Nny#_2z7#?3BA3Ej&@}{6_aH+un}VttDxpce&-?I zn&A(dbn~m@jp(D)$ztkvcN0p7O1)IdB?F}{Newca7tw400guFMxCahIu8?(8Giiw# z{`sh;MXqle?>g9)jqjWdMlNt_SF_Opy_eWfVd|hG-w^_9vVhPcpoRKm8mIwD9J<6T zjBexD_NMMzDFcd~rhfhR8_Z%9ba~q=!a@&z z-(d!!2MSGuyN6iIDHlVSkCxNF3RoH`@$H?7Eiu)*BGMzMAfOY1QW%ko7%^auon3L1}!H^z^O`WpaiS)ikbA`={8aN&^u8QuAWiYu(+l zl`B8ARW9!yC6>w3#qK%4AQZo1?VV)t{A{HKi zg71X1NFt0MRj695+*|XaXb)XMgnHf3$7lt>eYJ;VV^Q;oJqQ;+tI$I^ZPGq1bVT?V*o z{R{L;En|5}%1cm~Khi=_z=q)MtXDdO1mZ-GvHHiV-kjOB-_d|W*o12E>@@rIZ_0)U zc^|nhu~`^J%?ko?t0fZAEWqj_b}7yFb?WdPV;t2+nPDl=UmB*dOt*&^&bXsN5`F3> zWrbq*LS+(e`ipdgaUgiEGKYE`+%+dE;gP1Y?ke|B8i!l2cSKX$8d$H=+=N+^SUi<5 zjthHA>&~@f>Mv2r#)hHGMMz+*$LKluX}@-?aZk{QaC^b=(O6mJ!UGY6;7T#&uJ*K7 zHddUfhY@E3N;gK>P{vda47ccz$?QIq8?)7`GKnrxADQ}vzko{TZ$_poS8@F6n>Kdy zI$w-p7Ewov(t2cE6likb)yjbyG`7t z=|GhyWT_CZ8K>uftmjy^>}iyX%7A~7!-L)71tPFPb^)9hybc5(U-|*~M*s+Ug*UUj67B$AF9W%Ke+-0E&J0Na3ma=R(OjBTar`>r=_PTBKRe^P{)K=CEt~dxM22>JcV8MO=sY zf!(F-1FDlVL5)mr@58eYQ5W%tOztORhJ=5bQj^jWPpEy1{oFJ4*a>!ZRd2C-uF)n( z=C@NQA66|T%-^A1e3Uok=%to437i_p&B+r3kx)H4ct|@+v9gzr`o24FdT0ptH!qS0 zEG)*MKYx0b%1Zugyu{Y6uGi%8SR z)#Vc3(8z>Hq4NCvyr#RndU?uv%Or%&eC=gtXS3NlGjpE%!_HAP>!-V|BXc3c^^TtM zfTdzQ<7LY`!uBhE_@nWA5A6AUg!S_H*l@Ut?T}&zdHLt96->TuLu6+#3fad>H8%XO$Tb5 zIc*L1VV5CTO*JQuZaN-$x<9J|BEW&j)iT#=0Ztj8S^P7y4V^*mHT7&o%Pt>!w;Qkq zn$w`^A!{==2Vu-ms*6v=U!IDar^?><526Fgr9|N-MQ*izzu2mEi>zqfKcH&lUb+_}}3ky-RXlgFzW38OqVU7LQ7rjs}`R29b245V{-y68?L zFca7od~+7)z1bP?r`x-wRw{HU*~M2oq)_8)2zqG#S4Z%ss4%ER=Njq^%m$7^6#~Rf}c#L$Jb}}%A^LMLr zH-;9uh@GAv)%=8OU2*MI#(hff0ob2&P){zX*5#f|gi+YE;DY;bmJD+Df8C6OU61+5 zb0kSg37x!PLqkjgC1=OdI(tJ2vV_}42)UM#+58;12aohdta6gOG>yTSHjc*KRqR1| z>!Zx7+ijwlthccD*6C+@CsLq!O5;itPnY`j%+^!CEd!~sHKfXE%mVMkwrL9$BX{{C zdd`w#Sc;1j4oqvD0-|jm5=5(fvO{khu;VmDif#Kh_M%AW6abCvnF8*1e;qP(p)cc`;-QC zjfC-*h>P?Q&EU;gcvuns!;?J#&c{jZLjzY&zv14NF*T9k?C6+O$kl3tG|oA z@-#9oxpdQT$&~>Xk1WDGwb2h@p(b>4>gRC{9CBaQv3oRX`OB@(?WIIH)dJQs6A_3l zOoOwFNL7n$inGQ52q+MWwoQ^m%kBY&k`o>TKMkrB$3|)Jkgx|w+A820^O{E_l#jEFihJoEqb@Y>rf-I@2}EdA%cZKF3((d zQevt-w90G5ko!~yBO$QiHKKO=<$0j%hs3P%{Wap+Gb7$#|U5yVXDM&kf@v_N&aNxw{XJ?Fr@Ytft1NCOZRL8U* z;hvjw2Q?|waT=rZ$*h{dMWj!2Eob0R)iq^yolREB26)bTD8^angRA*|K*CU`{#ua* zlh)x{o`ZYfLqERIPsj@vb;45bE!uHz>gAbKU_xg{6kV7vp^UseZ^`g&y++65vDP2h zqcFiNd!bF%K@r1HPAv(?BeKM*=Thdw#sZST(2D%tCvZJ!dNnztZX!?`=3SqZc-~jF8xlG-~=~@MfmU-?a{yxUaAvh|Wue!1rXCrw778$A4eiu%yISEatz1d2M6F9+7(tAvnvZs45 z%rYL#!9gA>VS8|ET5B~umVB^pe^0RxO*KZ$vcuX&7tMxto1|yj3zg1i{vo1JX)okD zw29=A8f`y^r?FlUOE<+c-k4=gYLdHFO==QeUinFcV4=tA>@&dCtmT~#Y@e>6n-IrJ zj2Od`wUxd;cj|#7Y|e}~>mx}BpND1UWy@9B+mkTMef(rme zqVybc>eC<2=%qJ;6o6;OBXxC5!#76-F}QWRYWwY;a8Ow4f|{Y140!n(%WzU^oIASr z%thMSbkuz3V&}{Q%Tn;Hzc=dP(- zs=@Xg5pW1-YdgD@I4F;wU8r@}9ll3tp{kK1J9^{(7C?~fEin1PR(2&vs=Ay*dP+TH z+8@Q^3yICP;m(8GR8^9aigRz$+@o&tuo-9&gv1s{-7r=<(`XwwLy^uyd;Qj$F!n}6 zMA2OvsU|T(uwsp#Fn1L}qGW@#@XjGnz?@W$?rB-6WE_Jbgg8z*vt=q=YhcL`UPk3- zW=s?cNtl{}T+v7IJbb|`L)X2gr>Bx8LA@X2Z2BJGfU@G0Li>U=Kfu9oA-xu>QD5tC^PcbubK3PdvAehyeuA{f{G^F19J5bS^XyWd>HMo}y~ zx$5kC2&b(=A7hH?S6oY2f~WxE>ZkPQ zf}|Y?Ukxg2B$t!v$sCjB&pE|ea@fA}{9Wi+ilYW1E|$VJ!lJlBbVtMmqDN!z;(I0C zHyoO8Q35KV5yBrBfb^JAZqFAh3@3dZYKdCz+T+ml19WU1bhp@A3-c~)v1fv)?a>9V z5yJfEnj`7pE2CtW@aWT8I2tNEnurJ&Y{-{b)MuC}{}+`?XuX>N?yBI4razWh>%PA~ z)uumDwXCY%D(13)xJEAAD4(9E2TYnsU-03t#|+jz4_-}0$<*$eNhM$Vi7}(9X8@G; z9`ZhDXYjTP1=$HU%ef6DTnV%%fR_D+QFh21L5tvQ8%OY%g-Rf3&u!1Ji{7j%bb-kD zDNn37HkfD+Bh**f2k5yQbA#9>X!rWD9$YWJ&hh^m58W&0z!gbkQ`hp+Y^Y((Kl1h_ z`}DWXDBY}i`#K$iFVY>4C8zc+nimizwN2p;SQb+Wor=j+kyO&Z;WO1{rlQj7>n^9A>Q3 z!+C{t7@MKP3M9e}QCn%Ny0pZN=2M-hD zzF~pPyUURY!z%W@P6>%r{bCPeTypuLa8X^@3b`{T^xgNzmIRweUL+*)>}w!P@~!6h zQm-!$N%-KP6vyT~U|=p*M;Vkw+j-!Vl|t7SuB6n7xtf#2I}E>Q%C)r9m?WuuZ2Dll zxwOjB!OOfP$bGYjwfJo4EE|}>L6Uh?^a(&#N?!sa=XK-sH1YyY!XJSbbVBqfj;e*} znESH@=t^pfZzhs%6#`SsD}<%s*jf;aCh{UjX2RSZktll5u~F z4NEbekg=x#OiK2U6sOB@caRV??dWRx-jR4UC|wNFS&9x^ks96)fL4P0XYAWu#K3wl zGrHfTr{Io$IE>jxa-FG;+R6v$g_jx)H@=A+?07NJ-rzdtPJ-iK2m9P?S!^1$h2-@s zU-r#|v|*d-<6d0^EBQ z6va{>Qb{gi!!0=P*5t_P9~S!cF##tJx2f`;Hc(xd^CEtVoW4I-wUU@0o0Mbcjt#EX? zK7yLAe55PN z0i93pDaTp4WcvaR{s17HV>tZRJm|mI`~&0vFY^!oSp)VzdC>pf`~wp`>;F61rllFP z(Tw1utM>zhdqq&O^aY3n60b9lQo-L_^_v_Jr< zSHO1N`R0SVa`|y{v$Om}!&ChCR2n8R|lQIazB%NJN{p&G& zyNYVH=>OSI+2g)Ddp`bdS-6hXfd44d`#0|>JuvvwKl`%BL+cPVYMKYhy52?FASKUaSHG!u z-ZRcKho4whZ>w6!cR6(oLA=%mdTf(gld&hlp?;5pla;E5wJhHxM`z&mQMt70{y?xp zW+@{Ds5=@#{>yah*0L7Yy<>3QyO4OG5N5Ad0?Rx53xpCkUBJu!(NE=14n-g9&Cq44 zo}G+i&YzH=Bf|kP*7Smr-7%EP9l_6+Vht~CD^|MCH+P%zMqqK>LY+bLCbqj?!4DS6 zPfgSJ8n6GLL9zcqgD&>kv-SOgm^bml1u(jQqH#J$h1RicWs3E!Z#tvG{;5$fWm;3K zYPp_q_eqAEVX8)MvW{L$Y2k#aXUOJfOY5^NTdUT8!>~|v|5{@wbosgKoR~xWx;wDtrGNP5 z?fC3vG52}--g?&bo*ESviPH~o0gH}7@i9>CV`|T^@H`3S74B}Ly1RoG^wjjNXJ+?_ zaUY)Ty}pf}c?~Jb*;_&S$CWjvj_mGA8Rc0;k0Ct_qhG|eWfaO%rwF9`8gmk2jBeK} zpB^3U*AW!924lbjU3VO*6NPObB*SFs!Y3-`Fk=b2EZ`-D7MUBw)kn?aVTM$Vbc>?Xpz_BWjVEm|n{dr5#OsJ2%qH|CQW?75fv3Qew#7gg{ah{2iE{XD zgq$Z=QP1TtgixDuO~pcReo%7)g*8qEsjcpo2%D6MiHCD6B*@&aAe;)Cx~>wB2QF&? zaqHSY9uNLDa_}p)$O?8kV7L|ybgt$ookI^a7||jUPQJ$%6b`6JZHiO~=@?jaW9L zk+KD@KpAt(7?G$V1K#u%R_vT zyXCt(GzGFm1-Jooa#9i|zQN*{1=8&p zP)w}=>$A|Txp~yqnO?%;M!)RQd@S`&!j!hIgp71!a`vz~?(HLsi34iA*f~;GV~T;4 z+>L12@kHze7j>0+P}pGE1zv7Wd@59FBEi@=+))-xwiwtB75&6;JWw7}B7`!+5vGDQ z7ev~YK4G*8NY&kQbMsyJw_w~;p<5@U2-4TfS#absh$D2DDp|Bz8YkuwWrV!2TbS#H?Y&6%3c%$vIh&8iLY)EyCqDH` zj*t_73{DOahkoiT#Kdh&qD-?m`w;$24TU@+qP zyzt07qkr>st#Wnyf2G0saygJ+PI9&X?%g>`;9`YKtHi~jV`R(p;UO3;kqShsgBrw6 z=rkpZQv}j>H;w)o0L5>T0dlKPDkiFV(;02SxT1x#O>6Fx>VMcO}E-h6QIV$BC z9W3gdh8#%gWuS^`9PC60RH%-uN`^@~v~UN=HI37L9LONd;CJv=6iDCe5yvmI6e4XR!r2iLBtg`Z;7T3d>OIWXm{LMdLZ_bT zfFIkZ+lYvqT^`#7q1(`bH}T942*cx^d|vijYj9feU&AmUOs(1=0ffbuLI?*+PDP5d zXR2tsg@tO#yj=@P%oDjr*KY`3VFFk{Iz4k$(@j;}WK9G;aL;7^YxC+%wCCH@c+410 zxG~o@JZB=fS(WO8oiUB{`hjLV*$}owc9XPJ`nPM;uF7;MA8I~{7V8i=+NT7l&I-e?B;#aHR^vZ=AG7XE#X4@65k#br_XK}c+l&AD`1I_`NcUz6i(F|y0o@eECSC74lEW~dE{3j5TnI%&C9S1y>E z6@{4S$bN_)#zf7ESZ`gg#(P*bn82yt3t}ck#<$*9s%eWq;fTUl*7~~B9IE82K~u>f zoV`&_n^auRkgmQ(gf1#=i4jg6SjhRKa|~W?lJdee2&DCUsM(FKWe|(-a?!*e7<7p? z35OlkL}`VUNN?1?(q6+jj$4p9@bCjS4Q*Zw&FqQrwzCcqD$PBs)7k8;&>`30kPjfy z9`Q5Aw9y+Ksa`}D2Qm$zI80O3)_dDz_*>WFevJ1|Pjqdj9t<##qK?R<#1Q~sOMWo< zhdKlX$?U$fdCVzCF!JfEH;E`?pj7YF_B#FZy%hBwF8+ zzcIIbC2K11-v0ZesWWkBqsb zD*nVgGU3e?8iyX|)LTlbM!y12IOFOudj!Sm)u%w}k>?Z(+8C~b*CUD+cK0{a-L}NB zT1w2041j>S#)D#DtiFp1i`ujK3+-33nn=ju1Ckj6n`NZfE3|K>E9(0{3(Icj>ga{9 zb!8%94dQORK-)nx795V)tdg!inyI5JQdYCqiF5fh-tYMS_8RY!IX(cr$7(auDwmuL zqTa9T)+2&*G?F6t{&&V3hc$agT9-)66o>n6D#_w`7o%36?jjMd_})e{?wjpr~zO!szPfg6hXwCm&_MTX9^>v$XRv+RksI) zHqxx|QSXFf`#E1sqyZQLpp^%*EBFw3_Xee-%Hm088zW@&pku6YZq}mH#x!%7t+M7> zM%s~(5+NB^eZF7G0|>i<79gpQB6q${ZlWiv!fptKX~XeW817w3zgDK)F8NxcOaQvB z$IKAnG12Uq>KOqSOLD!eelY1CNzGK}oi6nX!=&)Q@$3QHCDd9K!$6ym@e4i*qTd60 z!IR*s!A)Vy)hSbYvzr$xukUnnWENw_rmeis%pL0>7*4=~+172|8ar!b;bj3$1*gBj z?I|`qII&$CFVrzQVnvg`g&UifP`9VCI73Z!Id<4Co8@soiG4BTaAe@V(`=afr;9NLbo}Pe7madeganm^W`T}yORrYYLS zaA7X-$U&wT!0^|?X)$ee|5wmBpBnONg`*Hutd}w+a>8Pj{vk@9sz55oYqgtKDgG3~ zbkRi0-Gb3M`WHYVgsM=XN;s(_M^l*r=h#uIt)|$}V6_dk`SiYWnlo={?b%o@h$FwG zB{WTtqg+&*B$(L{b2VLzOy8YGKLX{NHaF}i6Q~WMM)2f znIcZhVUuLpp^mW$?rhE#G+cJ}9-*hh&gU(agz`vBx9H#&8+3sliQ zLLc*sg4`gs5f*WY`_$n1w(`zUxhv&%DkG@#@7LJOD_{1?-NE;h9#p$3gT4=Xd>n0Y`g~;K$?$eYDQSrD$-# z?|)_#M&)8?x6HywOD@F*%9W64ZcPNhG?RT&BBQ3v9u9TyDdLoMFi7mN$)XXXp&f8n zgfDj6)!QxiIH2qJ^Mn@cXkZz}DM<1Hfpz)+HXb|@f2mUZY^)oJ-}Dbjwpqk!Y)1&K zG+#+v3(&twZjhGo_V$FI3bdMwI1w;NDKvYoKW&mBPlg~ba~EHTI3Mp>ddYBaoGRKa zu_vyHtnxQJdlh*WxoY|iWsD0bWq|p#OI;LCYLe31f$zrMT0@j5COo{iJAtFiHADo@ zv1>l?0x*_d|JQKmzgIOp6Wy=dr0{=QTg3jqX1V_Jmj4@BE*7T$V%zh7!ksFDiX^df z7da%c`2-z1h(=RXHdt%i&U&kgIAYag*NcDuOoA7Ol3S$>DWLaP>nqV=LLA>rMz?#a zGQ7H^FrS}RUTiZ=(rg-#Kc2qp)_;6{+}2HBcxhSP+pO-(JO8oqFuR?7ShbCx+ji^U zbbHTS_jrP@9ou<6oLogkdb9pjLkhBit0S`)?iJb}{!`Jgk@4d_G`@l9ycEEDp7F3# z*s+oEf$K6MeN1|}5&k7G^P~m)6LCNnxC0XAln^_F;4=y)>+=HM^R?Ts`b6ZZwX^*y zG;A7oLZVQ=3b~1A6vNkVh}rtm5%N3gx$4@&+C!82!0GvU_k6r_oB2=RCFfx@ZKi}R z5@840cxI2u@N$ROZxtHxrP?Ch!Zf=BR(Z+E@g-)BB@CsQ0jusy@GLN5fJYLORO3*l zwse;QZ4I}X4->t-K|K}Rx6?07AOc?-g)H=F zE(|rw5tX+27QUy{aktiwmDGrOizA+GXs62eH_6o*u1kNMav<475yk{LIvE)(Wd^d%sM-Y3Ul; z#SsWW@-|~KkTl?PzfcfE(3}nHF}3<#pH#%@$BOUY&x&0Nf>0Kdm8W!W`Z5}xs1Z6Mg5j@PA&y{?d%pJjwf3^w#zqkc ziln>(#t~I|8N^v*@2INgFj|WeJiQTOKyGwK2(>Dty8Rndg@IV05I+luf{-S^ zM6L@{llG^^7XU`=tfSIE53Y$!AS*c~!ea^&2gR;3(GbV7!JV6N{lGAs^-Df;HcI)6 zTZktmb(sR!SMs(!2btF=SJO_@j!7%K*WpKJr?-I=+I!^Zr_y9%mY3W*ZCNi@Il8M@ zN}A{5C9CPzi8Vb68H~W3+7Sa~y_s$R`K1kkO5r8a6@qz6LoM;D0>2i}lxG=kw&r`4 zDZbPRuDWs5n^PVgfP8zhu0pS-9~SqjsbbRFu7f7hRCRmB5F1!cD+Q(2Y_=It%R&cV zfc_0B{C|=6-tkoa|NnSWNlJEPbcm37&M}h_8D%6Sh3uKV_ll4`Q$}QyvXW8CmYHNl zL`F$gG7^55b6v{uI!CY9`}XvGC?Ix?sexQ zH6i?5J#PYeljC373*^367wQ40av+;VL(FxFmZ$^!9PWin;D6f35>{9!Pb&VhQH=ED z%kaG~)6H`VChDaMjtBGC)Kxl6!-B8fEHdoLlX@Fc8Ghq6i^I$4>#yS~==h2I34hg| zEfJC{jhE}44hD{Pe0zN*r~XUL%^%si(XSugOc6?g6^FzaP?aXO^;9|9rKlb_xJDy9 zY!)EvR-KZK&(*Kb`?WhpV=Cti?$I*N*(GU%PxlkpUExt?Vn;^>=-nRAN4quqy%Y&= zG>vh7MH^A_^mBmDd2@xrCe_bT#RrEExMk86*uu-4VS-;idhJsTN0K((8#5SOKP3Gm zDO&VXD$2UJ8AJOOx($nBjVncso51m{&bh2c4^hMQ|7V7@- zK1aU@;;)r3F;5Fvta5i=H^Tdde-1+c!3VGM;2`xUhtrLkNj3yq(<~A9n#vu{-(LtR zo>IHj-673={V=b>J<1D(42v ziz&8J32zXu$6MoD(*5o+fKpPkKWOjoULm6e-#J&`+OpQU{d zUMf6#s=oM4+e7z{`)_?&DB{0CdDY7A=JWEb3_Y>Kn!xWB$qymq?O8gd_?wD)yV!=y zbo417nA1|cB@gtbpchbYR`fgQ#(%K#&1auiW2Y`;1n7rwv#p%gC)Z%OV5a#=&jFb& zu>3VJ_;bTasxHzz!)ZZppJk>>jjK*nxU$}R6y$>Cew^2cPH`hJV9}O1emeOana+aM z>)w-h4EyW9A8vjvv|Q29+)U=aPlA1+Tzn#qRdil+sF5t=!JKY-;mN?*20r&T!M&{q zel9jNI|tOc;l7w`;x>(Z7_6y7GwglHD*VoMW@_2H)OgpEb)2&EEmS?9)1A1dD|T?& z=2PhsVfqBI3oGnFX5#ouZK7^5_9HkN)#TAvqm zSGl^IX$_cri=(vqXb@#C=i;lnsj@bjMTCd-&S)p|-?H~1;^2}O!H>VWGSY!)`~(R(>KgvgsHpf--0{+IJ{`cq%px(@2V7QNnkpmxT;X4$Yl%`C5CNU3lmmk3Kp&nV2K-1b5J$>mbwI*POwzi}4dZMBJy(@w5t7NXW{! zCa19_9qaAB%lIn19>(9VeX=c*n^nylkn?D7g&dM zBn`seUlumX`b7U_ndUtQ=~2>2+1ndpS!-%{6Mre>nfjaJ=>BwLY`a}Ls7>U43;&$U zLWy7QboDtuQ;AQtH@P?&5TZvDF6Nl;D+|oBC7n{sc~yu;X4_uzn`@ruby zoM*xv9weRTFClmv&b!jdFBB6koc|;eUa9|qd~f+rxbKl~{Xa)X+>{TxJg?R7ktSEA z`>gegPgTo~?XiC?yp`3qIlu`9e}X)$%I{Jl^IfMhK&6Q&-YA3ErjSd;ttDe>PDgr7 zxm>*Dxx;j1-7B6kd4(Tc)}q>rS9_N4(!r;yn?e^2-S-TYQ0pBQeO4mNeUpK&QSX3x zLuG$0es1m8>u~=sUl&-$ zXM^F6HLnQ(PG&Q2$}!lc~OtMq>OZo~r8SITt3Dei$$HsXdgs-xli%!vdQZ(p-eO?!KXm z*z32Ky_4gHbEnCKL5ZtwQzs$!0l#~?k%FHC9vP7+GZqB!n@s&AD^=%=KU)`}q2HRg zkv~Z9-~TXEP^G%IUb|UE&~dHtynS!I$-T#i^BR50xBgHv(cTC$+x_9~$~XyWLRaN1VT)QC0hbyi)DP-YA0B^z z+~=d7aHXe$klEllUIo8{t=NgPUM7KZhmR(t%sXm^5ZfxS>pkw1RqY)Npg4HumeGCY zW>wXF#C%7O2V}pil*5nBzL=lQ&E_kWIA%m&g}5XT-|S)^mvXcC3j2w@8P;)G)oHB- zikD@qb%k=^6Y_X5M>CW@SHj69rJ zE@WP*{$(G|^n=#XHO7!65pPgirmSKhM9JuA0d{eZ4)uO01b+ ziHcFr`GuzNg#Tj!tK&8+-06E+-uf%pw~Y^$vj)LgcxKo7N8Is((iIRajBlDPL%-1; zCZEKlb`Xw(;DzB+P&{|3nDv86Zy&4D(`;F zxgisC5pVCB=OKFn-6x`=6O}&C#?vuVKU|PcWF=LgFv@yfLHML$HOzi6;a#AXCo>0A z+{2-^t1%pkqI!8g{(~x3{Q2{#RU3hRLL~a$w}h7P7aWGn9p6zNkqE!g6~Ps=H{P#m zB3nwKIQh)cdpfI03j!1yM+imFKvdD%a-6SW6$Z3taN8Y{a=^x4J9_qlP zABTkppa8HxI+Mh`sOn7V2AFds;95Q$}Qd4|5wMekGPlOzSTl~~+=^exK(>JKd zK8_RLdm#61Px5r=$+-vbr7ZWGQWaGy5YlhBVjBfafoeRQUeu6G}z zu`Dc1Tqr6lH|F@>KUhe`FH9`LJBatV!gHQ{t^&>zmnO964+GA|kw;;z;dd#LtYUMrYzp=r|6pymM%4A4K*L z`Xk!;KUmY=l^+q@pV^-<^(`Y;E59%|ZD zs~lGEgb5X{OF6S&4WE0(ge%#sW`6Ug0Z&=P2MeB%pd@NzdCBu7xX81&;e2qb523B_ zJQ;0G+xx1H%L!wo%eqsa?wvAuA=66yGcm)!8Q+FW+}GoN>|niag+dGP1o?%_oTmj0 z7OTrMB*f=u&zBkmS=%>M9Z@)RZa%!dv1Mv zAblI>sKcw^Ft_7lQn%~-oKH1|6~w<9h~_tzC=B_$oL1I(Sj|6-F~jhHu7SeDkJk>C z#ypME2dHgWB7z=`TKBEsRNU>StI#BL-9MIF;!@gmqAPi@rPN7SaDV*g`l*MCE9)7} z^-|;=#Uj-sb$(yC9t-Q}&70}ni;MGJ_M3cedbj-=&`3~>`iO6##h;&g_40Dv*P6FA zBGRPlMdr>?1F6ex$>*ND-?(NcsPK8C7Tyt%^aWQa^U^|r+3k^o_T9B|{{4eTh$E^N ztvH@lSSeY#8>f0dwYFVLe$$l##K)16mVzM@n%cN0R0nRp=!`?S;lgS6MaR@<8J)2> zYvnF@O2q3PLBB-^LCeb{zMV7;InTZ=7{x}C7zU5Z=2@X@7;N7{B#<12e3EHE1} zxq-tcWDLhxuH%9KKlN-L&;Q9O;|R2J-M>9$To6^|`}1tx3ylw9{d^>zN5eO~!xrhA zV^}5$SoSi0(|qF3X64Urb+k@cpwNsUf=N2ov0`Jb^)PE-N#l!R*>p*V7u^kq{cBd1 zTf>)5lvlntzmv2!TeIe0IYj1f)9g{HJi*m_-hU)X-&Nm zK_|1A@49-55kW7DnyRH5)$&%lFn@Ywj?MYWc zo=rWl_^}l4!teqB3 z+hR#^+o^%9)dSey4yGT7*>AyCx`eIIl(#UPs8J zaiI&=fBR&Z#|p{0+SJCX9=!JAYOe;)>y-`UJ`zE+#a54x(&ASv$WhG5((2E+bzUrO zq%BVBxE%Sj(?*~~-6pB@;PLd2Qqt;u^YqD<{^$XvQTX>vWzD(FP_eGK1 z-%s^I_&iH|h)EB{U6b^$ygJRc78(~zeP!{Zyo{>ra!6>7CrKANsPpK*vJA5kk;}*w zURvhGU-CtEJe}nb*6c_~&M{T?T2y>J#1k8}R`H5pG^ft!b=P_NV%9C3 z7jj>XR8LD%0*_$mk*#Sj7hWz}Y|Jf-?w|@iZeK|zd4axawrkp_JH`5}HXD|elWL$gBfm9%%zn79qA*tazW+1NQo$AV9N zjsDL2zT^d|trl0_-`jlL(_qB&tL@u^nx%=fCjvKuZ&csv<^A5&29cTQlrG!{c2?e+%&c%1I?YYZ+u~WkVIbrqP z;$Yr2P2mxKN~ct<$lT0BMKidoO1!BwN4o-bEy*P*xh5FFjztAqc(<5@<;-~w?*h!bfl~B@?vmDM-$8{w3oUqd3O%9MY z7^3_lUR3u5Q7K&W;@K@al`>7^8xP~~Y#(!+`K16C>b#cQ^iVb8aW>o|<$_5Y8N3R1 zj+)pYUUZ4d`;rU;eVq9ni>B4jlW8Lp^v$V357?|IXB&{I$4*C{Hg$beLg_KA93*o| zjAB9lz^ji_ro946ymmYrS3I?AvW}~+hpvpUd^HprkJKk{h?YLV_N^m+?zG69FOln# zWJkK6^}R=p`iL+Zi6*>J)&4iEe#T^Xo`sM4^imvrnyJ%4$e{ePByL{C-7nRY%wx~u z;cv&QKR1`ju(F)ZM^yL*MZ=G!$O<5jy`F4!<9$0ySc=D9V|2fV)xB0$=@WvdX7cU& zp|f*B6H5B|ax|%kmRje8U#6@NXea2yCgfZ(5bXineT80Boyxa`tG`HUYmiqDz&!}KLm^pWWy6|y}i8pAl45_!hXjmiuw z#P9ty-};o6-XjLye|4gAN=?FWHIV(+2%LS8?#%KHUGMSmdPz>fYr4Jqb;6gfFd~=2 z^U_D+_o;IRG&R5lYG?PWh}<|3^X#qWp%_OZS8fvG>wAa1wDdGWbCW8S%Fc@D>>;5p z?C>v1Wq0!AmXN-(pM~>7NTRW{+;in&ZucW>h+umK;d7Qh3CZcW7@x2V4{O}eBg%Xv zU6kpq6l{E)>NqtM*KL{@4Yq?!SGvU|2H}Ska@Wq`4anBEUWQqJ5UjT|6TYj>fTMtX z7FA;(lcVcA;~IUrRvE8vNHr6_FQIqk+P8AcAQPSEToyW+#A1>7WI?}M@d0fl;36mqKR#|+Za>x4ES<{6$ z9nG8hLtdh|6~mG3;!zQXXA?*(2&cLtX$-FM3O&C#=|tnsQhiu0C~{nG5Y|b`;!Qs& z*>^Aj_nR~;YqIMY8B?c(sY7}8`H%>YM+565>lY1)9bO64rb=b)@ioX`3UopoReok5 zIxdo2qIX>V=@VHZcKf@&nVg(wj|%$2)D9hk=PM(_N-LZ3M3I6%%6;Dy>26;)J%(IS zNF2I*1 zAzW)GmwOkgVd!neTBlZtJE%i){#A|hbAhTz<(&N)7pd%!CsTE1x-K49Phk%ulZfn@ zk_~;xU7XAMpm)VNp$={%aQyQJlXs)|$glLhudhbE>enj^5BG^<{w~wex57hU|1w>2 zZ|awvCyNp^S!0eznyUiL&AA5Y@A8}rnxSwTn$IO% zru)urBcqKIfNVm(FVVYOYQaf0@|kVH`1BeThw1yXoM{yJ0w)M=xM#1*^6Tgb&BtWE zbu`0gsE+jzBCWh78}LbTn!!;2wCO;FOK_&jBa_;z_7`$}Ov8>CHWD3@H z>BxkQYGUfCL$=0Thr|aoKij*g>DeDpp<|LhkXjiX{gb@rj&?=RTVWj-jo%?2daGLk zABrfN_EG=R)SVlsW~5I%gq)zs8qj5r;6SWh4rb~*mK)$;rrvtHWR*x+N#zM~bnT(; zqn`sOUQwwcEF=n#`XWe!$D(z;yZy2~iPV+EK4}jdX9V`6_&z6*XcN@@Kvp1b!&pX8qA?qIpEC5lpdd$@%!xhLsYm-2{u^FHH^f8!CP;9l!QkY30nyEG1o(x-OFY z_PMPOXLsV6SZ>8Ab#XI>VyuQ z!Rmo$h%%oZmPnQHmnJ`i`V9GpnYt(p?Dk7Iv>T=dcprqFdT(*|))hpc^JHZB@t}$7 zycR~Oi-eIw`!AE>f5VH%?by%iJ3pqJSH#-$R!mfWqjF!=-rxtpnsVLdMN4v*Mtj|7 zk|$h6ubx+-seK&bZ}|14=oNh*|1TTqo}JFaWqz<)%I~X<)F=A}vgID|^IuDP!F!H3 zF5ZNZZ(4a|pgSz)J!jDyr5Gx@D(w#grL`jj);-UxBHVLIq-3+TstZ2OCfu5pmo3_O zA;Mr6K_|iXaxG9Npe!kI{OCE@cUZuuB`S|!#Onq#GmLJb63YqIGox#XY7ax;gpCyM zC5QVd>WIZv33X53MyPkYFWtN>Igx(t>hK{~l^Ew>1DIl3wdqySqMLdzmOii&>zDpm zSZ(n=ygy8fhmS0YHAwlvyTHA#-DH~>D7Ygv+V0JNICu8hA*&PD#f6-QPRU$MI@6GI z(=|RNB;t-b`H#ISeubA_%q0F0Y@eUuaiTxCWJ82h>c`)ktKu}$&*0muwBmk%c0W9} zfwp$aJI?YE*M!Nh7qGB5oUt!+mhkB z=C3rV74BvqQUAhuh1!8=RjjLTQQ+yt&zjQ`?{9vseD~^W5l-%Dvfx(_Q#u`cI>tU7 zbUmCx@biN0G1F}JpYKBbR;T&h%bwgZ(DznvNnME@)pSjnGLUVRP-^!2HjBI>{P?G8 z8^7?ea-;Nmy40_cuq#JQzUN0E@~!)LS0ht+9ALVE3{p<><+p6asLstM_DzXWzzj%c}H#Gi#R@oc%*vyqMO_YywGoSxa`K$PQ_+lv$9;W-Z^#%6W%H& zG3oDcdxw`O5NXU&m@U!m$WKToOqRhp?P2mWkMj!u(Ae^C0A|@)jSYswb zwfVP>>8D$@hzc!>*@F`FG;;Ql?%zv%60bE!F!!en+}<}gX|H|#9TDrPB2LzuYHK|D zf$s)2$?v)p$A!yq7D>^U$6w7;5lpQ-JSy75a54JE`Ruf_rG`#? zX0Glfb=ejTlZ)b}6m=!31u9xOh!R)#H+z5bC$^c{Q-?Zxyq0?KGxKy6qb;Aj6BPMiWSyP);{Ic8oJ(i>RB!)uZEMSS zRuWiQkY$(3n)7=)a!;)~ku*P?n8^Fv9z1md&97AaL9=`C@!V%96F-WV23%3M7pJ~w z?K7TqrQ2wz+t#+_zPqjMRl*1Fj&l>Px>|=ZHk5?owG&7w=`_NB_6t`uIMhClHCsMd zpmMf-_L*I^-K8IbLl=qm$4Ltv%q}({vt;J8f5~t5GS-m! zTPwaIX;!k>lu5DTk!5PY~1zR9x5u&lW=j54Lr3wczT!% zWdCoSP0sUwayB`f8?8e2?+zzN@CYK&4<~_U8P?R{Ox@U6&C982JzyAR(R<$7OhECj@{g{o`{SP(B-Wl&E9!Z| zZ~67i!KIE^_YY^u{9p1NoscMAxtcFKpR91l&DPWH(cGI%mR_l`c>bvm{!3=x=LU5u zCKtz7zlDt9PxrUj(^^!t{3tU)c1|R?D?q{3roHSMcT*k zAGovhp0LxpMZMhcod)l5k$cc8;dk~@MZ)P{(>RaU|AE%yZyxA2x)UTZ;` zSqM$xoToIyyD2)jnpRdNGC1hg6}NuOb$M-Z{Ay`?d*hljEfcBDMTwqc0|hQeGRgH` zdf+^3HyfyU_&CVSW5$E+PI-UD169|yr};5$GT++Erj5Jk58eFGMe?Eh&~iwF8jh&$ z@{&ead(KJUb`HV3Hs%lSd=9G!s<;A2R>gFjzSs-%kP0lemY_`g9PlyA^?Kfr^Lsjv zkw65_k(;T}{PMB#IfmQCRF=UlL_ZVrsFtfHPqp0RWVau9_-Xn3(#eGLlmV|k$%*fM z!>hEU(;@p@#QWFYU*-y@R}uNoj=YvXm7;&))c&Pc-`=Lnm-Z%}xYm8<`thEo++2Cm zAEixELTc=O(t!-MjnT)NVknNarF~?5xz=%vsiaJFpP*_Q*NmvAcK!H?bCr76qletx zGDV+_w?tp;JePLjlYjbiUFTntRr*@ZKlYp*4IY^A?+lKpY)?nBP2G4I6)xZ1dZ_zj`ODRhXL(iC*(Ez_oeuZcac&|E$ZaE0UFU^Ly2O$;-8^A}t~;sc72Y zIWF53({lQB^3n|D_WLczC}gnGzIODw?->1kd{zXHiPBf~LqmaY@l03&qttvY9egSm=7jS}4%tcs*d+Xy}pIYpE_pF${=ay#t@1%G*C$EbH| zcOPBNSO)*wAchPv{@AP5HThY<;pKOYh-Xt7_g_CB>Sj;=@+4_x%}VN>-ZT-t_hi<` zlI?T?RwI2cQ%8|EWnG~uK9?B5z=eBvj?Z~dNzuC6nNvhf34%HsXH(n{iFNncH{2aK zK|nX9a#80(XhtnDiEuk&ppa%sPiy$h`#Fm%Uhl%$KdJAPX|8qIKhiNSpYOQ9rg`Ni#dckLf8f}7LK}gQ%-*Lek8FR#S2K1aoM#84xr?uYq2amiTS$t$ebJ8d>zxRk%px5%RBhwQ;fu zV6($3@sYhEHF}bJO&C)rv#S*aC?)0_*vf|HGY{q=_}IfPBxdV|HW59~Ri+hu{dHeg zyH){bZ;{^M)klP9Nm({$Fjyq#xD1mGtV%u?Hp+6K7I{FHa;$!X;rQ$-TY!a$gSiB}MWGGd8LfFkOz<)F8$w zt<#G

tNjh>|TQct3d zrKkyKsd^2cbzJ4!`_mMmxA1_Ye(=TgNAk&Ir=leI39{}GRd@PnyH-zStS4~EH)y_= zha2_0J9#(vORSo8xj}`9P0q@f*q3c~H-QsUI`gP>JVPZW3lg(N?Rcieg6o(LT&uq> zzOZyS=h8I?<5izT2IZ1i*6E&LO7VAlA0kC5q|4PbQ-)Tq6HC+XDu?uAK~$C?@MpRsWVXE_Q*6pYP5%sp8^~aw1 zl6O?>qH+1Z1oJ$T1DeQ#vc_-?%fCyK&0EJXoB>X{VmNcs>|ub^%1eU#F8m20cd{l^ zSXwx~DdP!HRi4DjjEa1C)9drK%LhyzTza#tUzhL3qp?gDlSBMokL6Uw+S`RZ-XUa$ zfbZn+&vh;iJ9=vNJQY0B*u=pm(FHL!`r3imN&5GNWel3r@wUfbF64#Y)XAu$b(QKR zv9u2!Ez>Bqt!Kr%dMKNyE8d9x8*Y=uh{u&gbC$OAlyse0Ck(GEYf95Rwe^Y4*w^ab zlvhciqE4vttRU}}(UG)z&(BpP@ z-Zho|Y_(T!WyN28oPN3f*jQ1KjVEoiy`5z9M>^uJSdu%R&sY@hcdT!*Z(&paag<0%B&$QJ5v9_tPCeTlCu z7Mye4lE+ZzkbM5tYR160cYTE{DhJh!8mZ>k#QgH*EZXn8;*iT!E2v~vCvhy!9E-kr zHY2L~WL%Q!6JI4h7F$|PE!F+T!NhWzS7ZXdK8qq}^bSF2s#~eFzx*`z;5%i}b&mD? zcXc{T!TAKgPIno53am89&5U38I(0d|Sjoomk+yPjud>e*n`yimR<-wUNyY? z?`At4c!z2;Yr?qX4fIWP#4VlFfseUiyn;NOf_yLm9yq5U0=Oz+X<=tzVP^~D`9C=_ z7LIxzWb2F&6wSXsMuLQMquSYj`qFh8>bCuS6dp^#8@P0Jp+|`KJh>jg>--E~HEA<{J&YIIBs2>Ds4-=-tW1s&h*>`Vc?8x)gJZ)k}VFz1Rk5k4}RpNIWk{TF# zCOlqQXye~C|JcXh1HU|7$UkB9vK4rUq+(_L*A#EdcgOCvRi2Bd(gLfwDbCJbKh)}5 z&@&@8g?q>KUW`ErZTE*~*Hrn+SNrvk22!X{Ei`&m*!o;6(BhJ1PGAZZZT^T1EjTPP zQ2nyuqFXo(z3%h{q~MUCX-V&1*3}WhZYiJnr{oN7Y93wz#UwR05f5P$c+B@>+6;Iq zZiP9WyyR6)!YOjnq*xp2 zcg<_vBKBqLo!37YUWDTriWt?M!Mos@Go@R`c}nZ-0`X9AkZ5eDXpV_b+-iQp6Q@0& zhgrj9_di^y76|=3*Z;(LgPT!;gtq*=N||} z;uDI^$S~jbPhzmgohJx?h9Ftx$zRfZO&$Qb1#4RfH1Bnd4>ju%{i^H!MY#>+gi zx7H)fcW3j-hz0Ke4U44G#|xzgg9+kC7iFoVdw;pS?A1B%;`n2c+;&2g(}9{#eTH-B zxg8y~tu8|i5&M&P>U8*86X!L=xQ^&V**UpapYh)CF%5{Y ziIT^pGSXQ~=FHg$(CFOT5tud(*Y4NCb&5H8Tm$7^#B9Io#eEZG0Tf{iEWpo5t ztez!;X+b1hKZ}`#8YN#7y|D=x@acGR_yj3VNYvn$u}dLy9qlhqm#IkI%~-fOp>dm5 zR<5!B;&Ti0X9cPZr(PAQ5(@c_GFrf@zcGk z2d@P<{qDOH)O}`p2>dcP!Oa7t;vK0jG+G9DFcGeZQ;WJ+J|%`el8p6y%tCQ4(ZPOk1*n$9t7sHi&?v24VaBxCXy| zd)@x}nYhm~JcTNzr>Uhi-rXL`(sntYz5lq=+0PP(h-0}F`$vNp^lUqHY3?XAS4f<^ zch})57cPr@XF>9T^IxR=Ugt_&FXUV6FuZMR7?sMld^zp5eu3oVGkG;*a%t7B{aPc> z*&aWBZ8A*5J)d~UkpJ9}p<-3#M;+12(+3|E_jd9c+`CU*(jLWda*mXH$xW1PrkhMk z?c7_n?%@~J`m~nD4CY7Y~2 z1`5R%8hao4;60Xio_P3noC_hhhDy^rRrkXI(jM3ABI-33T5l{oHmnIgYiir#bGiQf zn{d5bM0r-niKzut65RqXxz$tPmZ)ZRV4 z5R=Q%_(?TyAaAUrasgN>w-#sZPke0GQQnTMjy^=7a&%+mo$nnnE8g=H0ZCp)Pnkbf zc;ovF>87-E2k6W5Rj;Rwq^%rgkdIn@$`^bHZ|OliQOj+<~QlfR?-$zNA zeSchrH=ZeTR@cDBG;8g~_>r*-*RS4NRY*#X$d8)&;<{SV(qVdC*`rOPR3%Po#IK)4 z^Hof(j-SNdC;DrQgB99T>A)uZmkj#8$Ce$Q@42iPpyxg8RGIx`UGkwi|CQG#{24EG z*YWF5j}l}GQ&ql}p`eUi#`!j}uCu;Z=$Etj91A5P;B`S8DNa~w%9vD^VDTY`8^&@E zJzELQWM7|6xx2W6d*7^w`t&bT`qU^IvyM>LYv29*IN84J?;5>*CZFMF9*H(j`cjen zf%N-rSFO9<=C!$C&jS3HwfNgS-k%bxelnW&@_aR7B!yRlAo#~#G2m!dofw*uXy6%4 z$>N80Tt*E{I(VPLf#Z-5W$1NZP>wi0^3Ff&J%MFb==!_bfDa`vuFZvAT%Tj%5Vp{= zageBr?hs))a@nr#sh?K=eGa(Gc)}CeM?G(^Ux+H4Vqleaves`1@;huDG#B7TsusoA zf5OeNaOKUYOLu?G6%AK&R1?mM9@Dse6zM9s zR!tWs#r`P%X{Lo@CciT2nEzRdjiV-eMwd@gD1;=fCui2izP(Rr8tT;8!NnbQx9F@1 z8-0lLd*q|4P(-X4^V+~OA-r3#eF-=mavyOp281ucB|gq-eDlR# zNx0bkGd(FfV^)UDvGbeJT5OW_%;4LUy*Q2I2O8ep*D%#$97<;UcEDbh-mxg=t!dD^ zDt<{_u~~nrXLhDI{7q@1X&JAhtiL#G_(?Q}!1q*SGM?>GW8!HbW@i*D7-cxFagBL> zmHok4H+*88W{Ix~Z5exFQvL76rsB$TKb2;_&)%rU;$#zWWxn^)Qwe61E}P6+?<)!- zyu!o>^}>_k7TRA_LId15>)<-4Xwu9p3g6@TUQBaRWls5CA}OgFv__rOb>xx13kmmE zw|z^oKf?~S$7az#l_R`;u~tjXBA8rlQmo7W>`9hZ_s%MdF7wi;#}#+#Z0TDAV`xZ) zM^D6s{K{FX&+@F;=Wr(jv988rL^eN~$~k9G(fFQ@>qDM71>*YA{?N*(Nr z)6KHpgj9DcNwz7=4SQgei ze$r9(u@GZ8{Q05C2+_M5VnRu$v7YgTV#}_3`oWo5T|{hp`exZg*#=Xtr_9_#3i>E~ zb?|14KX~I(Pr@g7^CzpCW;|TvtD{V1wDovQmdy6?Wx86(4UyDe&MF!dEg}z|IU?^)f2x4t zB+Ba+!4EUCaauR7`Uf<4Brd)j$P^RAysX=Po};q8uAQ@$0hgSK#Z4|H13f!+;H-ND zrvN{&VB+P3^TBxFe4O0;z=DYfcn2(k#Fc>`eZ2|;ItE-)FdnXRTR#DNPS4K7(t=Bw z>x$Ba&3`QBIwodzmS+qstnE!~Obl$rEDde#4D>mTEFC!QZ?bMK(Uk3M?Dgyvb!>oD z6%3BPO?Uf|i5Nh_5dbBB$5*WfaKd$ z1Q-HP3qUyl;Qvi^A+0blu(G!?=Q2^TId6dh9NMq?qRI%nfD_>1L?Q%X2-F0_ z;QTzCd;%~8@BfHyQ)fY2;sRxe0Up|~((rC?jY`-U=-64>u&i(Fk>6voM{keK9?Lzp zz(2!1c6%Q0f$g~p{B5&GANb1<^%o4oeXu>qJ$!q3S%K2XCON=-&g5*3<~z~Q$%*r+;lr%Fi z=i1aSkQF}gg&!na0J8_0(uXgegnuA zx*sAB7l7yqK=cH`VG-QmeF%syVr#Y#(C6UeIe^r`aS%|A6#<$HFa;1Devli40Q6n} zIM9sAb1OW%lx<@Rpf?L zddn68bKd;cKTToFB(`4BOhXg)$81p(^gl?})(Y^@K!}4`8p1#s!?DSD6T|;7f{c#2 zm94RfjR8b|v*&gkxlbnNYnEp1HfoS{*W*hbl$*Z*M@AbU2`2Qqq4 zMm*T4Z_exgKz)4!Mg>yl#YTBkq5cQTwlG@*8wVhn6jfQBEmXnx3{ZTDlS zOMd`?k!;hAZl*dIX`u`l-52wt8x%O)CJ`l!6hPDGM|loxETWqbYJknqtRjPvBFe>K zBZY1!VA=tY!YFb$HouHQyG>3gDPRYLa+=rxp&I}w2dsdwIWg2^ZUcn!yPJT-E%lu- z3JLV!0+3rrF#sfDU{r(yB?Q24V?&It`k)?dj)if4p)3MS8n94A-Lnln3L92&g83mf zQs~wIj*d;7XyFeV!A)!VgAE)UAc!i#V6ZMYwm5(avKR!j#i{V$?*>r zFjw0Y)p<;_3`TTpoS~ZnI78S(1;-W|P#Uxi(3TIwq75j;f`KU`HeBcy0jlUGix{n4 z0CHm(oj>a0A8_Du0vn5Hc@H*h=(-OM4iLnu4cOuyD!bZ-Y)fo^)dsX021<_GsGzKQ zQ&bqW0ZiqvaE7}0hZHzN*hB@#78X&fv_Dk-;v1mVq2O*)h`Q$wMQ|Co$s$H=5Zul8 zqb_bEg^E1bSVT*BvB?ZQEdmDz2x8R+Y>5DBMY|0diVJ|yU$p`4Y*UmRw^8{Wl`v}q z%FANo3|-H`8Nwzi1hy~<#*;sY{-O?WXaxxeSF%{3fp`5O3I#0y9A=dOw&3g%%)qPL zscnT$EE&O8q(mtXR*0K-Z6}I?u#09OumyHFYH5Xu)ZcUifmWdhWxAaXD%5XE4Wo9z z!KEBl2GKPinlY>jf^F3TCK`WG{Z&Cwo&s1;qQGMXw|UneqEI%oi-PQC32@X}c008# zSB+6Y5ZK}*h(J_ScYD*UH#0+tmq;FjY$2aJ!p9}@#W z6JXO_0+6QYz>EZ9 zeyg0jnc`tUf~pg4BMUOHNmkbkGu>?g0TVs+j2{lxApv?AJ?^$@o|TQIgNZ)CI?T@4 z0A_A!YX{S@0zR~|F##GaFk?%g=nT`b(1+RDTWz+}V1|}9u&n|N%)|mJIY63-Iy?%k z$_Q57Ar(SE^*}gO9z{T9dIVI`L_k$c1XRC7fOWv_wKX_OuoxwWZP^H6!z8s$b=gJ> ztm^JExhRbX-5VxyI|2--jhp1KL4(#^m}sFdD1Q4m%oYsADok|H|h;;)u=-aya9T*nN}*ieIRn-8#hj(t8rPlFW%>hd;n zAWyr^2M>%F2E_{uvP8*Z8@<26LpeU|@OC6zps06)2d!W*K|`-L!T$%rL)+f z?XVb7yLN*Htt~J?+a4nnfr;2!-CEgLeDjz4KA3f z&!}w+>+D4Fn?XuAJSO8NEZOy^zvOumNEkvmp zI*1(x0`j(-JfYPWCWd|+2;i>3aRDJg3k<0J4~J4_IFvHOF{I2pI{klT5gY<5i>S-n zyd5}gyRism;22ok(JKEtwCw@opVCJOWji#KUG4^LD_CHlwbL?C0d>KLHy2oQhMSx`5yL)#G}KzrK_+Llwt0BxuK|4nKr64;?_Ufw>TsPMEK zv@NIpPiWXW*QksNY8zv6Pf+g}_~~@8$N=p_fkS(a;Ap))ly#zc1Qg{h7XGzc+R@d9 zgBzW&YaiHO2IUAYi_k&rh#J2e+*p^UTO}$C4E;6?z%7B}0nu7*}r4z6Lm2cNhct z?SbT9`;#3lZ}{)dIhJS!wwhGq-ztHcN~qn8DP%w!5aD2V71&Y?c{ykgA_8g}BEY?fkd#rW4Vu?R zYnA`&sov2Qhl86Uv4;+@J&hd%x>>+M-gdM8tt~0vlSXJ(Ar@cf0h3B(13y54&wkd zX*cOZ87&e6tsPnH^Gc7wnG0^J}WUUrk; zmOH{g>$gFu1GrG*0>VIr0pJxSZ{QX6J>V7PLx4v?AosM@!-CqOh^>y_pSmC@-~Yfm zTKoK;aCh|2q3PR=^({Arf!0n7LEVCVRzPWBRSneTZJdG{wHvf8H-!P(P7C=PG}LwM z&^9k`hlaAx-Jor`DGboi1I6!r0CS4C1^f|2&fB*A+JC{kDCCGy@8<- ze546G>)UPRUmGlHknI9PB`?@j12hP%Aa-=nAs%*<|CYo1r`&e5&7sGIc7cX+Y}ldg zFoNG*bF5kH*6INRH1sg>cWB$g1O{?Di~yYJ-K5609I z7kHi&@_A4<7y)&I5l}Z60d|9d$FxxQLGnha4O##}jkE>hU+W_Z#MZZf0P?4;jyZsU zy-(~Qwj0GJx!>xIE!o=&AQ%|h9zeix0bxPL31(oxd(?dVi&qqV;6Bv)1`sBS&i1?) zoQMA)3J?lbQJ^kwBlq_P`Bp&rrzmzb$NxG@pmeZ9+hI#zyJ|Fu>4(mC=%EqZeHF#v8dc-H;7xya}3aS+RNXh zhf-hc(0-c?nE!&VV>f79%kzIiL%Ex6Z2rwNY*`d4HOD}1)8Mv|`_qub<{7s7_u!rd zG+(!)6^`z5!QL}QmkU0d42cgVN_4W@?c!g%P!!SaoT1_(b_)PI&e%chumI?c@ZI|I z*lGRNd>{vhHZA;q+!xxcfB-iu04EusbPvrXqB_ujSov zrWVB~IJKBSY+l|jKNK&!P3_ix(H;9lv5v5#(TxC)Isit%xC<885CNhD9#}*Bc>-{_ z?MP9KVWYEcH?1CU&=5PcB^ELn41(Cv^!^Vp(H^SIvkdr_iZUoffMnIiy1layZ%SCo{tpCmu z%3!g}b%)ab>y9-hmUd|TUs}Qtm)N20Q2Kw-vBpjdUE_aiDaOZnplFYQ!yR4f-N`^p zdNAKa)1yBPYGCf6T?+_k*TO%KlR-@&a33l_0FMVjbrPumhk*Kj2&lz{fck$(sKo`G zgNF*|Naz?GBy<)D5~@Wbp;|N&D$xJm9Z!QYV&K>s5I+*C^Zetunr*dglnDNq>+a%( z(rirPMK{yk$!vvCR9=QYOTR4?J%8F&XE2aK4^e+X12yQkPI!W58`5hG#CMo4)cW5g z8$r*h2g(lY&`zZT<%x;0zX}NL!Eo@zG)#1`3kby?;Du4%7`uRWQG3)kv8X+Y>~=sX zh50uELjUzMP{XzpLKS-d6(O{f@4(Z`{t(*TefLVugc|BtfQYA;Rcn7wK>Bav{H^}R_>U0n5B2z$2j_3%^8e<;_-h~V_ZG~* zHs1cZHR~^?!SoRx!2C-PXa2R1^UpO{eksFrABo?78QlN*(r;zvUt${bhepft5pVSI z16#jk=l)e@`LO5xF4eGn_}%_iV*l8}|LrWxNBr$?wdp=mqkmXxKRmuZa?=00!u+wz z!}g)ov(SC4{eNh~jDNA5OB&eg=?N(8MX7YKhH2I!UBBV)z&8I10pP*eeELc9NLSmzaQ#urG*YUxTiBMb0o zoG^FAZdS%Ba=XqP&23Z-e3#49VLZO^T5)xGf(NYcx%_N>hVkk4lEx2bJFDG5V|?~? zE~2#q&;H&QoE>vp0FzbHQjiw!hHP;fb$tTYQ@ep4D$B)zHv=0%(*fLrvh{uSbAB@q zA*~9iaL3CTiX2XhP3B`woe@s;%GkMg6=1duqBc(Ctdt*Bg-88e&0+j<-H$P#?ZDih zQ=yLdHFLatMVZ8SdHoKWW&VaYGxrFg&UZL0kP-ng#BI23yx|u?G0p*o=mEOl{l!W8 zW$zgh<#|cQv`((^AJ|827I_7zBQG1=(WIZQbZ#~8h`Y&$Hspz9v5Rgp4lJJpYLQ-f zfRBLe54KqLNSJQs_bLlyfXENEvUj0{Q(5+<>?3LX&K|SbN8I+U+d&Q9xohcp_;yv< zVH7F>i*@^CK`i)TeQFq%1YojHRo{m(+C`jrmIRiPq-!tTm@pc6xiM#_LUq!^9O>?T zpY#cl?98u5)&&GGJ`%FGpo|$|+P>7x6T4oHYcj%^hzej#MFlYB;{V&l_o7ZNU&Ysw z-FjN6p4cy{arRlg|)!qR+gXZ3Ny>aLdWXXI7 zz|eecC+v|0Y9_guaO-j?W#CkOw~V2dB8T1i4~z<$2E_#5+WBl})Mt`0W<%$)VT?qw z1_uY%-MggEcYHgvJYTTG13EyU`TMpH0*zN5)VAIF?!$5Maz{+9ERy7vINJtB-1)0>_z0!h8z@nmk9e0^_l|N|!^geMg+k6PznLIfoP78^9~jp{(vFEC?Y3 zL5GHk+cnBq6(BPzIW0ogiy0D%IA`qx$sEm;C}VjDN;CmZ$rpL5KJGnu*|zV5pUC3B z7=tEd4Fi!@UtuN5e<+rz=1wTI-QxzAI5~7y*-kq#Z$~Uz4rYwSXJ2TNnKn=roO||3 z%g6g?-3SzQd;X_&Yp*%}q>?;MW9))b(Rh7b7DhP^|&2!Vz2fyzUqB#xU3qJ z308NB4&h_Xa8L{5X#lLR;?+N4@vXHaGXYDqI@f8uvSQ z%71*yV5j4nnqt7RIttK0b?7Vwij`j7l4LqR{hHVUc3~gIJ?XVqACWk3b(mUAlUz(7 zLoP!lrU#Y_kkM2Gm>agl`SJyRCMH6PcA&_26OO*>#wCy>q6MUACRqD_8i#}H!N-Ci8rcM1ravn? zzDc6i{xon%4O^>TU)wX!)>&@0@tF;*==G7dbxaowYEzR+cq489w8LxnW}%)wX*8VO30?*#Oz|PZW!WQkHQg z7P)wku8I1Q49v;iEMFGuCCsL^fe{=(M=LlB$=t+wUqxt7F+oyGdk27{g&$UZaud;3 zOqp{BILAOhwzBP|LCYc{Z#5ZgDoda`MVlr}%-^k)<@VNPnrhdLhr(e~MwjNb3{dyB z$0Wk|d66**Nu9|%j~pKx0edGF>|d=d#rgjPCdQ)pARuD;REZLf))CFC zOR!_I1&sd6ROEu9Lp|K8it&PdAt3`q_k}0YxB3PJQOH?y^va+C$|8(0$EqTzRHFEj zHS(fltp2%<)ly=bI6rccbrVg+!lOkj>XBmzzRmRpUDM%EC+J96&X~?}6i&YEJZ@IC z0`fyMgU;{;7ZgHA80zQ3$2J{-Ed;6P^DzwgV>23)j)rx$=VE;pv>;+6CNr$H6oyP< zr40_#m=x<176uVRqT!)%W)ehGz>o`K3C1JNBPXh$^WOoM4>B^1U(Le5o7Da|+#`;r zZz~&O8V<_I?3R^TCnKu~qXySwWXXc;l*}0+NQ&}DRv9Wxeo3S9d~l0Ye{y@_Y!P{T zAgp--6FrEt4e?=>7-Sg5xqz zdqJCd@SXXM;x-l)ayO$@hVhhC*|q)Bh2jz=U^c@Yibmgbe#7IKlk1521s;0@aAS0<*~?D^AVymgXfs$Cp?{>OCsjUWw z@)$&Iw%wUPs*Ta_2R?jXw8IkFJ_rAE@vL~+#4d+#UJM=%*dI%>c+FZ&px>t!O>{sQ!O`{&odY<%~LZZy&uls(!Hyc zhHWCSHTtdM^B6V^MDn`=PxUy8y_K($d4kC`P7w4%*~nJO($r(_JiEhGn~%qLDMWeP zaXi{c%e(~?Xx+IE?WU!B;0)=FM`zTGMq}Rvnb$n;$d%}7=(mjy^_I1iij>yQrsJ#O z;d5&0pV#-F+7}@Z!lux<6R-sYUP!&5z2SdH@C+lZGUm^8LkRK-n2@?b>m{Sjj+`Vy z6v|R%ktIoXjdqPr&m}Pls0DY=8maVW5ZWJd6@VF@nfL}H%p9uh4xlKZtR^Gj=FuIH zrLNAiMFrPD^t5#3wC-xAxJB7Zx%6We0`4nRF#Q)*>^>0H=dc$&J?u$tIqINee-EB5eeI~7*}{_U1paFG(lo&lStM} zR+;OWJn0rGz0eB;tlAwvS!xARJdj@z+kB<6rxSmooOF42pr5Yg2yFpJYy!ne^$6A` zJb}8xmQ1+8nexK$jt0&+y0S_>-DhHJzf-*J4J809@t*c5$!Yl{zJ4$EKFVCnZ@2r- zvnNY=(f(=u?XhVg*q{+<+J@1xhw_r{Eiq(E<-qAcp6OFer4Bl`{~CY)q)1{nSN*oj zgQ4jc2aFQuC`?1@kqjDT3z&4ERt%q(0hU4mrn@9a%ki@6s3O-!ca;HPNb2 zzOU)HCY9aTIU|?xC*&x|;0Q@vS`?zLLcfgmTOJh*MD!J|XFpFKKZv`cH2bcFbiD(l z&;j49K-8@9>lx!-Px07-nmiZ*UI);~-y^sJuL2)(KDdp4h44j*NBf}gspTGDECaZbk!w8|#y7EctiQP4-#;k;u>=C&iADaaV0Uy>3DAG{h5beg;FJhAN z0N<5#bc*S^FoKQ7Cr=d>A|pt+S<1dEV$zsM+!5NC=SF*V{8*89>jX(}#yv*6L7>tg z=y29?SZU<}{-;Y%a}3t zNn@CV2~ms-i^wTqoHps|?KmQ)*-PP1esky!5+2~Wy-K;KviwefofE4IDgPQT0(8(7)WEeW*Y7` zN~I$XkZ*sDca4+iu3QAvI}58KWx(YH^vOE{EdZJmMn>DWOOsqi<#VkuI53;cnVV=LTR~yK7r!8|&1b z5y9b-;=#e{6s6+v)v~pU^3MD1t^%Hw=?sYklk#C)W3y&5(Y8Q^b2!|qSGa7dv3`;aZ34|tSp};C^6GRV<~gN3?pEp9 zk5%asKIxNui&z6~G05cqd01*anQdIU16&|)zkqN>hC?OHgx+(Dkkq23VB4s11o`uT8+hbJl9i|0FGTDfJ z9;S`3*c1?nW#hRBHGCubF~yjOVH1!$0hQ$6tv-oIA$714uW)qOXL40|bT}j(-LP(ZMjPRNIu5bSst8m;h=`epr*M)SU3LB3 z!KZbgGnJC^aRB$g7QC89Q<+j4MUk7SqhkDY?I|7KSb*W#**YA3AE3km5Ir8J&}OCA z?c6632OhSK>kIW4wAa1f+nESP{JT5|o?EFSR)`TdJX&lD`D%7`vFRXIh-%)dVS7i@ zMH&Xdjn6s-yu`G6bdDD7Y!44r(i*TgV1z7l76H%W=L_qgufDlzDBis67idrMRKpa!<XHV z0S{HAPNIam=PTF#okO8(22$1rUtxR%_2?(8DNKjzQV46!bK!BK6%<^EiZz-@9J)0y zKfZnpnXD_O%m5TuPK^y!zaBPbuTDMSe6^%A&hRx;DkvfwMh(|c0Q-vfpcZA4K7%eB zZMB^a^3IV=oS6_zsxu~)Fu%N{O1QdTp|KJw7A$)S2OF6!7i%(U-=j?`MQ3K|x>xhS zWf$LME$*`g%fp4{t+2yvKW<^k4CW34}A4wFU`-bKROuT9V0df^YQ3 z*hV`Z67-Yq<5zmxK670ZiaTT&p|1!hOi*%lt^B@COQM=zk?;%~f6f}# zNK7*F5gfhy!J47FKs7I5={_@q)&*Xy=taeS zVp0;JPR1(~v2^hid%jXos(s%Z){v&AbsPcTbDTeG+Fm<8diL?QHM6_n7nxBy$#WE$o4)sW&N2_oStxGT9f%GiVY@6I)S{pF4crEX%i<$1XPz;v z!%(f+VquX1@BbP*;@w(91-;GHFCv zsYzHhJU~Y9s2~ykaUqy-^n^Wt``eDgI5r;XH`+Iz*-kh)md7z(!{YB z6n=UW>4h~^g0A^}#X*1cljB2RmN)*60nD+g|SNah%wDA%dbVwh6~F3}QC3(N+a}zMH&0Ks$9QxsIAs^CxN)<+^i4giQ{oA@#UddEWH68 z05OgN)vjpTbj40rCF%pb5nM_26~Sof-88v z^lW|TU0}r#n{U0mK(?07E^8-`LRq%95pEkNI1`qt;fT2>EN=b_M19z$i=C`XXoP*B z>FQ-+XVB*HTmcT{xeVzXd{kd#d#dFcHR40aab?|zm}#&^fR4To>RXgTIK`E~ZR{p^ z*4%HB7H#!mdNh64+8D73Vu%>CaC_ai7GL&`lq-Mjx(hbR;Ftk1NAjje#9$!u zZa4O^uo_QTEA83_#*s*;r&l&|*^~Z}K+^`-+z`3|wad1ngp2dN;?>mGk<|w`Q^ODe zclB7^wOC}(jw|<~s;}fFm7xpdMcyMZSK>pE`NT>SAe;4mlj6kPkBwY`& z6WuxBDeQ@F{p^L`Q;}~?vP9{8WE2Y2ce9Ll7pE?g9kQAshswT5x2*SvN_Zo^S#Z&O zt?%mQUfPCrnD;C&$b-xvsNj~dTU#`O@;R02#x07rNW3}+TnEiEbcjrOu&i5Znd$?K z<5U<^4jZu$rPPxgN;v6W;nU^y>2gXi)Bd@Z-9e(O^!t*il8vFjVEO3`)vf&P;EH=) zP+Dt#yX0%|Qy|#+$XNPAk>-n{c+Mg9h^cdhYsLhWBAZiofoo&j*PPGhUQuD~R6Zc( z&BHq}8gZKY2y^V?n)cb%NIIu3$<4b@gO@c8FL(?woU{r+q-jN{X5zSVd#P(N23FKX zYpMcl1Ima4r?mCRst3?%WBaLejBWRvm?tzmLI|#Aq@F_3UbSWuZ6WR(n7 zsI92ZouFOoU0A-liOvo84niH2&BjSv72Q!*wo#gwYRk+;c@|_`JzwjojC==WBnK1F zTLR8O6Ar=e+P6b*``e`igL2{eAD9ymvB4SK?S~4D@vP|7vf!)N5x44ipKY+_|?yo%|Tk+mSM^#=^@sZ z(E_&0*X_-Eo9)#@hsl8qkNDh?9`G)*fm=~Q`#sm7BqT=*VbGl5_`bjVmw0RmD)5{9^D!P)0Vv5R+GuS(?=)Ats#$LY!)UQty&c zOCDF*@jls#JG=!Xv?+^b2Dfjxp@D|$3G#NYcam~$7u1I@X)HA)<{XTJ?Ph?lSE?N< zi(RmSN(eXc1;AcZkQ%<-$O~zipZGjN(~ZOh33rp6Bc_>gQ~9CQD4JNQH{BKG`hFv& zNa-R4xkty_R+p8Tw~DIA7H1*NfQv~e$K4u0yJsG`g)dalBuMa(A357hmUuK4j}eRH zl9&jbzGcpd08u?=Af`#HO|?xbeEY$zL&sHmefUPIvFKjM0O`>YdcI>lEgQ4Psxob@=zaWiTNUQHca6y=tg<;FxXV@DN8iNSQ8tJ`?^V_6Kze zZR|iH^Wxip{_=2bQ!|!}BXj@dSZ~1JG>)q@ zzO<4(;d&zX?Fige<(RC`t&buv#8q+~yFis#x*2Z01LmDeQM zANeT~I#N4Aj$?k=pPf#58!thA#X$;*16HB6_BL&sJgT!gy5F&UX) z!pmvWZ|=!&^aU=(kr7f4=bLNm>l$_gBPx>)%Oh{!um#voAnzW;#KoSU446gdJ_%BZ zt1n#xH54s?VvIFYKTH?Fmsh#WjaxRKC^cCX!wn3F4y!`>5P!8|h#y|Eb`ml%A=!R8 zk6iewSkRz`nIpeee&+^p;kfwDX@#2a%~JzOZ4gfng||nCj~XM36Ow6qx=uwasFeBH zm>Gj#i=T7yTKv3IA#`cE;$)%PLsi3F{=2M`R;5Eky45$d-X7_ET4g0X|vJDJm zi^F%2aHe=QJRMJZbMij#?((TC%E|_05T+gdAbN*F_aN;$sNhwEWWJp>u06pn+^7Jw zWmh>Jj@rbH6QLm818`I_F#*|?fRS_Xa_7x&)09<}1sw2yUu&gu5NO0`#Q#YqQbqSY zZz8-jhCH5>+RXNvZb!IN0D}O{{-aL+yUDq#?s8-KL98LsBm=cX zZg%q}sc&dW#d8^3~<`Udj-h zVLB%xcN!ZP4v*^@ZHLYK!;-WJ)pGh*sWhIZHTT_{k?6slgpLC3mn{+yLY#f$mFA!8 z(2XalC`;e0JOy0m;XQ8QrrZRzCVWToHcvOlU-Y?Qo(dCA9J1krrNUoacHR!!ChvuD zBfem{>76L)y@zT&CG6&KhO>=#bYQU31TcC`N?$> zGVzp;LDbLEtLkuxU*{YpYpY3?WPFO8bpL7rRX-ax1lVun#sFbSKti9F>_boY_@~a zMRc&<+;ivlNnnvQNGxvt7tk+XuY-$dL6(P-p0L=)TuG!LNLCSJJCT@pk{T%%6bleh zy-8IfE~KlmHl?e1kSd@^JW1xf3RE%#1?UcA7e0Lt*(*Tugf}n2CH@Y<1@zVdW%$+s z_zwSq3t{-(;@l>}YOBMCygk?xC_~V_0mRPT0V_l2Etfj+5%<&e`CMNtDX_eIEJwmv zm1j%>NUUc}P3Jzokr3UWSho^=#=G8^_kMTBpCA7oFE+TIE2s&L!4gtUrb@H3*iZH| z$rQ!arc-VyeO-0+N6^@^%(r+gmx zz7U!arY@j~=U~edC~;XZb8i)KOG!M0SNhbx&33M9sX!eob&>{oH@mS)xu69s61~+7 zq=kBM79<=n-{lS!z1vZ1p}SC*gO{Y3l}3HVPZwJInd6=f43aI{p&jN}{F8+nV_}$0 zpcKoB%YY>w&F2G_c_$;8NHf1;`zIEznX6LgbVs|L*Oh(lGX?#!IV-rwk>mz^Jyc4V z+w5lETCn7tR~^Yc!EGqNdmGfD3*i0v?^>g3l?~pa2Z?c+7MSdJ6fc{+(;mGV{Y9s{ z>6?2^99(_qTm0w91byx>gOkWx@;&S@f-2{up>f$^8UvP{j`h{y%xiT(++UG<9;f56 zIZ{%%8HvXOX1p1)y=}bjc1%)Z)b~QN#wA_${iqA^w%jh{aT;1O#_xKkAkRELv#QT$ zYp!3XQ%q1@X27fzyiL`?N*}4cTNsELR2bGHG_^YMJgaC+ozEVJ(1I->T1a5-CmpT! z!mNwDU7Y97$jq*I#~-cO0jcDb$ZM?CDPTBRC)n5NTSzj6W9^k@Lqd(UM4dcc#gHT~ zXjCDtb!_;s?OHxK(&aHPXw}ogN39h;Z!^Cr6L)P7Q!e%*U)e&=J$aL)q3@xhYjLHr zuO#pk^d(D5&H=8}WpS(ctVX1<{1ta=(`C^A^rR(Z=EY}akxQ(D&?)bksgLwxbk2p* z%pMC%t6QzB050S~B_k5@fMu4q?Xd2W{z}H5a>1zaS*ht;;Sla zUsKFx?7?0-|7NXza$+m>8w2opTI?(ov13QovRhbta`FBn=c=1|BpQ{COM#)xA^%< z9sbK&bXF23lVPi$Y2mn9j>Z$_SoMuanMuSR_IP)u;xOB!alLqsWK717S*AhF0Is== zaV=oY>l<}s$>|FO3Bx4xDPs`A^ftZ>%-#n7>*-1rvldWH6cdf*Y5nhKB z1Ao2Vr!shlGVvZT731k!t$;7AqIU5ef+g(sAr4FIa1sq0Z6KHEYArsp^Ay-c(4{&R z)o^9Ice`4+kix}q zkvi3^kK5aWL6u)l<0+-LIM12NgMgRQZi*H7TTTfJ!MvyLe^N+XK0*+4=56howK#zs zGmwov+bR&=tb=*{zT7qKfGsWIYXNbn%cG}NSFwQpT>a|vTKyX1vHIp>>}1&~U0Gfu zC6I9O^>gZe@;u%%zY&aNk#yO#U(Z_UFj8ZlC){&Mz|*`J&jA-vM$HWd%{McHt{Uoa zRsGNp^|Rt<$(z>N6(!v5@8b$CYw5cCz*P0uk7mUv9{MdJG#_ z>i_cU{@wNXPY3T`F7JQ3CDY0~=-Rtj8_+6Ce*F(WWG0qhp-g|maPc@>>*$#o*yHIM z7@1gd6P&kn5a5~Ua}y{rOVUYN3m6!ih`QPu$h%5?({nY`W7j9(`NHMQ;cQ`T@!|c9 z=WJnaX~*HrO`!8J90QJz@^7bU3GjYZu{Yx;V5Fg^W~HMi_yWmgt8d65Cn)?!qmLtQ z0%Lo7YYtjkCnqNwCq^18+Yi4qc6N4JItE$>2I`L*)OIeG_BzhgmUe`HA_yAT>DiiC z+nZQf;{ArGqif}0&rLvp_vc_Ntp5Yo(vIfWz-aWWENGo|tZC_K=xBcfqW!JqKOy}w zx_>(Jci3_!M#lDb|9ua(zv}$z=z~zdx8RV}u{AT$|MJb&!GMeQznuOTBf|T?@CW&S zp%1+O-^u@q%Kx8S|F4qkcP8+`BENiah(CGkmw)i+52nve;Pk1)G3r>9}7aiskwNggb?yem`q`5MZ)03r` zMk4fSFoiZ^Y^<^csre^nOslfDVlj>*uEMqrBl@*J5Cs@Hxdi;eV`O@wiy;s{qQSH3 zL$m$$n%Q@>^BTTP1fyX(bto*DZR4b)XyhUuV&urTIN%=-@>&WO4U=%B()XKKJ(utb z^BiqckEAux8q~FR=rZZl2RfgHP+sQ=#tEr;`mD2M-Be-{qH;|fpG&OJxE@-Xx=GF2 z@NFO_gEzdtHJ%O{BYoTa4wQuub^SNA{pZ9Jf4*Tq0)Kvm;L-j!#Aae-X84c59~M?N z`d<;K{~-Q}2b4Y1eBA-Nk#J50^&t4XTCW0& zU%M7MF&6FpmfqgsZeqa-Vb$CC~0o@m>_8jQe*Uq!*Uug(_)KY%Bxb&{S=N*Xfqz%Vk zG!A32OpgVVMa$>Oh|OcK@jkIPs5Ap!2f$O@LC~yJ$ZlkgYeA>z8Dx$jxJf!Ke|_+p z=KB#1xP3DOIS&(_f)VZ?MRwo5VyyB)iH%)M~lHnGRM1tBd7&J z{<_#}Oc=o#bk0kWD~ql815m8Mc0VGMHd+>jz}0*I8<+IM{6zKv(~%~a9m-TNrJ5ju zac~ACKkS7}Uf07HgzdsaIPqh-v^-8B^kg&%eIms(5i9F2_SntP)+9{edE}a;zJ z9eiiQPym^ru9eh?s8(LT&%xESw6fWdkR|2`y0gnEggjGdg;R)LmSO3s5P80YGNvsG zUK{r4yIA&vsLiOq#vYK~pS0P*8hHo(2z1i-Z%06*EL;;}Ul9=%x$LNWdmqniN2zSTxGh z-rPps=UYDj-qQeZ-$d;GD?}pHi%T4}JLV8imiZ6#GmyeF+)?>oeZ2qy5JtT6dVjhM zYTr(a6zl|FLCqGQ30s;_MdoMCCOr6b15blcr<;F$Q^3y@a!`S}lf#e9YqpS>&aTIx z4IT2aI6cp%F}cBZ(|N2sZ!^{&fYe^CfFfnCFb{~5rM@#hmhJG6WQdS0cn)7g9M{8H zv^XAbFsre^skaq*ZU>Y!&s7{lJJi0B;Gi0=Dszd|RR}+f?tq<>WSTI# zY3&!Hds`}T%&^bYwjU)sMC@yxk-~ItcY88EYiD?@G&DfKD(-L_cR^Z*Vm<%dn#+4%p9F(=6;DXE4=^#I*hh5>6dD+ubneDMG3+f%m~z z(X-fgZrC>%kp2u_o7TR-z~0I|@u~~r0WF0xi}GIqJXX~XlGR+vGGNqtFTB6^9b1Hf zvDE4SAWvW43;XxLc*qH8No$qyw@Ja)S7Vx+WE=&4CRdx{c3xC>#% zc8H@dDp<=e^r+9{oCAb`xs-~wt;7N!(5)cLVa7&;F3U`KgG4?n)9%{_*GZgpw}~&c zO(vp$!H=H&`PBkUZkQ@3 z76Ev18KFK9yMs*YXX{-l7zpSFKzl4C%pbCzKTDmDbPId<%C0*F;Vt|^xT>24ib9QZ zETBPFX(mKiPm?0Wpe3+no{)(Dc1i?3APTUJmAX{N|0Ig`a0Ppp?E#AF(+ z_G_0iweU7*s-Hy;uN{n8dM9DdQl=z2Js_bE6w6E@^7Mh~T^30vz_Tc*VCj}T=mLxA{%YA3b5F=BnH#GZ> z4}N%{Kj(ZQB0s)%sS@fr?n#RgupL;m-$cWekxWO`MfQs2L?=abP}sD_g^`2L_Q@m) zC_IAo+fkrd=oLnVKRPJrE9L_gF>}IZ<3D=K?Zdfn*#Jm-hKdCBow(@dYL{h!9=xvVnb;Jaa7K-R+urYG?9AiBcJ{a)$tqfkfnFcYMF^Xvd$o37O*RDjv`d^G7()eCV_57#25jZ zX5)TCab9Fe22~P;A^voJ`5z*vwt?N`F@Xk7KJs(y_me3o&I0fV%AqjDmCB+BF-ric z_u>O87GRo08m0g1TS38JR}OnH~@#-To(0Vy6%WXLg;kWOHjpr+alG3De2Sh7PPLR^3j zxpUWwe!d*!mFP((3zru!Nj_Tvumww?Lui9jpTPoH=eveA^&DV<0Q>A+@Tl(F3d`TP zcU>k{%8oThr19N{fL3zqB#jx-sDjGT%7>Gg&Cp72nyhK+=UL)vk0gAn4lp&h2Ll*b zKmMKn0a*0^{}neh{EfF3ZnoPL8`rIUri2bX~_m_6Z4J*UAC zRP{0LWygpy)&z8kF!0&S(IUw|&!QG!&?z)w@Vh|w;m@}6aoEXjC-5dpPYTelC>n45 zifjlm)Xl3gY{w+IUlH|rYpIdta;05%^uRzDyLBK4u(_?n>CguDyS&w;tS+!^#kgNH zg__eBrpNbK09(Ft#3h&U`N*%pjed>CW3zU}Jj`RI`czkLIRKcpXDzOL6WI0W$hWd_ z?Yi88FFL7A#Gr7$kO|7KEMYf~^8Jfb~10HLC zU}dae^yx)yqUNVG`)g+yH$xqqket7x3^?l_YP#1Nx1 z>uTXNXV2@E!dgu!l`6wD7+^J~r4UoOi&6NYuhua9O+b)=fX<{#okO=WP+Jz;k3#Jm zz-uh=me-OSr`zgz+Y!lBt=NVrJ$2|q@Nq3!seV^rWPl9a%m4;JacwdW2TYdeDG8@3 zz`0IT#6R$rB7V5)iCW^oci6Uaj9R*5RS2B(;#a!vI~$^CwArng8r;*z29JV=n>p0# zkoB#>8$>$VhpT+n-%k9AA)tF)9!#hd+2lb_#2$&C(pM`6eHcvms+ZS}7NZ3(P%Wfg z?MX#BT@I~L$H8JGh8Lhu0d*5rz~JcCcPn<&u0yrn!=V^n=R`5k*fFG}9vh(4MWf`6 ztmIuAxWNJFkLUNyOY7mq4K=Ss9`M{3@U+k!u2+PT;gg&96Fv%5$h3dtTWtZrBymkV zvECs%vx`{CB*IHv-#i`HTRu{hluqpBhSzR z&(JIip2$e9$a7~Lo@cJ~@9B!;Zyeg5hx00T(WsZ9)-~@Ka384_ZifM%Xwk#C!B09OcPmZP4uUuC9g={Hs4}jRi6ie4+aiJig&%jeHyijv0*!GQm=d${i+^&3J%~EX0vkzhX%w9FdA| z)JPU=+loI}vGs~|skgJAoTA_ixaZrz8)Yhc9ZS$vJH#8Mj_5({!?L3+7L ziu*-uh_uY{Uhm-{*#3E&bn1i@r(vmpWPTx1lBSl27&8clgYJOKcaqv?J zOpHtU&{#?F35Vnl>}LLnkU$Oa`d-i~4Olq1{tElp@&^M&yq*LtkwXI?C+`MJG%qOd z)bRXaLVS_R!Zn4o-TMoT6}y{+?>U}f?I??%4@3PL&$B?H1UjQPRk(Nu z#uRr<y+K6w$8kp@z$M9X~ z9O{J65IDDU_~#&fn8_bU17K~(`Iprh>bKDbv>M8T_)-3t>P7Sgv=z!JxDw@uv;_o# zSB)%>3WP_rxS#pmGwf1Q>@YjbPPkwg^~s0|eM;{L5c=ELZ-C95Qk`Y9cgnZ8I)X-y zBSdIZX;3%s;<{BV)Fhe8k;V~8n%z_$YgQgf1204z=ZsJ9r@QjJBY7~I2;x6jBY~yqsu)($|m$#s-G%bbP z^Tfk%uKa%GlI2Z{7azU?_Cl&7Pe%&R=o)@`;}^00z8~VeJ$s&L(4C1aQn){eKLCHo zp=C_c&I0TrWynt&&@$47LZlDekB$(oop-B%Egi`sgt)taFJ$__{G0ngIu(Na2D7S;jqYs9X{J(6&M(Y1PUmA(Nt>35q|mDVyx zleNLY!})wSn3`-vRh)@lt&>{fnB;WE$D$v=Ts;m3we3cS36d-V=J5iYb5aG!yKv4K z^3qYgo*}QYlg|+93jq1-C^MxRQ}jG!+etV`f7U$u7i2(&7=B(^;uzpIgI+%Ys~OsD zjw8afKmEY&eV&~kdnxixNt zABG`dYFa&sNk<=-jy@(GQ@dV6<)Rm{$c=yn!IJ{h8X%FNo_28tDl({lz;s5DU^0~- z?SLznoMcY%$E4I%dV${j9%_Q{=sQy#C}oEvXcSb(1{rghn;2x)?K%aWRAde~G-gMc z$5&ozc5o9j1vokK-gm#Q{T|lb$-T9I?Tw%OjP7u-%qs&3C4|>@G*O z%9rk!u240mFPB==J00uh_osK;hSP7b-6ZavpK7rrPh}F~oWdIVH@!#nrt-Wz%|)BF zwQC%Kd8_7;d0BMB^U|DY^B`#BX@c2#*Co;O-nBiw)a{O$1nkU1gA%g?qs5Y$JT(YQ zVCPh9Yn}iMQ?^E3-X&(h++e9E&1zva_&Rw0v(3G7>w|k1%$L@emu>YFT$!O?^1I$= z-(HyO9H_kNj}7FNvseAN>#^5%ExF2`lVh`(i_I_CtA6+R+HVDFMwV=PB}gUI6Mc>Q zSCCK;8<~XGr6uQS7g`reKCLIEQt}p+RW@krQ<|juqWa1Z#Uj3Wm_%2vdQiWTv6fBtJP>qPn^z$Qx2W4N<+0@by0r0_9}2Q4Mt?*>zH zE1@3>wXv=XDSkf_xed6hD4QHqnA4-FLCT(E;nbjmokW=9Qs%f|3O$vVNFGih6}~ks zjtPP^p9Lg(IxngVk_t}@$5G#)w|MD1L(L!h`wuOyt^4Qg?rRn;s%!|s57GR!d>(^OAp|t9bvqo2D|8wS_L%zMlREYU&$( zdCxCuT~JuKW%cTToSgJ~M|M}N&d9P*k4*nR5Eo=sI&g+>QC%KK29PcDhDY0zlye-+ zX$MJ`3u+5&%^;|?Ns}1!Jg4S34dT^?n$-9daG-{`Y8W1wb+QJk52_-Ah>@tl8YMv^ zRe-$59JeO!uK{`MQK~wPCP{FYDz34sw0ee}`D##B03=>*nyEJX{WSLQH=9nC6suf3 zJnoq&gE(n&aF)XiHvE+9R7^#ZSpqMBOUl^UPLpV_3TvovLPYFaIwnOiiwH3m`4p3Kh|a;F@e zPG_DHbdr=lYpBQC(;WdIM?;&Q#VbQBSbY!=Rv!elEH*j$nD=xl-V+eTv5vPpMKSI< zMQY&8bBajp)?%8}j%$<3wTgYaT+~ClXQNBZz(Ei*9>txci(-EEUzB>He)>Gw1F7tn>9%24DrZli0js%q!d9*yMZMT29`h=SONjF-U#ZcQ5YC$ z!zD>VsmJ42p@6Zb%~nuNSQaK z+?PugYLyfn$JML8Y@T7eB3O5CU;hsSE7vx+tj6emPrE~F+f+IArgiCeLTkUgbWQWq z#l8i--o~#430Yj^T35E~+xYbzKdWh2T3@#s8=v?Y_7890tJ9w}W`6otk54LFa$^7b zJ%ysBAU|!P{d*@$+<8Bye+LGCWr5Qupf6K9sL>-1d`w(bB#sA*+iAjjmy)m|!cD0- zqJiYpMTQ|yCp^_S68U02$anK2yozV3JN5nGB*4GSnEkV9tqPtnf;vQ0+|(c?Lmi6C z?2je6kW=uMnLRI(2S1B&qx^fHCadN@40&@?^!LE&`zRS@gVo+ZxjkkDH40R#kmCTN zk0ZJ`qNQG-m0|_vVoh;!ai+%;)C7}*nYEq}?o_pEHkdn8Hl(*^wr001Y$@$3@6+|C z4?4Q@dJB7t`+S@Ids411+)->_U^SF!Q-mDu(M7~Ik)uO%!zdC-LUXmb?rSsK*AG^t7Uq=y;Oc$yp~wrhOR9gk{>G=Ph2Wjn-T&%~_x7DC7Z(5I z){_w$Zt9}1^ICW+vVfhmGVfN!m*^_eO0p^zIv110nlk-LvO?3KZ%yxTc2=zOUsEyY z-%W<*r+RG0$+EHq!laFWxTY59JSk|7V?z#;13NBpY>qjO%`wNZIbx2@5qE5kxMOp~ z)$b@^8lz}|qd+^G*=rp`))DIw>$H`(#=V<0?%k}j-p!gu>04QrW@Q#&o%L>36Z6XM zxy}vz*{pY)ad|v66;=XR+_$BBY-PsDK@fmVm>i@cSm2%-T)_12i3PBfm=P#GYt~^w z_;Pybl{vK(tA$*Wnx&M-9AO?8tSBk$^xgE0Vqac&dGK51n495N)GQfafAxKfSGKjR zZvVH@{LTfs%q``oUNtszyaP#kul*SM4seTZ^2=lDl@CXsB&!s96*F z=;_JGBU^`eYYiupvoLwr=gIXhevC%B_aWUl$9J)JNK2R@cu*Rm!0FyQ;tiCC4c>)93kf?*MQ?oc-y)z;ivJ&ooU63b~efWI9{$LZ`j$5@_Dlawx+q_9UiNKHI6Lvh73@L2kt z8fPIZ#XAU0v;}iwn{>s;%?2*DRWipPfoOP&rQjHHYwnI3pYPTy#w)&E;Hy4(UEgTA zzV7t8XWot+JbjwqvGKc=l^YkmflKCZSXg@F%I(|ga!=b_XFoYd-|KxPnj<`|`U@&X zi_yzWUK{j8r{$AuBuiJA?X>%f8w;8WTMV5ATQUc-H`#mrd$Wh_y9!e+L2FjI^FDhl-aoQ&fL1#*tNSQ?jH4#t0h zIz2P9clV6n?`As&DY=yx4;}CrL*FO5n6MT(x-@dnOpzQ9~^Bj@!$di%ZME2tA@uJn^&8-i$M(&Cf<3HdIJcN(T z{HWrp((U1a>lWWY4jqWh3=aG2{`%)XV<9)E__Je6&#lKx@$He-k!K>uB3Gwn9JHA5 zTlmX(8~!-roVkSv*_jWF9(k}5BK}8^5xfK$fg0)X5Y^B)Phwt3r;ER&i6d%2YEqfU z(?ma>^@OT9I3LGhz9#0yggBxGWReaW73e<>n}qd02->NwV;00TI+e~V2wH?WUV}6o zuSIG&9lw86IUEK(OSfKl#`MB7kYogy5~oemCB>LVvnCbNaZXeK)3iE`Y9Ehz3r9Gu zPS~f$YIt75Dy$<`oJI2RLehYma06-LcB0*!LGTvqf;zBF9p*S#m>yTF)?ChU2BX1l z2pIMnZa1im28`TYU1pXmRtNm_QJ21{+-I8Unx39kZklP_6}tFt$`(x03En}Vj2LP9 zvYIhY?MA|-SmGQU^yu(MAK;J9?wk3=K62|@Z>r9I;>JfJ-DEjAF;fdZ?GWhcR?w3b z<)TvjLw1%#mBDIQVDOhTS(-}PNV|2jv^!ImpG>8dVlMRN&~2EEMxiPvN1g4}a7A9V zCap#XXLAUUQizN}W3!PnrkPAal`)M{FtXgkXrNKZDA31DBO7jH zs~L@I=OuKVak}u(Wku{zrj^6}Uyo8^u~&;M?SC)+MDRxZW#jMT-tVbks`BEx%vcsI zJ5$Ex6vl0{F#fKrPzjae?S&TgMD&xRlw&pZtaKeUdp$xgeXRnUs<^LF)zTSX~&rg*C;TQ|KK8xoWb#gBng<_;H1*Ode{1W~*6BMVZTP_5cQ0>l+P3kQZ$#eC%`d)w;KXZP z9qyvM#^UAfZJS>E!I!?{ukhkuZhNr2wp?}Ay1;eds?GPhHMu8Al5bVI%@DaFH7EP3 znIE)n&C5)lc{yXjf?kLswb3{EAFJL58_Hld!-)?dv-H)~VC_ul?fc zAK97N^X(b;ts1?tzi&y@>{vEqa8qK�FM~U;~e012-ob zqUnuM!W)@OAm?ASz9ZE74pHknM6K^-+Yi>aA!#P={k@jU{=wRS-F0;WKd<&WYZB^{_XlL?><=g zAv*234^F?~&fi|JdGXF`Z@u-JeWz~N$iDq_;o+5Y+J$E`eX9#ky!4a5&T4P^^y;Sm z+3#YjAn1AumaoR_2Igg<7_&vcm=ZaW6*a=)O)?E_gKp|bP^d5zDjtPO zMF}xfDh!nhsi2Uo6TXsMF+UDcVb=O40TTYEvy+sE9OMC}8WiN793B?pdvb_ll%5>p zK^!ceF32P~e{bb}kgs8XoL|Zw5T4yp*tjGA(hkO*X&IiW!u%X&8W4I|Rzf{k)-ppJ zkptEN0@hF40SA9IQ%h1!y}SW zPY%XJvIXw^kTbcOKowt>A7O9HZ`{XyS*R+k+>!4h|0y#;xBuWj#^~0L&V|`c?*uDR zIWbVdS&^nlU!c2rPJm$BsCr)byr|yLV>hD4Mjx|1h#ZisA?ViFC9iM@V)ZdZsy0CQHK+*70IQe_m2qTRRJvky93YSa`1e0 zTBSQMUaZ&o_q+cvneogx5D{W3I-UxhfWi*?J=Fr%qqwXmb;X7lUol-C1s`AlK&``Q zX6vlXu|7xpIBMBk2oJBYi`*puNabC8a;=y!;Q_~bmlLJYWe!_zQLu#W?sXNV3R^A- ztMO|W|IEJpY5VrE_wQq0$=3_d<{xI~lC{g?Q2s7hI|HH-MRaL`iZ2E&H^v~db7snU zuK9^$#W;j3T{{bJ`xL%Y1>4GHYsH*j}zJ2;Lrpb#rUQ5Il~u<$U4fdODjcVGv3KS7?AgN(?b&l1|GnF8`*bytoHFqj z_DP5k9Au9xD26UX7aCV1p{y&+Ns`vhDZ!u=aB}#RCYl_kd_rZ9pauKn2fuFr zUa!`8S!U&ztb|#3f<@@+y)OiOzci|w>KiUvz^%K}wf7f5XBQ{QSd1#(8tgS@rv~B3iipjFvT7=L8SQfI9Qj9+30ajBv z^&$u5UtE!HB^!Gst!=3)?)KC5$BLaa6)IEAoz~`cX!;l0o7of38R~t#JgQ=0^ z4!X`iK7M&V9plIG<>mQojKrN=E=br)ak$j>`aye;1g3{0PX2|$ME;Fs*!b4`XZ|+! z!8Q5&vHhLK-k;y#q9^wWmZrdLhpaoxVICyIyj7qDdmK<>7>TD7<>^HE5TX+$5b0P-!_wcj$ z)A{pwiBFL+^Sq=f9Fk;3)i{A*>M;+desnUXK0qM#;feR`09cI(;L5s&^A6>F#i;j~ zOa6SW=Dg){>~)4|EHPL?qy)>DOt5VKsGyQhAg@?Mf?l3oq+LfHB$EVkkHnooyLDHo zfOnUexBEsQO4X|khrOgofU*}b_%^Ik1_-Puni41%TglsrCC3Nk5oxjv)|_=&r|fbC4gUEjh+~Xq zv1%IzLrM_u*hxiYrYSMszFSdakRXapV$rcuc_kLU6vrEbI(|nlI`bnQ z2YzU$+tTzp?R9#O_BOq@({msH>AyU60_3nY2HkuT1v8OizK@i%e5N{W#LOq zWWo}fK&MTh(8h2>R{ZtGTR&Phx-vUD`qx`-JJN5T zGVR|t=Ds&$TIQ4A{qAF-ZcX8}M;|Qw@$8LfuU~gIs(xq;m9Ia0!@2o2Hy<2XxNv0g zg15d?_(S2>sL#nT@H4ShlC3ld?6UTh&?yxop^=Iu#_8rd^U`uT-c1^D7faZKE3s~s zQ{=#;#SM6@C;(wdAnXYzkCaOOuH8IshrwK+Rf%D$%qkR@s85loc%_g+%|j`&5k+(v zd6A<#7NV?8x$#cko7i(!0K!ZsXNx0EDc+sKGf`vRIWm_?k*1TmgH{)B-M*Nmn>jpv z;WKyLw-0T-=FvH)t@>?GZ`&2wd#=0m=8onD-hbBp(-$nt|6X{uxugGQS1r7tHfiPW zukUO*mvM7BF;~(}AnD;@bGU+4Q5-d+Q<&*!0h%8=11%3NuQ(5#8@dc#;{S5UbTZ^D zW+;BfFInBJO;i;J<*{y&V+1)+sz&Rhfv~CLn1d*`P5?1MB(FmeS%-c~9iFD^e!;Uq zPuf1mu~)_a9))o|dntZ#nTsoYB6|=$WV&4&AjssTQAq_7XiIDyr7=Jy>@vT^;t&&0 zN5snk69SkjRUt8hDJ=&{rJj&D6=H>nLc^Q;(3Mx-zi82ld%wNDwY_QcX?uUV^lRFbnoE0RCzT2+sd}4i-=EJIPqtG2(qG2!-~vq(;GwSbU)j# z_m=n6&u53#`M%-ud9}0Z&tON@<>nc&rRA$?*NNu_bK&)|b>-_D&TQV;zO}ska^s=~ zwjmubc*cVKJJxVCkgRO0++N95R#tag>=pqDAatz{n(i&rL<53N?h^#Ln^ED{Tceeg z+9dPRu*0I}rNR1X;nqD9hl-HdiXWybp}tmF_*UB5+e(-SQI=McmLRL&>acsbc*c{w zUEIU+{1n#HKed}?^X+zW|CI3E(H&7X>L(u%g_1xNN&-;;&M4?s6vh_C;0z2b>h|tL z%RrNUJ{oPCjFcqpQ0m`x-U*ZuK5`h|b`rN~@|KgnjZ*nmTGgbmDF}=_Ig1-`sEJUD zDV%mI=c}jN+neKdH_#44w)gx0vDR2~^ul}Y`{J3y7mO~vysfnhS%0|VPpi#2uU-C) zAFW-T*){Ml|1`&*`(R>b$I+GRzP@?+=0wPfgl2She0AA_A9uDM9z5%+b5?J*0_n20 zJ=ZV$(X_$YWXsM3#@PEwt<8;XMH<^mrPvmELNms5jXbd}b5d-piKvHEmjsFR<{FPU z@dcA|@%CNHQ(kZbHjLmjy4`nRA8Fiy=(gN_oT+3KR#+j0*cE;z#oWN$&G0mZNm}sS zRKoiteZ|7#HYwW`wix9e%pWAlz5JvQSHUEtC+F6}+}M^xd*P}8`fI_*|Fqx}s&?!E zw*S?MH~2@f#46BfV3$58>wO9{AJW+GfJgB;X>6F-J5JMcRO0Hfmyc1G9Rrodp1PaC zgu~mA_Kvr8eHX|{jZ6xVBPFgM2}Q~5feS`~3q~!_eqvZe=24nFic+45FFxJr+QaJ( z+mA+_jJixQR;Cy$lPoH+;Xt1Rp@c-JCm^k4OfFzal^)l2g8eWV_wCF;8oJUwaH<*8`Ew_pf&UA=dBk-g8VYxw%v*&7ffg+CZ~n^^OnhSpNktKd;? z-^3@hfGnvXmxo39*-btx>~ zscf%0mz}H3R((3sFtV`%k40_q4O~6nsMM(gY&YMh&gJK*^RzFr8`%x=rTjP8Yx$S? zmxPzpw}rRmzoEZrm744``!rQ!eL*}uS;3zY5(Tl5sYeY$oj9KvL9>KmQIU?+@ND7bR|{AF2J?%iU!xY(M9Rzj3!gS) zmfys`_-Q5oCc&qVF+TkeubhkqpgS;Hii`f6teZS>oHjg*IMUhUzBxfxQDiZ=`Q1l& z`F-hH!mO?vdf9OFH%nSCT__2XD9J?Lk{A+rfsuH`a{|Z7r1OInB0x7tXl*Cl%}pV} zRLKsljCwaO@PJJ`Eidy97LrH{u#hjd*6_TlY*M$YMbILx()mu(Jw>3)Sq!oW_^&*U z*8ovNW1y|EI4+2ZOzGQ0?hWGQBWQ za!0R^z!2G5Zda3e_V!Nglj1%CC2{ys9DH>gs;F`7tHC40<5T-e`A+xhnQ@YN&iI{D zR5qJFjDJ8HJQ)n-2)57tPpOABeiG6t$1E=saiy`p|UfiYoW% zeaU37b#W7FY9iBN3_Kk?Cl#i16d=AABXUVydTCb1ZW-;hdN6-tr}e<5kRFkIV$Y_j zalhg3i~BLfO55ZmEzxqb&BCFgb1jZ3?G2DvOrf?v6e#a>1a=bvl&Bw*zE|_2mKz+)jdv6$IRW)Vs%vClEjntX^z$foiv~w z9}U8`ub>qMHV}ryVwkc;tog~bpOV+n33M`!9+?VR5s z&*V=0TI~Fl0uC+kGeqqql0YVER>p0*{JMqzYR@@;=!Sb9FMRUkimNid9bVY zpE=yWKTGIsXj;4@u`q5Yma|J$vD!BL4C&Lw4qMav{5F0u$#)?mz)bTygQ}{kcE&?~ zpeq%9cwnm=kwsC(qNQ=m*?qEW)Jl+{p3vdqpom>QDuU987F2Qpc|>56;^u})%LmK= z`d46ol|%FJLM|sEv)}YZGdUO>Q<2FrinE4o@KWM;#ZKK)7mEWZ#pab+7mg1PFIYS@ z^u(5xKc1$AK$j}URx_ay}Erte9qjtf4KRk7w64e++F>Apg9_SnjzcQ+_)YN(>x zQAM?*ifTty!l2q=Q0*{^+F^ip81P&Jw8H@HFgDj0lZuB=c07*n3AmPyRU|^^6sjD| zky+tsDl)M+fM(;A9S8<;0EzN0zB+x5C zO*qgQ4q$^TgM@LVn?L@eTitDGF6s<+A|?IVM?1!7TS`?6(3~k|i`8uoo6D=e%m0X% zro=FLiMRVqhG5arT_y$+JP(raC=2$H`Rv9Z4@B868zqyA#o}aY8+<4pPhwJ2Qm7->3I8Z!pbMpz+g#jm}eb{Z@Z6nYO?Q)iIRp^9{x}c}yPGY}Q__**2s(gFn-2(&m@nd`MpK(ch*X*cPwWhvr z`E6{fvTDPEk#o{b&7y_ln=lHXnFF@{$hGT#_1p4DG#%Wp*JJw6KC$5Zx~Arqbn|(0 zurI2>3i*Oq$;42NM-!`JVH^i#!i;9j2*^S}&}Bto4EYv~F&Q(USq9XD0FP=x(SS)C z&Q?Tx0XlSeoa~bI|Ji9e$Lu*jo;lpvMrbnzAUV_@VvC<5Px=fqX||ahd=w=Fno9_x zbRW3I7=9yVa0aZPK}yPi7~}$g!YNL%?qDFzHh>3|ZSx;=M>LQh$mE@q7CPFAJ7JhG zpUL3?1&kRv7!nC-_NMn{+w=sUZbkA%&?W*mf$_(_OOXy~R+5?o{rA zzhp5wd%zpa5WD38-#}u4I4sZeU4gFXQ0y+$7BkGgc@@Yr!ZMe2;i2xHc;BUP<|rMv z*@^JbC;1J_W9Aly39>Mj)x4X&{m^K$Mb@#IIFC5QOwc~k40hPOsi(73q82XE-K}mw zvkQkYDQe>>YU8P*ji*3EQefjLu<;bwcnY4K+U)6?buzD|>IwELSw~!HvY`kBmW4wV zz`0mNCUv}>BT}irAqBU5B7yN}l#^XnjcN=UEaXW0F=yUqI0_13hy80fj zVfH1{zJ1RX-<)@QeqV5YTlW{cmt9t!vKHKU{$p=08p`}+<+AOz_Vc3?r~Y_8YGc<` zS3I}((Z^3IoGK@Ly1%utF*m$sD1*w8di_fya~Cz%wI8o894vfdMfMUV`Zdz$fcZ)U zjeB%a*ZlHOkT(#Lb&|z73SkK8_j;Z7dmW|ST}7sH&~ZQr#iD*6{T-iP3|(~5by-g6 zqU*6}DRiM)N|*{E>iwP2?8${A;jLlLue-z1WfnGymo{r2@w6j&+Z2x4I+UF)2G$F=|TN!0G#r&nyD8%CV6tt6@!jVoO5p-CG7)6H<&{>Fy zXuLw+bS`M%qMsivx){g9Od`LK5X(6G)v&_pemy7;h%$}8j6hH3((-PANliG;aN z#>{Z^)H$>NdCu6_>G!Pow@2A+3%}aX)HpJ5d=Cyv_Kz%i<+m7@wqtczD*S=$97AtA znR#ku0=?j<6v)Q&LH#7L7rCL6&3C$D=mkeFm{Ou&^yECf`A^n!jZRARE5a<1V+ADh zBoSQ)87xL%p%$llItpQjhQQM-*+;YirKHYB>?r87478hfHsQGX{MFsJln8+mA)Y7^8Ovg4m;Ns_voBrB))D7+#7%p{u$C7ybk3iIt%|~|oHJ13 z(lTx@VpktIjcV@LnEv96e0KM*u;}kCEJu%GO$ak_1UWgoF9F0)LkW~dTy$293(g1$ zlB8ugJ(QH%Bvy)wWb|&;3%0{V?~0J+0Z@oUq!3qz{Xt1r$~?ZI%*}9>IbEZ0anyz` zpEB!bVH73;4Ui8A8=f7Y)O5pO(_|q@asbjJ4lTwPuR^6DyeUzF_^i|W6YX*+8|DLU ze_pZiJ`{`2%Eh=)a7Kaiz9@jgMB(olQ;V(#WUu%I3ELPjwD0LlK-of0xJoKqmls10i@%W^pWBQ1kFp<9sj-nnCEm#Al| ztg3FtlQnh3=rTv?9Ou$GeUt;E;4Faxgn*%Ow~GlM+Cj4J0vLk;W+0sJ^ZMsNR~9zj zJ6%5+r|Sng13z{e1B)r^>=q25p5Zy@S?mES^#<1ct+0Cj*cf{BP@#uS%q_Htq2pW7 z%Y_y^jc?+Gn@di$LLGpTlQ8jff$nnv?X%I70^Lp)LC@j;BX9}47r5Z0GaQ$|Gd~N4 zc3~J=ETG9ql=wU(5_o~aP^o6%G&p3u@RN7|KF~Q=4UPxHSR;m9?H8wFCfv&2vY1)PQy5B!G%U0r2P_|p!UD%1!~;hJz$T}@q6e^OFw>*JMDWT+lbTwu(E+(PZ8 z#kCi8v;|hL#bTfyP^#P>p+uUAxJ>8x3CF}7BIO=@b*oxy8T7$M@xg}dgv%yDktopt z6P{$k`V$%9SI^l1W~D_RVim2~k{xEBpjMEec7X}0Yt{+KXuttW1-qGiL;`9S3HaRv z`*b8x9DIHW|Q&3KrOs>KXPcM}lgl)cHXny9Dug*c-7+g-jHZwLh|2xah z{%*t4@2{S_wYjB(y>{W%QyS{#%nY=p@>TA43#J|4!)Le6|H2s?RmzfKgi=s))9C=jp#FU}#rVRgwnYmtK=Cb>v68jcuTaS)O zd;D`q`-#lF^B-g8!rx)$;eUXcV~qe}j+uG?#2b7PYl6l^(LS#(gfpCMW)$AXl!@L( z-S>7DTX$(k2yHfe&Q3WH7!x6RAVTs$gv6j2a}OD$^@MorL}bHYM#`Y>sS$N?s3gT9 zbui87_IHP-MMjKS{#l`s2#gGmQ1wkJ{!Bj3%PpGQ{!w3okwG1*U0ryc7Eq75jW&Kq z7rYN+CgC5gBx$3}mUuFb%4oWvjK(izu4YUbElY@?eY6AtWe3Z%vF!8877vVyn`4u^ z#!qM>cf~^v6ILut){Nl7$vPaNmGjD zO!r8mElE6M3MUeU6R8;JOMnfM1+6y_=*xf^GQ2N?+mflONsKh1%-DD57splnuY&!ab{`ZnZjQldw$N;{B^a~i%^*;tcC1kkV&Cc z5c@S&JLb(zx7y36rxtJ{*6i|;lw2mT0X}9MJn~fz2}&TuPD=NEUN**ZG5>u#04wD% z(UjXncaSRRhg2Qi&4bLQ>I6;nC#YQ~Xdx+)kRw#=)Np0TaP6u13YH2~LztJJJF(Jq>K&{1yt#OA#!s@NUl}6B<<0iZcVBtk;#&%9*~rK+>OlS*4vfrO z(oo-id^fwTru@ZU?|puj!yed|`7Be0f)J&s#huyCgGCB5THQZLU;1+B%8@@ZYqN0quN#uqGkH5`l?_Dv%k^e<@=ER@5^Y}}dUUtBP zv*jHDtAVdzs;Z{UsNi{Co53il05mEFItYa!lj;CPCX?!bpLCFV9c1!5I;Qq<4Hges ze&|WEpr&iVjF-oo1w|&Zh5}*k;ATZFN#(O|R5nGoKw! zE@zj=PERgrJBMADT-S1T+hy$5cNK6ArDn#PD?i0wfR@J8XN3wzi>v&`gl!pUbgn4jw>%Z_{;2=tV*3{9(0 zb&& z?#vE22mSdSEXb024N2#bz^{$;=K&ncvZPD=j2z5@3DH_Cz7K*vw^M{<@wx)e5fa6A zU{Z@kul~zVwr?LpXB6%gLxBZ@t)oG$=Sz{F{gOTJ4m4PJ?2i25r7Ih1Y7)v1%>X&4 zY~l^>eT=_xwAGq!ZNgC zzR%qYL0OrmB`g;tihUsIaoPvvoE7y5j>E_83P57{3i&eSq6q)6fMVVO{dcV&yWB7i z(z+!|e$+#*UfX$6h*#{3B#xbQh$KoCeDUN8zMGQJs6Ww)Nd%1sZW`ncG)S>)K*F^1 ztw}ossjfi2&=tZ!v4*F+GZrx85{fNgdudBZ&B+bofiCX-v1NChIq$0W_MS048eKep z_>RG`Z3`B+cX!{ph5dd0n&lTaryCaab3??oM2O|HjELsDJ;mgI7^h<5Jq_WkN8BR4 zhONcENoR%$q{-iD{$@pi6Ihw#?d%w61`8z*R!A|nD5N->PYLw=FhP(dtPkx!cfvh@2#N$W{!09~&{? zKV&#$lWtRne8&hZ84=KjN+sOKkPIF&<)qvuua-B-!Ur7UpjD7-OK0g>VwvK8%{26V zXCZUzW)c&-=tE;PW9znebDtDe{IIaeY}@!3y*z-NztpIb$wUdb@Rb6Dy=^fE|2 z0B!Z9Gp3Ihr7qFca87sIGx-o|Cj{__e-{^XTk+qat@!WQRdA(YG{Y9H2qGSux4mzg>zoHTq<0$ z7)`uu&H6OI=#)I_$Q3JSGB5IEg^|q5s=|sA%V3-1WHw}w-H7;Ba8j%eb&4kr;N@|@ z81K3y>?PPM5i{czmPMMXF)AmMiE1h%u~^+jffo@G-cDW#@x1b1?L7-@Ti12>efSkA zJ?cw+DAW3jqDe}WtjJL)Df-w>^zkHGj%6zjB~m{#k|NU4WG8iy6fIJu-MTqmmUS2! z6luD~X}6^9V#kxHM@n+N00D}PJm7oh ze%`(3ch9}=zWeS2(VAW{3dPVLAsM(upw(hB8q9eHQ6^R#Ta|QL=?$s_$A4D4-+s)# zVwa3(Wp$r$+23-NZwiJlym!+#E&%0w6@S|2#FJU+Hg9ok4IGv!@d}efng*OirEg$- zM|~$A)q}5KNI(5a>OWKO{ZRO1>am{)cA@y~)F*`JQ&XZx45scEp1bkS=qKUslln=M zP{LcRN#`dGIzMSjZ!mA*orPzz)YxS_YK$A@a;ZTOC7GIwXtEYS!|XC0HZ7VY6E#nx z0Uy-U=-q}%!yLHJ3R#lDy~)j_L6$YwCgsCHrlB&`wSgH+qHGXtk_dbgE^mCbrJTP_ zR$vhdEITZI%Q4G}#qcv(kp0}paWiMHQ>cD!y5$l(nsL`eGA%HRw`f&mn0pcPc{jfN zz3--$z7IEm0eSiZlkfw%@z;MN-AN=edDCZd;`dR?NRa$Hj^)-{^6Qkk;+E2&v#l=Z z3Hk<{eRTt#0bkfTQ5W`veaG{oO0@WR>5Oy96|GA+6Lsb00#k{o1l>U~81!GP+)?kZ zr(adLxU=L!HNZrC0!lS+Ed!@1R1LT!hohv&PNcKOP`L$$4Q54=1=pWd?7d}l9Zj|+C|S%57G5zk zGcz+YGc&VfF*8}r%xE!K%(B>GW`>c!uJ66-TGMadO!t~!wX`DRoQM+3p^XF0B)QkEz7)S@MsWIy`AYb|FTC78=5HRaZOc&C=Jj}Ie!?$TJ=eZY# zJ<1-PlVZ6gdky^725hwzBA@$e>yQddfNWVq>g@o954sWgB)KtNbd&a+>-P2wQ<2(z zvboed=OJ(Jfu5Ai44ALqns4n``Py%dEJO@iy_D{o6WgOZI%l672#@PX(cvJ33j?{w zvQAxKkG7Fa@~Xw(#Y&_z%CyVSf+>PR$rWQJtra*~8DF_sqKdLPp(4C3Rmn;$d0DJD ztmx!j$$do>QN2Xs+Yu9J$NNaq$y>e%(-tim$(lh|?u7#*@Ct98Z! z$MX_Q1Y&uRQ&E%7*3QV#R+l*yB32l;$e4Eyt$DJ`v_9d@3L(mbRc6wM86I#e(>THwzRYXhuXA~AIk;TK!*m#eaVg~604`;it;TmSB`o@({qB1 zNhaJ=n_F@?VpuII4vq{z)RwQUN~8fG>-zkDownC4eYfy?Guc);hw(G>BJkU- zrjs!1_SdVH`p|51V*u^#I3;B1is|com5*rK09>42@h7VM+*9l1Xb*JWkV0#B zva23Ukf$}3<;kxz`;#blv$30_Yv@TN%6L3mBi4W#4C{>^>*_Y8IW#bEfjq?f-ZH49 zvt&r%=R6EZyoKh`{mmNO2RJ2@PeWbO^FB@Z#Pvdrorrz$iRcOzF25U>#UTyl7dIVC z3r0*!uT>DV0Rj9=!copA)0cjkLN>wj2$Y(3iO&Za6U&VFA5J!{bMMqEI^UmN%<1$t zW*r#EdOpzQZCNy2-MAO>9tx{7KMY17+PNf*>>Pp?Fw2`R=;!B^?@^KT5Y{4;`reji zpgFcfv2vH=N!f@^B~`QGsf-%%36RJJcBe-~mm}-pao%=?Uoho)>Wz+kw>`3m6AKN8 zyWCQrGF&yUU5BN#;Q2hHxhElGc{-*EK#o#&QQ!hu?x;9j_HR5bttLEJK{9zxdORkU z&7I@L@}n2BvY>Fi=J^Y!-@+m)jGSv%R572kI~6=AlBAzGJzZI}AX&2W9C5!oItL`0 zH9Kc(`gqbNANf<{w`xkuRqsnp!@4BaXLoQ3DT;9kTc9*#m(qS?xJpW~AxY9qA{JM0 z-E~{QOIND&09(}5`+dFTY-eZiTL+JqPs`_F*?CDQ9x`)E=j5uTSp_wPs`$D6D3nVZ zcQ2M?3Av{2K`qV3CQNR9u4x(P(i*)ymU8RXqTh_H-$ zT;>LiU1_bF+Rc%E#exBq(}LRV(tMJ}O_VE2HY%^{PeXES=h$pa3-abYF2#}tmA-ih zT1Za;@bTS9PItXDVRuD$33n~j0l)aZS(c~z?eH0sa)zqR-1^t%FujT^SZaf4vmE!^Ln05x0WkXllZB*m5^$|R9e6r6QD~Q$1AuH zYYkjIiYR41`RCeidaOU$?peC$y!)K$_arWs+_JAiUJt%(FA~`l{aD?aTIKt25FDO~ z1?F9Hpul$BYBqqc zm&w|06~7+**l!j7vhxck)x`sLKtk=2$aa1(Q(UosVnC>v-IhQ_k!AR1B(5>+_q}(? zE#{6YE}ch`>@ZXKFXyW#RJTt5R>33ZSF{}we+kXD99+&$_?w=fR*0()L2ryf7?E$8F1ML3E-TJgtjVbg^@58dLBxVP#_87l=AqV* zuE<1Eh`tE#N4HQ3!8eQ%eGbvWMP@}kakP?ta35+#H?xtuRCx!i$bhO{_+HTw!t@Yt zDq`Rdj@Ct)=ekA}Zc%_KQmx5OP!caWAN&DJcqSQ4TuQGz>?8v_AM7ysZX*iS`-6Zx z_}mh~CT7ytpoG3&;K4P08Km8P&_!$rYrG?eem}5l>qARNt0V|<#9DBgd8ox>(%&O* zl)ElMUCLh?qcj||4!R%&VGyO1v`}ELum`5px1iv9JX+jIT$= zG`6$a>rznSI3r)n8Fj_hr_)eM%P>>2K{*Xe6W{nzk|zmuTcT#WP-q(gv+g zpfksAqsTX8c%hH$igZyE+H}*@{46xWahw$5aH#Y`-b_n$OM!6#N3UmU=OU~0_ieEB~@Cd&8&h03BW?>{Hi88WDDVcMm4}T>2T?SY5eSKsY z{5buHq--T4BXg)KFSt}hIL?;NGJIcakM&5zhuVmzqEyB8jGB&Qs2_>i3(ccMo0K71 zmnF!#RCByJmAEHR<6^ZqjUyW3!bYQ)GPJ;cf;zZs&9y8{|IV|?vz|j;c)hwH%e0Qg zj-+wfqI0o{mjV~k zK*1V1tJmu3;&jp;o8hw3G-pf!Uv$1H5u#WTb8JpX(UV8|aDAs6lid%C*!bzfV#S-D zBYe9CK1Vf^WQNL=ZC4BQE>H()wer1zTC&(1Uuv7}mSZE8@wM(;l_ocSD*>o%HZxDN zMa18C4EUWt?=D2Tm)!A7@2OzS?{2i0%6XVxH1~MGD*|FN)N@-ZHKc+Ihp|?C&y1$S zNQ)q^WldT}e0-ByRy4@p1U6J>3+OaKY*v2SW+-E|EYWSDq!++VyEn*+DxBKve0?`% ziftiB=(;4-E!p2#9rtMH%%XfbttgvM(_6TynoZ`|H|8$%B3230y?volAJ0OMIie1J zrYp_|O-ebp_`1L(E*15lPR6Wr{023bpKHY(KtobJlh=GEt<~;RcI@RjRMb5@+IZAR zy!cdlRB)tlhIT0Kk}gGBTmbkcrfH^0D-~y?x)erix1FegfG7e#pJO*gYKIq~s5X6L z&GW7|^e%YjFw3au)zp}E>q~M|4*CpJT=RAEW%13<7`v+40$Kc$tBSaJn_aOskZ8*J z;$5MNe{<=KC@9S+3Rd6{@iyl-W&{4t+Lp{PfeEr82qG5{Lv)-`V9Dp>TJQ$BjR@Dc z1Me}(4DiDWkocl{Y{F}p#ra+YALL0QHMqnN2Dm};tDyTh!}VeSSIo&EZv3wA_=fO; zX**ss*!9n%+mx|9W3xnWvj6)mathfv#or-+V@x3S3b=Faw>3#sP}_R`(9N8oZRb5;=k{ z!bjNP;!X=;jLTv3g?mc~2O#_$G=6l2p>-vgK~xZNb5KbefYh&hpBy}k>a^nLcx*}) z${^rgv8^7p#C3MOuQb2gXBkc0Am`@VF#UX9mtzyK`w{0v`9k|jsWOiD+Hu5q>#cZ# zQ`p1Xp5uN)O$dfgdw#tucd6$ba!#s!F15XDELA=07Qr?sDm{W|D`p!Hk?cY+5j@J6 zw%n*TUgVv-VMID5o4<^8$RSN(utOP7OaIaKwN2AD`6BsY%_H*W|i`l$*3iS zv;a&DOrHh=!>7g0^e6rCSUx@aPmlF8{mI!G0W8d{|E;>i*g<=09y% z{HPEGKM?<`?0*CA z|LF7o5aOTx{R`TkC7(!tZa-1}kJ0|ek^KLF_P>ny&j|jXu>blH|M@dx{~Yk|tET@# zv54_s6pD1>WGn~hVM88xLsI4jw|-6wVi3qHg4Z7+$anz_t1^a)vVLnAIiu<@fJR#e z^gKj-ii3NdkC07Y;8@2(iOR(|Kv8K01Cz-eD+k=Lp6RrmS%07X^6)Fc{@fh4yjs97 zyp?!k>vFfx-%YZoPUxQb$9Bb8(Zv#GkAtYBd|5GYSOKgj!_~r1$aekV$%ykgSJeHf zt2U8frz5!@18e(MVWW6BnbKp)@_=W;1#;pCxy>?zMz#KxH+Q=8oBkr2^EV!+C$AQH zSCbTO69^LVm@Ozft8WCRl)3mQQg*Wci)&1de?sd&1)n~@Q}h7E|3dJIm4ku#KlGj$ zm>JmV|7WqS1uiIO)Zt{6b*8xjly&5U06cK008y-ULF8e7czCeS|6<6^OULOJ7ONTQ zcn?1Tqq47;GN8ItbqUeg%R?~;-uejoWPu07@KC|luGzab^;1wWPHEg;DC4o6gZD$~ zv+w1{IbQ?p>pkqcGHJ_C)D~*=KB|vrKn#NANjs%WpEK~xY$mMiWQc-&=sl~*03jQU z3&y>>YWmhKW^%&bKc0RvL7LzQj;t{vV!?WU2wK5z!T3A<&hvBDf0>&B6682QtUtXU zO?X%j+q4GOyb!dx{lPD5Ye_V%3I1l%&2MbH0Hy?gt0xlfwO->{Sl&XF%Ws|!Gb9U9 z7>`JoQ4F*J`e?`>BM#AhgF+@Kb2nWBFA4l~YhFhQpEvL1BHyiD1v zQIINmrnzYORp4M#zpUqz$Ed5QnfT3oY(%2beCl1{iP~G8x#+0STFh7?ruqzBrY`U` zR7{%dYePbRtooUSXW|h~21greDKIJ!K^rMF%cjGTLhDt2fPel? z$W37VVQKD#84tygAR)Ulk6`Yp=%6L%AqOF6$ zDK28WN-r%tF|UY;MYW^wZPwUzT%mioIxsX;u%;Os!<6PU{uU%OLiklWJcmwBSA9m9 zwil||F4r1oAG@g3=MlUWw7Tf~`{g06Ni-Es(kmq{Pa_JOM9i~8o|xvJ=RBY1zLyvN z3QbAXgYGw7$itA9EUN8c&Tpvk&cj3JXhsk%ccfFRBONse;i{bN%@3>oR$jxv@!@q{ zsggj#4)G{y#74r>q_x%;0HQaxh&t34@D97vVqbdID|J{K{3cwQjU7(j7wpC&A)H?` zRxN{z$;&T=_Z2a_`E_Rn!>kBX_ew9^5%QO5i+QwrhVQ6O7cm7}4= z?kBbg8D@ySkagW-s-{B-i z>@%R4amPyta7b+(|IrCNOi5`-rG_krwA$O)yP~;jSL%Ek;j$v6VOR;H9NO+>pr99t zqHNoMM0JttOu*)B=+$yp-yOb2A{IZcF@y2@dGu$+ko3DOW5ZHf1l>hT5Lb^d2nU}j zP2`7GoJ!oUZL5gwK)JM(74BfUF!uptTHKR!n#7^|)TFyu+(VE#XF>9qXqVN&$+~w2 z3rE+QU$mwx!!gb-(IK4AaPg#Odh2?~PPm6R2J)7bF&0EAzZS<+?R{W(BppPA>y@_E19 z8I(fgZ9px6+(z#><>kF?m>V9H~)SZj)A1-h7~(O(DNrak@s z<#;MTC*T>Rv?M<#@L8smPJjpe4y+U+-xukaT=}ASwKJ(RsrX8wbGS(Z(@z@Hj~}x~ z4pS|}p@*Iq5H;TSc-Qx6YtSi&d4ZOqk*X8QD>^bRCTndT(MwT zmrF#fmzpsxr{(!<;Fz zvqFUV@q3+wI38CFb85p!FJj~VEUW$yxLS-jGEC+$H_M@xaN_D%CaGa>ZNsvc-&}EBSJ0>x-6D903SNN*eT8 zaOJO!bYK0ho{rGWEc4v$>D;(lu=8pN**ft9k3*gT-s#fz!FrL4>!50Xl zW0vx#`Z{pmFv!pGIP0<63^w4FOY(GJobb#UiWmYArth8XRWkYgc48dJ+7g{zai`Y> z>D9Mm(x-aa^WDfifxDnKvoP1c;rX}yJ}fatlh65-LJVug8S{Ph;vRJACntRY$tLK{ z0rKsM_6>MPIoNJ;hwb^o&arlugwgyDT-uxmiRFMI+P1Hwq8I`@XT@^gsWp_!lAtK71YTcdn3T-ar_Z*X%8(Y z(AKNsc*1{D=pAvvR+PEHfRK(K<~UTZmR;^+PV;XJXk}H%Ru83pK9$)^a}TictLugTdQevTElPUy9$@vw%c9zPV-CfOZi~< zFq$Ks6PPn9W|Ou{tK$%5Nj4g7SkqrY*z=DggoSd0(nG{U?~d0Dffk^J7-<4K`%)$< zkTBJ^=M$xQ2APyPJuW|)$A`#~_wzU*ZZ_(d1K9>t5yC|%Ha}3~vKQg~GzR}#hl3v@RVwU2j;_PB<{`gsgP7)C}yO zH1gj2c~7i2zBfc$GfMjuQk)BtF(gZ~mTgPdrF&_67%3J6dgO>Hf@R2-!FWIDPLXoZ zCZX)Ka^*B~zZaU9!QWDQe|X;{9Qu6ieDPX?LnosgGW&sTyN>~sB5oKfh4D%O?G|NE zcDvurDdsh~K>JM4+I^9!}QA#eX?G?qNCH+FJC(bkFSqbo6f5YAI{@FvX6 zR6nqR8x5jws0?4fUYK2(hH=hb?C(vY-K_Mn48fC)AU7Eooo1Sj`4pR9;{``uI2i)_ zO!!r+R-8h<<|~X|s;&AtU&bu>doWiNs66{rZ0psPW*x7;eY3e|re)&lNw%Yt9BqwTvG!cBl5<>2!BLgdPd z#a^185lV@T%Ih;2$y~}>7Oby}=l&qrL~9ujk<-l3!V_2s_EM3V@?!E%WN}|K6TZ$X z!kqjA%x0$bi+fNRb#jM`!TxP|qvbiP)>UJ8Lj$8!>kRbO?@gO_-@EU(%wA3!w&$}$ zXciXZ5gTNP^|JnOFx$cA0@yR~&ODxL$!(T4Am_hUTFXOv+Plrk%pWp&!nIn>tJ>@m ztTF@ZaZ z<3NM0;rr1nn{PGHRFz`K9b;2E%b~IiOX(sjGvg<{bgO63fKpXpI+F3O|7|PaJ=4XD zJ)31gU0t`?+e1T$$2`kh9VU>3uckIHj*OIi0DX3fj+z>g`o742LHO3rwr?852z7oz z@vR?OdQkws_)JR5YLx3!@MwK08RP9!=cK0VF7!kuZSLBUEyGq*ncMYZ&`Na=Lwo$H zPY8j>%jS}!b13W=-pP&=`XLB>Si6GlBFdr%j#U;szpmd z5h=l6!_D(&uaE05Z1YK}J*c6|(VMPYXjZ1IKZCPy*YMe-F`TChI5Q-JnGd66qx1bcUmmTHF>amMW z3=w{LG-4XCTnUMApx5lC;6hkQ{T^C58#+X4%54};ip=IQz&`$i`U$L+f~_THIAmGd zd`Qruy7y+>$%79s?P(j^%*;0&!m?$JXx*c8dtnC6N)cTdjI-yqVt?4{LVap4#jm!# z8q!Xa;RgP^e)1Lh0ezxVU9D@+M-6&MK&1kccJxUbHqp2WISoJ#>7RrValja&P26 z-qq7fTq!pg%MVEI_;EgQa}wy zeY@73Hh|I0aMKI}i@M&JF`%NHV%wT;+(1NX2ICYIxvLXB-l$HYC?oykVMlFSw*U$ENjML$}K(kh*nlr+oHBm;>o~O zfFRY$EC`m9ilDNnlT<&v44#eU(IKO^j2meDBJ!$meKdARMaH=mgo^~RL?jI}kwNcr zRR0P)raQw!>1rXVzE=1Q;;5b!s9QHdX5s74MjlkJhl`$^r#`o)Epq@=T87M|$fO8$ zL>yRN3`;36dV!BNicizEWA+_ykSZdR$CCaOamgx!6P6}_1|`0+7E?ha77Oxe&mSi$ z94W83CVYelNm2tR?hEuZ2>Pfq<_MOz)ixz!g6%FMi^c+YQJy2rQ5+oe3Z0a}R)B*p zmE<;Y(cs;7o-q-x3@b5|#qsAbkqMBLkfj15(V+nWt@VA5!pacBAtRt2!OYW6^j{ju zNf03x<;&*tqz{2@A>CC3=$zTH;#nBDv0_Gmi!JM=O)2x1gECOBDe(AX1Hl6P)ad~p zyY|`#d6rO=Mh5%~1Lv$^;_A_*8A3P-V(aCF9;1lzKu|2BOuOI>?BU|NGZhqG`pXr; zVY}kN0C9pXZRju!w!#@6+`Jd0Fmf?&75ML624AyaRtK6vzU7)vT!20K=Nv~U66hOA zTs5?4;l>;2t3!E~o$>gR6gr6+rj`cw@3Jt(UomeTR z@jz(|X0TXcUO!2b4k;%3CcG?bzs{3TJQA-!Y6T$nARG`pFWsaQOCvCzo`}n-QjRYC zdc4{ZZVDL*wGU)^yEAGauL|NQti(;&fIBlbp`f3&EOZwOKkE%iVIOxUnjRFao;=;_ z>Op^;+KBF8B?lw(wA3dm>;|W@z~ay-iAzJF*}Dww!UV-_El&^#WHdmt=U)gHKuw=G zkDK;EO;AqCx&oykQvAf(7Xwa)D1QWw$ASe)5Fv>|>>3rSe2h`hElxbYaDNCL9@fEL5MUxx!(6c`hvvB_>3`r$8=HhWs*5Zk(u)fEYj#@&v)d18^mxP7QgT zC08Pu(Cfv0H2%C#_)e53On6#IB>03Di$mO~Pbkg&9R!3>CT$wI5|qoH)V&}FQXMHq zIfNKZCDIP)8&)X!C5Zzo_266z+m9}+V5dTD4T3RXHUaMkh}8iXW?m}!(=Z)PAt$Z zQCp=kvasK$ndVAbBMOxB0gCaVU&IA{=Yt5R!Q(MDusU-E2-m(;W;dqHgP`s6n@Io#K0 zN_mWR)qJ=F_UwDn;`j?zQ}Xc_@8T+NG{1fA4lL0*$B!Yl zm5?gcvrI%Rst>aiD83b0hxvjU`DleopAJs@K;35+tm*9UXtf+Miv0bew%TJzEs)F< zw^^=Fm9og@a`-URxvRXrhq$(2-WF@m7}YXZlXImadVQBeH!hDyoQMfjJ=jZ>r+gSN z$M-AXF)&QhsV{aih>G6dMt0m((k8OaM%GkV&AkrC8N^hb*_PYI@a6ojcz^f?cx zI<+Q_1C>Xaia7JxOkEfAP*|xBp#wDXLcTZ&?1?IqsgQFQL5a}A3lcOEH-h+S_{#?U zLLuKquG}gx7E@@=Q`x3@yO^iJ0LUx}^$+5d!wloJL*rn}HGv0}QV|q~3t$|u*4zrN z{`3AMKElLIL1`it=1fqEoYdp7kV+27kArjp&$6fb8^^NtZ4)EI3fmN0%> z^KP0j6vdIy!En1=v&@zJXWPR}XomTF9mTdc{Y zrT(UF3n{2(eoj>KOJDJHs)$rciroJwAMdQ_0QE*Ux|;s5PW!MVgT9c#F-rJs z!mzhix=%A=ndr6ks5QPvX#S?}>UD4u-j%h^Nn=rtI|vIq_SmfJqCRQ?u3;?8JL_kd z+LG{fWw98eg&p{qV^$FPLJUC_63xxQ{1YR^jU7w(`D_~Vq=Q5(bB*t{uEbRSxN#;n zRD91h?cizou``4-Ut+>JF8DB>4xcc_d+Y8-VTbNcAwe_axhGVWm&H87VF~11WvXYE zcZ6*;+JKYTofcM|bxDrPgS;+k#)0U;a_*K2KU z;jAEMB;I1Ldh^z1i>fE>i@`Mk9OsVns~pCAR8vPTJHYdl;T{^s%T#m)ZQdI~M4A(l zCWv{$;AU6C&oMR%ttsYCOJ}?*hL(QvarwWKZIXnlVLQ|-^;C>VJe)vEzFXQKa8v7IXYxww9_ye5gjYXIb znfs9h&WusKPZ8x+<~OVs-+IuW1)+Bhy>4LHaKmsVnSTw7r54Y^E0fA;o$Tbl05qsxp0o z0DoLd@lzinz%5J+r0|_>m7NFS|9-XYuVuBr*Cv%c>`mzYUUH*TaxrxNQ=l#*{f~7u z00T2C(?74Oar3#`8yH!cI0Fn#%q(nq2roK%2muzxJcMd2GW0U`LMG-G;+~EsN}jUH zMxIti9L9uvyxi`b?l$%|Ce8)`cN=S4Cr)=BLIYzvLle$V`%f_)A>gkNXDc2;CRzp> zHhKm^UTAJdV^hvgy23vieR@2E=FZOcoOE<-0Otf~6W^@c392|7?jC72QG@lVP zP9C<-2JSSrPDFqAAZ+4f+$vbc=>3Utn6CcusT~>wW{fw z3I+uL=??~nZDl=qgg`M>TLA;8>KYroY?hw0B7X`2N%8^}t*6=~GSd=XPnL}<

QyjC7`m6|qQ!lYA=xG>>+QM^1th7c1zB+nmGV{=@0dhym14Oj$LQ zkqq`BImo!YGFD{mo2?&8%LslMi4f3G;}bxb27KJ!T&3wzJaZ?6AvLF z{y&qkw)@YxHjcD^Cq`>%Yfa~-Z%4;KOHcP#AiBS1{!66)$nIZ8{#|SZb5k=X$N%*T z4uAXnz0h}|{xO47THnFa*oarj!P%Ib?!OKH-(-aUzu^Y;zhMph|Fg*drz-!Sa{d3c zT>sbvzPCu;?;YZwdo1sN?a{_I-y5^*_YVAT-U|LwAov?<)WoO%K7o#&{#$-@jF_{_^Xd~-v1yB|Iz=h(chNu3jL?Yca6T=|52as)^~0G)Ao;9-!=MsdzN_`uD%)ESfPJKDE}4Z{rAKq6T|;-x!{&ztT1L1K#$PzM&EuzrU>+Ac1vCIM>X!r$&ls90iu_<~y<9djYNfZXi|P7%yH@5)CK^v;A$HpE!{lPNFLk*v@4!}2toyYN_{vtSU>;r&K1A@%?tKl)r|gm+4lW9 z{D(}!zkgO3nORwx{*z;6W&c)a_@6jdFK9Q#p~UO)_44v!nvtaUIBN;5HS{sjChD;y z>zH>C7?1!wH860DwSELd7nzuel1^o;H*%yj(Et@_q95?DA zSd8$EhPz0e=8D+7vdIxNu0)Rq0|J0MKYU&U%`hUou;NS+C>7?->3}}C$&X-da5fuR zINAY6W%2jBi5e=amu};pWFdI?BBwjZnjSAP8GX#2aT@4?KAS3m`#KG`(k}(n>cL0b ztIjq!uZ0i&LJ(ff_ykL*V6E3UuwirP_}@HMeawb>rVmF{6CfG^`NFyh+f>NiS$qhw z?i=w4!=dD#Z|;>?Cv;cYmaj|Sc6mljl_%tsi2RLw?J2P#@e5?X=08R*_v<5OvBf`s zR5Co~A{yzTfH?5IGK!x}fr(<-uM>EpQ^ZKxhvZ?4AC7UjB76Bolp)MOaTjm9_jU)P ziWbY;;Y6tOgI8JAulOciC<+XN;#w%7Z&~)STTlf`pUGzwQi))cp-UMNCtV8J+Tk_; zYXhEUAcm=} zAr5?$WNk%6$!Wan>W@E|k$mNwDeVX~-$sk^si@>pFFtl2hp1|3Vm~`5O@vH)+aNFS z>-7DSgXQ?`fbI>v8m-I!OG5h|_mZ#=9_oh~U*%DIOmbBI$1n%_m$TYYz%Yz8(X^^u zN4P_4bWHHBkLBlAwtzd%>ATq7wJspFNO5hT$CnOY7viHc!{`fMHs1ZNPnro3Qj9MM zF+L!qIRF3a=9i}57v!o_p~veL!Ym_T)9iS+_uCIk0l}0$wF{u;sMl^1}@%oXKg{H~p zTsG7Ud0w}T-0!eh_)0(C&g6#?UtV&|$S&`dVmc4F*$uSlPxrU-ulvEPm2)2~x4^h9 z{^Dt;+w>7zk}rZ6ZoyAK%@EhiW!{F1w#r<~W-HtdlewNjSkuKqvw7Pb9+5;76&x~HibIzv{9C;Nd zGih{52;%3dS(z1j^GjZ6APXgzi3vENWwarg2EbSzY!TC0rBY!({@_QLA;YqkzG$09 zposobDmO>K0%Il_FjLA0Rf0yp$H5$!2xkxycT{{J7bq);GoTnChkh)P1YdIn*%>$B|t|VQZR;*5)3FXx?5$H`qY8Msfk3D4S|S%5s8 zPMj~K0mPGZ?%mfLl+MVyX2yWMX&N6@b(ywiQ9Q+u9|H&zk}ix7(Vx~d->1NsK{9Zg zW&m^yZ7?+mj3$d?acTTHm*C3&2Fv>f+*BK=oEsYSUW~ays`Avf#mp2XEt7fvqUQn(53P)GtT+ zxz)1h2Up;##8N1|nN^8ly}%Qr&{81p5zS*2lg3x4d9I(IVsOVvQC^VSX?a;;-vjkjoGtzZhM7El)?;h2AuCcy~tt?oZMppSy`CapqCHYkbxV_kZ15g6Ym`;szxM5Iz2wxmDLCa}*Lz%37$J`Ar@YwMq^`F^v>Jzu)thS=(=U(pPu0n=a%<;N#b zAs;L+EV8#m{!ZDwT1_O;&lqODfIk0IK$k^yk252XCZFFCwmhqcDBq%6e~@NPyPTrlG=`YdVq ziE}HqA=5R$dU;~(Y?;&cU8|nXz@-_oH^xUX9`S^uBWQ#8;H8juk#@6WhvR+*-kg*S z96e;;_%#eNLKfv6J3eQH?Y#FI2^e{1YzXmk?3&+^aQO2q{E5mzPLGdz!03V&pZ$kA zHST%YFiIsl$cV1P&}mTF*Gc_s0&T*~UvV@J;+0F{id#0HDhiXbMW1&adB zEIDjfBNDugE73d>r8aeQkWL8|4?g0253#WWscM&Z{sU9SEj8Os>d7c4k zIzKhikKG^c6j=KV1p{gU;W`4Oz&AiV@>0oEju+AZaBx;g}AlE>kBCHnDpi+QvVq6J60a14dR22O&WWnkPEW)>%I`;z@ z0QbrtGA@`}Y?N=hL-1k^NjDE%!}_6SMS8+HWK6sxtS5(sFPuyi*|6#lsEI(R)Pbqx z4?0P(-z41`r+Z!~lcTI7OVzI&^AKF>Ky<1_9fxEvDcuQ7D9qnLix5*N>%MOY4yN9# zkI0R~V>dC4F^tyZrzy(x49C&G3Ail6nO*7X8)*&ZlIldxA{7r&{EhdgQVZDW-LuY$ z>8gQP@Cf_{x{KUNsF}b5+gk(n4xl?egYl2g>lz+xYFh##LFi@FfC3g!s=b}&WBAFYB{uT6i z`3m}C*!TOE@?ohr07&>YS#{KQZ)CTv4Np*~KsI?NmDk{xjCU^R>yWc5V}kKFKu?eh zwuF#kaI<*DvG6Z~`o)Uv*VJ61Op#)`Y7>-#wOCXxqX^tV`QOWKR+-B`89LxPfkS)F zH}+E1ogOdk>r)R5!GN(4(N!(Y2IL|-2}W_Pk1?3Wh6fqqIfDBSwSS0JVK{mih&uoZ zu|}50qt9ZAfenuGFcj2~2k$TYj`-D9{48I0UN~J&8R$ZfqmZ5E${Jn1z*!=l@$6H} z4QHvqJUdT{wYQBdZlHy&_E)X~qNoBghyT8mK@xy?>g&1(ex&BsEkwV>!#Xwn!4_SZ z#?2U)get_3iCl`uq%e~OCLBL*ff`+CN^dlif{LIOmg!wN_8M~cv3NI?s9{Z3gZ4NB zecx%Q72GHjU|9o=5rd*Cm<8ev>Jph+G0BOO!0@>3kO0$YGb|mGymQMCu)r5o&hJ(FrJkD2ZWyfNL=)Zbm4-sAX!pJ+a}42_$P)Rv_WD`(f`YZw?0 z7fS9;z#E~*vhSz4$jcShHHHl|XPnMqrpH{%KCm!YtITyL$E4;zzNULh0Y@XcOYlUk z-v&2rW2{4NrU^Qpwza`WhUFtzn`|;RhhKh$c!cU_T5s$)uY=$|%BE>83d|{-u@@l4 z&uCbUHgo>ev5ciyczx@2g&Ii}OtTLn4S0~z3|O!jZS1{Rw_sY(xEj?koT#I&)u^+m zROcUp*;9~qUPM+*T7WPg4*V!;1A|AZ!R=cL^>V}749Dv&zQ%Zmi!zAB)#q^_#9Ix1 z%nO;Oa02TL$P>?(SJikBo{DAKhe0Eek6I#eN9jl=(uwHMvMdLZ?QyF?h1j*CKoQzh z;Y&MopiX{Wn%{a&tlpoO+A8v6Vq=U`#Phv&;ZP&{eGMm2BSQBFMg-0`v+sI?gW6s? zZkl-+T3>fhMnk+P$fy<(K|-g!X7S!BDB9-&YY6TSmEN*Im|HP@0HI44<>^#TQ z&LaAZLm54f-VIm&yoRe;ln%HC@T=c+@*v)aA{}TCtAEGs3i%cFIcs|lKeI&GPWTZE z@TAR*=U-x*4?a!of&Jm|xN!@4ub8yuJ2=hkaa#8@nJu;@{FGBXGnS)a--5Fd>iwIz zCkns?dNc4Tr?2AC#)xF`9dWXAR)fYfK5H|b-kGJ?| zi}gVUN{PF{rZi)~j0wsK(a+uhUXQ*eExv34d|2Gk3m&9zVN_*h5JDZ1vbg-Z!CoIB zhw||~fqK56V){rMu=nlZ+u)hcP+6bx&AwqvkXHeHF3(GTynMPi@SLxQV~@*US{MzP z{NdB0o=hr#%;-3yu7r=|*gS)KS~C0ifKU3wKS3}-thxSlSB%SbMY85B#NhTsUk{n)=5Azk!;M;Xb8hHrgbLWk`jN4}GN7pH|&)AHIfCuYjN03h!GmH67Zw-0_ zI~_LcQe$~_I+f>-RUfen2EqkFfx3gEDbcIO8?|(-;VZa z(BNAfzlbwBDPheQ4DAHgukN`S9>VUo%U#|lCThG}q&DE0nLgK`e-T08%he96D@?8Yo zFQ;)`?B#|ZdNq2MN#>FrD$2ogSiK<`%8UV-8#gTQBYj0Hl`F{RhO1AJXG_l)JPCO) zc$LGPPm}zKx4nTZ)mj*a6>q}~B^lvdrm#%^+x}h!*me(cD&@FTgjbF7@>^bqQRWR0 z%PQ3XkO5PHa%{ps2l@9(LR?l-k_@iT-4NfG>dC~y*7X9dZd1!+RATHW({nOHXUk2v zDf5`jMJLDYS-TIqyW##}Hk-VTrteZaMztnIbv!u>Cl6eNgHt-TFGNO+#o>4Z3F<4gD*_#RvbGm3a8Z$y_EsC^P?Gl~;_z}fGwD+oa>jc}p#Bn2BG3TE*1 zpfP%GJ17iN?@dqU!}RUZk{QE#<^j}8;uqK@wx)tA`wtVpR! z7-rjN*2b~pB;?%zk&iL>p9z5&fA>;4du8AzxTV(%&h^m&Rgn0GpDPU#m z)I>6z6m-1kRlXrZ%32D-dc! z_tweUW#2~4RN(@wKjEZ#%hzIRx zCP3p-@(-?TP&m-eCt;K>e)uhkIuc^jLD@_sEJ`VcTA7RP- z;$+KJ#uQP|{%Lc9%zayoA;QR6=GL*rqM4@Xl0FCXC|e`k$3ioe{H>_y|$}4b3HA7HnMr$Dz>dwZfm*^ zw3h&EOsQyQvC#2t=sPc4qGUN$w+PN;bp5oFy=tmXXN$pYfGOTGYh7t_)hQcE;7*hf z|3p@q=|179U{OLvE}=cCC{#3lGOivaT~T-Xvts^YzOvnL!~EyG!!qvJ{c0sk=hA6V z2}tEIPbT!lZ_{Y>XBN~SWOg6QCgx=Lwh^g((kn(5J(HUCL=)CpB+mT}KJ;v`NhN8AC<~_erV5SDE4sQ;b>!DNK~Ipi_8dVt(Go`a4s3b)`St8Db(8 z(q-eoD@lrw^#Mt7m(Ko_9L7uVp{Ht7LCDp~q3b~F%E~{3jSd^kD1}$*=~AFpRwM!$ z;M^mCgQpeUQ}=g}6?W3+c2n?w-=zrU72nOe2*~Y(?XaIhwn`-%ot=8~(c2lxd-d_z zy6Uvs={v_)+w8vPswR=W=`7bBAA$ynOy=cf!s0xfbXV1`C|j!#H;n;N+;oJLUpXdJ%(0=DN@Dg-oq zM%@_uAr4+=ym+l<8s{1H(VB@rA}L_*Uw8si$Z3vbn01tZT`bt4pqh+{2Lz^swuKoi zW)fKubqT&fmKUnzFHSgIu9U$4a)$#c-ibUwb+Yx2Us z+Zddxk-sG61@9BS(5*O_hz}1 ze(@alI2>F2fv{2&<$AbgWj|(~4>d_$47=iQ@iSo6-dUkgW6?GwKtuef!ZnnF9l~Ic zBt70Ky^`LP5d?efjz8Pa^bb1-AZ-q( zaDc6$YSoCY#>7J6K6jXY3Qb96L#(j@co!^u7id&$p(XsnUpKQ7VGcHR#bieF*rB~F z8D+5@s~p&H)qoXipJs&zqJ;i$b0kXUMDQ$CDeIkNeT$PVWr4Yh@7Z}nDRy_;*##SI28sC_-l z*1EdA=|nyz@ZQaJw{aT`?8d(>T~RcphC$7ts&)UW8&|(3dUe&SQ6*)M1bQW02;ijI z?HTNE4(qq~F(-pnyGj675pJOX6;ndU;2fs!KM5@6in8*gxH<}Whp66GKbEoPLx-%P zV-mfxQY-hx3f2wy?Vk=M&p4mM9pP`S9bf$>O3y}^ z%L168>uB)(gxBW92@ZtLN}8NXP)&{f|-Q-4$;)a zNugS>X=kFbl@%4ETF1{nxi1zmdSJ(D8A}28If_;q4)x2tl!1)nL0b_Tc?gG^>ar|3 zLEH03V;RaHF&^{X=iCE1wS6?|Y8j(XTyX2%-G4UU9sB9GWez!UO}R@Xj%C{KE$lt$ z0I2_pYzPw>*sc|*S62<+Le@PJyo{X|jI&III2csIdY!>>P}ELDVcFP|Fka=#E~P!D zDH_$0+j&${si8)tPA#n$&Da}bv*D>R3U#jjb+LP1xHP`jRZw}RYxB8&5qq~5_2%WA z-Tl%=6PwNRu=B9wwKEpWcgJ?`0SAA#Ef|ANFyPE1;zB9(GY;LTs41J3h zD^dn^Az7!jP+%>4HF{O0an#vFxxXPDd|22<{W=mB_R?Dr=RI_3jJb}w*_1L0cKh(UX)9(_IC-O-6U}aR@1fME4E;cb|vWeYnbJ*g{ zG^N4jh*@ZBBA=FO?(4qTmI^yg$#sOuR%2SfXg#>&Fe9htqG!LBbXli#OeTa65KfPg zN0@Sz0X1Rzb`{1^laPWm%xbx)=l3@1I!DH2L1FTvm6}JZ*}F2|+DGvW)8_1=c)iel zwo~oMhQw6=wrVKxNavpX!Qo1%#Xjmv z|0)KRiATIQQ<%VsQb|&YaQhh+i3_KZsqvh?##Py&__>{O3zTD!f^GKgz10IT90?J zZ@2``1!FKx38)5efJiytTN!G(c0WwCOJ}Ju_mUY;=?#;CU}kt-TPF8ftq0r|n!~so zLtO5oRV=Wwbe_i7VufV+Ca%_>Gfz(=p|^UB?^vnHyUhA771E5j82G9KoB)KgT6XLEe;~z5Vfb{IDRwW` za+VP;73P`dU8Don2YV#DH4%a%^(h+HD+kjcCK_MV9nt`qWOkdNO=yohbVVeR^mCOw ziX5<1%9vFR<-=`}mFjTY6FcOlEJYh-_cv0E#HzJY&X<-o(&1N+ZDCtfs;06zGG;S= z3F4s}ih_LyCdH1^`z7Lw-EjjofaeZIAM_Oe@}6NjyLC!1u=IyzIFNaZrxHltJZ7Q+ zUbOoUG4@8$<>G$H76Aj$MFgfvLQpqAb3vMx&<4Au{EZA5yJU-Z%;}%7hwLdSxT^K5 zY9scXos(sECy%FHWs1kn=p4U1BB(toAKXt4(lO(`f>X0jPRuzJrT4OW3Y(2led0vz zLVOtw3Qo=(2iX^}5R(mK>m8@_{@{7}@^QA?9v;07TibS)vcHA?z>5SKVRUdP!lm9u zTrOVI%N{3(Pu#<+sW(zQ9&dZ$v{er;EvyJ|N@ELeXJQE&QPQ9oG;pQW4i>0Jvv6=s z%e}p% z!paq^Xa8e}&YZTDl(Dax&Er5O@UA81+DI<;yiQK=f!CGRI|1m|{|k zkfbtoNQR?=D2JOJ^LS&ij?TWVrS2@R*RKL#yq2>n<4T$}*3H+4;WhW5 zLN=Hz&&uL4b%klIw((Z$Im@lD-sVnaoA+>Qc%?;E%E`1NE;y~u7u;gXD`bh=3d!bU zLMjDE$EvKCZ@&-u^(*R7{pR8c{KH@+#QKm@Lcs7)*5Cv4fE7kDX7ywugz-aWn5SZC`x0p7@5WG&P0NZa`M` z<;$6#-{w?65iNdk>5v)SlX@)OJFxHZ!If}HBvY&VZ;ebF6CzQZBK0-=#A$&3<|j!? zq{wn|rBI<+yJz&-3?FKhom6T6p5<#1;Sy%v^LUOnP=w3mCbeM2n z4LIs!&bkjO&3ku` z@v-FNJpo^Nz8FME{18QN;iL;U-Bi}r$yTFjNw{lJmxc%-dS5IyTP z1go847y;&G1w}(>D@+>#$r+bq6xBQgj;YcbKyMnmh31Il8G(xRpxuh?w7 zuKw)8Ph)&T+T)q7ypA(TB<!`!si|^xsjbop0!CbyeD^B;HhnaGtH844)>ZJ6QO%4(IoI`}pt3K*^6gf1 z4rdpRp9^YLaZ3cDdfvMWGoDTM{}%u3OUJ7tQ#-ESrGg^5xD1hbZ>57`8B}S9;yIWW zM!tUf`ysZ{?vi(J;L6nAE6JUCQoT1}FU7tu*F1HPyv=&litj8SY<1R{q2N@Xwu;E# zlvGZ%RoSWm!z{~CAeu(N0+#+u4?4bRbMI)t0HO}%KKo_hC!>99fsei#+!r?bS4SemIim1=VRMrxf&tVi&{B}rbVqZyJD%2R4N<+m*5azww8*2ETYlN2)igYK^j43a zmFa>i8|rYBU;AUsU=%M}OrDjm;>wX6)-L_xtyu(1z8wOMyF4&S4a4ztt8Obul(EK* zICkGCd8zn1X&J(`xNk}P7gYjz*YAReH3I}nu#$(%c$36tqP(Yr%kU3e{WUSt?ItNO z2n*eGseriNX6ZI znzm4dEtu2$Q?-z&1KQuQMM`^9rI36+R{HtcyX}X*J}*AsSJj|n`kX?QK$qzD*F}=wr^~V1`@#`bU3r)OP|RMndT`a|bKdqlbZ1jx?P;Qd z?PpeOXEy|=k2qI4j=HSXNJ1!mmG4UX5zj9h7$it6Zt*T>A=&n4J!WBRmJ%4?Gp1zG-njp)PWG*4<6OWQM2P_cli>{^ ze@@1in~eQFrcPNe!td>Ogc?`7ne?XP3*$@b_D_2u#$cM3D(fSVQ01m1L-^~taj3+{ zy;#i4uYE?8MsY-C(m9NCbL_%=Yy)moy$tJ9It4`ts{W?zZ}K_> z0{;qf7tTVwGqg&w;xh4MoXEdLFf--77hgDw#Rzau@Ac2irjr*I(Nb? zfI$9cR}&be0x`W#e2}uI*qNLfT39&ealtW%dZ9XMgfA+M-@W2L_j6|ia|`6$)PiHv z`-OT-==DpJv`&2Cqae6oZGq%sM&$!LUsGcMlO!rUmX4x0%Vn%qOaty|1}a(u;?|u!-LAXw)u2j2pYHfVvTtwP!wV=allUP=(lp z{R1K+P;V2yd_)Q0vLeq4F~DxejSCVw0&0CpRIOjZDKEQI}NeB~wpS*(|R zf;J44G_0TCOb`Q0bLc|8j4N4vC@DgG7u^GHSHhVEUn^2-Ucy$z84uojmTpJ)X ze68E$xpQ=<^5R;9_7dG zHs6Z1^f$^94_7P&YiiTo*Wi*SO!OBGrUv8NQ*&fD-4~|G1r#tJmKMqCMoJsb<+SQAeL0DbFU5F~-d0g3qPo-bW*L8$^1q5I5R9W1bqy+4)_YJ5( zPJnkP{R`+U9hjh#r%0najn_pjcP`S#+qU|m$ zZ;W`(a{8W_9SqrqoNjb|{C>y~L0cr7==+S>v^i#yr6D^LZv!Rf;kJfRtHnhTsytyf zCB+nh4l>I{?L}2V%efCy%Nh69gTZtS$sB|j9DX5Yn$#3laZtpSiNYot`EvBr#<~xK zfj!0+u4UOn*cZOTY-nWBcek`>levei0`;7`TMOtUeTu`6MqV9%jSAAn-bG#wI?0{8 zTmiV1cEw0}5C&`#CX0JA#f~Yi?52EOa#U7sHBZ{E z!Vd(YGugumFi$_@ub=P?8JKCxeRF=9aAxTe=~2qAuW+wu@VOxWzBSrUlC~Oaccc)Q z?yCOcD#>a~CLT;K#YG_%zi8Jy%cISGPPs*UYU1IGd2Z-@nY-v+p48!|d2%&U1%Y*& z03XgTg%3m%0Kq;5aiR(`^s9FY13`Vj09k~RKgpN%*Xi#w3W?R+3GybrTQvl3M-bg6 z=w^z$M4he}`B&9HjRmz75YgO?k>}015%NK-Fv_J8GkX_?UQ=h+li9xv#+0t)Cd%?Gv|`jFuG)>t&y@dBxZAS3Uy2 zz0%p%j9eoGRaH{JwJ=VCkt@9&BRiEIl46E}I5v?h9k%o@g7_pdZV~~wv|3+wbb@+t zYIHzqbOwR<2m{1)G4oq;K?l;V7vp9lc)JyIKBQWzGsef-e?n;<64sL$u{a4a5Kr&C zZTfT6z)j|0_12)z^FT(-_HSN#t0n&LGr$Iw*v3O0i~VTrN5gW=>FDTFKC<3Yvw-+Zki)Y4sD>*rw)x8yYCIL&#&5ET#t zVMZdcM9ORl`x2Y;N7CWmNC@@(fY?u!NaRO=AKlmf@R}oEP~hZD>cUK*y72?iE!rKr z2O{R^Qr@9@Q+m_)Gm^L_M|q$Z*0wN}`XZwGqs6+t*8A$e1U5IyZo!y<9?Y)^&8|j6 zGn4BX%|^oafwXyWO~v3c6ghwvoqAxe=o;fkgSdCqB|iv`fvqL!O>Q3X2l$kXbtxI? z^0;Pj3gn`5J*mD4n|>h|AE?A**#Up&88+fYa|9m+Mr~-5@!=NDPe{M8n=wG-cb}NSnQL-><%oX~(Gv zQN~hK^caz_y^>ZX*r{T216yZIyC2=(b3-po*Z*0GxjXz=UO9hNdr1pP={B9f zDvl<#0z#ZVqJO?VcJtha({9D zCp*DVcW=PxCLcYg0R5rb2%RLrEpo8PY%Im}_-qyOMv=E2^7nXQ><%769i7lezw>y6 zZMM}3wKVC9WKj*3;r@~~;ea{lZ(g2~ zI@EXBRZ}SHSCK8KayjW9jO(eXPodUZ>DE0=zu{K^6F#cSOG7SHQzmC3!%3Pr5bWR2 zm=0k(>CP;N{rLJbM)uycAaP7#Qb==|f&%ysvB(qBToklE z4Pjp*hT&AezG-Kaw+3d1I+1Ec@ffWwfn+zRH8#@fqv=28{U>=9wIT!K9r97`%Kzoq+QrGs7biuZx5)V2(s}5VL`{y(mLf zZ_xG$q9x6?ID$+Y>>3rC{ra0AfoxD0KBj&%__Cs+C0zK|fFfm+o1P_Rq9jk$q(mfX zFS0oyBhyTnM`GKAOOc8(2E=4h=G-v2Y%vfRI$Mj3I&Xg%e-03@OKblaG)GVh)fX5$ z;y+=%3@WSK`72f{fbb^9I)*lBuR={i6tkg6+T0A>+-=6@Cu&-1pXN=N6HP4H+b;9d zzRvGuUNnt&6KhkmD;=-*etzSVbTsNU#5(VR-7H8Iye|u1LHWRR=JP0<__zjOv1Va4 zV&M$1CuCKPuo;gP*byN4(vR}-Vk>_~aLG-<38o`{kAPod%%1Au6@FTgIT9=^sOR^4 zJ>Yx9!F87eL7gx=o_Z?nQzSsYhXBjpfmCnAG&YA-_(>&Q0<@%$I$v7AN+mj3R+l78 ztH$<||G+EcSRAq}!(E%pAic``q#f`wR_|Uy% zbgoBhK~aXb`&%jcHga!OsTP@+y6?Dr(gS8!nXdJmj-GaJZ(IL>ce_ld*=oC=i_CKd z1n z8${-rFT};rq|TV53gmB6#VGbOx7{bWYyN4jvaqS7$ZDW16Odt_!GPNUQv)n~vn+P} z1~0DOTGE`uz!n~RtN-ixNKQ~v1gk&AoIfdz)jt%uW_QnbP-vk5qidL@8${4`vLXcL zO6-nXu%L`M690P9D~s!2r@|mgiWW08vcT%8K%Lr?Q&b@jS!NC&O(K1*i;0a-#2Fj{ zfPQWxxIL_P%7Kw+dC$e~L-R7m=!|C9?{aH_Yevyu)V70_*s=6^nT5iP}8=IMCX@M$} zxg8vjH;G$QAy&P8Gj2xNpP;J-vy)GbFOS2IkZT6?JNjxqiLZ~9g z9ydtaKfh)@u!0Gl+#YTR@Q~9xEE5qH1*{I#3rkXs43Z26d9U7s8^4>E3SNkiVzO(Y ztD?SmkwQ7t`bkU2F0S*Fs;}!LqB7fc)iasm%hh{0mJCIa&4=WZ;r#+Ba& z!)58QO2mq<1E?FsdRN-1z;!#Z?lNJH>6YaV#ypcc$>Re^1zcr1L$9w)>c|SQNFyhq z?)-&}o0Pa}u=$7+p_H&9NMw?Y9_*cT<$yJCsy_EDg@K(S} z2|G32jc!QQnPLU*0^(xKL?Gn>ra?$h+l~CQbk{XMyHRxP`iZFfiPB!^DWel|J7gVw z(P~>**T;=|xx`X!3P>FKfi(Yy1t^#G=EnLajRJJqiL4n}t_MUhgM{V&PZ&*%ArlZv z)Zdq=xg}n4N4m<|*xRF8XSsIVh7wE3q^Uw#)dm9^?*+s{(3U1l0^1rxE>+$|2^G&F z(m&*CP=xFN{}LeFk0cuDBxy?v##z#fj*;wb!tB>bOzx{C#o`Md7Ah(F}j`yY5Db4NohO#&V0V#EEDToz;V|MS|dG)JG!By99L`=*;)>bkHe6(7F1g z0lVc9#@D>iYWpmBY4G6>aV+>psm`4b≺b9+@Q|!&>5oW8@DWJe0~A0qN#lzF)q?v^>R z$;&rF#LvzF)Dy-^Fg${wWK<)a9e@vYPyxyzfkT0oo{C&NG2^g7U+^qmoq{lNmg`e= zB^;%dN;(xhQ;?k+v=s^)eymM#Hxl;e_m%R#qw~H&2Ivj$P$cV;wu#k-J&ocH}6`1$#T^gG}=kcPO1WT~CVFm!v%Rzd6!YW!?6W zZsR!WGfmHjST)Zovx~IX`%|TO(fm&%tCTYC zlfyWK`6n}g*_`Q9(j7Dsx$qsrnU}#zTQOR-q)(_1ULi{IKq|G6m9UdyYB@Gg7`+3) z1#fcCB_jj&vO$FToE3G{5s{R%207Llx7!YWlo42dmNkKyB)?F#{gMhL}VyqZ%Mu!9iTR4z zrAXY_-m(!p3@WqhDq5V@W-uqk1V>}`2bYHHj&f}nj-Ez#{?ns)dCLHR1<~9TpKC4! zEO51+wRhqq9Jz;o3xRHSZeL%~0Uvlz?QdxF(0&#U3E<1+_1B##;5#%utOf2%?2DHt z<;6oWvUiz0SwrxdAPuYwEX^n6sM0oid1{|fjQbvt(ZC_AC7n%dr~A;F{^Oc7*c;$s z_NxL^L3&M)vuvib@r=RTRj*pJ$C*slmO9<0dfKJ)D!wkUpmUEu7e>vOu;|OIi)^rh z&D@{gBvz~@SgXUOr~{=s`uu0VU9c%J?N?N1ElKbY!?H!Nec9lCK0R!rcbO80WR21Y z&_&I}>YT)iH*>~Pv^lK3Zc=IzySu;5F*pp|=m99Uk{#s{gtdtlgTwAfD3Il9;O{yd zIZC37a|%o+pf)Ph;b)&uIdu zT|E5z8NPstT2TP{;gJr%I~m>p76B7N^KLCPK@C~fI;d+CN?|sUH@bGI0*kT1T;}QH z%7ROvd_oj>VRGDXd32Qgseq)0zX(y;7pvHHp-zF~LNJ^X4CFWyGxJ@}_M+~>fA{|& zV?*|j+(7VbQB3|V6>H~^aT;ekieX|b5vt6GwwnPva|qizsCVi0VKR;U&d(xtiC)E& z8juI2K~tXjDD0b!wlG3!q2(XZ)q+{)Md$|Y5 zjQlE(@`&oEWsUpfz%5)`Xvn3GYsA+t}J3+i5N;qPA$wtZ1M@ z!^Vn!H)@pS$e6QT$mqL#_FhVLJ1m8G-8e_8Cua3fx0IPjQRrIa)Uo(;8_D28hU7w~ zNHLq%!zNBDZ-+md)@wF$(*|Q8Rb(Jn^x7$nm9!AyEN7utu;J+FnFL4;&%>TfhP1n< znmq!7?zyAzRtm(zoZ2A)dTgt5r!yFr&AWfLy1(z_*WkN%NLKZ6Hs_bsdDFqc<`aiQ z)1~HJlUuq%`B5!ZKOQ;#>-*yc`o0LwwuDVDa7x$#N0|&*8mTgLqq=p8)y}qPRfB_x zV=U&k6O~w^V@S{2Yf0h#h!zhq`4>J{;l{JZBKrL8>$R4zIt5k)DbCv-L0Jx-yo+;_ z4dWlH{e~I5Vpp8vm;!fgIHg*p{uG=3#-e>HbxL_e3~C)PskB`slbaw%6lJU?>@kC5 z`cXFmx8&vp>D8w5GtLxzaWM87ZuMGuDrMD|03=?o)f4Ik|Z_xwytm(@~0Q|;x zbHO`J?!tK&g>i9{jLn3m9k?vgCgyZ!?@T`w6^r%H1B`V6&lT|V%0ev|Z#o^e$u8z@muMVg&u&~UV zs@!r{PZ=f`;F0Hj(E=Ha6twXtj25)*km(fYfv0>_Rh?o~jUMEV!DkX9d$y5EZx!^e zFmGlS_?XByO}hY9W)17vCM6WDuV3aHhGD?EFpE#R_$c~q3c9k_2I?U4Fx58fbG!N& z`mDF&sMV|^Et6E0Lk|bmiaXVCFcPs75rPpVY?eOhQ!e^ioDD6+Txyr`ARVNaWwDI# zsL)F29w+9V{@pX?TeRS#KZ%pA9ux z687Ooeq5GGZe2%VlVB|mV>B@goPGj5`mG^gYYx;q8cdn^le1`R8Y?QY&J4--9Y6j! z@_+XY+RC1*zPmJPO7(UfNRX3}S!~eoAjB2T65;awI~2@!%D*7$nYd#XzdI|W zCo*@s>O?51{P!sf+HQSa_xb!QcTnmGE^IMAd!^Oqi{*0DA~7b66uzDh<;r+(%A;|< zjJgDf7?mZ+2!n5&2y)h(ew=)j62(OMZ-z2QiYbOYCb%(1ndafFaAFh{02xaLp(Tl6 z9N3j06N!*?xWvy)1F)0cIcfj=b}jZ5Balj~>iY2th%W#3&cwHas||mjll&ibIOeJe z4!ILwTo8P5TZ}YPnIrzDglW(VtVIo82Ng^kM8;F<#%=R<gwcB((Db$_}K$2vHx z-s&=(;Ne)~L6>yuL3}@;U4Xjf^zQAup~O;aEh?*_srl-^j6ymj**RVtePaoEZB&R3 zA*w|KBtto(qILi!5?R}e-w0p)OqGZ;!XXsDO}4&*&6pgN(Vk=W0v&SvQ38R3T5r;*ko;tBhwt&>dQcDvE}&&OmW z5Lpdl>H4a+_kiGd5NcvH36#XtUJ?*b>!iWfFsI^?0F!4=^lPSFa0I*$V0i9|ArcT> zI4SOjAB6ahOzdHvbg-2nX6yQ_Pk1J!$BLq}UMTGO%`gX?R|xwz6%p{7r~l?v4{4n%Y-R%Ntt> zmdj16T-WrmtaqH2Oo8qsec!$MneGFW_$GYA+nvWgnWSRciRH@i*=3d|erpy`%fL4R znoG&cwIbzLyDF@9>B=92C{+-|IF)#eYD&o&*aTy=eNiO~Z8epcVzUhQn-HBE^}#Ka`OuAoxjt{~gkW5D(;bKpP}^)|CR^aaHn=MGqFkX;7Jyu1ZGr#6%;vO5E<;!k+;Ex^1>_B(qV1Pt?5v4qj-)Y8C1(J%% zBI$_&K*R!q#4>_;7OSm+PNB;NlczX52{@y<#8VPcQA)Yt8S^*V}eBzg#Ih`*6m5cm3nr})9C3&!4g ze%vYD>J9sOaem#S=^;(%AuTv95EhI+m#TQHK+WMb!az3+H}^7D^a(V%byB?UD1zAK zEjOCimw`Qv8M2ImrCX}gkCH}dFr$kA*~l_Rw8FjNk{b`oN;d2}MW*=zo$Y=L zSEub&bpbc3P$)1XiLOba_?&-I$pdUOTH_{!JkJZ%&+Ht!{qC6VN26Wj+b~~> zm5>d#Jv`*>aJg_?1_VB0Zr{tlGje^KWRFRr1aZyk`BQR~oO~A2zSjJ^Ss`ZJ+cTyu z;|MGxA&QOol8h{9v*x3Lp{u6c`qAhlL@aVaf$(P*53VNK>447~#8QkcY^|}%L$EH)d z#WNop#-H~W=6#=(qXj+GTbU)4gBwo2r`w-m@VxnWzlB-=t>ekIS)i)NS+2W@FNu*b zzI)7^cbgrd#Qi^hAX-+Bv6799&Afa&mSr&RKwY|OZYI^m%WOxOmDu;uufMPfSd!c0 z`3^JaU{$KxRH>k4G={hpU|WC<@proAI||42M7nDn46L?Z_bN>##yIVM$*>wVshgEg z={Dnxrs8=^tcnx(?#C?1kN~@~~%s(Zyo*$nNdp zK9Rax;LBfhBhVD#jkh3dQXXc-8QL6G+$+?N49(dS*nXDznBv#gmt$qhBdNWR)>s%> zV$WjeIFR^4@gr^_n*wZU#azegfvnJYi><)jWW97{%i(xmX1V#%zp4Mx{9f6)o#wl{ zSsArd`N+JgbK4Jnp~#hSXXQok1I^K6Z|=5U|CvSOFsb!+dDd0U_xjT8nl|4YnVm)p z-T$IP{6V|WEQ0n4fcAi8HqoT&?U-T}3h~ApMIL`j>rn09OdjzyN>#u_e`@xm=nbZ% zlLgp>0xNCs!gTw*l|UQi`{sgLvd^Y2#gPtcKC_%lW2}7(0b0);d zvX#;%B3?KOe4@S-d*^CO$h;Rh^@_r}fRrQIb-g`N^DKx@O69W~|P_7$Fyh zwQu7QpK&i!>Z2(>9uXvdG|u2hPSb;ACqUhFtk+bvCCy%h`Fk6KQFBq(%~EvUt(WP` zm3K*C#|cJUE6Bc-)%Ez*ig%Qf8|0YKpjxV799k3KACr^iq@;b(8aHf(yp$>?KIYXrL30lg=5)lt5MeCPxcImTUGt zk&;xaXt>IWGIFY*M};_0YcuVK2S5fvkw?nK#ijp@B~J0GabI|T?D};B^_{KFzB!kC z%2^gCzms_EBJyb=uCjX(&deOd%d9E6Z0LRXQWn>@NQZ2F?jG4M`zZSK5ARq93|xCD z>v)T5A?17V!zPy)hf0rt9}*Z6YwSoh$7Al1RTd<{#2eK8#U`ycj;KfgAAN2wI?nSN z9=d9~-+H&R(2HI4yoOV`S~X#MbR8W4k>9JbepXfWTrcF3%D{3|SyW+key>eQDNX-c z=XKqFDjIyf_&`K=zc@h$C+A~UP-S-5{umhe@R^ft9o)TrEgLrr|1M5j`$*I6JQ#q4 z?0!2Vc}z^QEvnSbEBOk01>xf=_Zz<}Hra~D1ll?O@ z+jc?@R;@6ldXelCXM>j|GbgM(V2Iy{WN@!i=EjY4W(6HV?BrGxF$RGzd&KLqH1w#b zNHVv!wN=4AgmmaSZ@8TK88T9WY*t z^bfGv987ExIWEv+#n`v@QL2`Q-?q%dtOm$ey&}TSwB$1jW4{m}r@I`h{Nft(&!E4` zqWX$Aj{S_^i;QlTs-?)fqV*W0zgQfv^O*hJRz=6!Ggno`#Ij2z6PjH;b4JTZZ_cv< zsARGL*#Vv{q|&O-57dL_a(e0`&-8WADzG2DPFl4r~^C-}~mXP9mQ5ytwZcfao+OUku&F||Hp`fF? znjq+sZ9y&$ey`3!b?i%V{JWA!+$Fzk)l&=~1s#2JQ`-6qL!51xSC>Y8uRCAKjJLWt zug|!V!uqM=IA}Z+Q;5O?U`_qiM+qkkPdSBtHQ+e3*bm}H6_o}NL{m7A%8s}$> zjL2$8S#6nP-COEhYG0TkRrz$Q8(O-x40!DJ)~`~l8*7xZILe(~@RVuE)F1*muPUl@ zI!6^T0hvjAk({!XjNe-{6|{9}DYvKkQG*s#q40XIRG>VxhQ-0D z9riQKW^Xrm4x^3rgVbPz!8$rUi1)_E&%n3J=lVl7L@{r+C~ z;E77<|Epotr1Ml_)Z@THmGL-zCYLpBf;ZwzbR3Y0cbGl(Zv52=x(-nF%M($ z;!)etx3$MZe(2B&1j4?hi#t1(cV|>7W$ofIdu;v8GneM>D z@c#L?!k%x$m(|!TF5J!AZ7#j3e^vXIJlR+96>^ifbBz315g7bx9xFf+Y^m` zCbSjoz;R$AFyvkBcL-P+pooncAoxNXCYi(U>UGda6C%(&hqTLcVgxnD3HV)i3 zRU}Mt*pPfH#KCUn(w-9v*K+Pqr^uQbMrc0W!$EQLMRrJ;JN=;DIfndu|l2r5&^Tw5-1mBk_SXLXt(hjc|@;ALhw$Dpx_+EX>|egoL>L6#%bmQ@vGB} z6S4(<%)zf7Fo|Gkp)Qg-sBVmwB^l3}1`}>D0#cwA!dn4Jwq(4Jd#HiQL=JJSL3#8k z19rS1BM8T}2vEOveD07_t9U!~F&H5UqaMJ)4SgAbgCp`KEKuuTrw;vgkard5mX2iP zcKCojWyrazHL7eF0#|7S)mUeRNI53bNub%!t`L&~)G|C!%2lK-m_aWPj!2!fJWS-U zY^|_;O7Vh5LF7@&xEdT%nM!O+jwp)733@U^RwY=NPADv>Lv=>{V(2b)Smt?i5j!qX z-U^@uql^9G6V8M2qeKx$QiC_?~$gP1LaFwq2l zCWr7tSQRkS;kz+WEZ8>WXu#lwWHfHft3NTGkpwopvUW12#3GJxKpzU%UO6PsTLz}7 zk_VmnAyg*M)`vbxIStc4V;4~;;S9jngzf~*&09S=Kz;gG=U+|}9xr4su@yR_zG{h% zGT}_%>o7Ew0*`cKy{e1xFm(D|^OyS&>2SHQ@^ct;4Ak&WYE|n;>59GQURzP;p+W1WDVcipqLdqM znMdGZsKM|>+C+GWNmdrgRAOf^MOJ>jv5vhZh*YH;pK3x!*i%&JbQf*0_8n$ks13Cg zP~a&X*wYZ4Dvv+qxdw)Zwa{2UG@MrEvQF9s*B0lvQ0MT$=9>l~h!rwNWrq~LdZdTV zcevr$^-9FmX2fTRPJS2pb&P(E=p?ER;a0-9S@h){6U3fM)@RZ`9Vl$YkTijUlM%fd5zDQi~p045%b4?B-#ClF34t>b903rg^f___3$39h5``CI%7tT*F1 zpx{Wr(*5Pi&Sa4M8IouA--tfHu9b!u|bR&{}HW8_!hsa52Cm&Z3&N35zE z5|a9%npjAVlIbyEzl0u!#;7Sj6h8^`i4RF5YG$>4P z1e(ALUf{An-+Dhp;)bt+8$`nAuo*wX_NrXOnzCKvVH6r6T+7=3mRz*0P{_AN5G0cS zqRn1|HMt(TBmZpp@*N06a(;4>Y*!F%FxE7Mmu~FkOHnfd7o2 zaz7Pvf=fjK8PcvRRtvzV<|^9f?@ zlboGdD z!QX`%YZK1}u@x7)m_D6>{H6GkAv_c2D)fb#Nt0tTvr6#suAj**&H9b}()!ESki3n3 z{B}(x^t#afS<-&&{7RRj?!@J}qFT7~Dj?-1aJiF;yK&Fu8gdBV*P0f+b=CVDcs@Sl z;D5p}_y<<-FX#w2H{E~or+#2q|H+^FU+4GyC+p~cU8^6<|CH-L<@(=J;D5{b->`W9 z@A*^zz>EGz{HY&`&_8%4h9Ab%4?F57{kmeXjpc`D#qk>IXu_@^d^KY(L)rK~%B+1F`xSXzE{J zD@K+dyC0ALwDOa(FtXw^G5q7{C(pu;&-jD4V*KgTKP~-}Xa5IT^|POa`JeLt8ktys zpiMu0X8H$h^;7n*qhkK2&JX5_;~#_;1Je(fi{oDmEC%);{TLY-{)zvAaK-iyJL=zr z|IzwqFD(E6EB+r^{P&jsPo@7l zk^dcp>*oUeZ)2zb2iy}Q>;E0^q!TY=IY18+^2{5OIzPBGF(ZgZAg>5kcLFct1u(42 z7%IvdSwC_~)ouWVx`N;R9AS3aSBaL;Nl zI04b7KRgw2HSdaYG=1AD66|y;*KJ^J-y&?304q~+CRrBnvq~K~@w41^sX>EU|LUhZ z-PL`6A#lt#ac!>?(+oxsO-m$42UjOZDLH;%1|u4w?4c+S>Q1-9AvPyYu15H z-85vZ({FAsWW=IuEFZyC5| zHj`F%GDN{X^q!Su_#s=2i^e?%YWmjAW^%&by{{8Y5GL4yBO8nem@wYof>tm)(Ed*Q zIeyOi@AI<&f*i*Pbr(;giO-v1+tz@Z*Mc?=z5KGamP9j}V4o&k{Km$Mph|ELdLrRo zo7J8LWzAH7`OR~ohh)JE5)kMziU77iUJUtT#lgGok;w#Q9%riIBmrL^jO@0;`6GKf3S24AG#?|s1{iGWm-%-75`7yzo3NdWg+Mf#OMM_bS@WPX z9}^u~gC0l3RF|R4)CsnMf=+XHXUHk7eY(0v6glFe%U!KOd4pUcTGCtFd8>ge*kCmK zzSL+gCCQP|LfHCk7WYWw{4&2L_0m_|y!^dr^mVU|0lL0jIgyEL;t@^;OB-q_Fe(s1 z8znTyro)j+>s5A)cNHn*Cb0RuJpay&i|j~{m{pNOF#lS3+?@TK4WGSiYKF*ZC-v~F z1N88+BCsM*s`0>5b5U7OO-t#rqRd&jLR+D$qry4er&LC}&V5#eWDq(E3i|He(W$Qf zm+=o^sjx^LG-`Fg37v!UBJ0zzqJqzqvfge@S>nwV60D#g;OjSpP?nQ}p&_3L^08qX zfYT0=G+Mv&AcI3{3ua}Nb2yGG!&CL8s{_*Y))MrM&*c*@1FOhxB?@cGtSp$bHLE&- zE6VHIAo>*=mtmHdw-L_gCI7X!rsbbb8QDtb9HLSSfFeMY^MrZwgq~n)K~Yga8)t0{Q=5MC zHzT4F!mZKaI&^Tl>N7&OzEjP0x>h^;*hQzkjo_}L*2X+Ntqf^Rp{j6_-YRi<8d2CJ zpsG{u$Ax{vQT6MeEp)S|qDwcA}3`O>T2s>9ge zHR8~0?Q!zHV>J{CVXx0xH4iSOth^UImB$|B)?Vfhv$hXRI+;=8h}G4l7sVOV&ICL} z8}r9bD}?7EL$t6e$3TibP3{mf%n|{Sbv~i1wMBLusF+XGL(S}*_U9;oJ}mR4E(*dJ z&`#Dx8C?_EgS;=aJBbnd3@Bzi@)F`Zq_vFqb^s1jQW{dJA;}@G^)&RXYOdLpIA27# ztO{uuRzNFEZ zrSUX-ADBJKmoCWzNwKV~9!c4z#YTzD1I#$vvXCR$wVh*)du*$0gGquV?#Ybm`Xh!V z?y-!?iq)T~$`z|Um}pi@b*3y<85%|gF%c}>RyF6C=G*?Bzs~4#zql5z1wO$R(sH{X z9_bg3b8!RTm>0xyd4V1cO2BirAQyojMJ4Y=MBnJGvP~wHDm)TdEgI;4(&&Et=zVhNY9S7N^t|}dQ-g2MgKxG5-E!!+D5)B0nj)8mmny4< zRtYWrnPxK$rW#B&=c~$9E0ztJ)!8U;`RcTLBQDR@{W=Y5Jmpg~qr7Jga)-+{T}Gy# zVAxaVf;wER$RnyM!|guISu%$kMCiYNcSwj6aKzB(c760Bc3++g0wbsL3ORaeZx+<% zk+y?D+}Cjaqp<3#y~am2k3EGG8BbY z174N-P#$>ZDSNIJKqX~c9M||rdy;paMa_FO$=D+CTL4rj7fxKGfS};Dx(Th+DRjtX&5947@PM(MBcrbxXia(>Hl) zQ9??QXM7d#s|Hy2m%^-hn&xe&Rydc-q{(?uA zgEQ`E$^Yd0dSUlKKi2beu;jmzYM=dOQcHzOGc$^(st<$9HJ~KMiWij`Wx`a{_%t`kZzEA z2)L-d37R2L0<_@cEuhyx6`}%(bA!h|(VEu~$!YUb^0WDT2psv-7m4wU(OV8=yO1UD zx1m`40Acsy+J$6yN^c0hkjC#E$!qr-Us_*cU$``Qj;OW%RpC=>Gtc&2?F2Vd+ddbH1Z0I%`4!ZsJ(x^9}~}fFuFgzwqa4pC`Zi( zuxwAz08+&bWo|e6l&6K37mdf1_{Ad^`pP}u7$@rtW{AjJ+3?26>0Qvvvbfs~hqT?Zsfq^Lk^Y z6qW2>n!dRb;{{>A#{};|FU$=A8o1FQ_=d{x4e5p1RcILJ9>@LNBRa~?n9LNs+zoP* zanWg|=~_;;*_tXk@4?O#IAOx8*|g#m@-^RJ^iplt&jp&a;O|4Wy(VWwr`>PxYsrLH)&nmKG-Y?PD&t?VJfVf$nx>j*7ELD?qm-8$yiUL;&PZ1grm zmDN+#+_SV0Hk9x%b}(^OEnd(@ci8Q7PpsnGTsP;871?*G+~DBhS;=Nuk+yP`B~V^% zlt9leEDD)%uC4DV?L_z+s9hdXVlw4mq+`?T4@f>(?ovl6wjVR4+UXY{AcM&;`Rlw>J&I~&H=#q(qYbf&$6hsbGRbmbj1 z1Z%CtOnEisFsgJgh6zvS3w}xd6?!kr`qMqAf;y$k#o*+rvf1*6RqMVvys3#%s(k_K z{_mbmr|)y&6SJ3-hV9MbD2j!}RKzYBLZhrdEc8LJxd7GzoHLK-c1nk(4e-s@MtfyQ zUuUm5nfYrLPq^Uqe>gu|!-X0o4Jm%Tn>d=8Ce0BBt@nodr!>EgMbkx)c z)GsCeE5c89wuAG)M##%6ir+&>(yIb^rPoqYRuf!&adA6qDQMplcw%)u&!Lwx=}Qle zY?-#2%G|EEBUY-%XxdZvgF^5;UN(0e-J@Y!xQD;jtMVq_Vk9hBs?KsxEY>4xzq$?` zH<=o0p~sn-mcDnJlPfN3u)Zc*amN>j1mI988Ho8ZiGZQ&};TmaKUe+6^2$XhK`b&avR2wBC&Z4 zvri3Bzk{|@u(idGg{*6vj|y7U_CHQJdGO(;zaL_0r99e~eD^{S`&` zb=Pz7{Mq-3Q{|z^{0G?ZD)ih|NPl5$O;fe|oKVy1Fg{8}H5s4up!DT%B*fHZzH76_ z#z(uM%c##TM7M$LJT+2~_4N~1%Z5jIb13@ z$*z7d`$ySRO^z`lFeI^^5>$X=e*+ccmQ#a-BN132k*q4Sv8+Eh^wtc3)ka@fBEEIO zcE*IF;k7dRbh~=;@$v?u<#I=$#qLj>f5+u?f9BrGN=w`482xGEeY44CdfaWp>vl1m zem&ILd!N;z8?1pSX0T&f119p=6HMmOTp17RDMBT zzL0Dg%(;Mb4x50HaEqcEYFq;ee0+6!%~C{o&u`|nbzC&&%-M-vRR|Y$mvOOZrBNHV zZ8U*CsX>!7oTFg!n>5mNx-Z7^k1LgH_|qg!*Eh8Hu}8jrwx{g-Sdj*=aX|I^1Jz9ijv6QITjuHpgV5>t(obj83r2tu)APDMLEZ|zudfwtPr*o--a(0#`NX` ziU?JP#Ea%DeZV|u=0F*;lr-7|VaJ&bZ7=J<5b~I4FL|a39)d;^Lq}v4rS@lCGag-T z?bS!Lx~A3^xs4K62DS7-F{T0HRRVF74O~JyS zgywp51(7&Ri1%ZE?C5aB{L;GcaUw)Xjek0^Q1ig36VB-4nBG` z1{V$)2k8oCo_C@LY9=Q^0AH1_Sk9L|1GI&3R}r9dX2(omVc^D$9S1D6Y?L;o%wG@6 zM1G*a<&O&l4e(Q^$M-n0*FMd+grqbw;9nWOVGR>kk15X-!cG+1sVw%GK#&K3WSL+( z0&8Lq7uQ{=qVUpRuL=%35)Z}~C)n493e#XKUf{vW|3nNU7voleE9^1A$cEk=ZUv6a zGoQHyefQ73h)^WZH7*dRfce1aPo~hzrEV^Cr zI{JH@h$~{aj|eDdQXymFD}_OW6o}K*h>vZ{e%K}64JP7?L=po z{?z`}Xr9g*yg^WDkX;0OV7Xv*VWsa2{FdHWQgEKgll!1kP=TII;ro8*@5V4|A#PD9 z1bCuB`G)dm<`o)+U$}Pz@cz&Xq`irz?R0k_LXqor5K~Z5hSd|qPhh|9}8Vb$+bto4mNN#I+ zfbJhNDYzFch13BFfs)Bb1+;MOb~(y$v?!d(V@y0 zXhpr^#LI`yaPaVIpwZ`);Rq2zZY4y@E8OQ~!FJ($5x#o8JKlYndt64*KJ z&t&#e3l^b3;Dov+AoyGU8j@uzk}UGI{j~P|2u7AiZ^1`cPgRL-wJ*d(D^U(vl?xC@ z^6b~)=^$fdpF&P7P;Jrs<*~9bh4V~HW$h6~$_4m}386sZg1*Z^g!5ntXuFu*c>;vn zKvf0IK+Px=)^@Rb+A@r6BHQ}GW=550o1df6_=&vW{C;fZC zcXj)>0i779uYkJo^*x_c_2K0$t&iz-MCf~x!3r>onT3x;i|%d$Jwgs`16_RMB}#cn z5f4_xjvp@nVv)mQd{D}xo%a$}3e3n?CapFkU{b1pNtUead-}quOitjJkSp*Y{6JvO zbNs+W2GXKbS|HkhrO!hWfv;qXws2R!!t$oOFn6kfoQQN%0&J2YAx;WdCWX&#ZSxS) zvkIQV=0XayD?0zAqsFWlSr(qzPk-$@vgCBiGlqBu)=kH+&CZKf9Btv<(B zKWau|^ahsc+~CC$+e%24>scltlr)A}3Y0#H>_7t{N4;4g(`SIuzETgG1#3F{J6f$r zOdu8B*4KKBss)mn;M=uI`>p|_7T??E!$!q8zWl=YjSQ>#q1n$=*H*s zh!Zh^s0VwA@>GuDFY#>!yak3yI(6h(b>66FRfhmtIv~0TIU{_nF=}g5R?hM zej-94a>I*Xg@5kSuN3p`=E-dWVlsu+y;tm+cZzu$3RZVSAs zl#BdvxCO)pZO^OX8oC)u<|9nX5|k!VVa@`f$W6PL9G{4#I#LHp$SLf6ol9{~SG-%e z%D+HpQe(7{SVQ}3&AVs9P$EC$L0&4>CYx?bp_ll>lGBJNL%HJ6IQQvHjy=bvs7-o! z|I>~(y<$ur`=>O6LE31xK3l7;TPTecz^*lO7~o#+9w}?)mH|*w=?6rHVi_FF#Ye9e zFeA65SE@NJezh)-mO4`17D9gaOCnpu{D$bCFo5FKTnVX?6uJL-0q%9lDe|LkOfCIc zgZ5cjCVer3W3=$~jA4Jh^q^+MI?-4Ad3!>i(DLKp{nyAWoGWXClg6qXcMv94+=W@s zZDaHbY|~`6clLCc+M4h~b*UJmg&o+WV|EbvN-RMQBF*FJ@;f8Nqa91{&0;$9tb;@x zbDi&luEboylyMdoWJ2Eq?Z{Q-g)_J_UsB=?4%is34xcdEPy5ksahL94F+nTijVEM{ zm&G#tSsBDqb(&|kcZ6*W%CM8zvleE9by=>EXUc^g!i zt%D;QhIA)hqt^aD_6AaB(i7IEH*bB8sCx2=7;Fo^}%6h zg^I4A%}-N^NNZy93^7j_?BYiF4ccz8HO10Z`GR-V=-Mm`KbkEQ(ucDV$SyZH~~MJjW*GcT>H|FIzRFXp>pvZxryK5G7Ta5_Or&0uRaSzw&aY!~JL8cunJWDyk&1bpvm93y*)Xr>rX)?z<(fxJ7 z`Kj_l54CWQfpe@H>5X2YZ&Ua%Q$X?FqKPMw+LM;nVb*MYa-Jmd61u*31Ij^r+%yhG z_|$&*E3D?DMVJqn`?&=6f>DA`3FUoOBxaj$Bgk}7=yOxQ8)y#fm|fCD8_jKZCz;jy zt2oDgT|Odme%qg0lya<&54$CsK+i+C5ytq0Dq0@Eq<>zniVp7<(szJ_;EBOr{pj)K z`1|Jx+g<_BPARoyW(VEbo)xTBiCCqSUH%Q8WS=dJRpzs|GYPB@VLX#Q6A+gv;&Lp+ z!ZS_MAE7swF(yfrPD~PCt%M{`r03HkJ+1Zc-TpV4Y4CHXh+IltVc(L24Lm?IwS-?O z*4v=x*6c5p`Ac}Xi+YM_eeeLcFfribAGS?)9{B$kZ`*&k)&8ru?f-CH|A*`PUqea$ zm#qIcjsFh~^}jT5|7W=V|2kaUbdJWRod4Tg*FV1Mzu`sy!9dZ||0kKmsD;nQ%=Z68 zky!q_EhF1Mgz108UH*gU`L9dL{{V2X{d@iY1#mF1Gt&Qeg5w{U#m@Xc^DtLF(C*4B zEq9xr*-TC+KBnVdq!~;Z#{Saya^p=C6G>tqK*8}5AV`AlkPi^#Z-&)`oV`7$3!Wku zDiylVM+7*5y5=RTl@M*3Ha1k{>Mb_GFHOA@Usib;!C^0LdVRirzn{NNv(-JTyH?k0 zn^tu_bHO0^0Qw`rVf)$d9wCrSwN`-mR1M8dUN&nV*-_I%0Ft}_B|B+0iFxeqU#$Kw zAOJfhQ)_kVS|9d_c=@g9{l&HFO)edNyD4ek*D2=XHDQO}=u!;C=w7muq=nOK5UA8Uz9CXiZ=;d4P&OE92JXN&8V{ zz3qa53=%NZuT4mwJP05XRQcj4?STB^qrMpS+c8IQ2>i%5e+=NpFJ1iV4bcC=eK%_z>-&A)YwJV^&hya;`<-c9i~4V$@H+>HCZu+yHfuM4?RZ4H zZ@_b+#6O6H$XI}DI>4Pj1sAt*OpY-Ia#7^5= zMU?KA%9*+f{+!jA$||L2O|}P0R;+f7n<*aT&VQTNMcF=&3^$FnLe`W^sCwQj->WuV znchR=$qj1On{ulyhuY-ZJ$)7BiS=Xz#@e%5;08QUuu7Q?l+e8jAi zsdcO!Tyv!f*DFO+CWEHP*}Acc9-12UV-Zl$cudHo^i|CEkisNo=WnE6vD2I#oPS#lo zBWxGPOynHLg>=TL<_r~HEI!VeinNetLeCOa!6Q+Xi)>sOV9~hK+iK+4Y||EI$5u`2 zbjyz4FYghL_s38(I0tt9U9l|9O(BB69*oW{=3z{RAUwF5o7|2$P|)^frhmz>Ig}^q z_mxqYHE@*pf1^-G8c!)Wjl2N@JWh+ZMPZx^!>}1KF{UO-R#E`e#Wx)ic~gpDLGY~jkCz5wewmv5ilw><4> zeU9~Cnw?h(#0pyHq-?Xd%Hpw3+uE+v?wmUsN^0_uG}kn+&ZY!4wtO+-plXsE6;;O> z8K?OF2rNA*DJ;3&r~w3KCa*y?d%LCktCGg1BA&r5nP(thkC(X=?|1CsoD?CMC})i^ zGH9YkTgru7M3E@J=^3Q;Z^&XjjNrnzM*R)ff6wV+ig*0RgKNXR?3R z&v@4aA-tgFyahHfsn74S%7d==rWT6Q0Hazs zAe`P1(9kpR>7CgzEy*u=Kk<_?r*g)ehMTA=km$NZxJ8A{$l5&HKI<2#r7&m~DdI^x zfeI2};L&N8bhXfAG9pg67)SxKv^y)WoeSo%XR#Qm%+!HtQ-?-ByB?d{VKuOg28(tn zb@er{VfRSVnpV6lgzmASbT9neC&#*CY9d>T`8}1NSN~mSr?+weZAP^x?rKgzxVFC- zVY{V%k5fPF>phRO_{|EZ0wL}5BF^F^6R(3~6Jw}6LHOaH$x0{rK6ahwI z9U&_g(>j$4*pX}$fe|g{I#~slkyqt3YXHJ`^|MEZ=gPD#Tj$ENPz?^d z))Z$ovuWTGG9PMY)jA?{D5f=;WQV}j?&|ERh~$buOq>?_AoMnVJ#Xg1_IkLTRLZfa zn#LvVkCS;Y1~poLXklcib!qr>OPrj}a6}LFK@C~)$!N#bmT2#Ch~i+;%>p^YTV2npVct0V{?6oX(t6r@d99-h23B8fc9 z5PwXy?Gyhuz&@GijrAlJ`%t`ZL|5IY7||07d%qNK;h;Pi4qp8_q|3^5(QTh%I4B(3 z2RyIse5*btSD$sP8PkF7P++(yybQtR350j--Xp3Pl=XvaT&P-9JFp$=9{-R+nCBa( z6zQ9$>&SxQZxtfNH_g8stn4LQ`sP{Ic#p*1a6!+eo}y~Ip3#>F!)OkUQDP3mXo50& zY2VqeH=$=Tyc#CY1wb04iu|z2iy2z}XUUUVtz+1E7jWa=x4sOo53I8A3+pfD%NOQ& z_)K_C_$8vtcu(y1C4z7_@V$UA3Stk85~M;Y9bs?u8|M)bGRjtUslqHQ|3~8@%WxQc{trvtN_3fk? zKTIN>_pYe={w9$l4WVOHlunFFCswr+yT+O0?#c0`|CAeR>-E#gao+Hi;wOUR27lKk zmteqy_zf88ieSJ>{7w_8ns{J@_>4>d4bn6|Uoh}r4695+@#KNWMiWUW$X@Y4xp;j# z$PaP)ERZH~c~TO|bk7enWQ$?}B48HlC4z5R6j3~^=X?>Kvq#)$NN@(8Nc06qD9VWp zh2v!yQ6_N5%A)s)G7IOM@N6lC zlE#k-Z@YB#`w_XjRU~eWf{GGVnrF6<=L8SSh(3uGHofgtv2hzfYL)Ytw~NI^R8mCM z=ADUN!wvZ0^|rkWW9PvaEnq-#iOy=yl1&8@I;-m6&|;?4k2%3f4{y(!&L#_At>5G^ zT&X(P@(@hC2>iX`AFNMGQ@(d-jve{FyswM|{w?3y$gdIuT&mN`3*dlKdW)5R3$>pp zk8=*6l_z2DqBOiQ15u@$o-!TQWsxo_QMnmCe`{%)4ZXQ1w}Gcmj|S|skA_C3Y$Hrh zrmS6~ckOJ{MtM?B%{ejXfr!lMNHPABLKQPg8ngw#&<=sl@DR$*2anp)+~QKJ_-Xl7jT{AbxAvpIzxm`a z@$sY6qPp(z#Lm1rgGF`vBUAMO_7I6Qcl3kOz$c}?x0GV3xtHJR`J|N>(Gu7ts?ga# zGy1GG$33o2CUI5Gf>--MqGOaJSS_tb{{dXNsZF&7pK+l$Q-Vc0SSu=``l@R(o%}cx zD$XhVDkg%My4A~SpwGhT)>Pa=T?Oy^iBNx`bY^;gVR`Sf4ZsApa#3Zk3o>6~CS$Ky z_3xBjo^D)8j68{xZxMf<7I$fa<^> zdjwxWS)-aVeLfhVE|ry`Z+nz&SgyNb>#@WveOz9k)IAwRqM&$iue<7PU@>_&0&QTS zcwt3Cyg}CW*`COj)*w(u2gaFtI9n1l5!N9>_E|k}5_?2#s7nd@Mbr)&N3|oqeS`J6 z9s~|xQt=>L?^t18Bwv(w8ccmeZ}^*#zelt~OZobA0?S`+>kzLFINTA{;obp6cm2og zVE;DGh>qbO4bQmldByQn?VQ%f1>u++(VDbp{wel&FbNdKn9mSVgiVBE_>iCLfi=6( z-}Uf$^xV*PNKN*f4|oYn@lYM~z^6w*eC2mN>#u**} zYYJ$dkp4xNoUqx?J+`{fn0tL#gJgqXyW~Z;z~bP3*dxjlg(70>*M17Ka(LPc0=GB) zJRtwV%=>!>hZr8AexDE#Mvbp_=mgu5^5uU;!bcpmKE?0=_l^MH+LuU2fxD$FmgAmg z$VN%G6P~u(b^iTC&O3INcXq1Hm=;0TrPMA-+g~%JaJ_%ie`;}K!yCglDKMSWA#A@CK(AQFJ?K#!~w# z`_x{xuVN^=Rg!?MC_*bZMNLpO@lV=<#)GFLj=MVMTjBvm^BmR@YRtNT)@C~C99dK9 zbiXP6WggbOtt$#{aqS!}JD16Ul{R7Opwt0J8@?@KYx4R?`NrhNZJTSGY+LP3*q!M1 zgvkT%9|L?Z^)~Yb{Pp?uIY@Xwa=??L(5C7ZL|gsIq?=IrH1pB%0r!3V;q$RJEc-Nj zx^MBe(80GvMAmNA0d`~29)o&c@uvC&_3?FLk4U2;;M z<9m0W7v%0y>>r*!aNi*;2}X?4ILDbY(76W{K`i(7&jSft;10~(Qdoddx)H7UIJ2ZN zdfMiA!3PYq0kp%7GZB*QE_)npK|j!;_Bgv>uW?3S&}}f0BT9EX+yNa1g?8n%A}M0N zvZ^-(95Jwf2R>szsvKiPS#keM32?W(8{}^m>(HWZ#NET6KVp8#yc08ra?p?ClG}i4 zL$LJ(jx^RNn{RsYDE$el<0o?Z&RvmIM?B(f2Fe=23^sT-Hw4kZEZfx75(0A_5Z{J? zqT!!+8zByXV(^+FUfu+v4Ql%GYl1`dg7rwzoB&@^M34DA4-nf}8h~k{H-Qr9@UFtO zgQ%~AUiMs9BwJ#&!Ow55A6DC2Xpk{a<@4wn!a`4L&b&JwKOcoHO%hOFfO%vLN+j6+ z2)|&{VHe{x33`QYa{UlqbkrkTw-VXMV(UZBHwefv)1^KMqP9G-1pQEbb zvnS#Y(|9Yml{mCM+8tLjB+Es0KcJEVz2kO_=0-v2-tSVTaXusw_od?Bg|74<%FUy; z?qUA)18}We|FrVvyuk8-5=iGMN*k8UnvSNABim{ zK&Ogn6Ph1@c~@FQtZ6+G+6FPErdX(cHA1}7eXxMc>de1f5MJZdUkU5k+^ie>cz|pvMfyo zr;B8RUH9Cjhrjoa`zK3)Oixo?`{Vda005aAD<#A{p^*#;ehE041c*fy@mj@e38UhwOwNRh>ZEYkMtCAL4_Y5 zx>nkp=-P4BS?5uKN1Qq2O`}j)vC$aZ2F`?uZ{JCYuf3>S`{C*oX_9S#tP}^$af|Z2 zA_Mk&)S(GBixnnk>*#W&N9+loD9uU}V!a63#zPmz>7Q^7R?bKpO~P~zeAPeUgax9k z4y&1?<}uj$HTwV&t(2(qoIpF}Ocpah22Stnw?;D-l~hzkN$26SC)sKcWsR`qGSd07 z34PPvLGPf$p1^V!#3>5F0H~azVJG-Js&q^7aF-=CgXN0AN*lnm73TR=88W77F4pDJ;X7g># zwomvhK{r};2^G^@f5cHaL-P9#u6DTe>mZ8Xlo)Cajb%87TG#9~E19D^nw=WSxYV&L zmkn3Xl1O3UZxKj8-L!q&$BvLip&ssM=7Q~fG2TvIsndz{3defkm>)bXEG+z)D@>DR z(zj|CIaMrd#ll*Jc`utVGvvJ>n}v0^PAQsBJSV9QjHM>4Lr5?`pNOe*lu^C1Hroq; zS)Jo!0eayMJvF4=dyv=Bl$T4dR|&5xVsF$Flet@h-LG`HdLh=`4r-1LzlxVB-1Cs( zqMLbH7D-`z-qX0s*!=Q7FQP<$O6bb&$a<3*Vs8f6KR|9Kk;jX-n%OTL(yNCVR#t9w zX=_~`!6cm2XjZH&P)Ge}QV-(!R?#2HjWA9AMcn5Cj%_w9E(2#AL)+5e_3>^%E^0*= zd9MRo^iklrkYboTnuIZKtYOk&I({z|scor^38h)BX}uoBvUyeaHHY5ft?#uCkv7|)6;$)Z@{#s8^vN1EF zjKblTkcfcfRlCzZvFzNY z(d=_}7+|_-b662fU981W&AtyZpxug%ExZo3$iTn zH~mBR1JZ3c=g9SQi86_DDRXhP>(>5~Y>9g6sMwKnWKkH4ItG$S8#<;Y6(#l6`IgK_ zfVWkW_}^g?Vk~wY(jJ`X2-?}?K!Gc!dipUzGARLFC*G%cLLhL_Z#x7%q$}2^nWoCt z@i8M`ORN>8MopWIMCWN);x5D6X7KB7EryJMXrpT;0hwE5a-(TvJX|q{} zg;-ehj)X&(rU&B3M+5FBgzKxq2#3y~di0B{zeq#cxrW+98R08XqDg<6f~=%Hvs~|= z)X+F4o2%l?B4@MCA7v<9rD-UoB}cQECB!Kym$T`V#!_CecVDJvs`R>Qoy>OoG2Z#u z^j_|EsoJhO4g$1#z0KJU1f8tPpQA)C+}}s=_v$q_XxQ$G4v1aB4Xa?M$r7zw8>WKGLsBv8CwOiVUMaEtS9>n+WU#zedIejuWS&Gwy3>DgNR zVr1uBJq--5>M13&BTr;jnX)ciB3`cf$~9Gd?hh+BHzP+NF}m&MLeG!mV)ImYI_{^f z%!kGidi`!l>JG7VC!6@sDY_rN5obI*0F_8%q|h$v|M(%w&0^-5=NU`hWmHD@Fgf}H<;+Q+8xdxMmMc$(>2}CEyWhQRV%6LEJw(k9K1v| zKT)c-w$$_nXy%wTok-? zBQEsvzgT>l`2*RKzM1as88~T0lZ>2|Yy0s12zumw4R}8TU&KED>Q2$o&h}-IbSo;yvSM^_F(KyK2YFJnsz3dY#v2RR-&ys`FcJ4clBNv-kJ3 z5V_q}H`V^J>CO6{R{Py-5LNFW@Mlb62+PJzsLPCt6>Vnz_V?OA9WIv|pq#6B*OA>J z+kW_;0__QEmLyM{ilX4TMC-4g5($lo;QI^s_Mfw4qq&Y?U#3U4G8c7LJ(5 zas9OZzZ4Xd)rCsy{XJddNyJI+qPuwS`ob6=?$0|>-yu`IYdq6-=L0eP zJpDbvz-wDC$W`iadx)1e_>#1>i5Y<*rGs{2T_*= zIIRKpN5;F*B+7aVQoEFQo*T!}hFj!DD4Vb97bz@K(u(BL$l5s{yV1TtLR|=Jv7}oO z(Jr`ZG5NcG1usOwBXtr>^R6xed4qeo^ihQ4Lp(cksi%A{Y?h*gq%^_}h{3(nVgvbd z^V_RH>$_`CBIG8OznX8kAJZ$o80gM7QxVqv7K7=DzCNlvBj8d_C}*G(Bb_C(q)00t96hR_CTJlwL=SgDKgWFdNDHbf<8{l z`EZ_T0E%!b`m8>S;U;)1gc{{8;;)uq^~G@#eH6ot_h6*lDAryi{!4Cjb>NuiLJRZG z4%FkZLCD7{$U|%WbwFVc?%_lzznAB%?H*Fh2OQX4jF@P{jWOLW?1i+z7hE`M_}miU zuj%}4^uC0TtB?=I#b+V!Vp#{^?+I9QHS9@^OQZF${WKmCJt``U=Y%>cDPSICI#5zj z8ralWvNxdUAgkX>< zK<0wdku#h%$Ks%og>KAg{%?wBRO?jWS}OoF#d;;!=6=!mVqs2-;Bc}tKto}~hwPZ* zskgZ9Q>SrUnsPzBNsy0t0#5c5(ESo|ppbvZ@zp68Q#9%1==-64@-dWv_OE_x^0W%m z7S?{--agWN=dDZ3k03n&RN&A12&b3wulMj6bn!& zA_)N9?NV_rqC-Lq3Hl55JlT`E(C!L_6%!v!@qJmweSza+9gt(*#mkD}m_55L@(;3s zJkXYTk0b)${t&U3tp30tpE?SQMYNN?MmDPxZ#Ezts1iat0wjag4CtJP!{_kuwZ({b z1wA3JpfO>1VxWIGG}(Dq;E-TO4d5c8Gd24H{Y@yInqPX?23j=q5SJrF=FnTx$W>LO zh@`-X#MLSGtMzIZ3-#0m*zNkK_>99fG2~aNH6%X&UIz8vJGeq zV9@)S8keY{Rof!XGI!;!17?KMl_eIXNCL$~viqWUNAv9)vjwg3!srM>A`XXCh%|^TcWf-J)y6 zY5SAI`Na0fd-H%1>y87rt#Ug<)Q@dJma`@$nW2 z23Fi7K^JdsVM3^vYIQx!&sf#$5<1O8&jgY1Bf)j~mHtFk!Wxu>tdE0#8L53sAz0m! z>z6zC1E_VzLM+@!)yyK6#y4zEigp$nop54>jjh6xv1-=s%>C11!=OHkgrBs8jQ*yPMXefKpF%9z=YEkuEv!hSfDa6k}Aw}1d zu|aTz^SErr69Z_BQ4U6AR-_lU30j<@4IvF``nrN-EaPxwdS%|3)t*uKfB{O z=RJq&Q7ZiW+L0eYM2sVCwc8h&&finI$F_CMjU+ylJmoz9`H>Sx%v5X6tQ)JG=9uTa zuQy}i_cl9-BctUuOTWTEB%i>`*VC7YLpF(g6J2Ad?VV1DHH)V~nK;N(%(yTyKO&6H zED%Xy&k!zSk2!Leix@}zvQq{THNwSy)~H745+%6<(IsS2ex&^k@i#-K?p$m(5V_N? znioMcMTc$Q4kk&FyXO=remaXQm7|NX*gy{#xM=Q>C&jNS7jxr^l;q{^ zW9bNVRCXkZ#J&4;{jdFv zpgSn2SNhdz`pV?f6)Do%ZZxA6@7`l)>^w0$U3TR<^(UUhMl^+PTI4Y_{ZWC~%$O@} zRJuHj)ABJ4S&xYV$?j70m8!mMjj%)!>3NFvyt;1A^o~e9x5ov+cI4=;lu&;`s`{n+ zGInaxfNGL;!~_d7G22c3(@#F$D-gM&&db>1*wB^dJi<4Ve|JRTo6=AR(fQk(r%Te_ zyb#l%M}InpQbQ7#>V?1M?ztDoaHIR0<8vhq)hilV%~5R(5)KNB$K^DL8A+#jh%Ws| zeyc*FbxPrRJRO$;yIS!lo@1;Y)u+!hk+G3&w?w{DAnsH=ckb)WvlLGi{dBLqwLF?E zpiZiP%CSm#A!H&Zy_?5tb4zaKqliVZ`lS;J4;3Hs_R@y!63xJ}r@cs5*-LInHnKg- zmHpPw{=M=vJBx(wJxi7sM2M?>*JR{O*tVaP>og+NO@r?g=gHk~RJpiJ?nrv-T1}2( z4BZ`>k2OejHiX|sV7`B*A{+7(yzA6Eo`EpFo~u%=FI4?`629(!UsfPKOP|?CL5J@W zucuJ4rFj?lgv#>`)tyF4BkK$N0$s17D8~XX=8?^k_RttS{IHt#>@v<~!j>w#;_8x1 z8{*OrwMa~TI{Qi9=lAX(lW(qZVlc8ex*N^*kjKgI%D2l5?}%JH1*r7ViJv@=Kk1@9 zmJ@rAiW+uB$ExU;hGxq>a*meg-Ih%7h`99Ttw$j+Dn|{+nh>%JbbMEaq$@+71fqn< zt=5evc8xAkRI;Q6Q}&)pO67Go`rRei=)8_e>*JU%&8RmcBPPpi?!8KEIeYm zbU{QG2-*O$qSvM8iKSv|CS@D^E(k}S>r`T?sWC2X38FKny3*PhHLz=9t1d5+5YCv6$t2_92YCl+3>10_>!2KTp@$m4tP1Ras%+ZoAXXP1l4{q}vZv0N0@sSvs`eBd@_$DM6nIcNLt z?|lypcFfJrV_YwTdAiE&x9^Pu!;LZO>+dAgFFH@lIKPZ3#7)ZIN;K@g6gw8t@p2=* zspmtD7tg)Z_dk;7_O{%Ok$&@1y$2R8KDnj&u=>bRhdb}Z!wgeI@>IVs`0@-X3vSxj z<|!t>SrmTL;)8Q{F?#DbLnXp%z-c^@$18^+4QI5Rv5tWy`T3R|UH%wBcTD_9H<4if zmx*3Kj=Azc9>*ke%kFGk&SngCL&zo;tR@4VGLYSqT19I3=G9cy*Xlb&HB%83!P^rm8wVl}&xlD3d@W0lC#wEQ zmr%%1{zeonU6ap!>w{lemFcq^Nt`j}mJE)u%!ZWQ?cdus=^er(1k7AGbSFa6tBhB( zogZ*hUv{gb&guQ0l+YiQj;A;9lZj8Qk9s*E)l`hhT9V>9@sWat;1fR}@g-@eRd@#S6AULmc%*9{kvzDI&|86LwyV0n*E26SS zj;gH${`FQ% zc+#uSOCQ7G3Etrq3)dGOxh07GGOo5au$U~A5wXqP)R(z9-CCu=ov2?S-bfbra$6u? zS4aOuRrNw%`o+d!(*|1H58IhoVcO2XMH!lZkf$o&0%piuX|Hdd-2B_+9#wZ|IJ2) z%ChUGdf(B-JJKAIL|9Lf?zjofdQJPssfC^AqeU8hmcs=kEMUpN;qRUp9g7=3PDGeAlbL2!^rl+!Pzjxx`~K z5fj??VZCys?4{1&lIUJZa<$K+>f$V3+l&&AEpoNhqyXFV-Vs9I=L*ERa}(}#E>Etx z7MSN=pnb_nY}ximxy;R=e&06Xvz6xT>!4K`YwBcS`EN|EqpHi^7900y9xx%zY4yE4 zbawnqZ324o=MBl_QDNajE`$5m+rRXWL=Tv&cg0qZ=S{ZMYOEFHpg$Ky?xQU1C#pV? zFYiyhNk77B6c#%8t9vyP*6Mk6r|v>**1Ksl>@(gW{}jcH&v|bJZd#B$%OuhPG*F!<@IXxOu-%oEgi*0P;~ zBk%aZwag#v<&jsH%}NDgCrB)~JO@arC{tt$ZU|6vN!+~bOHz0R5r?Kd-Y#C3;+nM1 zxNv|tr<72g;gmg?`1AhVrVYJ-_gYHEmEL)tD}_Drqi>a|_*NE9)O^R;{Tg;SH~N^T zqA~H#`xIA^Swru^w{Fh;=4zM4T_Ux_+Nj=cI9D%xS&yuK!td$ql{@{BYv<>41BvLC z$I0Qv_Lq;@w%6jNo~{L{H0i%##D7Uj$g`VNS-s@0)a)?y(#pMMP346Etu3)p?Zc#S5t*jNd$8qCY%w=dXM?d{%cSaR6U4R_Xm zXd}*p6O&sKef`5BuySInT6SHN)@ATD(H)cXPi@OP#I!@E}=p8#BrKn$Az4;OPefv8`%hRk^=q~%R zsvJ8J&%$wH`{<)r9;e1F}~p#26#I+N+u34xk$KSomWNBhE5)m!vX?LQ{(C-HzGUgDnBsRs5p#0G$Bgqn5QW^9E=97wiFI8b`+$9SZvXM+8?r*n4t9yQJe|SS0MU$A017*@T>BuWL#x1I)AVXGsNXYiiaL zb@}rG-2A7L_}zlIFgY$ldp z7w}{-B_5j@kR8-2hS^qJtNxCUGEvhQ7rnV-`z3TePI5dr{EL6WI5YN*XWM?CS5xvO zB|YS;gCI=a{M;z(`(=%$e9te80{Z8&&LlJB3403U)>$^z9^X3w}r%AxWBKpl)6+@XQjyY#P(tnPYRc8PmgRnt>~c0#T~9v;lRww;MxFrh@`y6>I8_?lPDtDo=Dd|6q1TwO`Eq;cgr zxSPO*l1a-ReCTHFU8wM&P|236r*RVUPLwllPB`QT^P~$`vr&cD0etAU)vY z`mV@dh^~zwF^9dhKmIgxJYNJZ_glp5XmV;ugy?O_FD3k%Bk;Df$x3wvJ5ndAH!l&??17=K{pk6 zhJENcoBytGfBlUx9{PpxN|vML#X2HYt}y=cozNZOk{Lbmq;Ww%)%H&z=cA2n-p~K4 z&2w6Z2^MRkk=)+OOlwl?wkhha#)`{27CXgjf^HVh=?r#b*zLiPf^bjO{ZbeEuynZ( zS*1G4WMNqMgxT>jtW|yb{b%E+#gJj2BG?Jbj6cUN7Lnl{=n<<-rhaS@|SiF-4x z$;GrM%@wm~f1WMh?)tDdoz32)&+vNWfGuqK9RFF7z@E=Nwd=deGz$9b+ZR#~Xbj$a z*}Y;&`5w2u5laJFkR*mst7yTe1Vd}CTep^8*#btr?Cav^?N^H=>h9^>(+ubJJ( zMVQ_%tUsfE_FOb*?V{+AGqY)5u(;DqO*~J)p0KMrrwJx2WLN#kvi`feh~`bv{PwPO zYCfT|l+f~JC*Sel(x{MNtv$-A3fJHT5$lNupPCkYF6sDG225Rfk*= zqPSn}DRoos3(w?rkMzBA$?*m;i_}fns6p}Gbh{5VQZ&r;{LLkyqR@Dz*$SJQL{Ybq z<)us^fg!xm;0$}h(?So!zM<{}SM})G;`bQeOmACm@dN7FpO3F1E6!)Si)@wddo?DaUR;xAxyWdG&=!_t&sTmq}<2 z7Pw>Czr__jps*r8^@)bgDIvL1W3UWXq8sC@WfDhMx-q!1H>xG$`ZdWsVvBar?hh)iQ?PD zQBISe_5w!HdXMm4-o8D(d}(cwU1Fo1A#ao4_ca*rHHOGal$;3FANlg()#x|G%zdwM zd!Nyq!oZF~?zu*)pA|C>I`}k=_wkj?xp|Fy32&r75~ZAV#KSATjAMXN2K1K=5Mu-sP;^3HNe(s%b7 zid1}_N$1Yw%1-Z{U6*_$$V)qSL~;L(<*i`@O^#}w>>*aQ3p$Sb{cXKw->l3}zE0YB zue$#%cuuR6bMe=?^RJy3!eZlzM8zN14e&2~W0W5JQJ?yA@v3Qi=yq)_N8U>9c50Rr z3#VWGmHg7$bFV8O`#-L381Y?rMH{F?SHyO6Eg;fRss`rkt3LaPDH<;pA;rNIUDo_w zYqr|YK$0QH|Ks$px(2C9iI?`t`f`d)D!8D)u836CM3VhJxIz})8$Xkt^DlS}($tX! zD7=)NC<*V0fo@i}hAH?alK97?UD&VJVRs7?Xk{!HCC!8OyM<4>?G0VMysEu2#QC0U zuEbowG_&P<;it?(m()8x+9vaxt6QI)tT;Zzhy3U-%5=gF!RoK&O{<$3#l@_7iX6k&yYSUnTEotOS=F+jY)( zE>v&cbRPH$XX#vQ%1wCt6t&P0l=CUxR`%8KqE10~y{CoR=i$qduO?#5Mx6Pfb}=@eY{N*1O2b#u&gVbmsB$=pt)WK?su$X)KfO?)46HL}gNXuqQ* z`O{7^OQ8`r_R~+TqKpxpLx7i zfi9|2QtVeL_jt%CJ-}^plX)!SN4`Uc6yw8b_l|89H!ruStQ_V#Wx*VmQ!WO&cULp! za#Qdcv0j+uTNRt%StX^u4?p-At3-`$M~a%?N?Mq;zri!IHZ#X6+(kQP!dkSpJAq;W@_*fpi%3e$RX54>Z_T>9TQH<3`0}<7#;rq$ zD|A?0PkSSBu+zGc``mi_+4O~@qTcbgqI1}A=F>KxZ#c5BzAW1`y_GVs=vg;2awft> zJWfxwZ>VuuO}5kGmTRib>({e4=hq*kP-G35$6}J6E3WWV{zz+Edw7z@*IxWnTkXu$ zo6?4HVR2?*j;|GkI(yjbcAkz48%VVH$CTdUxMH1LB?X26HcZfWXt(VD~kqs%cdU)M#ZcJLl1ZuLBEbm24uXlzic4l%%`mWxtwqLJ;?b-z7TKgJc}e}Riq`5{-Aa{J{; z{((H(uE{Uy%L3WLvq@uB&N<7Sl%5IoNpsu1#!+L{Z_96_pcl0?qZ~|+dt2C`~UU9Sbt0I{}B0~$FBV? z#r>nMzo)MM+h@D|@%7Eu*^vL6_vj(ec;ug-yOtE|rmo(9I-s-4&GSV&%=wIGuIf>` zdFC`Nl{02X&$JSKpc<3$2Q9D?Ekg3PfbY@yr}A5b);v0;vfpe_dt+{h=O5-9>X2XIVEx;WA+%L zeqH;7+O%3dRcif5Mou0h4>-3#ez$pwv@1PQIJD_>9&V1xl}YELDEn9h|4iVSm6HxW zn7F8mQ^V|^1Rv7@V+)??B_CJLrEFFmBYRa9$xLc|xZCoJie|tBbU;hGc-qYl3XV zkM|dKfq|S;Lgd=9?0{m4hc}L^ zAMcY0?JDWI^p(W<6qEmwgmD+@7vC=yncMV=4>fKx4=|Y3bi5NhPm$|?a#GQqKaqU- ze%qwb=9v*1gL}CjB!BSiQYA|gNl4uZ6fz2d(P?oI1>r60`DR7T=#XJgKN#gv z+?32B#SpdCQ@q<6p!g2|j{mOooot;yEKu!(_JoLiH;zSsQR|UaT~fnnz0%a|imJO! zC9@b&XJc+H1Rfe0`aXbn-Ld(71kQ}@z3{gax23fJp1nF4(Y z&lLI7d?Xh$I$B$sZ?!&Z%Zbg76ul@cFL_4@Wp|4=JKps^M$tMPY6KG*iENc3v;E=U`OO9a$ON=Lu+GkRhaHg&Z@;W1KPozsgmR@JZP zc)C~XyL>;#cRz)`d}#GhwBP3Aqzdy1D)!%W>G^Ll1WW_qT%Mn)fxW!tAx%XG`R zPsu%|^Bup`J@HimVsCS@meK{(b2XN=Qu@34j`cS8-RX0GE!SmohwDzPrK?qk;NCtp=|D{@Tg&s-+ck8ULd*;k3+y~f;@lw9O31emnGm_gj>f^p_C{ka)JgFu z-6)!MZ9UaDDrQ!^m z@j>n3>1fvrx=Z!h!?55T{5@W>v15bCVwTF{oyNOJHOO4AU0GeQy9U#aGq7z zLMShZDUmB_Eh#D~953z$cbcpyEUR=VavGiR9HVwvb>_2QaEo)Gb;@=2op~`C@wNLq ze8J*NS;uN6<4{|_Rd|13$zyC=MYq@IrbhDz%He`7*!q&5jl2{;*74jn*7c2*@r8ri zW$TV(Kf{RVCYax0Ck&t4-Zq=qxElYw=6U9G?%LT}=< z9{*7Of%AiL-MJ6rQl-+-QXw+WWNZT~S<=rmgnkQYlnIcCKj#X5U+I&bm^%Y9r)kLYcYA?LtFy!sN;9xi99BHho-9yzMqtoIY@jXU2YL|zUD<%Pcfkg)8 zM{#uva#~6TNn-Ja@ewKTXBKf~f=;o^ZFbG~^EJ&}C|a;J>8KX(KCz0`iQKWYs{foL5>wgkF+D6&f}T^DSzVPa9=6LJ^c$)j?SAjn((yPc zg<{}HKSeu58-+MS-s2o^(|wICEy@ad*EL2RM%Izg!S-R%$|i@-Zu%cx1x{vS!Uvf@9hunlo@!KKh$hkdQ2N57bB@5ppo6z+9&*W{QPa!Qjf0r z+X|ubN`~z_k|UCCmZDa}3(ntKX^d&iS$$Ml^~ZP6(+iD98y?j?3YT@4l?gw}x@b{o zVQsBy%WL~6;bD7klTp~{X5(T)$LZlMeQ}?z{6P4&yW_KSaB|BOUU;2rn*Y z4)fR?S-i3HY<(~+Ev&oabw{n5SVnop_lluv?ACs>#age1xk)EO3TI-waD~0?Vp-Yh z**S9o4*fIBVT;wi@SjtQ$8-Px~|hF+;w_VW{i31L{l5yuLbt>TTv1eK&%81-%O*3Qh`c3ZC}i z_k8o?XER@$)~J)8Q@DOcRkE+z56#KNZnqG(s^yDg${lleYkYVPULWKwL@j5KQ(90` zz9-)BU)}j%JXrqsx5SHx2>u@rAD~yN|EcK|5qGyYG`2EzW-~H1x3CpuU#@u1&SqgE z%C3c0f+^Wcn%=Rv=ILmv=6PM+*we}wZ^AAvCgLvSZewp_>TJm7Zewi=&HJM4h9-7K zrb5u~hhRZ=w%<^ktwh<80&spT49+e_A@Z-MCjV;@^p`069q2}=T%DH`W2V^c>lB@1ImJ109c=eis=EjvdO zHZwa%w%>tlNDNx!aPj|K@Lxm19~k+UaDRaOC2Jp6M|v+U~uRc5kUgX-&QKwnOK;4{C8IV0rNlAImCdH z(*Is9Ha7p(jFOU&l%285p*7^B#9Uk~OoT9ayp)Ut62p&>lt%KSq+m$?t9ZO5KMIGz zV^A_Oa6Ah8o0xxIdnhObk+XGjHncT1{ZFXm+Dl^6!X%P=)Lb9i7FHzxn&`e;!85;UC6!woqi)9Lghh^>>s%LjQu#zcqgUhsggN za{MjD{iCjb)b+PC@VAiv@veW=^|v(ew~+twuKx$s^`#TKk zH~@nqpjX2X;34oJ>`+odJPd}AX9Na=2Vpog2!oy!K}Zh^$07h28cxUy5`jY#;-L^| z7zo243H66MWRPGF6at4N+yjNc!=TG5f6@yI2}c8XNCY4+3W-Dz%8Npx@E|=jATJ7X zF%S=r17IiwiqH>GD3Bf+hQ<>51{#Kk5!w=s0eMDaFla(uVGu~b|1bz>F@dfyI6RWj z|1fw2hENVH3I`+P4~vEaz6M1H2!q1_|HDBpN$6KNEDYEK553rka9_wH;exJscK@RXh$-41xaeco;|zk3bRX506Iyc>|BfU;x?hSVBL5 zL(WZTBM62-6Zpm^(l zvY{YU5C+E4VL<}$kRZ<}2ob;oY6`>)8VllK2=fMnhed+?;ozVgf1v}^U&J&T2GT=A z+Ys`MhJp})Ay5F%Xz0`!z=NtI07IhyyMa9t90s`t5UXe`VSR(}aD;URg5e2!kV6;#^3>M5K7%Zq43=Ygq z7(5u~&=EUe4=fDK8&F>d@P|bZ_Hb~h#1qz42=*8G4{90!onkQvz#dr4;cE~7*uz2e zfcgu;aDTBcRDglCKpzH&;b0hG4;&l?$csaObphHI&>s#7@{B`)_JvwtfIl1tv@Z?= z)>Rx9v@aCqAU!7W>ZKEs4@`ZLA@T}8&H@7ygXUxWHOAQqr<3G$2saw0TV067tIKOi^3p}r2Fhk`tYkUtc3 zJq~~&fSLzY1)x`fLwy}c4-MuB6x5gidjRt}6f#&a2BDD&usI3`+82cfeG*~?*cS~& zAt5hl1dzw!P>BL;iADnb-(g4tF$1+U0MAfg2hzg;y#O>00y8HZdgU-k4-d>yaHy{X zWCPF5pp*kg1N5N24&V<1&NFZfFtbDS{=)AuXt4G`VGj5UH0A;EhQWcg0y>ld@)dMJ z8K8%SrUOFzVxf!$z@TgJAPfuAg8~@9gHFi+7<5_%z<~2ksL*1784L~`Z-Df`nGTM{ zfwd6}T~sIB7YFtJ+q0?rp{uc44Yy@c9((05V5^)fir#sa-9BnDtNXkr3l6^VxqK?(RnLSsCk z92ltOBGd~8YOe@$1O|fw;s^tcmxS^{S6zTwhDAZyj(`^|bmm5AHwXsg4J>s1l8~3f z@{ua-lg{vq^dNfHwn@a5fKEWN(o3udQAkRcM%X!kfJmpBE2Q_pa@8> z(h+HrNDGj1;`6-k|M&gRcdm1tom?q`MSwGaC8F)2+9&KKa{!W=;L+`>~mdE#w^f3$T`s5 z9}Irz>l-Mj@b7hFM}JR4A6H-EGyeVry9g4Sfi*N_Oo9Uaf&vYF0>M6k0XF~b;(wl% zF_Y0ZH*+8k>&~tJG}rd^ad8iH_w_M!A>QWh>JIk57VuDCi`e}`u$y~8pnuqXM{n@8 zr-6ZfsxmSmAtBPvzFxlm(!Ty~#5R8ia!uPG>=@|luPSKpK=AKj?C2BZ>gXI80jae|H<|rnaXJU2KfXE-nu1YlB-&O<@Df1Akt(}AGezfI)+Z6g0~6ZwCd*a>QA{Gaas zp88+i6ZJ|QaNvIw`w$%98{|(MK2bGRCQcq;=Ro2wLvNz)6$Jk?9~s@yKz*}7$3QUg zlD?UupyJ;_5r3%&{xbxkn)Q5r{@$l|OYonu$>_-n-n#iuD?K^ETmRSyu@zCU&Sv01 z8yTXqWz4~$f&X@-_3xMVzh8!b=RlOVi@T$iZ>SCNAvXmTROF>q6a|&#Z%M1j6171z zkbewH@Lyf%`}+p@5xf7#eE<1FG%9m{N1p({zjJjClhHPl(E$g$JA;W`b&4nR{R#x4@@@a>_U5|K3G3MX;kc18wM= z5nJz!MMW08fFL0ncu-oy?r8TsNhKa8KN^3;J6I0rVNtGnFQf%{NBF`#Pm(!mFqjPq?_l)2nLJ=}4I z8`X5q{eWm-?bq}{E<3Ukhrfp|eL6w&YJ}Znfw<;8H9mnT)nUuolrvqr#oFQ zg2JN+01&R|<=hcPm=#GXd5OrME*)x?%V^FQnkN5iS#pu&tG zc+?U9@ez;hQzQ804%yX~;eK;yws{@Q_M7_0B>tV>++~f{2I4zqekyrc z#AptzJ(JohIGQIfRal@|P0(UJfRnp__EKVWbNDmBv)r2ZTr3GmT1Z~#l;vYU%cE?* zSNg3cOg-W%T_|EyY1m&Ny31CSMJZ7vrawiJrRxZHw)WOjH1WYZcdn~6fumY_0vw2M zMIRafgSW|db_mxcijQ;^Nu(KA`D!Ry65NF7cc0(Xq<5X5#3%1OjC!Hl8d0#4IIj_# zm*N3o9eu7mBpa6(ncG8~A1%U6ZV8`L;1dJMWjW~6FSl< zrY{)~_5D}0D25|bI(j&pB~8T$BUufz#oFj69>w?5FS0oG3e1aTziYRPw0#NpC=KzI zy?PciC-%}an}p4$FI-b?e%=9#RI87CX1HPR3Cj6E0Y;l@6xW zm(tZAlOP?J_#>1p%8JL?)@dBAk9?9E79A9{ziD3Tn?Y~h{v%QO$>7Yh0!1Os)Jk!# zeO9($7*U!X_zo}m2PwD0(4_1z*x05;EgHd9fuO44SxG*juuMW)y1~c5qpn4#s+Tne~ zdbsu$duOARocK*rA*b%?W(p94;9&1Oz#ouq2 z6-g~D?Kw?vVjRO~uSQ{4zj*k5PTZL1oiitO;6!=Llx~0LwWsmoSTmm;Ztt6&GYOZU zAGmbQ>9V|Q&cQYM%&Th0i<}2D`s6PWICAbPzGz^dH*m0rbbhNxvHsHa@3F!956{O~ z5ccnXz4SRUPB$dSV%^olsl{Jk<#=J=&!EjG+Hc8iDgP~zGs)geh{rNi=wgh@{OS8% z#}lp5X`lQ<0q^6`eCkgmu?vCBfoh$!l=H&e3Ag0@jBfK$JbnG>k5TdCN7=&sMe-ik zt9L3KEoyU?yyM$Fsy?z;{rqND^=h^0Yx(Lb@SMk8fOn|4xVfrC^{wEPd!dH6zZHGw z+p^}W@y{Dsx+-(C)Q9AyE!Wf<^Kts;d0=TfQI~fM%h7J@1+F3{>=~McU}M=42Zdql zoj*MFVKLRe6TOA{WKjNg?=sa?1kceda;hHB3&Ug=Hx|Qp+Szl~Nc5bT9=U(?unN0{ zND_^H5(9blE}OZ*ZYuhJ^y&pRuD z)oYR8e|#hkuaG#rrIEEd)qUjo>yF1Y-+ucD@Xq}hxi7x)TdeG@ic>cy*}0sD(Yv?P z^VItFs>h)>G(yY7=*slEoyy(ShfpFdhY;@)AUqc^7~ki(9TRy}pf>(!%Ybot!U zEvsg82UKbrn16nsj$jV3710{ubKdRX_~4oz;P&MkpO8lse@eE65_j-KI*wk&z0a;` zSY`LZSW(=#>K-k`e9n+;MdPzvf&3m4^~Nu@I`0j} z>*!7ky^Nt;pN?H~L_U+`6Rrh{v@JWIuZbfpw=g-%kL`e;d|H;uG8T*Uujc>K@1C8u z?4gg&uH5LT+aNtky0`K1%lNGVYRAVoiZa^Bi~_wTB$G?FWgD%QV!9(Mkgl)-Xy4l< zBD)&6{^k@r6ZGTl$K{EVStiRWfYCtmqU$rsdjBbweLHblKUXb=(#^%F$ImOuMdqu? zt+qP%Y1G?>%4xcu|5SZ5cP13|dXqAItK{Ra8@7xL`*W4^yRYdmtQ-?}1S^8b z)$jqnJ-2oEu|V1)q=@AcZ8ZzldA0n*5#d|SdV|W6i=HIXrFS{+GyF`&K{3p-k7gkU z+|s*2>GJqcjLxTCNBaXb41|kt5E#P-|M5@Q*c$o{oCY7EG|>&}OLT5q0n!Y@eTcoO ztd}YKer`CeZl`A5e8*MRf^~rkt(2SS)sXh@>D$ISe7+H{#eJmm#?y!Hx~r__C0Q78 zt=79z;f*XLK(!ChZ%@)H>dzHDjhXn{TT~cixlu~&&CAaH6df{-YtHWn-;7yFu3jzfk(cy?{ z8$;vl=w-+fy<(`B;m8jmd?4D@11hXl7w!Q;(7YBUv2UdlWVRo@{Db;&Jp-&y*x)%L zX*y(1(ExQ8GTzbNVWq&p#~DuN=c}uXtM1YEPSd-j5pK#@J=r#7eKw8izsdg(7(Xk_)uz}Dg7TYxT)a@z~sN%RUP>XrnK*wP=nT#qq#h236 zSQXgKSN@S%cTrr2(>vPFMnvaET|Q)s@aPzzQJxp3Yr8Z0aV_4jMk-iqg9X;#5BZEx z6|j@T=dIhmD0RXaCNU!;qW8geZO(|;nAkmW$~IfI)T~a1>J4QC%kXU;ZolN|Hxu0R z!+Wx!77aJP*4~hX&3eE+K`;C1M83nEJ5@E^>h+DS{UXs>0XG8p%sdN^x>?1%E0DBg zACK~QR=mtj5f`D^!!QCCPI4 zW}sho#8<}8ahzqEYZN@^JFPprG@!f@h2fpu5sJT}!>D&LaU!~0?U%|WH}*-(E<@r< z*PN!=aHD_cAF|zuz(4HsH{rmri{`C`invw<7s{JR=a`u#`44|Wm6(FlFt6o?Ik~zj z-J<2uGxeRM);toDb*YHfkFQ=^vC|vVK%mpHEPx3v|dxX@VD{tBE#h&Dp9qGKfc`?ibg zwx^1NwCGQCGSan^R$3Za+KLoxTx>L zS366FoA);N9;C}XOUp+C^kVjMf!3 zNi_aWu@mZh@b*Ylo{|3Mh%@-jc5vI5V18c@5{7!09{GrLVIEh3F&!H^@-pkud(y+k z@R7nk^KFGm^TB1YeZz;Z*f>=DgMohe-rz58ID^*GeyB^&GkA@)>ckE4qUuIfb7RwU zx}J+aEXChpwh!4qaH=6yH`BdLdic_e>7-@kZV(ACi^;QxomWpB#g{0GMWcbtSd!YY92 zuAZSDfP{nukV$+22#Wx1068fc85t=#@q?UrP|#3P5Dz+PYDyXgItB&?I(qsmOl-_o z7+D$V=~=i~SlKx^IXSN|bMta@@UU@kauB)!bkqP82`>o=Gl0+!00ICc6vQt6_VS;D zgp`b&f|81whL(=lpos}UO7c&a6cps-#MV*7>i}|Q3YM$4?ohItI#LNeW0Q@}DxntE zs_$WcIF1sLbMlX&q2=J@;^q+*6Tf!-hP;BJlCp}bwvMizzJcLgGxJ9lmR66gon64L zZcp7k0s@1ALqfyCV_(F@CnP2%zs!D>lbiQCzo4|N{QZZD%Bt$m4UJ9BEv;?sy?y-y zgUF#TUneG~re|j7<`>r1H#WC^ZvWcZMgKWEJ~=(ZoL>+Y0Mviy0|H!LBws82U++o< zweruCJ~A#AE-i8I!S?0XM550v*S3+sWQZIFh9*56fJ@Iv`}m0E7tO4U_=@$)&Rdn( zCsyB7-rNv*X$UF-q4WuW6b%V90ni6z2{juC&l#)|e<9w)VcGJKvvB{6PI@jsLz1a` zP9!^?tTfu;$+#|?>HqDm&BQ6PdZqk(Is1?bRmtDWkBlJ;MkBPRqx^92Kx5X2jp*Em zlu%VH7n(As@>lr5&y6Ge+MaZ`p%T7rh%_`=*$5A+gXN#zy{!lf6);NW*8I zBH_VRA&#Eza?<3VHCq@29c;tUcrp0?{}x3l0z?3;HWjI(Mbj(RWJugE-VS`o2y>Gz ziK1s=;zaJQk6-W(I^L$(`+1wzB z){FcE`Q>n4tn0J)+h9Xyl*Tk`G34I}PQVUvYmoqq0-Cem6NVXHJI${0h~sW;SLr(zxzd z5&wkCbmX0n?ia?X4tvtD-!G}nc7JQ~-}c-#Nd>j|b|Wamn%l+7qBa<`)T22vCux<=y=0>%Jp(|QCMbiSeC<{l7cR$K2IDM zK9)X|=3@~`Vr$@|f9aH4+(*J90~^NGwO2bXm78$1 z*QFLFPPO?$GF9kFTd6#2$Wl|8kRnf9E3mA-r`BlB?!5!Ifn{YxeYV~70mtC-*FiHO z>z+=vJb!?jtIk>|N%-42pp~T@nr>a@c_a;=?*@qbmo?*Cd{q#?ma@Ic*`q`$3@vty z0El@Nc>_&>9F#KJkae)lhD%-J!` z=Tp69VU~HPhq5bsjq%_SdU0)7pCe;q@$!-j1!_3SKK-SbvF0Er#YF%-%Y_%B7_n^c zEp@Zhy-`E(GCmiiVj8rWyZAfuniSXB^7cX}a{Ua;#=0SsOr8s8Zk&kZb?ra!d{}z9G%4Z?!6$Q14uN{OU1dCxYdr%PZKAv+GnM_*&5D;lxT#j z|CsW{M9{~BLWKXUfBm^W`dh8WaI2+=gMqJJ#Zr%-S~%152c8Ks?*NP>*}4Nv8B6>q z#KmEMHFcSc0Pyw~<2q(>{_6#ZK8u16Wl^zZ9jT8Be*bQC&Z28#$==4TLze%u;HksS zDFT2Kv07$NG7&j!k^o_uRyS1L(%rgD;dO8|jn6{Xn_tWh1G%8yj2T55N8Ymo+I^~# z`9K%cvFlVc0buvpbq7BuFufX{wzXUmC3S$CnzfW`3v(;d`eT5sa#hd%?RmV2r=DFK z_+K?^v>9Fi|JXQY_ffpq(4@}RcLL>_&@8`(617N2n zO3`pCaPyLX+!=ch?Y#_LS-M@b1x*E_jQg66U~zcRmr*klG`$^SZ=D^d4jY84Va`wq zNGK)Nk};t(;(ecUNB~XITwfU5p1Mu)c}jf}AXEPv$trrluhDWEN)*)-XbN1ZzHu6> zUHKHwKH)2DSek1S*VURU2B<0btJk6y#7rbj^aS@e--`5b!@!*v@QcrQ@?tcriwgJd51Z?+b~-?9(kH)J1b*h>KW$U zc$iiW5px{^F!Zz3c5?&Yt#A?mZlIVIR`vPFN2~nOM)UV=9(+z+u;Vy!cUl-b_R8=$ zS2}%8^h=>n+cgp@G1=V+mTcqtPccUM2iW_uU*Z)g^3%TErL6>NEK`2F;A zG6P1U0#FgBo)~e|*w?~74bn;L3rXh6U20$H7HF7DUT`1&=lFp=O!pZAs395}vL@c! zWrnmD%i|~rbZC#}qLKcou1^m=kbCxv(r}g4A%y_og&o6YKn@AYRO;Xk0+j1syvbdHH*BiE`^HFivaFtqW56z zdm|n`U$~P+{RbjDndZEFoZd0K!AMQlj(kd7S{$Y>x+STnBk}X92&L@_6;;-bLp4#z z841M=&_q1rj)ocv6fHj=1SaJ-KJh)?>!6z^3y;scsv7e#+W+GfN&{GxIiQsc5J;Mg zJs>K#5kFpGHdTQEt}Y%Pt6ew86zy`Xhvnrok_VY9yAc3h6dTTDe-Qf}s1ygxEE;Np zvQLDu$tu0AS|MM`<*3#>w^_+#3vo3a46uZHj>TNecCVyb!dVbUKJxRR33+ebS<=&~ z;#Y5;b=`l2bmit_GWm``84>^sN_b`v3lbGDXdP|GXx%y*9UzBoR!R?x6)*QMdi&xn zBD5d!%Jg1afkZ@@w6v%}NfO-`kyLh5%`YNF0J1KKKD0*{@iYvsh&5C7i3=pEC=L^> zmvZ+`4(I2~Ts2!DF?NT57Z z;#A^P7{l-$%Yc#Nh?DoT3yrm)d$vyZiHrs;5l#ChfbB^RS)1gNj}V;XZTNtmkFk0-Gm33NEo|1uKW~aIE`&Vi$H`?&H3*U2@hw3mW$gJ_6E50FVYbWE67? z*SBA4g$CRU>OiyOH#&x;vRGQMC$D0t-YqR1^jwbNX&EkW?G&@Z>E=yVqr~V;STHw` zU&p;`zu)-rxRd}uW(st>svmo$lhwmw2>{39^o6``Q0j0*q%^QEyiBSh(MwY;hH@Qj za=ybX61~J>ujB$j3QN2TB<8Pzv6;G|$b(C?krhVwQf`l!ne9URmwy@@?{RjS$njFwdGT1xPlzLPZ$kWYI~73}JKA~L%#zAucr zf?U<_<=U4ni}z*QBav3P9Kw4Ikt~ubg>KMmo`@D=KFNc;O`_XPkiM}k8o*b&zI8im zzXN&Cfat?#8LdcIo)~G%>YS)9L=C+%)of5h#;IZ+OKL-SO>$$L=IoZ!_g?ha!Klf5m!WqSnTeLG&jkltVN2$|NsTL`NENURV^1IkuV$sSPpS8WDiTC2aaL z3eJ{6d*p)%0H$BX&6Y0&zl*%8gQ@3Qzo0pDYkE3gzNGeIPUQ4ftOHC#u+v-Z4t$E4 zJk8x(q=%;4soDnk9uflW`x@y^0O$R_##gHx`sP^%0RnI9r}JOsF4{u_4c9S&;OU@6vdu-MK3PtUbtPU9ENfte}% z#sokIv;RGRf$@43Jcq~utfsOWA~f}Gyb}~v^8;ErdEnBP2mGNc3DxvOWgv@$r_~)d zyln_fw6cE0^r54j-8vubjgoXZiSTBTQ>aNF;3=bl>017it8jB?8g-B zt1FFp`zffr4U^Q_fg(XW=eskHS=4H}1b!+Ppv@g4r(Y^P?9qJCP4=8bge2o3281F2 zdJ*&*z&VUuPl3~%y9MCj;lO6j+*WzknB;z#$R){h0RL?;X0opUn9?Z$U4yZ>XL?xQ zub_$fJ@M>S4x^6>m9k(elcr#d#7_c%9^dUiB45lc-60#AV%C!GC>gGM`Yz4&rayc0 z;AhqC29+`Gf{Xa&Ywx13#>=NGPu&o@_UI8A0H6xEer%ZwnFKa$_d(MO>^^EJO#T*z zPxjc{HZysp9YmV_vM>?sBL4PcIoZpbh6>r2xA4Qow0O#0vt2w#)06^($GR}hw1WGL z`$p=)94#=RY4rYsLE53NU+wO7|u$hb{CdY|EFpkig2WXkZChjH%OY>IGl#Z%GDdGCf z%PZYi004Rt`?E`0$XC^EWW+X_vMK0UY3PkXUun;|?_pD~n3Wx~qC+bi2d%wc-SHzWbQ832Ta?Tg^)hoUNbMU<=hP zdzOZBXIlJPhRb()6ojRQB|&|P=YoOc7>~Vxql)POjDnY%r}tZbaflDP=pg{elcI%i zY4YcsA1?;>TKLc6@OLG4cK;$9*w`3Gn!O+8vBJ=qw3!jeQxvRXi=Bbz`~mJyMuigq zjUj!<5ySBoX#3aHvM;GGZ694i|4Z^&Sf&#IoBA`*eSQ!=#RJPx3U4Q-K!cGwdHuzW zk1C?QD||nNs`hXg^ns0k^nR>cdErWNdbP{*ComquIi>E6X4OVPa-zfPc5hmBf0M18 zP&P)+xrxv5;QBF+YYeR2AjUu_B_?>zW~V@^)W)X5AFwrd=IZn~!@vKmcK15}qwi&v zV8+ z>ajw*d*J6Zc_L9#zUv&!Ui+K+Udv}tp7_iyhtHFSe5Q>r+e@zv%kcqjkAwjaZlghK zO$pru0FQe}5eU_|Xh zt|{xqiE#Guplc@*$cWqeRx!(9i&r_K{Lwx9S0sKpU>p!+&|meTj06C!nh9RTt|dOG z7T9mi4{v(sksJP@F!X)xp=8D5lKeY@uYyEw4hhFDyhCRs5fQ5ti?Q zb=<@qCXK>3(ZxO=IxYKw&9Hr9uxsjw)Vg#@_Uj$K+mQpMV)h0_E65~(yohONi&eg0 z#=5%2%eHQt1I6DIK+C7ijF-DzA>DWd6f||;c>6`9S=nCZwPC{#EBbz%d!ODw6k6o7 z26zo6s)bS;ZgrC_&2F1uIS>xto8CsO?epk0RqV3N_f_kC5_xtj8PJD~6`jPj;ktXJ0z8m$*{3Hqs z<~%tEMQ?+$a*orut$u8?9ndY9$LEiF+Q ziH#%v1L+#$6+c9NU6E_d5qCdTpP6RopF%Axdq_752 z$9;ynIneGtbUyegZ$hOzV81cLwTOF*!s^V%9ZU`O+ediC6`jh*=H?Lao zTVMC`H_;RTn~PjfD(n_1yi|##s4-&wnDynu{h?idF0MjyfprAswYrVd*JwHn>@*&Y zNPK)&SF+CgMMz~-=;*bc+ndJ*i_^Ygt&OJmacLgl8Vxo%GS0Dz&!^v~&~P|nra0bicbD1{Xo>}~Xwh7Se@ zJa+R|>h*Hh`vBd}f-_@Sxez4cLPSG`$km${uQ?D?c)G}^P&X5dxLzzQbkDH8VXDzs zp~P5d>z>(2@X?notvg!*nTAMOu8m~uSIidL5((stbeBo$45&4N`VYi)0&-eDr@lG& zL%tD0-5!-SR8a_6lj&hhabWdk*pBX`s@a|K7|@ujr>;#Qiz#)dEfH>I$Xagi@;%kZ zl?B#7Rrl8HYlSYXO(=$;E4K`g$F+z#*qTg+H^OU$WCtROf+cpUd!LxJ+?}0aUD%Qu zuMn2xys>PtqTRvwvnv2kn~f@5-%f|R7az#bV1WGvKhp~oK0X@(yNi66d=6i|)vcb2 z^W1bu0$zy>L!IwW4&qs+J2e)b2Rv2awRkbg>VxZO-w5B{l_1mq)HNOCX(wacl>7Vi zBCw^oC63NeKE3A=+Z98R=TucNBD#+E!JH9O+yvrk!`#TmO3V}WUW6crOJj^qdr={Y zk;bTv{(}2Cu4lzhyE-P9l}mqs{ZiTzyN6{ns@N|K(QZfqK8!Ew%p6^jA_MvI-u>oz zgEDuBO7CC__Wn1m%HIaCA>W0`(@gXs(t*uLtTs%#aBT=Ie*e4Fd!c1^sx5cW_D6W# z4;nSCbcq6t1j=MRZ=gz40D$s7g)wyO7wogeFNk%k-JAIQVV@~@Tluy`3nu!KAO9WB z_+4zKiIK!G%*`v_aPeMe{BMIP`s}U2fgyfW#rv?99$1pSJjQavK;3jT%75b?JTXJT zG%0?Ev8XMW|TJ`j_&)hT`4c>MTkRJ-xW8BHK7v*l_2b>=CWsQtG891*>3i3 zftuz`F3#)EGP7Q3cLP|I0?%`s#84}VrIUIk($UqTh4d-$4VilSb^A_TysJtFSJ9Sh z8pVnk@Ak$b-Vt}M443ZeerTdyjdA9t6x)1L0w^kJw|qJN(9T$NWGatUaYxMmH?mD! zWOk0oXXxw&LKlDooZ^SNYi_y(K(w7rHUaQ187D`C_v=86)F$l;EtWA*e?*{3{mG@g z3g`j=8@a&2aLIK%+o$@NXTooCPy?@^G5ysb-P*AQHN5dQviMZO!{Ne66vAV)qCU`aSU+JY|P`V%OeIWJ3xW11k z^+xn@&6KG_5pia=uyeXd1p=Usrve}6?jQ*HhWO(TWJK(HO@fZ=Zs3rm2o>mRBarR4 z0we#^VjB6qmy(U4oaWP}CM>o?)JZnDq0fEzjtE*JMHzvCMxc#0EECkpoP~83rvD7c ze^rSG&1FVb zlt9LL@}hsfNs-}j_Zc53YO$ElV#Hl20W01|fr-yD#H0ie^ZHZcX~D^gr$LPDwqi+S zRp&2N*bAI71AIwE0|OAf*_{e3%igIcY9#^AGZLb#hSKbE_8X%Z(2rmA6U zZ(fDaLvP?zh$gnSf{{8|5brY~ont*3t6BO+RcT-j#BoU+r6Y(LhO?30XIwUfPjjy+ zBkrSU4`?MCNC3FjX8eD$vj(Dg+%S)-Beifvg0shT`W;i9yuq_$uClu^o zxZ2i~4^Dn`V);;;(a&QVLX=I9KVnk~HH&ZcD868S9~pfqO8|TsiX>vc`i6T1z(i}! znLsku4A-K5MKaD_+S zO!I{+B-70*K$Q08780W5Ub@NnmmvzNm3ApO#Os8$pJ1Ce;WGy;)k=zi6&Pr~W5 zB6+bL;uSCk>9&4VV0n;(I^7i`Zv4w>77>^f*3#d)3abFEwzl^dLHoK$fXs1-&YY9ltvhU(DggMstdS^jfi6>PbS%(!X1Q9?>+P&9egq&aU+9Qp9P{fUE zRF`fT-dfxlO4y+2;(;nz zz%@-qxKzWj@C^Lgq~z})hP%tXqhh)1yWn`P*_sX}HpVI;L@1WEOm}UJVn;yW`R^3N z$<@!P(bG<845551Vnoh$LY1Aw(bRXmp6<^V}(r*j!nF zo-z|_$Gqn4Xkd(QMy$ecuB2s9Y@QqNN z(3gYKc@W@hJ0F4XnGMj5*Jm(_X-VI}A6lNoBEb6S?vJm=zR#G`4d#NuUQAJG;n4jG z;-W?ZNwMx%%HBB`1(c4-zO~fJ)$%?R9$L~=7ik4b#%8Su3*v_`jQ!!3sp{TWk zvB{vCYcOvSVREDprCnbGz)#vhEwdx*n-GNIA~u2MLT>NgZ|yHwz$GN@~$rD1Ko5k z?;Vv_=hcONkNq^fe!`0hfP|;NK*ttMKrD+m0U%I@=Px5NR^!%FP?SM2Har6poK7TL zbv;dqi%AHI-rdn4VxS&Sqc2IMIqEFU5mOiyC7y7iEHg8G{6hEj;97Go%NsYYQHC%m zmXlN*$lOV#0u?mc~TN|bB=PF%E!^kG%x-oQUMqNx5Do+RI+`QF?pe7cw)vR^93B!u4}RYO>$z45mYb*G^d3ymgs_M`iZ5 zHem%OFA`^bmooAKUBYO785TMsgY=JKv&kEvr-$cC#RAZ|+A8RdWDdsN;UlrG!gwx= z6UX=Ftz0P2PRg6=MvfERtR4|-gE;Wt3J8Eyna1Hz?47lU!1l=#1FYOZ}5WX zAhR47LD)Td`)ds;!m4C}t#CW2!Hxl|B*smr~j~@Jx-eQoHO;Tc%rGRsnpkH~jXZTW#?EUiS9V%>a;vKDeX_Q;`LLZc_5}3M1VDNp0Gk8NIjrgycSB>J{hEC3qpn{g z`@?fK%O9qA^Ha&Lb1Dl}mE;_6z5S%E+W}FGVn-Wem+Vb4IMJ5~28okAJk3?&Nr!Tx zY#&|{0Qx)^uAO726_~}f;^%nM2DC%6WDwn+=a0K;~qNcg5`h-=@@EpZSZZ>m4vVxidEGPg6T$0`d8|8xkRdc9yxu}=5v0^J%)q> zCz|*J>>9=cQ&fBv7_`=;4!le3#{Qxx^YE9Nu*Jjq#qKK9HmtlhTX>%-re zRJauUuzj~H{tw`X(%{;x#=NORwFVQe3+nd6tk2@?VzjC1SI8lg+|J}qz_)P?6;ly| zp+1$Kp`jkZK=wf2#o4thU1&KiR7gT2jM+}HrTR`qn%?@dT14o*&*WG9w}vPZ9797AyR9 z!C>RG-3OT_x~2o+7Vn7;h89EP?d1})IM9-@a4oQPI%EA$CC>9JUKHAMSJWk!5fG_h zu8f=h*%sAt6e9>a_V$4Gs1g7kD~S&5pr?C8W-L-~`arB@`nXMGLdv_Ah5BIo#i7eR zhLP8uy&-bIAITR1r=u8qhzx!dB7_1rK3#Z|NmncSX2W|)KhjzJIWMJb1eF4&KFa%< zTbRPzt=`;H0Az=IH57}seVK+mJ$Zf~ON;y5CUTl< z4t${15(j4NqlzEy8Z@Yxyfqu%$_23^*UPB+hd2Gc)$nYxB6H`)>`%}?*e`Lmj0a>W z&ou&I5K8n|PcVDBHYFU!Z;wUvL!6K`+R`+(tKj>OKFL;)!l^N{#MJx{lUHJI9Dv$* zJlSbkvH7~T&c#Mz`q-@V+&DVABYgX^v{S|bSD*oUdPd2McmcVQ^=h^7_U*b^{6&Hv z=c@9QfoC zQ4`nEwh;00LH)z1{0TS;mrG3MSK?Plk0+LS>LU*PLr?AY@-PuqcXpGa6SIYXS8kI% zbCR>~(G4i(YV=%T#tNfN5*i2ex~3b|hSeN}z0E{EsY;tT=JL&M9b#`<9uRk&Xi5=3 zsBRJfX;CM{NfOx!&-LOL1VDpN@#+e<&En#2^VzJKA%EwdY+M+f%(u=!m?x|dv|75- zFq;MkJ=NfAMCBzmrri$YmUewPX?pa?r#w@S?NHato4Pv^F&GAm!`fZ4LdF-^G8($8 zYP5>~tlXPA*kU-=+7rjC*}gzDm>_@s{Ij^mnL_8rZKp5?aZcXX5Wx2nnQ;AN;x3~| zt^$Ud;)27+UFqy5A3dxczDWH3o7jO+8Qqt!&>FB%xClDEw+b@u)$+-L3*3^r`CBm4 z#m8Wkf+G6jZmaKt+?rbgL^e`hnx+F*<-=(%z4(;T$IUidn_3WbwdRv%TQ z01~mozxBTBcd=9&mf6l`Nyn+^dKm-XP#^uriWq7UrqCW(G}NOQBR()PSR1qsim^QX zLci|OMDH>{T6t-;Whgv-|XRC4ZD|>Ct|@SlPDMzL(J01*U-0*Gk;)>(M`G8zL{f= zr6p~x;NKrCX|q~dA5%o7pcqdBG5V-b{b#Eyw3_W7pFV0z**H!4In?K*M*vu6`sp~{ zIfj|TG6(=4Vu<;?xc;FnV1vkbohgQ!B>PYvX!WjoHBIv|o^UUah~)oAqubx`<5;b(_` z?wUqD!$fh9#JPvJ(R2LcL-&ljvV(w83jVxGVjWbn_eW$;%ViG>Cn_EiVK&pv=Spf!l!jzQn`Vt2ds0Rw@dUvA&X&%mR!!8B%~z3h-P_Z7f*H>&{uxB4 z*?LPKaVOdAf!XRIcc{&}s=GbegyW-`K#<0xOEW6})&82#4!0h&$z_`PXpT8}mUh~l zredPd#RE{TPAXWW8YUCYkNTYw478uTH=%#pc*OpCUspoo0o(jlfWV#2tOH_dO5E7V zz5%7d-`3yoU5FiAp|b29aav}0{xwJ&`jZY(q=3xXN-N$2b^f@$H~-JL;4%q#Gead@ ziZ%gYkPH9*x4cD7TmeMz@+BQ}gl{DRfSsT&Ur4XRA2-AmBGpeqbpm@_ntZN}r>#d* zAsra8oU0Kq($JSjx*hP@g6jp#4^vbV|FGQix4f+zgdoQ=MTSp8q~|aMz&aF}6jWJe z2%lbyQXF5OwCcQ{%(?yODjg;HKz5_ccEJF8c7Nyp;_f}bn(Df?K{`^TNUxzOC}5}p zQX(Ktq)6|*_a>k~LXqAC1QZ0MOP7xH4vI>X7HTMh6iEa^fRJa7zU_Iw_x)zRnSW-k zYle$lgup&$pR@MfXRo#Hb>FDPVFj-4p07P_hu2&K8!bN0X5GF0(v$H@B1hb3O4MQh z0V(fm&X75d3lIiK6b%$C+7H4Sw^J3k+!UmzrZq001#jKN#xa#M>iNc0aU* zf4m~^KaHEPl0#(y!$OY{P!N@OJNJEb|SY1$h>?QUNlM*g$s6Kq%IUfRgp}C z@=_ML=rmMa+;NDreOS>RcdZ`kfe1OLhWXe4gWPTHE2CfBGcVtFhHOB{abN$y!w&#c z1!wC{ORUmh5@f^7rr>t0~8Ca=|5tt0D#ofnCLLy z^Pdh&kHghQCjP*41^QmvGvSpNq*5Mi{V)suh5aW} zsQ=(k>L8*Ez@O9t#e--i^Ssyj`(g1n>kOTB=!Gz78d>&`I>bbBlG?U<7~ch(y04qPV=+%#X-HdREdd1Jv8yFTw@I*uQM$6JtsBgWoB z9me%|jVEw2)MFObud;C5(hX*QRA^Vg5}`5 ztLu+(73;;`J}vpTz8+lDu*+P?x#RM(;oZZCNbP%dRC7I!-YM`-ajO;R98L^3Uk)&>1>S-C9AhQ}gpv$7mLiO~-_mgMl z#YUw#)rX(3C^)WZ1)*aw85b5YyC6j7nn#*vL(CerqQMWX6YuEO=*TTq)xKCiYw1#V?>i7?S5bOA! z=!}dfGyYly979qQ-5uGdHA@$D%1za`JzAOYiPQ&eGKmN7hy+&IGaS_ciQgzl)A*1# z$@f3-7&}z}Fk41{>p50gce*L@ewL;~G|nZlzfq06>h|nBZOoMTmwSU4Hv5fBaUA&w zV*yIsZ0e+rW)bsv%2G`$e1PLC%z@Lqfrj9{g%|mq?b0x{3yn}2OcjdYNT(IaKkQzI z=jz+L_x5^zRyN(zsEMazhTmP=AS$-$gfo3~5z=_1U?Fzksm_oVKROv@oLHD@lrVLu zJNys6i`fWJ~Ge;$6>jlO_1FxkihL z++wazV5@iLJXCVi8XwAun}#sTk**bRViM8MvhPoIkGVhgEORyb`3h`fL5Hp&95&Oy zJ8Q5A9pTKR9$DqUnqsyuEG@AF7|4cT0jWzjQ|xCHNtfM^3?|EbC(b*@{St}H$)-Uf zej_f#PsZVU2+|Sn80&_fM3vK#Cvr~^WVS81=?2u*7X==Pm$x{Qy~Q;I9TdJ$5W~%r zBCJwNun)iDXkmS~LghEYt}&O)c!tV4d)sc`-b^tqHF=gKdq8E*L8ePh@*Y^{VR$$( ztTM*F5UVi*cn>`sCc7)w>l5|O!xYw48(T~b?v8B5XR_h_EHqRc9bti(W96rsJ*j)o zwbSa{f9{=^X1?}Wack(Wm)tMB=SmKy$jC@~{WQP1-Wu4H_BlZ|)iC}*SX&TC*IQc$ z516(fx1T-Mp;_T=?#{56-27M&T%v9ne%hadDMou)!`0BG(~^+5pjEcpSYkxa0gJGQ z#4^?ApwL2KmC%j0Tq6l|;*-L&m&6fbbo7uqScb^$f%DcR$y7$m0YqTX%;TV|zPERH zxivUq6%Q)tdK;57GSW?fQdw(k{yI+=L>_xTXyqPE zG<49efrXGVymvFX4kOTt%~#uB1g`j@^|`gZ5oE1-^`{3EaOvy&sV{ju>fQ+fKEf3E zl=Np^^6&iN&k!JLdYPmL`~G+ti0VbUw=Y2F3z`@+-hwc%T3Y#{U@H!qdxgBzx)0M{ zUnHD(V{QduUydY0R;PQ85#Cl27d)^JmA?`{^$<-UhOWLhDY)qkf{s}6B70IK!R)xt zt8|B<6cui_9or_ig*>i%WX-cE4%(zE$@$@DBvFztT}E}wVii$6sdARc)b*|89Lzvp z$t$qOhJksBsoZ<1N^EYF7|kf2qgND*T-rH?}Wz zVcH0ll1wD-b|7SA=8_krn(<(MWuSY8syE>JJvmksaCNK1KqWzH94F~isQbnt+WA=NFZ`4xb$Tb+g79h1&W9z)w z#$q;9LtexDFBA+}fV^LW@oWKsm+)=e70lgjosk76JPR6!E?KA(?4&DnjmiD z@jyvdr{#r}E3C1#@9>&AMz_4bIFW9rvEd<_%9mGt=N(bHls!L-LaDVptWOb28r-uH6dQWo z7QxnaV?~SFM5gHv%b9_p{vSk*+wM7M|r?9^ccnhCBt+K zS+|@Hj3>5xetD5Y9qj?+zVyHB`R$vn;SLBGcu%WlVxP`m7P6rWnov!~f8dd9AUV(x zX!;aOh^071l<)g7b@F|-z!!MlIJyzZ&30HXB-NS)DjDoP40yj*^@y>nbp6IWy8{Do zP74h#2fuO|e3RkammT#KO~hZ+-au!qiR3I%V01V}dBc<7P$O0gd7~*CUSy^HT_P

#yj8&@F%K#6FaT9v7r42=c0vif7--FH3}?^%4` z2gNKWJ%Jsxu2I8TAdc3w!HpYgLlP66(z(gijd%c00jF0n|q zg!4nRx@s!g7~@vkVUDA@1Ou^gt2E;`-D}U@5ZCwe;}z6|Hdbg|gw9vzcy^Wd=jnX< zSX<8YIvG^#8K_uL2^wyP%%`G5=Wq;e`PWg~gF4rg*Qq%$AFajp-nWo`h|tV-&{O&$ zw0SM?Et{c%jRO)!qd*CrfD&E4lhZ_ntR(~+8#be&D+eBX){GkOm&CRH&^0K?=lb|@ znT%LlER1d))VCV9$_#P1H1CBl$teN>CX6Q73p!^XQhaaE*=gtFL?I=i2x2Ce1-{L~ z%RjEbfDuP;v>@|ykv|THtjLhV$;IX)j-a@7{IJm3okDsZQ0BY<9+Lq-i*UX>0GEmk z!;+y=dk-MPf!*MlfMt#51H;=jw}rk1J)u>OoQhF_Z~I6S$6C30FVq2s!x92{4n0h2 z&9bYQtAfOPSBd!p=b$|Nyn@q8UE;NrBzJH0G3L>_brRqpU{}bHdBeFR#W#w*{Xn{} zHWD2ivd+?&xAUcI##uvo8c^f=ji7!Iy>|Us&efWvY@>nT$aVTuhYzp4DEQpwrAL{i zKZhP5qY&E%W5{X6L_}Te<2phM%+tZ9r-6+X>W&ve_cw1{?RFy3W|*v>V8^$V>eE>m zSU&{(UypeO5zOI8j&UMy#)EW<#Xj2RHrE`Eh-*YTLaLp3L6i}%sWKr4wn*Of*9A>Z zsi@O6L-Y$dO=lNj$*WR&Vex(hO|}sbK|(f9$Ls3zrP@#ZARIUX=xhNyl(o4oRW4+0 zk;#0tycs$4>?%i5S{uvtwkuQKc*s|ew`GX@e*jYs286q5FsEp_uL_JibF86HXJ)hQ z-Pv2k8Wv+?OgI|)H0^2cC|GL?R$S&{c`GoaYv5;CmKsg>+l7VSMc|h5RgL$*R7Jge zr>FLn90`JJqMu@F%Aiw(8*}?7)!$p%PmXzn?H}~mq%GwoJgZ%MlsQA^*D}ST9J2(q z7*DV!g?Uf|b|7!IWE$yKKzhY`Kc<8l#|Cuh*>$Els)AhG;GbEO82iN|4gF+O?UC7$ z3W69AT6Q9oVl7#Dzz4IfGF?-X{_V0Pec&dSm>-?*Qp5{KHQ{_wD>W3|01(SJ9)wY> z1Tz^~$KcqfnqAE1biW>dcRb>Y=rg7J=E_W>rwC7YvMaa)T8KqhWh3p^x-)=Uw1Y!v zKc{BZoL2HRYsVletPIjXDs5?%LUz8k?ET{Or9}f1 zFTYy`>o(D5L~5fPxWohl8@L-7RXVg~@;xxk6h5pSsKQF5Sm5}``0alQ)6_9uHgxla zT45fSVVu05tzPXxh-K@4O=8Wt%y;en%uLZ_cY~N>tLN#${e>gKG^=q6S*02t54$%F z+p;=kA=Cdn9!dv(x^6s79ShHnvc(u9r*U*w9_J|{Wie zGNh6R0lz{h)*jkk}jT~9fy4C}4%I_;IF(F#q+c)53l&t0!#o@(WTAEU9B>&+U@3IJd#>?nN1nGrC?xAPzYbkUXJGF>8kuk zP^ymjvZGrT2-FjFLJ*$Hijx7$S|hPP(!xczi?!oQDs6e}oA<8psVt3GX z;xAhXM4ykmnZ?jusABC>(Ur{@Zq#ZYD^+5J`<+zZGK-y07t+a_dKx*pJN-B5X%s0% z)GQtYkJ1CWIxHnBcHlr<631wGO1hE6$DbC2i#dr zSI5iT%6T2MmbLbgRNReTo6#l4e^rnS1~Px;5xA@T2`AvI zyXmIir{E7!1N5$fg;@vl2Q2W8dp9$H&P^S5OJlMTvHM;8gWhn`fjc?Waap^XE&=kl z95W95uB|+D>DRy$sx*zaZxUqpjoQ8o8S-9?8pLr}vjhjNjYQT+n7qKN;0N|l8QPJbq{iM8E+kv%`Q$45=whO?cK3w4r|#S zu1bwqC0$2xW|o=n=B$)f^p$@Plp=1?Z)Ow`2A0vpyr;vWVa!lx9ZoWli+F59}ndmthOlGYRn`CB7;?UoNHba;;2 zQay4Tph{G#@FT&xWJq&svILv3H6m#LqHMu+j&br+Hk9w{I&}aGp;rn>fhWO#SkpJf zz2q{s$EAk`Yc|)ZwFZf^Vr)eoCWrC?p~Mz+$1`yOe>Mcm%VOSe>QB8th*+yGETL0C z=16UD8H}Lr2a&0)AI9CyA+uWX{7jrKmZiH}T~e=Wv6X2kGPs8N5Zr-|zkI8}h?W0( zQjqW~fOfRmYc*#y2_|X@9B;$BU93^!sQg^&(5g5p=bRVqiW)i{tcy@!LCuyrdpif! znk2^89E>qS?i9ePDe+)8ZBL74Kl={O$>8(5<8ZgjFeq0*_t(Ay&p*_u^eN$aUheNsgjq zpD2^=T6)_u!(b?Wmf^`zh;wSFN;yWY_k1Lw*?7UeXkIJK&;QHl^Y?_S6eC?v`1j{f zaqqIbE|UkqhtfneS}pNFRg~NH8QZGI4@2 z^2p-;Kqxhx24?{{-pl%cHD;JAQ&7VGZC@{(jrR%McNbQFI8xDld#DcMJ*2?yO^Mm= zJLOrln9}@lPs8!reVyw;yaZytKYuC{gf@(z(=aEfpmpjvA&9e1Y&T0May;h8=Mwl_ zTv@1P8$V@)W2%b{895|2Grm^CH1IUKX(vmo#5#VxQ;E!Z zvFlT?G<%D-4k7#buK;zZH4uJ%`3qZu7{5%a0Z>>&K`^9I>X{e->FvJ*IoEC8TWthm zb72FA7xc&DmwXA`fNK+}kT?4W9>XG@^Wdn@U8?KlxXIO@**d`P5e)>n_TkBDz+nL- zS;q6rJlMWt2H+4L?_MZ%^8!s>@3*TRgk9Xjz_b@RUwPL)s2^hP2WN%_q-{)-e-hM3 zQvmJuFN+}iBCzAyr(b|3&CYt5JS1d5>Y}Hy_KO8=cU#QJiyDW&y`Rc>6d%mF%M&)k|F=xlT!a2+?0;DMP-bUd=ZuT!P!?M2a6 zf}Gnx;ij2Si0s8|5SAeWrwWb)F8vPZl4_+Lj1dB1U+ov5L5%>2G4q(T&-#oPdJTZ? z5NG2uN<$kj1j8X~l?ANf%s|1oIc#U~!RO1=-dV_6MFFd%r|y&NSsF`oc=l$AyFbwb zwKCphrXBS^ye(s?zYZrlGW}u*1)9LZb6o5jssV^}uZ` zJNJNH1%4Jhm5Pv{94Q|NE897Yz%>XIKM`BmT2s>T3)>y<%hN}9PT(jo`l`s(0T8e| zU0{5Ay(Ca0)FlrvR;w(L#+qxNPWrgi2laN=7W-pr&*A?CI}a zY;~6Qq<4`B9{uV)4I^L12Zgp;enpJ`g*x;@z95PSfOuhLoKbWLTz#N7)oU`TmgReF z_}5sJ5SmMbf-QDoG>0NV3{Hy!B8dt*W@g8p^oIn;yNv$Nf4Z~cQik5qXaEHZ@t$SbHg^PBgu4#B)7TRC$ z$q(1e(%O}xQsd>#$=EoJ4%LAH!}K9Wf88BKfnPD~_Z6^C6B4%e}9FGh_Vq-~5- znOL~6X78_V2!hx=Ma|75YIvISSqM><8!r=~pBO={G*-&Z&Fg*7aFeZWy z@I5%Kg-Nnz%-y#YoI-C15i$Al!#o*+xp_L! z1sf_L2}ote-0J^%IFwH~Tllr%x1 zql7n1Og{JsX9R#GqUraosQC$_%vX_y1=PV&gTU@3DaSdcNnX>m8@Je$vETlUO{ z+s{QBx`?zdvUBf4xm)w65mM0yUT@OL)+U8EvTo{D4fhifn{X-;(J0pC!kl`@Fy&f+ z$+EFlD9&QUXR~Rwp6S4aUGW9=tT`d8uMzAep8nBZ&yE!`KSL*1s4(S7DfFjoAcMr^kcVp81J|^t@@_(|qf48Og>!bf)f(IIfXS{PPns_b0r+7Bshn4uF=r1Y2cZwhRn^Zw#4?wD~LnK@2*CAY$b5$-ODyJXk_PE8eDuKy3g#T z_q+#IYBRynT!tzisaC4Q1v+th93Qy}a73eezqeqL`ct&}NqRBfZUn_{O zbjMug;;x4pV^V7^-8cm?@{kBQVYK}0wcVhL!yn}R>Oj}xLm^*3ScL@zcYjzmdGIg|>9>mh3e`FNO!O6Y`w!ewFS6NCnqPtKBV z(KSc@IZ!G8)7fR(hs+TMPiwjN-6TQ1Q*6ZroUAoxq8U)lu!q$M-} zWGR0075);C0Q3sLO1A!vzyCuCVAoSo5j3!M@%FS8R`T|60IPTbod2#~&H#;}m!g-y z>py@0)d0|ou=jKI0W>DKq=8fF0c?eS{sGD^wtigVVt`=A-`|UhiTsTP5fF%w`2CN6 z?(DA*{;jkBI`VH_h2K5>54{6q37q|Zol67I>u|MK^l}C?D@4GG{`SAv6GcTtL;!ll zzx^UCCL#ssdieaEgi-2_Bv>)f`ETTmk|K8i&5q!IFg40Z{64Ai-{=~pfPMx17XZTK%@#Kj?tY@sJr}| zJ^!Zo^5;SPTi@f~F8E(l4xj@S`HMZ&{)0XKCiN2VL|Farqt?L|7(&1>^5+u$Eo}le z@HX^v{UyS|B`NvaI)CZIKebNGxkP`ff>?6>$s~VP_4xCQ|5H!?F_M%u?*BUNuSG)a zZ;B$n2O99Pfw!8*eJxub@IU$rzHj`uc?SGZ|A{{^H-1UaaEbmN62EWhzpTzB`Zv`S zW1#oH`}ddL|Cvrz$Irph4_I{s{&AW=$=(Pk0>Uzmzz6z|eSAC|J%7#gzsQ&TKFhz^ z;$PkP-K&4BD1W;8|L+dIe_QW=Y3%%uMQ%i8xPWh9`36*B{<#eOugKhhRVBE@{w{qZ z$tCvp)#3jE=^N3%J$3#UwQv6N==^=ie+-`gUi?NvM&!<~(fbds-Qd?lmgfE&!}ZYB z%1i1a^)j9-QGJqIKPxO{SEOZX`BrM+v3%6@Wa-i*_^e#l_f`vjaN<21b*<@i6VWg& zExi}0Gyc%JyBmqN^cR>-+)@lX`h3taU|YZRP4J{{QRf5)X)WM9Jv)Ff<`$W;C$zU; z26xJ?X~I4*Rdt@B%};O_hhGn3Q|sYP-mBPiwAM>EaH2u_pw)}Fd`AyU9)2rLbNkuq zt?-AUq4(;%aTuoOa%}okD9C$t3D;)s;g?r&=zgMeZn1iVg1NGeAiD)9x`d2euXt0c z7GQC7ou{NVdgIhHxK|@Pk#&9j+Ph8*UGP9;)4@RBq!85~5OblN*AA(V*pw4Zy-HtEho4FKi-T`ha9!!t z?TF7@wh~r+@XkDucXSu8#}ffbH;V9+4Jb0;ihq7T^3Xh@$tT--p!U7P9H!T6-QkpN z6$XL{3UO}4=BF&JyUt)$2R?jZGdY#7ewCuU^1wSy)V2KH)|Y|0<&nWxO!)6dgGB{i zizN9pE5u2U={*g-Bt5rDi#~qP-(wQfCtE?a{6zl)mIR7BnO~Od^mnTrFbz*VJEDYs za4Kw@66t0ty^XeVrseVMKGwTYd<|TAj82(ed_Jt^e0=*hdadC z?9i3lRCUv(w{y%$t@_id?}e;ue3|sC{w9Tg>$ywdTSL(~rU{71vWcH+is=}z)KLV*|>QY>j*sSNn&f3@wqDbXX0kA z=ae-%KCfG4zW=aO`9jNnK#rZXd*5qJy+iXgQ$+J_bYmGy)^0OFQR)e8iGq~)=D?fn z7yvVL^V37TSiVtaC&rySMuM*CuTa;#E@P*&M)f3p2KtWt^e<1O=is+ng{V>mo^;Ui z{oH_3_sm}HOxUlGKTkQz^)Ol;s29ysH9+3Nz0cZ`eJBBcUuBUc5;5|A%n$x5PiW>! zs2#-V?bE3y94zO{@j~s?>3Krx)4dl@r3>|f#P38H=@4ek2T9&t5$2pJ8j=m$ zSG8N*tq<8%m0=(@MA_F?%Xw));K$(b8{j$3-rdV}F`DHOK|EiPta}$q24T#MLB_ z(B2Y{7_bYs`*@A>^|L;+Z=dD6jXD`Mq+7LVw#xBCXiDRUm>-G{4yv%Qz5_+yp#mQ-K9v*R&W7-O=VtV%y#%*i9wjd?@74eUQ?F z?*3$TS4DzERa1OF{-V^B1ck4*m-kK*Z7(t4WtRC7*2vQJF6vX@vA!HOLA*`VIIV`H zmGDJ$?yRy^q>OO%O(&8|4yhqFS2MER8&Wm5!-5sT?Zu zzYiuS{XtpcW2QZcVxZd!2@3g1&Df`vf(*3`L?NPResuOAFt@Ui3xEK3^0E ztnV5&RdVNha5lT_KznWnbj#K6oU5^i^!GyFgf%dD+0ikV@gd?&4SN>H%S96&Ju{S~ zJcuX9OaD5SU%tSGk0g3+WK%CkZ?bGwvA!uYAq(TqH6~+=6cH&Qul3{X=i)Y8yAgQH z?EA5=_czcvd6u3uUs5l33SkNe5nM8-WMVjuN%lPaI1v-&|5XA1U1@4n3ZdV`GW$Vk zd<4!pKFz#I?&w@wjCM|QmfQEpuQy@VET?3$guGzkQvd4&=xODrv(h=DsEamN-LTgs z8$b19o^tLbQ}9<#xN6vYN%r3me6~z(YPWvtLCD>$IC*;JS&t$45+Yigm~WbPv91z^ zG`4;Cgw|apIK`E>q}&KMuP>@J@HQ8lbRGyl#V&~geDK-xkg2%5x_aVp({qXj;)NFr z1jt(%`|fR1*BrmGo7*yme0yE#A~CKkgqxjXmnM+h>uRmr~ds7k1%3e8LfKMZ64c^i{GUB;MP)X-$fbcfvj z2g@x+{%QU5L41Lx`~LmsNz!IVgR!QcJKCNY8+#UPc*TUjkIMT>ay`DNESQz*X!dlmH^|E-1vTHFB~5jb~0>~ z^+A>Lx(T&PA=0;a}32ZnR0DI*!YI&g|KyvfX5 zNjEZ4A$XNO;kC^f$p#~vg+@sK4W5aY2pv|}c;1IELsqZtFCcs)E@+~fzyf20*sPR>5<@*~Sg3;vQllt}b*A*av z=dAs>wEmD*CAAK@vm8x=J0DOtu*aPlxZ`0FGytH$6tn^l>zcU zUd0LO@9Ww^TPlWY-xSRb?{lBOHBR?>F~uw>CAud{l~OOX^~r`OzEH?hx`CeXWN%br z@R7qlN&fpyn&1EoSyddi>C7SKW1O`+ z1ruz(jNj%?Ph_-5BF7u&#qR#Z;vp#h$d4Z2s z)be@s0BY@d*(0Pw0F~hgKD$wt!nTKKN>B0H*?zgnf{Lf3IqFs|tGhI*Hf zeU>yn+&gKwom{nKozPh*1#!a&qI-GL|HxW~Pb)~75w0B-JbydpPKl>>#pLDvSgLIT zYo1E}G1S{zdIGa&M?M~VBixgoin1T0Oqcc}D$$kt<6m{Z`73>eBanFn@DhLRvm5;8 z!R_)xpDJr&DKCqHMztR>2(45gU3eDG;^|!KEgcDI9=&KjIG0ZD4q;^ufA*cV4t|^N zWyV<7Qlub|+{a|(7wSL44=$a$%ei5nG`T!R_a)IbbiZ+MaASkWy@T1VV2gGn?z$88 zjXapS;7?fFDY2QyiS9A?To!%*_qPw}mFyVYHv2N zD0@U&n7!~DR7E|3Py_q}OCb{#p`io;sI>6jg~ix^gLorOf@&QZ^YAv+3aYfg4M$eRL3m?)XrFU1rkXoO_#H! zrTOv&n#g}Q`Ymsvfx|BwTG0$uqfvOgP!${!QAAE_c^w3bmR7zUBpnI zN)Usiu)!NqXK0?V7(VwOl=ZQiya-Q@}UBT0mhaVjWQL~l1n z<6%I^8UXHzy02C^F8HxN=SS zHX63r_Xc`=Q$96$G}Tcu;<3hOH&8Dq@5HMyu_8WLB8>lx+;xza?Y(2*`Y>{ts{K^L zxa$-X{DxNbO}1Hx@m+db<}CLD&{Z?m2)nO$#55MYgQfyhkH~NDmCSzSdv+Y8EDX`6 z0LkshzMBY|4X)y}EQeI@H4u%Z?1N5;W>1f#s?(YKayxvTc_*rKIaGhnW7>!=68wFu zZil~bylc;Mvv)Fq@W$@B=gy@!^;vf&Ckw}Q6ZcO($ZO6||k|Lfhl-3|&r(u`Ei6tleU~KXmQk zLGk#MF2)kk8+99DbW)R$XFVM@sprw->`G4IgcMA^=A<}f=wlko(#Qv5e z>yW*Y0Wnh?beS@K9QAW!vL_JzAmqx_rM)iYGR+I$P)Gnrd`OM&pzs>GRX2W}o-;dP zideRn8EwQw%ZCP&tvlaj*>ogsz5P%@UUV}twE7wUT}tT-jF?@esK1spei$+9jHO}A zo9(YYGU(!qs^Vq)moDBptOM+40XnaJ#+dOTUn|K;gm%eCJ)XR+k^0`T-!f!%wY0c+ zHu$=HD03`3ixI{^@dW?Nz-lQz?P}uEeKlv;g( zJg0gzmrbEuN{AU1OZ;mvyJ7uGYEHD=Z=5P2yiO?^{5>A~R;8%y& z5!WLTUUXE>t6Iy`t6{MTxiw^!SP3~VO8%IP4IiQHI})<+wkmesXr1)Y**mHFU;M+Y zUiP)~5F4GTbe(iFSIobM)&z_NmLLNCl!EcCXw{SWHjw1izE`Yo#!DQN+6T=>5fd)W#zJFUgJlQ*G?eVq=tq_<->UY4QFhIQE7hLEwMqg@CynCakanSl_Z!K!zh_ z-QC?;-KMz(Z|t%7Yd-gMyd4cbBz^uCze1H!Zwan7JY%)hs4R+a^^ME36j2!$arJqn8-7S|(rdx8*Cc`*N`eeG0~-`WDV# z^uC8MR0+wH%$F$#+OVeH8^^!gbZl?oh%MFNQ1*XK85RUUh?p<)n_;QeRL9ZCA%My?PEN{SXx7(CM%}A8(?Em8 zhHCb5$x(xOEh=gAi8q$60DT|8YW5`fg{oi@C6h}(mzK1^y>eas`2D7?)(EBa2;ln> zL~00UB>CZ^x9E+m6FW5#1z<7+;gSN?1;m*00R`}6 zOdUdp=KIsFC{e}7Wh-jFjEI>aZZ6vVJa@Bja)F|Me+h~Y;dmxOZzA@Rg9hQBQ_{-J z!ks(2+f3|I`3Z#vDbw!}zL$QBWm)f`4DQje)bH=+o;vBc@dsXZ@?F$z-tj^KZR+|r zlwdZjImUhM4?K3)d@2+q>9_`LF?;7SVR+p`E;rXLW0*#q0N+kbkx&wD+z)CE+HXYJ zufq;}?biY5naRSEi&+w*uf?iH2s>M^S?=~mZs=KJvwk$M7^eCT1W4%<>_})%mW{e^!R|19!N1jO4 zh-$e?tF|y))@NCY^^5{hFbqp7AoK1X zL3p#ew+l3f)s<;~(+sfvD%ter4Ft(PLHd0gOP`C#PJrIReabeYj;bC)*8l+3wM%3gw&As4-ui)ToPA07GYB9NoN6-nnzicD<|5=DmOb*geHqR~+3I zVhPs$*$M!L5_MoKQBgQn<@>0amiX%L3M`Q_xdvaoxr1%Gql;{KEHOu|GRnjEc!O;3 zf%sidg94fAS4@_*+#KJb2Qpl{sp><++dT-()4P);-fu56 zTn$}aKcovz9eUd6*3CcHEbMfKJNZ%=czO-w`9)(WOy@!n*Wcbc1R?xxB{QqQ?Rtlm zs){D(%JEzHkIf`R+L(v>YZ^t6!WFKB3kn4FzAciX7izHG4@0I~kE9;=&}g8m3(hwp zsBtm{Pw~#OaaVFngNLBJ!Hs4qf^V_BH`0ZFa757PJiV?=V}blsf3`4kZvzr+yfdR* zz5q8d8F99Ezgp8I*dkz)#KU!L$c}$p@fHs#WBKc=I|!(*_XI^*lXt54B0hLMrl#F9 z^0IGlp0v}rwlHFlZtQq(ppe`ost<4OH30cS>VcyDEr`Bisn_>RK3pJ$o954>ZcUJO zL+3#x!V0oj_KZFz)=juXMF_)5&8F{@%7!fK+x|u)bz<7m6Pbn-T4EhZE1p-oF!}>ITp2JIMlQD7O1Fl#W=6oBRBe`7UfLWW$n?g5Z(n38$Bv~)HL||41bV( zTRRvf9qk5PwnAL~z@yrcVkI6)5I*F8IM`~IpG}_~_>7&l15eyp=7=GgKL*N*n<;3f z^l_hSWnHN+ws&(Yk4uF2RQ(A_yY)gUT5zsg0Q&iSF14<4($A{o~k?H6PQ3(a9kfGQzELYo7>Dk6;3we zEmEyPcV+O|LG69!5glBhhfn|y*C4stYt3LCJTj;t9BVXNcRXz)EX3{5+^U+!XW#X1 ziha24%$ObNKhlmh!8ih1Qs)j)BRHB#NtdFeZ{N_%_up}`XXeHx;pZ!p@4F+$F@muN zWWI<4ejI&4^liSFKk$rNOgohWVo3yzFIql^IS>lthDl|=;3;rlmVprE*xO-Fpl5+n zM&0x+*&iC+6U%ZBh=W~qdp_~npDJJT!RO~EOleeax(p7)FqU>=7YQN6G zDL95;u!hUyD@65fOlg;uXckhcWWLfIDI+2gJrXr`yRO+Dfu1!0$lr8*q(3#`5k}mq zEe*@N-cb@`$j{S%5U2iwK2ZN>)rF_`THmGR8-i|bpvU#l$yH>EiyxK=>4}r{)T0Si zc}#KS>M_7GPdm9uD!c7jEu@2I-PF)=1#Z+8((!HvzMtu#AT7}}tF zT{e1zrEX}PcK5t44y*B`W{)Xjb@yrB*pj8igCGsL+65zX;4OSf!Um7gf zKkKw-FjG!@UuKbccS>eI;Y}lFFY6)9qbD3Fx$XtWP3&aPU9E6APa^OXG^F(~e~x#J zn}yqw`KS0q1@6|x5sobPLZ+@C91BCf3@#f4Ct)=Rnksm(aL0-P;kIM{0Z5x6j8IT!wd}~-;;73^YoBHuLrAHAwen4I#+`8hpJCJ zc@S^jN4Gl!I6?-iuQOF1?|n zOPs;Ayg0UOv>QO8@C|^z5(V{O-NF^(a?}xjVfxOPFdndOj>XcGj4964c8VgM`o~S$ zTJ70axVngIl&Po}Hi%e!FVWn=Ya)GB)<_fTl%RZ8_9ruNHLc=JM$hnQ*B zt>+E_M=U0-7q>{cKZj~u2w}PApi-eW^+@eR{)M8)QmmO5H?|s@^`u7C{L?FoJH(PA z((xp)t{2*&P?XBzctxlYijQslyz35fUR6G_@12oCCTelRDmS1J9%_baxceG$a*?fn zV&q4?E_gDsX5C924Iyii7V5l-5Ck<3hHF-?C^fEHNCmo@I5-?N`xL)pSPHHhu;M`7 z$vF>-JLV8KZb}R6WJ1TwIl$W267aB}F%%attP!%dkhpx1xu(;x#EU|(Ny9Vj+IdMF zfeeSwt_BXdXI->Ph~p2IU7rj0#9FT9J@WQ&lD)3V=G6QG&+MjtrS#}VArXx_S3v}1 zt#q})DGj-y4xxv#nrV0=zUA4^O1v4G({Yy8DB|b4|4Av6f6K|j$EREBf+*Cx8*>x& zaTvXRFgI}bYlUOoV%C{lkx%2s#Ux#aeBhz=`Wx!`^Pkjbn?qr~r{hQaN5F{x02F-{CgkFvxn=Eipa<}|OC@(2{1 zkK{VK5x%HGC*{X0DoVKMdptsJzR7TL{T?Sk@re7<%?>bh zUP7k_&Q}U6lb;4VW@+wBT8Un3GyI5m<#K~FZ!Z_1B(fim?P0{pnqeQHNNTE-7Hutc z9){OtKzZ;4gj9F>bQxMs2$Rcm&Tk~(CG^k2hlkk&WrGh6YBo#?WBAC^ijr=)mB_gQ<%Y zIPH#goy+9*Y}|_v_dq~J3o%v{K}~`cosyGWlWf8DO~3hB!?|LZ>DVW`oEIGAykv4} z=U(>enn}*hN0uB98s3fCJdKo1Kw4vNFkxT*Z`{3QR9xM@I|L8z?(S|OxVyUt zDBRuMAq01KcL);P-6;aWr7PKI_qV@u_C5E<={ved|6+_9tW~q-eAilYzH2_uJMG`S z)&;`Wo+9qXz#h~UUjkmyHN71ohf^L?ena&4-J$)3=F166PkpdMmsCtdlsb+eskbVI z60G2rO0OPBTmvdf0Mw7Dc>Pgy0`ycz4O!`jVrgqOQ&TnYLZLm>_Xkzh>n95JMF+*S zd*#UnsV$46K&GiLzAOR@WRfRG>;_8~>YapygY`+-pD7R|2nMpQURLbUCv1f0w^!-x z{Qm2StHZxkqkuCP%L(nX;q^J$Rsh^6E-6HtJ*dJQXCMILp5agwSg)(QcEVDzl2YvP zdD7(sPB|EihKjyXQht~$LHSM``OhXotWV_c8PS;W}GZO#=ue$r3J6Y_&=^gbr)+kg-nOifdmh0+|Nhh4RCy!oeh6_%0 z>w;=xam23x`g7o^U`_*l*h1$skB5JP0WiRCpfQw%@ZZ1&?cXnZ>~80DZoP*GBZ+guc-j{JP3GR+>Sj*v`P^q>Totj z>C^VeRSp+A!#WWXOa=p_d9&W1`hqm_6bkWIo;IWl>;$k<0aMzZ2UL^^w8eFFXW-n# zuy@baJJTy(x1;y|SJm6+!vXBRNFL6zGZzdWv!jcg*@uo+oubc4bj+(q^>sm=Kw)#! zjqy5gZ6QEBN7ty!&Ift~q_{5}^RX~qn1aXms)X454hQ)6^v}4d-Lt#6I(>?3TQM^MSyOfYsbrscOm>f3|E|U68B+x#;wZX-;v;y1q>P zik^1G_c7>>A{Ys14HL+bbNz}`^H9J|Mt%w~%(5bVC`J<+%)!Qn;NSkpH2vx^-aryR&b@-H>qOUwNeh0Y*k&k5t zL_NRtF;trpq?HPMGJk6E_Vrlw1jSoIdjrtDHy6^I57?AxUT~C=Q{w7LpOS5p0yKjb z!8QVGVRV|1;5IvfH&p+jBI`Ti9*m77_*K;v9sO$7N=Z}o}cb%O|#PyI@zKL`4XF~|kc z;Iu6Z3*OcIKywm1ZCfsSybv0y7F^xWv%1w5K;SLVG^hSsg%wiJAimOcTqIQMe}ut6 zODca)4vdt)DvphG=?*2tn{%z?5T&m?56MZHiuqh>MEV|QJ67q-VI`RN;*&mLP3y8x zF#7SbKN@@cHP?qC^49Ss-}74+1E)HUt3k7bMtgZ*9`q( zhHe?AJ8!;muo8?S=-)I^gllmn8EIj8j&g;d?tB7HRvbw4*Ry&Ab?XazkD)c@N z3=9&&kDqnR{=D$Ycw4b=ov}v%Z}yp%Bem$Act`32>nQUzxu>=>-5ByDsWF&i#G~LX z#!C%=>e=`u-^Lqxr;@cF#j=@0owfb=Rz;G@Vt1{@EIovEG2*g&E2|qp;KP03Ei2Hh zx*9arRi)o_iVt%=eG0Uv*;+bVlv~%~@u|Q}Zot&L@Ady&309|N_s%^6I5U?snrN4b zGnMBDs-#e`Vo(q~*Fvb?R`>DSM8Sf{7thAK^71wfr#du#oU+c;Q%ePkyKcQbH&6*+ zWB^ZZ(8?(wd_EP(rRl}dYA`0So`xa`SfYyYq z9xm|kBS9%gwM~mHE_}S$2xV}6XOs!TV1&rUudCe+joDi{ieac53{HkEGd4|}&EshC z_o(`x0mFjL!J)By^5$FJ5gDc_!R7iRHA^Q8a^t3s)La^Sl4JuD4v=;<(!=9JfF=;O z&PTe#h%}mK-Gw{ripU@}VQcPa7K^oJ984N(#7$6swRyXCuW1W(zKvV-CMr%BtP>@_ zNHQ_fwB6SoE6PzAT1)54PQMf)YDnHAYJxq7-)8jFdl&g>fz(!3Yu=q9v9O<5lR@T} zyPcavE3OS;9+*5x%@g4JEZKIS`$ThZJ@BEpH&?Yj`et254YXSHJ3|_7=kc`jSz6pb zJkP%pxZK%1$KGMYly;guzFKEbiOH<1T^<-TUg5RdpMFx92S3u|erfNv@Nrg8IFz{} z%-$aVv>Y?7Fq;?u*$w(o6DM~Vh`Hd6_h-;lzuWJG?!cse^{7`QduJMf3BpKEDsg^J ze=iXzX!E_NL_YJ~wkPm__+283?x4GNp3Je(0^}d$CY7KuPs>Me8teUx!qmze2qutw zWqxM=#C_Ukt<~ILZp(ia)G}9f7$7E4hzzilAhS>BSVB|XZH`;)_%Q*kK&m&GZ}OF^KLy+42mLy@-5G`B-yEfx>L(%wlGzcc@KU#JIU@KKFAyS6_p=U>BZG za(3cL$e$W_l=mP9X()j9-j#3nTuU#nt+K+#)5Asy&_JYUca<>!}I@HepP2j80v zt(Sy6FrZO!V<08RCmKFghDppEUe<{ghXj zE6GRz-u=%_ec(pEXTJ4{+yt7qZk<>^&B#$dlq*679A5zK-ItF3-O#gZVBpRi|8&$d zp1DB5xPO^eqOAun!Z;!PZjDd>ik|?-Jt$8IO>#w_q_hHx9fFjKGKkLCSO;6v;kzis zR*e^2Xdl-n9>6Rp!w6s-q3fWmX78%4X$OhHjW#a9OpetE0!2ugA4h^DRPooCdf|9^*)jz?@j$a?s@nnuumQJAXZC(;Z2` zEi}e&x+ZlHKEXj1BI^8gAOB?NJG$sC4bq-9e**PgI_)j|t>abJCdzNg-%ztuscWSr zijFP~0#&9R*$O{r$Z#V-;B`s=r|Tw~@0l&A*2q^Guoqs?7=TU`b&vNle)+=KQtfaB z{b>0G@wS9`OjBE$7g;Gn`%ygoQh`-d zJNz)c^j$wFn#ONKap@^~k;hvj@lAI5<-MK8#s)P|#vFvt^=ky{kwMeq000?Ca0*+c z^GpL2|226RQbE?*n%jR{Cr!6$E=84 z6 z4jxNvvbZA;1~`13ZWH?e+mj1p(KLcZON6Y^2X>(b1@$65`fOcYC3x%oV|%d+@}5z% z*|EEI^CMZaB zeQ(OX+>iMQDhqCv`+_lck$b=_?hpl4Xq^rKu>2EF7BD7K7r5y}{KxrhGy`Jtb4z=w zr-_y?cS6GfNY9_=o}ITt^&2%45?5sulRY6FfFrO*V28EuC5hE9#J#JZRA2i+%xYoT zx<_W8dM+^ZKH@kk6$ajsJbE`rmXA0fN>NP&mMq!GS%?6(*LPKYOFibs!(_fg5j&_+ zLizCcartKo$7PeZr%mgT6B5t2s{TR!hQ%IaWXozVuPf`mJGjW~4A;j^DW3r0&hTg2 zpVPNtFFDVKKxegt;Q_6x&@aY&{6Vu#l6Hjby;bPjmqD(KIH!)sUrcUmCtozBV= zFUk~;g@}Ye(JU-z{qB`(5;>@Y+#2LdVpYtY`nU@(P{K5#Nv0(AStq+RadgeIM+@XZ zv|oOG+SwdD)knAHKzsv(vkzhTv~#P8e&@aj9}@G!`L52b{*e(DI;Au9)*BS5ZgjIN z*1nj0#?XVA&`FkBaE^zNBgl>)OO;PBS*HNUwW|3DTov3DOjP?Bxgc_q6VyIzW}6+psLr3qI{}2Ivm5nhC10c$IkT(*@)V zxpZ0O7dg0HaYBgv zJie7Tvh*TA&DBXBUfMC`Eb65aNGs;i9-PyWiWlTv``$?-aE46K!npZ;KbNlC8q;H` zckFA?V*&t@;*y54*904EoU-FG|jG&&0&7H^VyAJ-@wVHEvXTk!{G)D44{L+bYlhT!Lut4(f({ zR=+|XV77Q<$S>5MW(`v7$WRsX85ZyrNHhM^_Mm zmcoIClt5*lp-!NhMnxd92LncU{lt7Pa@wO`zZvLF0%*5)$;R5C9fajIr}`koA6Spv z*G=kcyNcUzxpKL~-f^UyJCN$^Cn2C|!b1Hl8hF2WZtDGy7rF^5J8p%JSF*j2l_{y! z+AHAY+8d!L`bE~kaXhq`aa8c%L%;zSEJC2!6V&kiC9q!ZCHck|#v^g~1BHKu2f+H< zVW4_<%-p0j16evDN1Wd-+Sb+{CN}}=r2x@Oeiyv;CQ8F4O+~jB zNgB`_;%^AX`=U|Jl>UkOu^$-yT%#2SbAhqiYfF`j>HC+S_>x(>-#+=uJUQQrzWi2Q z#1eYg??{Hf5?kKRT5`sna4cx?w@;X_^fvL;1+Bo15R*D6l7bdSgHJx*G@bW~Pco+~ z_RCuQL>etVDiTSIBey?mjUs%EjYcH(lL&V@Pha2lKN)zKZ-d@18{O+)$?WV*%hx8a zN-m&br4vgUO+t<3)qpQY)WC)iZ-H5#>#rDZl>~Hgc_4taJhxSKLPPSr%FTUiOEMCi zq^JQ%F#CK=kS$OEQ@}jvwS{>k0A9zZ;Ba7tp}KfNx-o;9P9353m1`_n<;E=!dFBBm z@MT>7Nz2&CIarODc9lgw3c6u;fzdyzr#^$8{Q>^oNWdE>$?g0~kGdnD>DuK?i+7-7 zq;G2oPonifc@>yfWRJ`p^)QlIHrjKF4bLo^#blS0 zwQS_j!J2cCnm|cBnrmU`dHP871?;i>*5JO_@Tz1hCUN&v7TkcHk%u=Dk~7P;C`Lj; zWL4q<1AoheX{Vc{+p0U1Gxt3}&?B|i9fi&9)_s~HYrv7dDAbz{**DJ52Z!lgAC%>J z-vJ4FIUdr56500(`@QnUhlY{`-b0q-ju_%%LY5b$kZvFc+B5dN{E5xO7*r{2y(3W< zk!avi3vT`mm8Upw=@-uquZSQaE9)2&df2a6t#kDFOq}?&L zhJei=L9aE2$_F>4nON0^GT1s_VZDis>b4bJp6-A2(qW8+sbpYDY10k5mU`_;h7;V9 zqrHaTuuevh7 zS~zEgHH;Lsw8y#YZ_tqW>gOH{5gLO6%zais0OSXGmd>|OZ&Qs){R$5keD-a23aU=J zGnobb#f%BJ&9xf7dWLaD`xYYfQzLLA7ic7pEZIC)d7!JdtJB$Ho%x`dXkAaHfCSMD zMuofOWIZmpy-tMNePjz{e1!pJdVaEl{ja+8H{=J9m@4&MZ2zUlL z1k8WS1f1zVnVP%W7&`sMqW=^0{Wt70%Re~ue`TNlaK!&g5C8d}Kh4o5W?}gav;Hgl z{O6N@HuhiH=YQX*fBuO7IR?%04{ZB)*ZjpF6SMq*pBaB+(EmjY@aKqsHuZmmLI3%d zf1c^jp1Qv`<8K)Bzwe0uo`~k+=KjC!3M@?Q|0-ADWd2L8z{Sn<7mUx$%Fg}gi~mEe z@b6)Ku7CW`KjaEbAeNXN1i*v(ij$N1?_ve^-{dohTmB1k|3e%9mtXxCi2rx@1^eHa zd}&aK3OiXE+Q@(YD=_~z-V2t0AnpHNd;t+hq)@n2L0EdQS)*8h)k>MZ|{aOy07i=N-7{Acw1 zH=H^bE9dXS{^Ha-b=PB8InaEOW`bU0YU?SqhJZ|1~Tv3 zrs=M?IO4-DkGIDkm#oZhD&Efzzsf-X;RCJ98&9l^6#I~2lGHR5f9P&hc=wyppn}cX z>WRa*rkjnI!ZM`wjTh4<>Y0^FHg%h~&r_2&-Q%Q-K4r_n3e!pRnMxTE zo$s%hc)XpoHn~r(H1a>!in4ZwZr(7yuh~wn>5d1g_m7wUBvq7PB*QXA?qsirstx`j zzMqg;gf#LCF{U^wZ4@THM7nl^86BS9jePJih|<>IAtK!l!y_J0Dz0@oh)ivyTH8=E zyq-$1RrLDGr3A$^CPH4WhUL*c@U_l&bH`X5rf(V2WC(f7l<)g(Yns3f(!tLJgo=uJ zc-<4?&w64fJV{63aY4|JU(~Aj#jp}Bv`vYK9D@}mZ$FZr=cK}d18Xr_z<0X+0)L_b z^!XfV`6J2MdkLDG>Z_o25|p*dNg2E?vsK&CGf!GVi~Ez8K#!ySJhR|IZ>w841&xI07zUKf#0L>wqIqQzYHG*~ieH6|zhtH0X?rgh=+VQl5YTDEy*i zSM6(v4ppxmnb=g!bd4y2PZd$Y&I~;z87TOfRJQ?)Mt96rH%U6Ur^-4ZT`)^jZQymV z=pwhuuU`YsplUZc6e1fWo5jj&ztLA&utBXPu2^O(Lfm|pIol38JY~_}MlMwmy5ECo z6zlY1HHXDt5x};#B9GPd&&Wyts;rl$#Fn0)$1x;JCT=rx@}hUgNnxM&RuV5_Kqi!* z3i?yLg%^c>&(!uV!7&YUOxooX(+Gn_PZ&C%T&_cTaiv(5Yyb%@o=DiBwp-lmo(x{os8{|6ij_Rd;V!|!K7a4 zYI~XMQ`u=SaVJHtcO$}!V}aQ0nv~X3PgIH6S4Hln)Z-T`M8`7OE3>ynQ?Y%|HPY94 zBc{bKT+7rrZIN^ty!-j|HP5aL!q#t2_I3bis!SuFADXVVn+Zv65EiwIlva?)d1MZe zwB3G-6k9j!#Bn1nvj7Fs{KH4}ErAf68X9M@bn82{mL+Q8%aov0R8_d2) z<$U=DVF1@b1NY`HU-}S~C())|we5U~EsiO$=J&{?K!|rnHDY3z46gz09f93}hu~hF zXHGE1&P+g?imbqC0%uh{luubKUKccVpKqeQm<|F%RPIM+Il-z$%Uk=ZcgEz7T0@mh zCZW$;hdDhiW`c5_sC-pGJ-*Z)Z(Z-8N3zt4`M9m^N9-AIUTM}GJ3yats3=t$w1X8c zcu+2SH6YKKkQ0xgJ5M66Tzm+Zy{bPW<4H0qR`RIyUiCc_RHdOIq8YlKZNaQvB8?q} zg}4dT#Rs}c#Bd12lMCE%wm6Gr9!JZVNZ0}9Nq&|V$<&G#zvRRx(Q){L1*WNJ*b!TW zW!SFRsnf|5Q9OWSY*;XSQ7@v+T-UlT6bR~GVo>MY>D~#pMdO}uql!cQY>8sjBD_1S zV)aaXyQl7$EH|3$YS}j)G}nVf-i+bn@VPiH#3HJ96k&#|R=>ynDAD44=3+hQz^(CN zw3AiE)qR$EtD)5DK5O@jakhbfvA;**Pc4(Tz|(qKCa=ZdH6g{83ix`OSmV$8yO9Lo z<(nF*9{b`?ITYWVlgRbrRrD&p{otw8Fask>nW&ORu>_{S8^f`B_@No3_;l=js6>%N z6#oPMD1|}0q=|2@d~H8q(*V;tm!F_Wtum!Lt)ELqmg<%yjlcY>5mG4h7A307^?6kY zucy)NcU3fS?f{xQ*E=6Z87iaHMcukhcLJ(urO529KI?DebEOPi4HoIj_B zi|2jPJ9_pbrwEt-1YMlCr1BWNfPKFtD~i%zm+-#NOLsD?as0a7#4YE;HO1@(U@Lf0 zxnncLRY0CwF&%5zltcJTeF*giAGLz-vu%3R(y#ppdbFK|1rn`rM};MMQ3Ud8DCP=5 zcvyh^LO~BLqxrNRc^)4<^$?GG$Msg5QyInZz_|;q7&l`brGID9mh+q}(PwjYC3;tE zWIX_y(%9b4&6;w?K_5&wvMvefuxSrLMs8DGZSTEb1y3kgr4!4*7GcY>V6xFsIGby_ zCOy`ANp$w0B|~A150l71z@`H_d=DJzz!JS4lqwBWt)a9*{G_paWs80CFD(es+Me@o z7Uf&gMrVesQNx0yYhQss8M4?)aK!S>!HDtx|OpA7J?3 zz88Q~P4YWQ`d3a94=)o!+1%n@OMjL=Iu1g^Zk}w+Bn=lwLK@~^WR`7rE!`+jz^E;= z@<0EoUW;%MXB@Zn!xQxwDqo_QNx|lO<_+$IV2BBPMSRZQD-Ji-w9DXq( z??L{LN&iQ6!mr46f=LnuA#ZOJ%)G&Zv7~+9~iQ56mJdgR{n>Q{gp@7 zwOvJzp6tH!tT)c9mB(FV4s(SrVhO35V-*}_d`%GuDnZrVphDP_Xa z6m>1JpgqXwYo_79)xwMQ=I!arLJr{2kJI&_xRiB_cy0gpughvd9V6`)LtWJGnP0#lP|B~t-R!=6 zwZm@~r(G35+A&*oN#3op^VZE-%*tymt$13$iBKS8(-(Od{^sk#EI&x_t&`v75k9o) zI%4R{Yl-!B=<}yECD|Q9H-qdfu}=e3(|rtI<`j2p7cjE|(DE98;WiIL^s+TWQso;0 zO^eWiNZ9Jp2C@VblaJ?A73>rGD~$#^#2^8IyE(@OJ#?hE)_1J18553HztUBld?#8W zO?_~}g@CW)$lb5Nsj>4|?yoYEA?!??Fou9MgOGLvu|Yi%v|R?snfG-vP|S2nTzDTH z&2ut8UV)u-^B95U)KJZ30j2yoJ=x{VAa6^oR|N?o>jZlodfNR}bSv`lkV8oO8Onxq z7pEVTCcq*5;0A+pp|j^bmBWPNf2}9mTp+*>bzcaFu^Bu&F3ZgXp#R=Y)_ETJ@bfWRxN*YhY6TwmaONxS~-(vAj!>fW}JZ&#BLQE(hfxsiv^dJ z`3S;KQr#mGSl9w?;cwU}nkRg@__W=P>em77lHh~5)Rs5Xw2J{7KuWX!kB?l1>$Xaf#yDq4koM?NZ?*P~j~#`-W` zDbhNVnHVGT+fS8=a57>k6)Mc~pSFKNyWF6c7 zOo%94acz;tNHH)*m9Yk0f;IO+{F0L|N5uF;cTOT>;{ezpGupry;JvnBPhNV>vTe0Z zw`+mbCmaRJCfh)iR=lX&Rd>{~rVpC|>;4M^!e|RIba(RkQ(Nl&Eem4i+)Bo*W4haB zs#SNMbA;Xt)N>+G4Ulkxt<0H8TOsIcwZ=_gR&DQ$(4#1tz^=GkQ^%_azP<}7s`^@P zn`9>f=7T7m2@mOqto9H#1>F5w->nq;$&7!?89Z5lp?$di1S0&@IMro9a~7R|4>KCE zj!^W=^AB`XY2O;~s>rt__v?mb#Q@&j-6*aB)9r-Sr1JEZHN$GC>K-meV@vG=Db_uH z_EE4W7j*n?2^24N*X%5#XjJL%*TdOI#^`I$WFLm4ypLrZAPuu*Wl;7NwrGyUuefU8 z`9pi-CVr`9KS9YzdS@hR(yL2IkJ`{V^5dNxoU0EMv%9r|kN7yLv%uIL3G^L{tSw^l zyfI1mVb^!RMZI*KX&@Kg+RzM79>abwl~_E*0nd zv$Z-3N(6GK0ML^$-+SX;(A&HaX>r#5BOCnBjF+h$NEd2__@3pzD0lzgmSp}PO*yju z!@v1IRAaLKYs&G@DgXB=M|Nfw_WzV}Bv_7FmH4^t_m)poOuSQrtS5wGU_-e9^)6va zZ?AVWP@;gW53N*bUhd$sxjZA4Y~gH)!3tZNjWwaHt?eR`v)MGc@*q;i`)+;GR&^3P z(}h}K!<*{XchlQrt%S3CdQnrLy6$7Qr*B93min9Y;dsOItJl@Zq_yMqtq;{gXe#5Y z=R@DXtSkhocs{n+M;Sf>xNHwc;<20kNWpH@hjHwS=B}6Sr}1NRtoBq;^|qDC#ZtL} zOp#~*%~LOdXU3TR?*Im=sMMg39JhgGcazluOVh7ZplqXrw??No32GEZ{3ZEN*b;IF zF$NJGoPNc**JhU@inD%)&%@5HnA{r{5diS81N+3E3wd|#_*tZk1ffvu3#f(|zJ%N} zu$-LN(Xl$BjK=L|{Y3*q)yq9MnnPU6D|s7wMR0%4!D*=^(&~eJoh1|X*))(>d5K8v zHkYxOD?BDC+O6u`E z@dff+`cOX|$Jz*Oq<0nq>9hiMagzBSQ;n^UI=n2om-cmGv8t)Q?U|rdCBl)~k0Oi| zG#F`!Tx~6@UV2}|wnsGGb8VMGVVCaf7xnGCiM^SwD-$NUoWQiHqW!amhQqFAa|t&o zf#tQ$5@KQE(X#4AuaG!WNg!b9*UDyMnM?Tr&a7DLCXk#BZ%7FxkpMzWk zTjR_-t9$hx4v!Xz7C$I)3-*%Nc41}I1)!pRXE^>PX-_8VGBS8Qzm$+h&rqPw*mE*@~PJ>U=C`kx#Fo$qM@z^vFz1539&3h6C zR7l>Paq1b&#&%GB^;<6??%M~iJp7`<+|Lo7suTVV&E@My4I8s=t)D^bERS)!8SfGD>l1!4ijd`0ob`yBP50ot)0!k2FUkvm<;MXW!Jv zkSD~HYky6DjG$Tu_ZE-eFc%6owW3$mdsk!AT9ag939~06;!_#x5|Uj@_(|*?cxbE( zI3uv3=$n54!%98Fd)WXdOW$WL#$$YV+GvWR8la!BAQ(}>qhX2^dZ?Z^eYlNFYn^?! zpX$eW|7$A}Zv!=0gA3}dwK7RF=8u!$R_v;=r$x~PZJv99_Ssy{gMuOcvEZ)d_ zxb?z2`Jdg8qOyp-+vgm9v+^57K4O@*a(p6-c_J5U%}ekzqwa$4vQiD8x(EvXHTn)3 zzzC>VT5YyfnKzy&C_sPQ@-qMrtvS*%@8)%v4}o!&B6ZLQYz?zDN0ap}D9>IU>IiCm zVj{|z^wy~}+wr2wi`z{J95_h~gW#x6WN^4Colhiq-9fi%_MWtvt9*&e=z}^RK1Cc` z!(x$$`FZ+zexVEMd5TVF<^6s?jQ*me@HP*s{!{R;O{aSocGJ}MjQu__&(Xsg9W%&W zI#_aWDO2A0clW7-_^+Lf8}fIk%$tEowHe~=mlMD=)k5`w_u+Hi*{nm9I_Fn}+M%eR zg-va`Wd-Rm^gHM?L7~rU@m93caie3T6XE zbHoA0p4?D1cf=Ra-vH*MO*`Nn-F2>#x)E^2W9ctLClP^-+`}xDtV7D#+Cqh+71F9W zfht1y+q3BP=HCSt45$YPtZ5fF;S{}L&v6luPoz@ug(7ED~Iu3|S9cM9sF#?LsVj(yK z!KP6MY*zv|S0CZM;q`1|pZjv>{njTKm;?efd#m@FX8n16U@WwYtuRu%1K`jTsGIx6 z*tt66)xUsP3=aJX)-l=P3fm^+AFgURcJczSO2p$hhPo7(P%ID)PaJ5$)Cw0oLw;m_ ztcD+n+`WK!F?eJM5#msc6Fg?$(pcqLdZp8830U6cHztF*74Y5JB4oD7WSnv= zUpzeN*+M1h0A6gR60+L`v>QqI&1W>1fUG`+6oqW%`z!on?21IVZvVc}>k*k0 z>kE!;NOx|wnQm);F3!_au4J>YV2&|UY!sUuobYyP9=q9a=FC{);b;y33`39-Z086- z3YkZOAPMgm;{Os5!*r5ns-=*~6RB#ByCT8jz^r4hsVmdd&G_{bhbPHlaFkMwsxaJx zBE*|bGb4%M0^2zgZwr^OqThun?Nc@_gZ+rEx^#}vp8JIY5GBDMs%CecL)(Ffv3C+2 zBl0Jw#7s}zC{fFJCCe2Vb-;w^pai$Eu#SG?q>~PspAUEU+fO`)D(mrOUaw(ZIx_Mv ziTz7V<`5rLDe0jZ>X)lD0W%HxE%PoZ)yrPh4rzWu0n4m@?+*Q-h6r#q#>=QRCZd(m z+K$lQr_nAoSOPAL+C3rI-17`oMKN@bA(Cemvnr}Mfg498a<%RRa_V|qt%|i`Ge(~rvF6QcE?m3cG_eu=_+DY_2IY9$2ou< z$cSiR(A`rN7-9H)ilCgf*%Ww+ml;X)5Yih4mY>W3HIAn zh&GAXDw5rEzr0tyG=~Xv}ode^g=q-yG~yoT_SC;_C>Ey zmE3Q#6|tnZ(x<tti%Vb_DXXaOp_5i?D2qcbS>k~6%D;e8%1_JXS6Amd7T2%FuN#i47_Ku|ubFt?AFqpGdxpkC%y|Zb$D|+l;yw{h>Ix(thasPqg z;m9RoZ9Ufa|KC?E1KOfaBrVwdq$XwNvV6L%qAQ4i`M zJ+{F7;h(%?X5ZbQqHpQ=e(BtsevqwS*>_;mDCBGlS)(MICw^GQi`|Vm@v(sXs6_A8 zN_&vi9X~dwZX|AO`%STKXMLuONs78{&W^d#*J_w}IQ?8QOZHQIKm>L^X&SW3P|fEk zu+d8Bq<}6Mh$WVG_sKk}YvT(3=Nb=B8!Ivo=odK%+T`WVi-xDT?m!T=F@%_SLpIFW4;PGA;w72V{-^bTxvNX zV7Fgajc1?^kLZ~%djf~?p)in2Mk7(0nd#PgDqKHXyWfKKiI5ss@PkL80y@bLx zcv&iZb-32cM89hZwI>b~obVxi>@_$sm5axjuy6hfr6NC^@3|B2p|~8EBNe!As(ta} z>nB_|aky`5qLC}U5I9d@?-klndZwBiH6`@f=j3B6QEKj(HJb$^sIqt_>qN2^BrT%c zbl^@ay_`JT%0gP@a7B3E`xnyou9=^=oxdLN>j>$pcVl;&&^RNWQB&*?ro%-Y>PH&O z`;n@Eo|6t)12oR%A5UCy3tQi2g{m$;GP$-du42||>P@baNw3&xc53i{>1je6{!zvH zj%9{6wZbuy!TDnC+bud{{JeBdy`<;Fp$YY-?~ufnaKjLOU%aEk6n%R zM{Bv;y8}xYT(f~umyz_bEgs3BCT-DpXYT4xwa~#-r|ZVvwPa+zdrWstBf};b-0h8Ii{mTk%Q-WIq@hN(7iJ_TTjnN9EH9ipWun!6S$R^wA|@(40y zle8H4s@a8S(i*vk1}aUce-59gpH~Zf&a(Ihlh?MkXg54~1+};F@VJqRAI~b`3ZdNv zMo5gv(xixt=84vjc>QTjs@oY0^jd5nf{{|uVk_cNBstfGvCj$*;%ctj;bptk4Nrr< zt^g(6wq5hB^+D*zVIW>dBuD!4fndzE~+Qa;pEZi27ateOD-rvB6odC0_{b>@FU3;Er<( zcaCWQ2=)Ko7w_ZpS=SwJbkDHiWZj`E~`4 z4;HlLskwV<$T}SS_L0H$_`1fsOUNdOMgCZ*J4_R^L`zGb<9mh-ot}vFb!9YtRawkR z+guGrr?G;0(oe7x=Z*&pCEO=tJyN@!N_a65I#Ehm#aAPc!S?|}rFgNFTLP59f(QL5 z#=Fq3*WVwBMCI{M{;l`?yycS`opzI4X_VM>woS7R(B;qX#9n2#+1tY?ahzkk|N7Fts(%|PPvU%4isf4}jTngXHd;sK ze>d2Q^i#~_!v;>Yz{4)5$0bqmNPtqL{psB$S$zCQ#6TVE_+UpA${oBoxIq}br+sUM ztk9kDC-?5jf#=Pg)!fbQCxqNX+%u zb)wU@^ScZ8`pIytCYDyCr&Oz)iI`BM<*7MM?pSm7=a}j64*<=6Ur_OZ@t7pfJW@{H zx3o??NA<3kK<$yV7I* z9_ZXzFLggDV?b-Qg`c1ON2Mb4k+NV(?fcjw)q*uGS{d+!?__A+o9~N)+n+zU{a|mW zfpSx!Y!?jL9^R9j-cim+GC9MVR-UjY%Q`FYcirsIIOf8T+|(}mY=-%*`x;2}#4JrX zAjF_14Dnv_6h|E|Ancm2Ftz$ki0I6eBs&4FIwc>d5V4TM89!yeb(pJoTeY2y?p$h) z+C`Uj2qez6yp$0Q7S3v2^2!zuD}G-fC1$WBw2g-=Mm_psBbxK8E#`@;!(_8dm)d0C z3Hs{Cdp%kDfXH~J`KtY2cfCg8tJR^u3l%Nq`aY2Lt#;FuMWUJD?s?zzxO_&mku!@%noq_l2UfWc?FpvYdUd{Ja)DK| zberqSEABfMou2u}s&ERI@J)#tmKpyY3(PPSH|UR{dh1KSU#ofbsuz<7W*gI zyQC#22#@3(eBtjNH9JL{2G;fDPQr2tK`_5G5np$Twsh!xuf>M<9xYwpp|&2w0tmc+ zoSS);no#a|o;-~(N{7?CA8Vt) zk$Jc7=)sRQ|ZX3vitTR_dJox~4^|1BKSlbM}RX(^Vp%j$zlVZ zGge{eiznSz8i#CF1EwC{E4uJo=w1&a-_!An5c#xXMv}HF#j*o^`=Cpg-*S$iJxFE0 zZvn((Ng|W9Ctx?#lnoL5NDiKq{NJT;OHSaUVE}kPv1s!!-ASCMufj-np_K&cZ@47o zADDWyU&$fp@b{c4810w=OIKD{bt`)!Jqp2XqD5-3lp{ zku9-~tYO>r3L~6wCe?>ltK_`oye>@oBsW_@=@5anLSI`42-VylGYbO+n zGrsfY{mdhUIh;gG@qdx`PBF5EftGgL)^6KowQXy+ZQI^$+qQPwwr$(Cx&J z$>dMwa;__RFDh@Ps-EvzYxyAygpo(tlZFTU>j|P^BU9t@oG~$H=<7evLW#EpAD5VMHFl1&0_>if-qs@|xe^(xqsT2D zyBy_I$A}I>37*--lH*1a2=&~!iZ}|#gVvft^uFX7qx6+ycBM)8(S>)n-O7%PWD9Z? z82P!ZH{nGTiekz4?^ECDEC14O1phmyqWt@{88)=<9XGobcD;^GfcB+2{yIlEVNS zf7)ecJ;m!P!NwlY0P!Ehd%{GlVpO)0Q=sJmJ=G)LA#zm;oImOXFRwvwe;VaflTXvepZRN8$PpR9xUr+6gCtGg4^s)hr$Cxj8wUPCV5~Si+ z4E#R*=>L{ltUxFdiqCirDFjW5aoKjd!@)jtod#u`+fIGDEf3N?i33F(7I{POe=;!B@(x7GLJ+IINzbZp(-UsJj9_>D?v_)VjhgL z^3r3CecXk@AJ}fME#SJkk@*XC6~Yn)A$RWq*0N$(Q)BLQnu^QPX-5LUqweg7tFzKp zPM8434{N;6bQq9P^4Go4+HpHkH!FjxdF1UwJV?y!glxO$A?9CJu89CaC8#Lutry{X zbOUcyci)Gd%ZS`v3mhN&-L3(^8grPox|=m&*<*y)XmhYcNCe+@a^f_3!2;l=Ex)WO z!wAx~Gz_38nZ51Q``CC~naBdIs%P7K%Q$BlT-~|YZsMEG{6)r9(9X>yC2qtgi7g0# z5Z+4es1KITeS6*}#xhXkA4s}^rAj0m=QLc{tcHqo(#S|G%T|wvc2?%uC0}_t`dgED zt9O!IUb<}6naHcT1_{^nju=3l1T+D9^^hM+ogg4X-1B1A@Oaf z_3BE{TRmZ>%lr#&x@7Q-d8Bm}wsoA>KDen&hRG9`IS#9Gt{L{R=enr1YyxS_X|Zni zt0%O8iI-f-b!;oD;9!hqsUa~JZc=RWj-~It0e3?V(=*c2B=M3;dk4P6`WSHM%ac*o zlT-EORE$JeimN7V?L$@G7JN>?okFc>h%5AmcLr(Y?N~}W0+OSxK*$n3vF3yS8@!+p z36>bszq5LNKo)V6=vgyMlMDC?golfV2y<~b>+}L-gPw1naX9HJQzw*Tvd(mhg;%U_ zoJxz{8QbVG3vqOC#-c5){-l3w@AuEu5u>-tEkl={;R6!-6IJMwjrK$U1(JOSFia^I znh78h12)_+QBSyhQAAE~v2gOz(9m0E)-cB1AL1MZO4+QrWihGD^#p;&KihF|X3>TmkONxdO2%_zKFVa( z^f^{t_vaf*W*P_0*n`Hb@7k~Ud(HkL`gAmSlv1JdBcx4tnw&y~RJfjc;$vGq#uCtH zmc)ws{kj8{$qjnJ2cls}HVISG>{08S8%!J81xFmrJ!}YBt_!RT!hJYoST?5vr-A zA$iO%#8px9u~hgC%r@}tj62R4qtkQQO=08+WA#4j6aLfg;Q(0eUikRv=r3ywFG>N) zGx;1by5Uhix)5c%b^~*1HUUvqJraBj#2jvKVp!FFE-e(4WD|he+Cm}ltgM^{rUQ}W$L5fkbx2Q)Us{vXJK4+2-@nqG_>278$T}6uljQn zfN?J2HhN-(>Yv+-3*=;;Sl_FGGLoZ~NLiq}wJde&= zzVL=sEUGq(=%(!s*NL2KFU;m*q3loXsvB3w+9TiCJ+i=a9i2UCA@PpD%iW*uKl*;Q zN_2qN?SI)xUFw@J4#4#Rt1%&hg)UbeZ>?WCf+Xvf}wL3R)>LV>JJG z(X$s#0-XA*L8EPKloCJ#9=#UX&?&jbl%Yh^^~DH%pJgx?eR3QwTpJ^<6_J`DIx9m| zb+7tWg(L4U-SlDy?_(@jQ>ZCzHA2$yapoA+SovIOD zC9jn!>j)FU>)-2%oQfcO!z)7gt2^DCBrWfKB7_Z3TdQz96_%EtXrssPc@;tR-HSMU za{_xxXjP(sj!skSjtW)dO=zM6K2bzs4Gf;))G^;EzxMR=69>xmiG(MUQ5&Xse3&SL zpa-qF>Zg9CVj!u_71n2S%v&uF4b7IS@JmmU7MN?sT{}6M`Qutv zY$CpoyD>JR>SP%lzlOUn*XbxQ^pdP-M^csiQzC>wqUai#KEP!Dbj1~RxP*+huB&{a zwd}+MFZCSToEq5@8*6NY7pj) zh{Gd8i3RU=!EY$qP)l&EbBN>$9LFUT-(VEkTfeerqVvYbmXY~h4gjB~Z&u*(j& zs17PDe%R?)`K_$kcq(O)0apQCHr*q<|Mm=8<;|(GJeCyBN>&F~&Qx}5@Vl+)-Is@0 z5^dL28JI^S)F275Yx$vaL}G5GuQQsF7|-xEnCKXD%;QvMscTC(Ph7KH1-Ao&1>fB@(gplN4neiBy-b7+;Wk^h?hePgBDrJStw2f0WOTg8yFYD+ zrXlKU(2Y3p9dz#w4&+LP{@U~YZG*`knYjI9zqv{h(t$P%)K;M!b;9|w&F_=&XdiTj z>6q~LO~<{)+@q>{GBL_&NtMfE&NnfeGhAp(|OeuK`<2;bGz6)*P!iT{IRqWc9u2t`^}G#4~dR^s+()l;^{X=8AVc0*l7{-upe z(XD0MMtBEb%6zJ-N3~W8r%x%-K(d*c)G;&wh;gu!2F}SWS9B7q{#G%03|z%HNs;Ou z_D5%)7T*t>m_S-QRVusXtivZD zF-j}<90&OjUMxLf*WXzOd=Bsk%9iL+`p53+bEdJ;s4A_ zbUfR_G26aEk%+#TY_%hYVLG*@bN>}gX-{hWc^GfbO=r-}JEm<$E#SwfSHUJCP}in%v9)UqaF{V~28UGy6ko+Xf>P!9Ri)5_Zi0 zo=pBnZ^M6awf_gmkaMBH^;l-$X2`$S~$=RL=DW1ely}`lH8@Wp-lcB zqoX05w@T1|<7#sJiPsF<+J2i98&M;dBN1PMI~S`6->9O3K)DY_GclkT9=C#Sk5f0c zyAAwK7;7;jwt!!D9PxX!&X=nX>W8n*1hqJXd$n|(F9RoO9B!+jk?ej|X;17OZ%6x6 z^0&PILauvG=1exT4;Z7`@Z3Q|AEN4VeL?H20M|b?ZcDm7Zv1L08#h}$rdkx5tK<6p z&m;3Ns#8SLS~S{6DLsF8-MnK|ZYLnVKUBl5*7kUsdEIid<(HFe0_WcLkB-iN(FUP#Rv&SzU3>*(`EoTRhUQ?0nz#Ll47Eb0~$ zlC4%9Le*RD%^`e~SR7HdsD>x_lk%WI``W_K_v`pVcNmUW+yB|JPuaS`JJGofG`NEr zX=vkT$O+L@3!wPAj~dZd^6bj-jb``;c15W#xXHHq@0IY3Edli9bj)(>jL~b0zL{ z*)>V>s=Zo0p>1!ie_IT<8F%PgPc-AHH_~;H)lkDn5B49^>H75nsY*_J`e4|W${t@# z?zFC7Z*fVd)xKW;?!=F^|79d;HII*1Al_8kxk#A#vc}l_dgMd{ZufV3o}X-YR1*ym z`)Y0;r0x@^GuH@F_2E4*ok=^EW}Nbwc?Q8-c!pi_5rTWvlfEprJrX1lv8bQ-3Dvv4RhgOMMz$+c5ZVcAz2 zxVi>Rs!K}gu=r0_FQV*LP14^rNxjBNc5$~#*?@}Vzs(h64SVt70 z+5lRr8_eWI)yvaEZ^=W<(k^Xi8lnC689Fo^#xlOA<8l_8?;!`4PgHol(dTZL6%tz$ zo<455-TzgEo}Fr}EUzs;^=$3&r%*c~bPqM$R>}M|kR>!D?%I(n-pW~GP=pGU*f?QT zUb&nknl+k?Mk3y`2V9RtRkZu;mobiR2qckk5$c1sqvtW(7FnlhDl>OJU4h-66z!-A z(f|?1NrV9-xO@rHi{r-yoF@e4;|x}m5Vt)W95#RMIGjaTSFYtZ?7}dXGMZ&s<|sDB zp?6eePxDK(1qsw%;VcZNtl0J_XE zFQn+}#oD&JwGNqJ?f5uWnR!6(} z2p4sB=Jv`={z#T`Fx>IF!DeGHJ{}=|ASJfE`~Ss;LK(x2Q;zn9ConU{p^e#Tk6d!i)|RvRYb8*p=!#d^$e!Y ziC4D+8=-0}l4ZE5oRB!VvZhoAEwP@?>^OSPi`SOGS}j9>b-wE#(R2=`TX2j=x*2yI z7dd@^9%5sNyXsqM;02ut<+!g+LGFPh9r>`t(WdX?D17&Y^fsR(RoCb;%&52~&|a7$ z?c@a=?5=iyGCTPhGYQk!ls_rY`V|GL2-P zb>`2bA(?x%X?PSj6qG?4Syv(9d-n(zd}55xMl@T|0`W!Pa)#0)Uo1^{g-!Dac|?NJ z^EsdJKa9%zD}U;5sl`Fqb;t9d=7fYa9*iPe)<7>vX5*s*|9Wa$^IFq2k7 zL(Yj^C63ULRqcol!fuQpK&*2oD_#&pHMZd~peNPfv2bs8>qvdT8}H1>bN`jgFjV(E zv>L)S^s&Ywt$q#ZQZUo;AAAyqG#bR zq+eY^BzAGJNAa(+zb8rxvij-)n&PUgU*YhDmsu*J%1sW_Sklx@g9w)TqS{r+v6jPA&A23&F<@5-Kd$@B&B9=O&-hvp3;-hzVGTsJK_?RpF zLUNA6D)I``L)0aaCbQRW-Br*|ze*>mT8!Dp$=eP`De}yyMQga2ij5M>$ey9(6i*#z zPkbsZ*`nRzFnNA-qj>)*nwof2MtOIa!Lo|8;mCQu(!@JMs%-0Sr_fQN*s6vwsj(d{ z4KpM9%cBqx1+$on%e}=*5c3#=@mPS5v+kw7-)ALvHAIQbi66*E6>B4bYuK_O8X>5{ zY8_&e5M`jsTU?Jj-w_Wx=**t^T0YdFUt@#ujg!4T2cc4S#`}*+!9it_Gh4DCT;Duh zc0jMSudY8QwqMv~iBa~@@LINy!i zQ2&82DWlUyNL7^ZuHOC)b*4Iog%AqGhge#2V#X2M5(_H{29nj*+Go$Ck74bijrYb` zm1t@OD!HWht~Kl&uP; zv?oKyNH%jZB7b|(bI&usc!1&op-N*&S20f>=Tjkriojb`MkLcgZdB=FI;8Vd!iv!C zZoGezu22`K5y3aY2Y?q{n0VmL@}EblsH#vO8Y=U7!hW=eMi;h1GY_`*Mk{AQ>~DHw z)yT&2V8jFbnQeMZK2v)e<7gXe7ZXih(dP;6zZ(vNR=L=V}s)-i9L>tBL6G0 zen3<(wbQ?x&_IwwQkyEByW=%8b|X9Ke|rC+fsi_W!#2owq~$W?ufUQ*t%jdaS7OC@ z;q)tn=@RpZJLRI%HnF3+Y5g&LNR?CkbeXY#{d5nQMffkIDr9?Ho*n+rh!LhP`&%JQ z9RB9Oa)tzM>bbAG-*U0xhe$*S^eQe~$MELbEwe<6Ong5fu$dJHTMi#rhXh^e$yZ9w z5d=$krl>K!d=}+a1f727i9wL;^#0;_=&6ECWo}mte&v9d6I*1YfqbU4l{NR+jx;{= zuqh3XBv6+-rN{On|JyP$`)vVd+hFP-75+QhPEqQ94!wbJ>O~sREcTR6je<&~baEUr zAG9?$tnxg#NJxJm;3{H%LT; z!_qjbBTiq5?hG#{Onus-8G1G12i)g^3Z|Q1t_UhL;L@8^vkh+79~13h=5C>*eOj2u z5R$BwI&5B_{-s$%oPIZqxuoDcBO7yQuQ=n@gW|e?Au`jkT}C%!z{;o4ft}}*WPH6KrRgE`G=aw!q*ArJs!wyd(_5N2h#%vc}d8aeNO^H zo6z8W4w9pw7~E%(aP&BtBd={BRq%&HAoFT)1ix>&mwqvru-LC5=%ghI8iQy zRM|inGgwTH2JU=e9naD4)pkM1PKLqYB+7wE; ziS?@YV16DD`~tE29?F+*CTYTiKyL86b+cZ*%IVM1*5L~;8|L&QJ(u)|n zDyB2?>>qZfoHBalSW)zoo3u1cP{L_&L=?CBNmY}1jn*|?mrF~E+-51Pi}1Gr zl5!60>l8e5R!6>&;!TBH8a+OvLz%>Iu>p&{dyz0Dpz8)Iy69CU~ z#amDC!wjr_iI|}^4XP_n$Qnyk$v=iR!uReg2|xzVb!kbll=`?865R^-h2yVwZt;3z zHJp@orMn|&DJ$Ce?+Poa;U{nx-kk&wNW{0z?5?M>y(D}-Ofl8AFs9VyIQE=Y*h&2y+Z4ie0hBLcf1?2JJ%v#`^>nl zBi0(K${%iW0;p7FA(s0ma?pCQa_QvzklD}^BcrsmB>2f$grEsD|o5JNoal4p9{SCSJgUQ+4RtcuC-#&qaza*XG*)IkZGB6W z4df@UY-c&pMW5nQwJva>&#jx#-L9X(gvA&oU4tHJlM10X$C`w1`;Rb{bw#vq`A4#; zpJF1oKF%ew2}*xClN#?+8Ii-fF4K5>xE{1#UU$+!lZs(UJi2vVX|dP6xWDOg!}SVJ zd8U@Ri6d{{6~x~_A(w`vbM^4X)L3?9ZJySSUW?;@W&f4zxSm~P(OzKL!OuQQQe55{-j-pN{s?u(6gb_Ypv{$bGK1ev<>*;K>-5cFTmoJ)R5kiH( zUzr}SGV8}x9hAavdU|}6RUGOiQ}<&xW`@3NHfH2M9-mj-vyU8-(ci90->dsezY~Xl zQs;Y+ch4hk`_BUudXG$J$k4<*;H-Q&sbHLE87 z!{wM~!JFDxGz)-|+K@_w@|I z2W$CpA8n>r1Bma)i3o5{TKo}Ly0hrW z6T)Ly=#1=?+G|L4mU3ZF#xBtqQ~<U|1n#QEE+h zAtInYZdqd0Y{LFlCgSfLJM!eO+lSJ2&L5CCsNK#I%+PRx%oAo>?NGS4n(`~A&MjN~ zw#bNz42=W8_^Js(P1r_YGb&nR)u#4L^)a=92dTlSBWT|oU{y}VfypO)rLEiZgfG46 zyFS9%UZJ<`^QpMn!awq+IXUlrw|Diag*P8g5KS!Y&-atzwB1eW!mN68gw9Czmj^4J zF#6qEwK{CR^x%S5SWtB`54;sM}gRdW(B?f%vvG#iCgvi>(NAT`%(80}X?;~fEXH5%diWgfU; z66zUsqx3-*D~?1&CaDWnOOyrP?8nuNY7y+Cc7Q2HUS6-PZv5O5$fQ)A^ciwD|HMkl znhOWLz;~F&2)MY6tizz@pbcaSsxPeCbddI2e0_m(HQ2hLJ2P+#mgc|7JgYx~H%Wbr zwcbOF?z~cX{1I?VyO{Ta4kc-p1> z!0;03c#_r5+KUR8vdhS@`CdW0E%edPe6U0YZh`o;Sb%R8rZbEH(INq}jx$?!Ld&}F zRbR;*pOeIr6RL0?s2rbBIYu6rj$^jB-bArSkBAcOmwA_8`QekG z@NeSUkr);T(s@4W=#o{zYhL04DQ7UbTIgi^Q@$ilS0rb}L-_+`>)EO}g5vg7{Kc$Y z+`wUhiNpPjOzwF4?jdOi6!=OY#2)Lx&J%%b@h}|tT=w`*~cHx506_|2Bmf^{*> zABEIk)5I25p#DR@++DKCUW`d|p;U+7ZPttWO%H(C;G}SO20;2>=gEP{Vh9YW6OfBl z9klIK$)B!gLsZ_4DJbAM+zB6|o8Lrxu`>@S2D8F?8Qh{;NmTql4figk49+K5e9 zxZAltl^-~nVN+98!ZY$<12m=lgOhOUgw0A$M|k~hH_=`erPFv_o9!f3K~~n1oD5Nf zcCuU{X-X#%lDBo|D9Jk3f$}|Ce-NPkhQTQD8Dv#bdJ;fN^dq@Us%N(l=sUdj zo3i6kND9x9W!hjgy~I8QD!GF=Ru*;m1QHIZLu_JWTK>?26oxy^IfP4^isc#6w1GNH zmf&xo?yb|{pz5TL$#K@S;-CMP;~W+BkF)+@^#$_a*dBIixV?WwM*_OSgX4grZmLDe zlc;B_?PaU&vmI3=uBa%+o!w)MJWiTQN(;oY&L^KO>csiwptf0&5(FjW^s_?UNWzmk z5Cr0i)HE`k(Jge7xRV@YKNi52Do`$(DP0HNMrL6^WA6GSePTzF1Wri$^Y3*#HLyz^B25>BF35`T!Mk8=8=|G`-6t4Jh$|@{#7kMTCx^tf}vmJ874j#{io3 zC{@=6VF9Xkia32XSu75>#WGy~$47kY5v2&8BR5XCeotYNt%7>y03^8O@rMnnV`RQ5 zXllPi4QpxD{fWCVKtGGK?oX_%H#1jBKH78N8Zt#vu0@NpvYw^q*f=~=HA|6f%|as7 z3YHzTcl;xAusSUa7}A?Y7t|FGudH zOA5Re7FzsGR&+9;t^`rQBQY44%e7O9`TZO8aIy;*poKNWG3q;NwdRH`%2ASI>p^H{ zu(pp1O@8^yBk1`vI?YqQcqh&xb{_An z)&XF%cG$EhOMUJl=0-TE19Ei*^OBq57>kpvqDDfAf%=#hD7(VaLU&)ndPRj%mXSHG zyqP3)#S_i>w(?BljL);Ck|!QH&J7qCw3-iqWB>Pq#LK z+tp|SQNt(n`9XD(YOmymb1OaXWrcp&*3fEXp7U6H*~5__oZOm-COOeNXRHCiLJ1ZB z7f!OiJfP{4TN=mB7Q2}$f@4_2(8mM^6Nl0iQU^r1>cN{6)fr{gUc3>i z%A6AewY7=M$cx}r>Ru%2S=Jn4re=x2&Gd0mn<1DG(Ex+hl1p3$Wmg)tO+Ha>hsF1u;0m;C5yY zUfY^vsE0KvhNy!=S-80+xo@6-4>nHK!?8fnz<3zU(aY+R8->6Zd6 z=(=t`S}X4XAR77=grXL=5K144lU@p`Cdu5o7?tLZd_b!EN)q=9Q+wncqx0^YVA)e|AOJ zZ-32(Se1fiZ{;I04LmV}xbay0v@}E8@_JrgBaCZ{s{}Rk*>Yhx2xS!C6Vr@z7$AG~ z`|aopX}6rgt*4bv>TtzGn{1n1faru0syG7mM*!}ej6E2S#A=p4&qIj0C}Q6voB(W? zbCK`dAQg{_JWn^v$8Rof(EEeUM$<-WN$w|ocH9^dW1e$&;~`u(1gD;au{xgol);eV zk?|eXC6SYWV;QVvi$`e^?*?PgP>AU0L^dBMDkw%xvoI!0&t6-Y(wdA+d_NQk>;tyx z1+s83)I=WpG!T|lX@fz&ki6b)+x81aHE5Hl_QrS~alD(s?=E?19ju^%DjUAqL7B>uI~!H zOtWxqXVekZoq+iCn zV&57%Y9Fy-F+d40HdaF<=Zy>lnRwQfV8mPm1v3d_yRtxAIIp156l0p6BaBp63ys*{ z?d+hrcKYfn`H<1(ZWJ22`*vs{Xe(Sz?S}$EL_rqacGi|H^r()VHp3-iBf%@V5>4p! zzjBKD?xz9zUD*}mEs-w7zORseJUt%o;#h$$f%so!S1BsJ*v z9t3yok`CS;A?C#r$;5-y=TH`(No1NIw+&Sb?zXWUbxzqlcA74Sv$`5G$Y|u<9%m(~ zYZk+mW$gA6I((}T#xiyk@*|8g0y?BRDAxaQ-G)Tc~6LJYXPcz;Nxf z!a({4)4QRog+N{oSY^e#V*1Nci2&BCtXT?Bl=|2dR-UMJUg=wdB^S)sA!!&MnNv67 zYqPHzeEud}v1bcGjv;+}S6DTfloqYA{mr<~P<*Dp%NcX}A051@g`G+pT9g-`H-X?0 z#9IYH6V*AiqTyY*yA`c5sW^#rgH0&)5(Jo;ME}5^8Dqvo13G>*Y&)CrUS5J3wkXzY zX<}Jac8)d)r=)>$V%Z;DW{0pjp^N-y)Nw8e(@Lh>V&dee{h( z7PebDkzs%XoyMc35_-vjmehOKEHN*n1F&#qTTI>@;WHh&hs)-m^Z+I#*%V;haR!3& zwPA-{R*;jVMFNuJ_*51p&VuY<+ z2_a^vBK~^9yyPldPMXJ7Y_GY4t&Z!<#aDNCaj9;fRR*^Qnz_9CW@7b(oD+AO+`8V+ zPyQ8_e~^0%T-8eN0H7~2;PyoF@)i{}*u{Kj)E?WXY{&(7Sb>^fyd9MQ%M}t6E^YJH za=1?BiI6iTrBnU}(*s!(K=TCCAO!nG>@}p)eN{DJ)j-*FmHB}+p3i7<%3yl$5(X~d zL%R6gTq)H<(ds0%nvjDdL&3{&$7`ik%>N{fC8f-;$^lE)`ji=QUEKqBg{orlf6~0@hf3Ilw^)4&1Xyd&jC`jTiEWD4wNU>J?iFWaNf@qNn5w_ zR0{47sYulzLD-AHjaiMT?|diqDSxst;2Duca7$1H4@nl@coLf2ys)bhB4J|XJZR1@ zkTe~hfTu6f!m`DgNX8JHhzUy}?PG#k=y449H2(%&Di2x9&$0t+=^N6F8+Rq?vLSsYy`chSS zpsuHgDD^@yE|{zOYo}5wr}DJfRdsINA!qq~)#7G%;hBB80RQoI-Ocmu;O56!;?`5? zrcqbjP~ZCD{H=YU{7+^jv+@0!`}z9g6$7pXrCU?@L=F1D>h(X+C=OdS_lbBSU@#lu)})zL%U1 zy~K!oln^_g*Z6!NBxdmko|nEK@8}dvS;5t)UigvPJ9nV2h{W2>fiJ$VXo<)4A3vwv zz&3vdZvA_FUqZa)^%K9|Sy5!9KW2q9x(3s&+3PgC49zuIXM=sIuDrO<)9WCZsJ~vm zwyUVh)KnkWFL)j?#G;iOVJ%PHBi4G4MESvm>d-ybdp$MT4pm%PBQX@mOK&fZ#lKts z9J+KzVO(xGqR%UsRrO`RVMhb{5>S zSKYGHdC|Ge-aCu0KC$=n^^~)2+pld{fEoS*GAg->%aLJ-Pf|1zn7Ru6$EJrm7=yU) zeFmm)&oeVJ*UmWPfIGL*vNQV&2TQ_=baRZ6G)GdE{UbVf0{!#zY%`0E$H{uEE4a6% zZQ{o~g#9rObI0SE;sQkOh@Q~3Nx4K?tBDlP92N7 z9Zx)TXS1z0LFec_nl=#coq%0g%BBv_%{Yr1hyUW}dzS5-cIr|+XDb{uh)Ea2=~q$zFDmd{ z&Te*wM3?N0XFwI5I6tQBVx^Y%qXaFm<%g(00W&8p4TLACkY=Ht_vkK_K=kdJNVG`w zZBhbqNU8yAxC0Iv7teC^0F#f14#gr2i>(*W$O)H0nEuOJ`0XgZztWB0+Q~97P3*+; znk}LPdCx8gV-sl0F8%2d7|HAMGFRy890ianI36>%UA!@j<8Okl;A>5bf zI!XmA`g#IqQ(t&7?86y8kP`4Zp7U(zVy{1w0Z~u%%3ZDO9aG*3QxP=O$^e9V@@1mV zRhrybt^(9|&sM=5CH93=pg3d5%2kn9W&WGw(rbOv1;@>_P3Wa0zUUW+QfYv}uNfZ> zVlIv5I=GRRo<)h^2|PU-xLLS)4@IN275E__S2|qGn(YnZH(ei%>fW3NVOV7Igow)C ze^nE z>{BD5!M3oZzF*e9zV@Ejz7FcJIk|MFZv`iYqb<~Wr4uHbL5+ftzksbX$qWwh2z^+c zVk`~_A*AF^f1PqD9(AkL>o@>*$Mo^wT@Q;20;B2PC?=?lj~v!EY)mMUX{|D#xi>&; zwQGL@8Hue?;^2I(ygDq7u)sVLwO}WUhFnP})#IwJ!}#cv|K;t|A!GxgUWV zj@I%W$iYT8HVJu);N@5Smxhqt6rHRrrlFYSGA2CXYkm=NX}!7g8oOd-Y~F~V`xo*_ zi5z-%`W4hU4TsB@&W6p2hL+*q@T670IwcTt@Sa;_0#uqYq?zW{Dz{nIy-@Ol#u7B* zb98F|ywqYWSTIM|6_({t2Nhof#*ju&^>-T~+QLPAs-3CLJ|P4^gv&dg1NB6x^#X+X zSI8vVybb6y-~r1#wc-GoLQu7($6?`qPEz2xm5h`IXS+#<0BW$+)aQH90e^wI(6NQ| z0`&C4Cy2HT#7sqU)%CL3DBYRJ^&;ipdk8FM`!(nq*oj5Z_RBGhk#OHXHYMpEq z$I;T`HGO9>;jqY9%<|5Zh56LZ6zs zl9&>6_4GQt{0NYS+X?XXJGwj`#V zcF6$LIhcFxd(ZsX^xGQ63Dc5E*w;l51Uw<D;+tYiGAQV}adG3HCsj6YwO(!P1LPaB_u8R6-SsYATW?D^QvJay^g_XjQuEs!O#vGiZ|;5wD*$}wzBurU8VEq z0{JqC^R`*6={H)UVUYumS2R(G!bDl{31pln6WFu$x@@aNKcuMNP=1u$`9C6 zxy`1Wg}2krb{=XIv4Dd6KAmS*M<(ugK6Bz2iRDT^!#sKQn=fNO9XyvdcH7=G9MdzYGj5{4CF zs-t{WqplD5eJ9PAY>Co!NLYXk;D}PX_NkXslo7W_=199@{EC$AJlcy}3Vg(yTh=;9 z&V$ja{8`hfWaE&i%+Kg&EeLZ`IjA}}oSEt7H!yVIJwMM?>uvRj#jQpMSk~H>N05{A zlw6@^N{~AZ@}!w6rn5?6xCw{qNdBLt7qrg zL6&EmdzR&Cf#VFb=h_Z?D}qbfF_{GZf;JTSRJWs%GL<+`y}{Fe95?A z>bd4GLI-ML#=vhjh=B&rLp-imR*}(T{x0KPpQ9{R2{Uft4jJr~hYI zNWs7OkK?zsGzP**iQyE-kcfAR*v5lmx=m-q1P4E^zNG|7D?_xtm5R4`n`Lk?m|U2h zdnUMZM~E2SfMTP_M>)FbI}mW5C=VZlOm@On`}*NZ5o9**^Xf{B%8IN)$%JY~AxW?M zgvDvx|3}`J$5Zun{~Jn#l8li^LJD^>Wk@ur$dEb7JY*h1g9ecXR3bzvB9SNxA%zr$ zQjwv#s0@`MrQvt(Ip+@Nc6NE5*Yn5k_4@wt`RKaW`>ws-YpuQ3UVHD8mAWOKVClWX z(0E&B@%^PrDI;=2Q91s^Q?>_;l`UgZ6Pk|9lsmF^+&=!(*BR>1YHnS)+~7qtwh)SS zWzW23Yw_*&!ynNcE;m1Z+ukk9TR)avviHQ#H*&_&TO!$W-(1u2*Iz51-3KNA zcUWpMyVHTMq25mm4$NYU%PQ|Ow>#e8zbpc}1pM%fxA(n0dEa{ND}5Z>>zrtnYZexA z+TV-s0cS>@86_^L=BrRkK6PFy=6Dam+CR!= zMqgIxaLYMT>1;XYRVGo%YH}%x%evR|?r|6voo7_3wl3??%QXV=@k)<)KK{(l`4;x# zaCLT%+pJZ@oZ}h_T3^qsY0vYui)PaqD3VLuey8Y{!;Ed0XP)+Q+{USAOEt|=hkN4r)A4!=jRuQ8*J}yFPfhppC;b6 z%UI+_|MJ9m@j3Ihy#9G6Fxz4&A>-|+q@(%N&#ho9paJ5{O?h%o!Y+2+X#upwhx~1fO_odI--r2MBZkfcIgne|V zkXiMOx8SzDTVC~f-nH@8zl3CL+wR+*I@*=kqjk-A%G@nCEblHU;Kr^u0?`!#uAY>A)T!~Nnb_#%RjE-Ew%R!Vr^sUAC` z?U?)SWMRE|c@2j^MrCy@$0d`_#ERJ*XR}hdHu8!mFLZzUz`EvFRZ-5Ka;s~JQ+lR! z*b3{Ve2g6$_Fa)7!XNFN8+B}=`t=s!@@T1|2*){J>#U!>TIiEJ7C1{cB2FUwrv#a7 z_BPjL2^0+6?cYU1+Y8m_rOZ9CqmGbrLr(m?>a36COI#&#Pol_Ubs@**-yYi>H@(Mr z`o)W{Zm#n`_wu&L%#WUw>8U0bH7of`ZyoOarr|z^a?3|#BEqv~pULIMYAJ<@4M%vF zJJ(x1ITEb7|B=Vitzo|MTO!nUiaINN)>SjhWkZc!NpB4qH~0vDVLu7zNqB7$$C?_B#xKDYsYM>^MtOJx(pNrIjl4GlW#Y7+ePP`Lp76Ks-XJRfkv%W>ggcpX9x;tm?m2iRPm3epvoSDn^hHAX#>Y-+8Ig)dUOqYu z-IOb{(@<@WQ;xdGFZPmU@&!h}*f**3*%l3n?{$f@;mstRRoX)N;`8JEv3E~uY!5`0 zjk$h5SU)(pJ>~iP)$_O~-b{VE@dKN$;7P@$@v?d9d%)k9z zFV3dTZNyy5TiMqej{4W+rK`VJ?3|2eoebiAeKM6N;P z*RCLo<4rl|8?U$IPH;JXx3Av#c67a7-dDX{reX8+R(S{Sn0VLKrLKQAgS;V7Qq!s6 z)uYb_Z*xrqFKF$Wc;~pw>}{9&J4?}D{*l4IQhk1p-S5f$8I<^O!_SR*yB>b6h(Gju z?JtvX8Fe7|&Gy{_d;eiz_!glQjG?s|%i2KQLUG-x2yy+Vp^gmQ!{$8;`Z` zi>i5gxpn3Fy45>}C*tgWtlIf)qDy^O^w2liklz{!ryib)tJQdHBE%=zDQ>arr*K`f zPxr(HuM0Xi!ftG^Y=f>(gm)LZk)0+i%47ZF_iJwv`D|Rw?Z0STy*g*nc*C4uKWqG#ag+T-ETyG!(1OtgGvW%rU}5~GoU5^ZZkr!GGAV*h=SNU`yWvNC?Z50a7hMA<+8 zDk~fHB0RN9i@zf>73~4zzy9|Yj$ULfk9nr{H%QgM^ zoti^NgB}uJ&VCK;-aaTdG0?Dco^AO?eJ$IYTk;|T2=ik)H*ESXxj4CEVuww#XJO>e zPwze6KKton>-Wfb)3eAOH^zgxc*c}B&#>>G7Jqu3#*fQoqstQH0Qz*64=mZ_zA zrpn(tr19am?E04WK3n35d#jl46eY>>HK#TT9NBxhO?KL+jw8qRy|&%jc|k#)bbdzr zgI}Xl2KML&TX=0d{Gg3vWdg5M*75F?VPOUGi%-sD6a3@bk~O~Ug>K`&`RUlr1zYDQ zKsQF7xj(g-JhiGuaDt!zW})Xnp99mvbNlq(t~s-_=K16O(Yq`je`*&TwdPb2e|xy_ zy>df)pJ=}1J@OCHjokc>nYzongC(x6`Cc3z8WLW-Xx^g)QAeYFx?+X<vej8n&-%=4s!%l2pi~*iEHu4eG8*`%tSx_I|4ho|U&|z> zil|BR^4=>5xPHI6is)Chd3EjGuP!k%2g*X1CkRYg$+q&-^;hhl56gDAt+M%b>cp3( zs&CWo{`~R9=S0oQ>oRNKTk!2Mc@x|%uulJ8|8!Lkg&CC}S1i20LTqVTkDzmn=jk^6 zlz{0nY45n7ubI8J^>wMB!EB-Ju6xtkHI-*y-g8ppK-f77SHLN9zJpcMLhD???z1EA z*}b3Em7e5lez@+t@7VE!(M`n7&s`y>;8P_4#|B+_;zaid`(pZP}`$vx7%=3FJ&2%xrle zC{hrAGi=6b;r_x!>J83Gi3UaUP5pN)IXE|CLC5F5cSqW{?2wq-T2)RF?_6YAGjKPV zUsLK*w5@!aQh@VTo?F|aydQcT;PE$ku`M%P)0uydH21YvN%Bs+d6Yh8lQi|LM6RJ=otPhzCU!5D%3R<0I(tukH-~P1mh27>!kjkA z2(PI}y$#=rIlHXgtJZfz8k$8n;=ey3b>ZtX|Y^+0JN- zr~anNFW(K!y!}Sh_4j`MoS}$LC#$V0lGzL9e3pvY_0ssuF@Y-uEj;;_7a!cW4!YcG z#OJeS{ezgRtEc|lcrv)sfX!KBeCFKrjj|@|7VM*}7KkpJ<8JoQiZ4E*QRM|P38n%gi;Wd%i;gmo9HHACBNMqsgTa8<%7M@yM zO1@q2+H%k@U#@mR=!lR)4)5r5DZ=x4Tx-t-_-{(}xMukD_*s`S!jofT)?(2Qc?@r+ zWo^H3g?+AQd&Zf>?~-pHBn@RYJGgz3>Q$!H@2yJQ2<-%ndvINM(@e#g-2zdT6KmYL zZ*hnQo2S3Ix9RP~beHL>U;2#1+0El4Mb^&B)_rx5Z`G}wv)9W4cME8457;+!VA|DI z6N{c(>Jzi})Wv^a(BHf{NMimD_tJ-U3T(df0_&^-&NoVl7q+~%ck;}?C|}ilS*K-{ zdc4fmR1M+BbEW!rezF?K_Gq0e74ywHQK?Q(S;_iX-_By$Pv7%6`}ehZ7H8RVZIk}G z<=M?%uBAfm^G#G!N7IEGleDcQHf=dED}VIq=*6JA`kK^>GdNZZpUBpCj3@|N+$b1r zud{e*hNX6j)`|%K9MYPjhsq757UvmjEiyPf(jn4Z8qIaBLyK}m@QjrhpV+T7LR!)7e_P|p^fqRM^jxI~s9bXDp zX5LatFTT~(_`=65H>1O!OJaqk*1eRw^yZmctX)!~K4d_7h=BLZK-Hvi83 zu+Opox#X7>-X`sXp?wePPK?Pea=3OWfXlHnLE&ff>W~e^Ph=EkG$*i~C#Ztb{t z+}t{x*h1jcyMOYQHM_5|N-Vx#=t8fh-!Zk5506>tj`5JM#GPzgzGZlM zoTf{`vx++<7qds*1qBznIW}rf(_(Ale|7Q>|Bz{UPQUq*i-tR6-wMWGE?PJ1`)6C{ zSFJNQa>pkVxNJgpU#nr8zq4?whh4nzyN0T2?Xk<@pYD~5`9D}BKQ}RTQT|(_J*{roMLD*L&QD=v6wnHMLlFlk$T`RiUCn#L zt7UEtyh}cG|MjLVbI!}#RV&rhF8}$c`Ict(qSIa@9p`SyckIZ|PJAeEQs48QfN#&9 z-%+GpcEYw!WObYLF4r>3t-?e5*=E(YoFBAG@mW41c6na5zG^#%zd^uWCq-M&iG97nKDl@)@2yp*&mE|D$y-TKw zM;GK5_PD%4Owz>cS71bL$nNvAPPp|=Zx8R2zO_a$rsG+>Ra(cx4c@7u>mt-D z-HZnwaOikM zj#3(-O*lM{e`X}R_2=}B?^{2gZn_bza_5E|>D}`J=*m)^fx70d%4tH~yG>&QN~<62 z`4F6cf4-zvljma2CyKhMGY5uv6Uj?c{qJh&CF^cP-X!*PW|*58JpvzbJymn?%y_ty=S;jTkk;8>CfUt zm%U~e~(Z2Po*zV0gXX9d9QTjGzZE&r)+PU|kdd8ViA}!Z@g3?7lscMNmTw!Xndv4H{ zBh?Oh`xCc{IiC(NunZ*kE}MIZf1&@H#S8n4-Hg1X5?}U+IOyKJ_u{056^0@Y)%gK&^|nC^!ujH-m4j06wWg4Jqv25Y}HHM)GFhBw@c4g z|E^A7zvhK#oq#0H`-H1%FLMIU6`rUd%eR|Y{J724asHM7X`p4_iImb~k+&!IvzKCIl$TS7z9oHB=VKw08vh%V{bv zO7U8gIAqo^!W(jDvCHQEH@y;^F6Y#59glx_%AoIMk?P9EF7Nf9eo4ktn)iMtulhE% zb(5BC$^Kf7Hof|!WHHy~;}1E4L&sVtUciS6cnE(%(On-?OAZ&;MX| zm{am62l>r=UM}m@P1`FI)4`W0ar3%MY#i4WqkL7-_YNL$rzAAY?#x;`cl(0QBc zhX;)lcH6ZJT~NC4Blo;d>}};5tJpD_{3= zc3~~=9EMhDyojiN5i6_Kaxf=mYJBUh<}|5$uP?_un_*f~D>Un%V=A}zKKIj>sRdmR z*CZ}#y6(>R@?*5GuwNa|mYfXs-}f?>&+PB6jnw_nDz>cC*VBUFFlDFOx$ZZwhPgIM zCNu>6>hyRWu%d^rJWtc0!*k#1(G#s&VMm}fzOc<~q7@Y@dEVsf&emxPIXk$zrYp*8 z!LB_~arWI@GP@5Y4w&R`;`$K2cXZwi2eUQ7k+IyxpBlKQ&6R138SU223=P%Z{y^yG zVT}S6OX<7=clrH>?MOTi4}H$G+j&c*MN^HE^xkLdit<_Wu1G%6DGrwLyJ%t9-yzo| zxOTqJ$LkLp@6F~FbDqm*7ebM}zIXBBp26XDO7STsst0`Do#JrY<`H_~iqi+1CmDU0 z^M2`F+>8G+#V@wS-rUh+}oDdhNAS3Ue&ERpSN;BH?0ua*`F_G*NZtARg^-*6SC2M!Dbm#CT6{hUUZfLYhjyuaK62Ro{>YuC_RHI* z{4x#{sY{Z+o&Fv>U22o(cEQJM zJJPP4G~A-Ib4qiE{F+U#W*dbh7wI02t9_b2e`)c|mYJu$2~yfG1ICA=D`&sSiEVRS zB{aS-O5sgxPp@2_szt55PQ(0=xe0Phs+x~{n9~uOHviRZ9roh=;^&seI;8hB78Ny# zo|qYJxRg9bIoGgtyyMgDqAQIj2S?f`&i04?2sf$t)XEbVJWp)vWi7{7eT&|oy&UVl zfn-?!@h*p?>h_G`_!hg>wt>x0^)~zj@!d^e2Jh zWii(&8-KN#%>ABy?7)(2rD>HN4a-eq4v2qPS<+HyvtuM_nwiTTzEK4M{9z6-QJgeEA+Ms`!<4v$m zVE)^SAp);HNBa4aBBssSHjU3=w(?2UYYV!svt5dod_B=)ajEHKVP8S_8;a$jmg1q! zwJu+6CB7>C7#}2E{&sD6ossK?%%7UUi6+|j@@=J-o;V#Q9v5`Wep~hsAJ439r$)o9 zer8LF8a%Ww8;?6xdZ$Qw;O@RzS}}Zt$_wYd1f1Ns@j{G_vB&OBoJT5lofCGcXxNz- zu4wpsSJf7mO57D|^8c+z{gD4BkNVMMe$)>P`R^5LqM91~&~~N^HSLG|Pp+Q*OG@!~ zZ6rC@o%4Fp?hTd|C1K^K3Lo}#t^RtZV&)VV3E`-jE)zeV-ymJtec-;8*OhEb?u9kl zOPA`MN_BYtYoq$N`9>0BV*>*%#);YaKF!tLx*JaJ@|zcbvVW|_HT8s1qV?N>-X52z z6Om2FBCKv~Zy40A^tkr*w6MM3rAxo6s=vr4G_dm;)JGkOCY)eTBqVTHd9+*a`d!!f zQEBJn=-=N})}J-X^R5Tm9R^?BP%xi>9PHb2zQDxbTv;;OpYnx5YzO?(m0ac5uc9JQWTsRdE!DBIFYCD*_7pqn?&;*89cE22E>&ykxn%ixB=~Djk@1D-ybYp7 zddcx=zUsD}8ZQ@z?X{hH`tzLp7quLbksDsG)Ho#??0C5L+v(se8A<&hbBzawdo@P{mdX{FD#7BOaxaL#2rYEn*H@SefavR@sbO#6x+P7C(3@y%I zRiXQJZ{Vm;YVhklZXT4w+h@8g48C*qYVPXB^Zc1({V$)7Q5L;pkL6upEfBEdeXvX_ z@1pqEv3`y}3{|cYk0`G$6RkbcmssF65EtFdFS+Y^X?2WlgJjETp33{7&Kd_isz)3l`LhCg{DWWFv> zOdF}WCQjI^<65VE-(gr<>jjFHq+&$&7k)KD5%HQV!m*J<5G)f z(t#dRFTad(V-q-b*t>VD+tk8++T)F9Ll~8@}k>^?QSw*z@Du>t7Im zc_o$p5dZLz;pBj=j|9SJ*l#V6qk8j{mO13sTwc+6PGx}B% zYD?B0=8&p>(swrH^3eGL?*}1mcFV(+Pb5cOQ7QKb+9T0*dAFNF)M9d=m|SbqHXXC{ ztp>_jyf;f1-s0INy7x~0vF^Ym|Es-`DS|Uau4q1dQIR2Z_EE~!{gG+yKKe1`%|{#G zyeS&dg&vAkyRcaD_&MfZOqZQ)# ze*Ngx(_IJcl)8G{qvVB~msE2U`g~q~+VczX=DTMuM~g#}cBh_b;!=Ps9{$#adAbe@IJqqQ4lMriQ`)m5 zV>g(Kxbbw8`5>ut?XP_U=gf9nJl5uN+I3|3 z!&Y;vrGZ--lcREmIJsu;(=FSn^ZBi=oIRJIL7a;5vJVywo>3utJfl#mDK|9usJ@aF1a7K9|IzhQ+zvR}4!x@IDEh zzrXaTo5>uDie19JpE-@*M{ev$w$k5R6uN1^^HKEM8Dd+Vchqk7nySC(pxaeNZ&9-A z?)$03fxm6#bJtjYwS8KVm1V0wvCQ1p`gcvmhRw@IZ(midk2Xsgtr4==HcxcrBI9k| zM-5WA45C`=j)k?U2*qRw$6ol6uJD!f*ISD9@k0U(De1?f2rO z&jUv1iw<-8tdQ8fWO`2_`_138j2mogz7IQy-A z&sk23OJ3HUmvfUk^RHGl^%br$oBMtbN5(C`<$L!o{j%=P`dPc$uD!lm($S@#A-g0} z`_vMi-MoqRDn6@>MHSER_)63T9iDG@jyG2AL4mvP^*rbr!h?BMeTFdtF|olR4x8Hx z7EMzOue041eEP{<+(B(+g#-M=y(x93vO@Zdh_J2X{_)W{SNtyNiH96@+f3G%)8=nQnBDZpTZ2+ z6+SCAkIlYX!zma3!eQ{?0tp*ay%K*3NzYYEF$XU#RyyU^uUQbHs9CQj%r3t4_`>r_ z#2%|vJ0%TTuUGW1>5gcB@`UrjnSD;1lbN!?K1J$HeqrJ)3#vV6LH@+{|Wcx&4pUXnTCkjQbh4(vK1oK=h+1_h$_{ zJyiRBb#b@uK)dOjxdkcaf;m?1M)~0%8w#G-5875g(+KKV_;?^z=lGJRcW&1z3sjzo z?r;_8k=D2>kvCR*Z2HN< zytdE^l=ZiNd9~9y{?I^&-`S5nYwm6>%g9~wtxc%M)p~4GX^m+5m5*Kp_eKMUUzJO} zvrU`*(C^T`O&g82ecxfXMe}kf2j_z&@#;TQn!}7n?0xQfm~Y%6Rav%kc2LN}bJbh? zw$Gd0t-QP~MblX?>9~id_C6P#ig823hR>dJwa=E1=BP#Uj29nzen5PQ+4Tqo3!MWM z-dAt%tCG(s5aq?j<9jZ$6*d?ozEQl&QKNmRgZz+Zk$F3br|tQ>vzj`tZ}Jpl(nr${ z_P$K!Yy9=duFl}-SNj7aIvv(uN9R22kV@969=#jC%~!vyDN7|LxA=qVi^f*P*5dbF zb!VT?3_bWbqP#{zfxVz*?{KA3*vRV@rGYW__7zhy4`-<7R@$&X7i0;=WkcYUL}1i)S7dzhtRT9ahK#B7Of0;zt?$3eQoc} z?|R0~i6s1_|NpaF^mTPrOoRMgEZjouRZI<6s%&rz4^c7lb@Fgqj{Gn{ei%7OLm$=m z^Yaf0wwESTZ}BphCd0Q|Nt3Ck^q^Pp={0FGbt8_sGzH$E;vlVJ?B?p_wA?@39{RPa zG)0rFtf?lgK_)0`5}|hu{QW}Q{6d1I$^Vo4_6e$(`e1Sw?vn_rEcHSCM*H9{HIc}# zhktWQ)yGer#daxm-PPj6iou0lhe{LQFW70i!0ug&pzyJv52s6h2L;XuPvpLR*tq|y z#mRU4)1GVgE*0IKQPq5K+`V}5ou(64+E*0YJX@*sB~WdB*slBUW?uIk>vEp!FS;V# z&!c^!Wor6&O}m1#{g0J`e!bg!Px+G0<>vM4tJ6TYJ53Z_EsS9YKvR z`p>ovf7_@#FH)%L*pBRk!#w{KIsWN z)HChkhI8$+CcL*qB<>Jh!rOGZE_tcZ+vfrC*UVl|^*+l#`f}D)gVg-}^72oP8#TofHHWrqdXV=k%(Gvye2Uzjc#oNmjqTww zp>G2UGfyp$T%~cG*LiJht!hn|e`Jkl0`cfUsJBU;GQL1@&34&pN|N5LrzfhpbXP5Y zw@#zm-TsU=w|sM7wv5jQF0Id}L}zXEy0SMwyuED1ch2g}@`R#!eJ*!=llr@LMK+UF9^j{y@^2R6EHt+Mx#@u|8|w#}gb>Gk@p z#tR>8-4@}eLs1>Avv{emA$D?I!nEMl1JET*QM=kCOp~HZ;yJm- zL+W3ylA|&k<=g8yPIWh0C}}rZY3`XOslDpcgKI~UE{?4gpDz+%Q`6;kOzHW~mCBz) z))@(|UYXOY#Uw0=hxtYN=y(eATkXxa= znsa=1rRLqcxpyxG@P{0ejTx`|kQnV9vCwF2&f#9O+gcWE#^s5ly0$_Atw}o18qGQQ z*%wc%zt8h)%}ce^BR3-+E!ExOC^7HXkLz{k$Q282I@+&xl~{ZD!R_f9em>W(S_v&Q zAX!?Q7t9j)D7!t;Uvb5WA;+Wpg$B*M;z+gBCy`)a zv~^i(UzCb`M8!TYrTRqK*w*Q(6X*Ta{h-ZIb;2fO-I&`1H|H;H&YUUuellyn-`Axn$)(JEI$8^Qfd0|jrVDxY$K!N zsW+Fl#gQrR+OrEc8_t#Ik6dI|674UsTQGEH@k^U~1Kd5uo63B1hC4)rV!ftC+^c=$ zb4U5mu+YtAX$9JWu6t~yIn$oY2js<-l*Oq=9+BMRXjOc5fs62J0qf&mf(3i8ojjj* z@r$N#Ou+5(ZN{T(>%-o6$-Up5^Q!K+U%GT_;98{@Vr#s_$qn0M)CF}@2AVFH``?Pl zTlaR^{&nFmGTqqnmRLCS?;H5ydqirQ@vRfH?`=9Vo7m^F_htfTvHR`T+7a95hgV%w zkfF?pt$w*-){&gB4iC;8izhR8lS`LbUG}X$KRudgWS`k^aZY!fTxtB!hrI?%>nrLn zxSv~e$02$C&ZLdfT6ODJc_=2BJ&^C+&Cx@$%UoKRE8C)UzJjMNzr@7gj`d=p4>#np zjdqAC)+$5s>F;f@C^dO~Y~%j4k+_0a5@k2k3K!`Yo-gm8 z>GL7;;Ly=;Gt7hP4}WmeG}_SZki~0|a$)87bI(&T$tn2zD7_; zz0_OCfA8SuZ&Tgh z^{VP~UTTqE=`nAA1ex!9j6~+U*2O;qeEoiVRLD!*%RjpQc+1dD*RE%##5D%u7XzyD zCin-Ae`|9+DKftM{1uAuhusNQ#p#}VTXH{curgj0weQ;1?^>Pjn%OVbtumgK9+jMP z_yK=gPTj*c^-&?K&yi7|y9)D<3%^?-uDLkP?h)sg+RlY$Zz3N}uT@jF`ryVMc_8WC zPUD^~Z^4b+?Sz3Nh2A{R>z5I%TYUB51sB z)o_{E&4tqu{nIQv30F-E*BgxeUS{yFd~o-k z*%$Nm1{cL7>#tB~8!l>j+#>z{ZQ^3TgIx978Yzcot$(q6cth70@9{D3E&3tHWO8TQ zG=_hbP~N@Z@r4A_GoCXNHt^(Rzm986>D^!OTP0s&S(Dm}k9>Ep`7MlQldyLOH;?Lm+4Yrs0>1li%(XDbnHMvQA92Y5bIv?G1wRzQVsycUW&jtQW@4IV~r+hoK zNIadgM3OAk=igf5{Yl&EO4GGwu6xf+8`j-1@0`8UTRbCi3hxak&u&UqRD6ez6F?*8Yz!k+ z9B}aHT2b{Wc1wMcN~8aM`FUx##6En|E!ALe~4r{xRF-7rm20V|c%d zO}nD*egFIC)H&W>f#(;bY&uugmHbU+@anlN``I&heyG^_gzT!4duF9!)iry22mV?2 z`UkD0ym^-toGdcAX#LDOaK2GCbpKSu5zkdw9&E?#S3u2qQ_^+y6Vp1izg3*?_)=k7 z=_uIWr+G3{YADf}Tig9Bcd*JM+lh&^OEbsrmpHqq>6-Iho%)rVJVo(JD1VqvM)ZyS z(TW^R8|JANRf*3Py}Qcqd7r^%!gc8ClUI4kzFSLEc&}fZ@%W8+%RF^~M=z^hOD&0r z_gio*a(jc+4Z$Qe#l6)p?V8H6g7+Ex{N1y-eCFwsBh6m|BDVG4%sBGBN?>N7$`v_b z58VOfhs_^Xe-A6px9Tn`-7lZ?T;H5y({Ao<;idy@pDwhqr%!)z=VHP8a>u4nnHjzx z4xLKn)9)}9H<$5Q`e-n6U_@m86-ACHwa%MmI$h#*7F$Wn?sJAd?-@UMJnW!uO^oNm z{$}V?@?v12k#RUb#BDi#Ro`l_^VNzGUD zE9LjAspGTsy4Tx!VqVO+SZ(YJVX{HQr8 zeCPJcc}`Qxy4iHS9ue@iP&f_yaPpGd!>TF)%nq@!t*WVNWL3y`}eObs#A^f_I z`Cem-Q0I_{05_F&UVd9t%-viVFEpPF_AC{#tH+fuUYOUT(q5{M~~? z++3AC{I@EHZc(IGXci$sp)Mh&PC-ynB~2h;sv+i!gK?vQN?%iaSC$r^xEncjEbq^>hGfBAK>P<1QOdV$j=v& zbcv6bi<_T|8_p2mvj+4d3e5Mx;0!@iLm7H_nlwobQmizQOj4$hrAZpZ|7-}TmIH#l zmi;+|U@x$?;UbbQD)YrFIHD3Du{252Br???NCZf50wVW+Vh~hq2Se%(atrVe3JF%m z*nnAsuQ+6IK5^*{HUPc#sOBKOEsOH*iy!8@C2Q zZcZWoK?=Wqvl+8_vAM7XvH7zFL;tz6g|HQ}NwZl){|;hvh5qFZ|4SO@bJA=iHZ?Yi zBD5Ytg@fG2&?&@C!BC5+N+heQ6DS0Vss@Fkq)L!iRh5T6X6*0!k553WIhp3qQ`?wi91xQn^3Bf~4P;M$F)c>vUb7j1su3S0$hpSjX@m6KEo0F?s z5b|&8-_ZVTpP>7ei6NCW2YwaJj#o6C~i;AJYODHu^ zsZf6t?CItfLX|s2#n{Ou$e-!8fhY7^rq_mEPCot~Ouw-3@p5%T{ucf$@;%VUJc68j zRaSa=ga)~(Z14*4aZ_21iQcg0Xi7H;^@Ud9pw%>F$&DaQP(_yFh|-X)P*p5Vg8Ttq zf|Djgkq}*zgQg*v0BOjRVHVA$)u{m={tFFg4Guxkgx2zqe-WVXP({ClAPt!z{7C{4 z`X>TOAW2h*aA#kdK!*N_{uu@09{F~H8bms52h7HAEqr$S^cfxl!d1RFQWHs^}n8VOb%C zB8noYqCjae2mC$i=s46-xztfPG*G!TP&^G(E=`ms)CdUB z;w%*h3Owjf2G?9ej zA?v@8sUqVdqGn7)&6G$%aZr;ds-ZY)s2r$1i0Y^us6L45=y*_l5H(OaP<;?J5d9EQ zeGoNKJX9Yf)J{mKgON}>AVEGr9X|rA1z&{F70CAfx<~QGXz#{6mQ_@_Ceh zGU^XxT5EyUR6zNMa%JT6DF0;CAIK>GWR!n0%0C(9pN#TPM)@bB{F71M$tdq+ly@@9 zI|b#Pg2o35%0C6=pMvUvg6e@nK=emJ?Sg{Z1qJmJ3IVYX3Th7&G%iq3eNa$+P|)~5 zLG6Qr+6M*o7YeE`3aT&YG%l%XZ{jr2pDz{7_6{ZXdsmOeT6HisC^Rovu zmq1iwf;V+AFc376BL>3~a}n!8jS{sdDJjbUNjJMLah^ZPIMANO%!Dc%I~R$ zhw_A)>wgv89i*A2BdUAgsKyj2#gGJtHq8(KYJq)ovLMv%7oKim$HoEK;N%P?1vn(B zAqs&qU`Q`m!r`|VSV+vE5>CyJaIs*jSwN`2V*-J{jtXLqi-53;geA}rsh?p&gufIP z3l|Z#B@h(#O(rP#+aV}i-bf%2sv|Ig{6ikt;6YGW7emwll7|cep}QBf6ksaNpl!Lo zYXq)}kl?P4c%23k5}@S<*ileQ@r?~@_J|DuxkY0uGPM9?hd;xlOIR`>w@63;K~cxS zfI_|ezG)s5?%=wyiG0w6@JGaxoaMO=+L!oN8K9NU?cPMdFVofDl8G(loveFB*_{z9Mz z2nTENjN#!Dh)hcWDELjL;n8dXcX$NQTnc+D1LYqsh^8+{_6CxR8lf48NH_p8h|IMh zD6F|7-wr|H4v|(`fMz!MeI~hRVHV_r1kgMSkDdvL=FA)LIfTs)G(fDiBYFi5kN}!M z;84pD=wBSdPAZLL+#tEI=8nX2Fo&?|fuOJ!k0idJA=1i0Q2c}6XN(ld$sjNwhoCtQ z9z7Ef97m`F#N`l4`Tzrj-()}`dIb%T0Gc77#aL#q`3Hw+xqwv5Ai1ys9{vLA3I={8 zMG{&N6gJEw-wqt2ItT@8>RE4x?)8@S1bth6+GCM zr3vWD1%bAbhpu1|(2AWvU(rLtIRUNA3G|gcxE6s{_)z(f%AC3AB*2RaIQm$pq7RJ= z#>G<%0bP6`Ad3x%x8tdac@kL<#pvJ=_Y*E031S*bD7sJsHtUhL`Xp<0VuyDo#tpUT#ff;3*59O_(L5LxC8il|Oj8XSQ;vHwKRe8Z9n`1aJU^ z7oizK(Q#l7k&Xo}he#6xs5ba7X|R*#5C*0Fl_@m;(!B+L>cP&(U}3Q4PC#S_M`K!% zhog3Q=4XJwAuvcnmiTaBvU~5zD|?;36Q61+dzfO@HznVxv0R z?F9QF+SNdFC$KPBdq-ve3y0u&2hP$M>SBTdatIE~aH_`u`v-^Mkc_zsfXSa>4$*`2 zcpTCi>(nJr9DBu_kDoM$FeqbCXoniiA=Cv0ENM9%Ys5QB0HEvbUMTt7Gn<;RKa1t9eR!C*=TE#K-=a*-vfcZ zkM@2Udm&&|LY{y$6A5U;k%0C^2w&_)Tgi;PMEw3`gYMLQ=1v`0)pJC6ip z!9<#XF8&Z`OE!!)BBDSVT^J34OcS*zJRMQRVPMfM3g0rpq%mhyOa=}cCbF#ncalfG z4-Cs(PfXe{VNk}H(CsaMF-*85gG>T;Ah0l4=OfT{1<16~k_%7iEK>~w2}B?|#p7XN zy^s!tOCUPKjXr0 zaAZLzcsy-k&7BDeL?Al9<6$w|IFsw(5{ORkcrbt|1|bl(a9j^W)}X;UV>bH96UbuV z^cFQ>(L)UrRKdbvZJj`0KL>aqI=ka&i=~6igajgx)?32^!!8&7-34hC7ak6_ilF1b z6r!zLJRfB40OP?joBgCIgh82tDAM}|`yh7y15yZoj2V{dNq?($(ZUjMTv&^Tc4*U} zfESBTdatMyfaB9T>qw5}@LvTc9=^@i`U=GplEuJ4DTgkv` zV-EC_=a9w9kp}o*I7E{fB(DSu!yMP491@ZJFC2nr9{8IWYG;B1atIF0a2m`2qw5}* zLt4d!<1j2eWI7JaA=L<-1OY@k3G{C_eVru{(hw#T3x*{O5gE^!X zmU!c0NoW{QAP$M(zzmlx47upK$LA0nli|iU4i3U0IHf^0YNBd`LoTM;#k7?t&ml`n zgLLKp!Xf;{)B{7*SqUr*b6|)35Ro0sA+6f|V_3*Z3|L!GwTqrWK);=7r#&^AP#Ja4u(nP_ zWCs&S%d7s>7913q1Y{tA2&Cm!I9SX!KG|v)2ZlM9VuC>kgo7MDfpFXd>x|jxCr==Y zfg{IN{z4!osDg#T+By+g4+axROR8|RMg0{sfv^^+NFV~~)$X5QEDdM6@8HHzdbNv# z!<`rTvvDG_S$4Hkd;6_JMlHr4MjN$%+LvT2TGf5mA*bR|AP52zb;{&UW+43jPAr+J%40c0Sbd@G*e9jmL2Sd^lJA{4q3X-Oi(}$!BH7btr)}o2Z!K@%+heCsu`_FJW zL=KUG)y8c4lje}6(M&}4!Tp6pG@oT|G$RBtr~F9z$9m0fYpVtp7W45k4MMI1zSFo9^kg`+K&rZf{0h(I*w!oy;=aVFQn^*}Ti z!Gi%zJ^0(L(KG}P2W#b6LqL1Cc%FbQCbI4-ljMLD#TcwHEBnT)BOHZ1JoD=_xAA%z?OCOpE z3dkWiB(rp)|G^0sQn2E^dL$DvBm!S}mgcZyo zb6|%8ApJx$$Pd9&5ByCG*I|MJaY!qJah#f^6a9A%Y4sr<4%YPPI53B3^A?Xo%xUXC zImGm&C(R+tA!hUvDKLlF;sVGa{4plQ(@!)5IHXm;IO<~QLlYTLKn}rqGF%HW(VT`>2m)$*mZQx?M0Rj2 zC4#3Omh;U_P(TiWff>2a42MIi?ny{P9Ivo|?ysfR!>I1z+L(Fu0QpNA>|}M1fYScT z6#9O6<2F$DB=j;e5_7W_S%$<4gH7R4*}=M}EoI;gi=M?(ukeN6hkjDc7rKg#b|oBo z29|{M-k>YtkfjR}dLCXsb_*?dgc<%nFD9gsK^kDbbcHaCF1$ZvQHj(B=sq zSy=zW1OpQI3^WNj0}VFF|0c0QK$-PJFCTCdE9l8F2&D-1Kw&V=XR4jU41*1l7J~m& zI{Zb<0@9H{1kzGt94spN3@p0lal<(+JmJ7le}w}BM-=3!G;TyeTCrfA(OvI9SgIhw zpbTNq>lwij1?!_=VX(H2e9d3B#?s<1j<&Go&V&Rakd_zYU@_bHzdVqZ7URJDC8Z)E zN1bsAL>jR`one~Mlb#Y-PCBFaX@UvF22-#wSX(DCn#lO8+qA6sPi?WZqnVIE1k#r) zaKM<2{9g>xS1NFD{*qCVkgHhnDTL!2SZmB?KY0pSOq_9Q8b64l7i>^3^!{6l0e_6i zwUMoo;2=t0kik(G*5XMFC?JR6kj&DA{(BguZBNIU2;uCVF+MsD97mDOdbk`SP(Thb zz354E2!k?&L9eX^yCF750Skk*cM>A|UpNF$J1p&JCMY0>;HV6zRE*)$b&oq062K7| z?senfARNN^9X^MDH+@Vmdh#5ySUJ*&2XlzcCxIMdI?qrtgWP-b7Y@NQ4@*0m2@1#| zI51;QJO3+|(pM_}3=S+EXu2)H93q=waXCc#uwb<@oBpIZWa&Jk*F*n>Lt1U{_rQ+n zJVP8ZddT?GA$>sxM_nw@o&g2okiJ}j0|v-w5Z%L0f~$K>ZyPSpFa;rePMPMGlh!>; zUzdcmvcbBi-Mo+VS5ZUwQy7*OFA0$y>_4>X6bFf()IilK_S>P?RC|M}RP^vP2|YZ` zxIi3zAH6u6evvqOc$$PBo+csv3272~c$$PBo+hF9bwZCzQS2vBq7@uz_9;S zA_apoghB6s|BC^lDo3aW3xjnsRCcfd(o!EBrL)X1h!&_wAOdOC=$}|DO=i00ai?Hf zT7UyXU2bIPj1B`w5cE_r9)ZX{6QIs89p*_#5Ezsp40>rlm_YPG0}|qsU}3Pf4n6LO z>VjYbX?YKhwy3{i7LbkvB9NB*;9xP^_`f`mmJ{H>VCNGS0$~fsodS>zL13LR8~x-7 zWHE3?I~l)}!3IyDFf5H_5+Xa8Kw8rCr?%iI%}gLNNB+eF>D4F>7=1pO#O5PL5C?JR6$c*VI|BFL?zX40B|M3IRlRFo(2~ z2nUI(KzQnbN+RsHL$Be_Ll3otThh=^q;z3ClWj3YQJf__rPWPaum z`aZHoE=@)jm7$+7i_lNl!=RriF4CWe9s-JfFS7aty{5g7elL2HFd030OaAlZEuv7y z6w9PBps9jQf%^3fEV_l^MjKiq4;C3yWV3X<=`e8SjdaWLf(;pI`hulno`)uDs0b)y zOeDtHZQNkPViF)>kdHB7QQ5(UN-LfI&=z8QxJV!ZX{8em79iikC6G3S;lNWMsnvP-mE)^Q1ix24&JT z(kcfNhz+t}VX(H2$`1BG+60ZGEv&gSA%O^_mrgif%trn%2I-{}4i0l_#e_o*qGa@x zF)oGh)B)BS^_ys9OrAm(6Gximf1waFAA*I!T00rN?HlNW^wQ~1bzyqUrjUkUHBco4 zatIE|EUjm{`{0IAdgX*86t=3MuE$BgkfL=G+k)rM(2Pnts*l*T-yA@uY%q#^u? z5SzPzg~8f88NKiu%prK%VL9;31O?;}9F;+*p7A*ZM`V^}GYf~Xo#W1h$et~*+L%p$ z(j2mMn9*lxg8dMiX99&`X*iP+*}_JMm|1$yblu}}NUxl5 zgu(`RIu7iI=-FUAKScJ|fz`%r`jh7n8`#n3pZ`G>0r5X7ri0U=CU9 zH+ZY?pSogcIFk|C|H2`-5@5Mxn+XcYAviFz^q%Ru$6rdM)#Pw&WG)Pmr;5W zajN$~H8j%egMOm5IQ==la6%6K9<_h8eMv^o1C!D7z>Meq!u}ymM$ZE?p8pHi3({ot zJTUz^!01sJGHscXu{o9u@0VpvmGtq#@d9oB;@TQKWYpGhhR^I*leaaj10lkJua08T zCr}uco;LYkH+a(;u73`TrH##m1T;0URDg^LH(Jnw1&&DA+5k%+dOR49K;*zNSUTo; zWYPq}pbTq5A7Bj*7KpSo!v_n)GLN7acmoqJTCBj)7S+R;1%y45DjaVK|uze zRwiRkE91a2+x?_DWI3%&{>N!$GJ0AWo%VqovYb{%W&aC@;7Nz2zsv*$fQ*g-Z&&`sNz994(P43Z4dB{k2Nt%MRlAxc+ z`xNw~9tAn6$GrCt86cBUGDZNT983+fTQJRfxRDoapy8nB*J1s`oDBWHSn(qS6W zlQtZdwlf*o#tAkYEJa{pm}ddVX&L8{@%t}m+{MurODmcQ2}B?ocJZ+Olk5l0g7ILm zUco{jT-f3+8Zw`2#)GB1$bZs6gF%@L{2%9<$yi?k6Nt5S^1seCqsczru(0ONgajfG zjk$kfA&$=&EM4=s9*Abacre&`fDS_q-4tZE03Lx9&!m!vnB0D&Aqscy=wph%afdnFumI~v6F&p{6Vkj*O#=`+*KDd@Zo0j1H z9n7;W1#Tn5%D0C!PsKEce!`i<|6}hh!}3a&c430Mh2ZY)?ykWT+}$m>yE_DT4I11v zxVyVcaCZ)|y=P`m=H2i2hfDRP{7tF7eE!pg z$@DW$gz0DE_rJ?O%o)?qI1#3w3E@mXPptiS`5Uk=^nNDBG5z$(F#Sl7!)5vzKl1PL z_x``s|1^6)6UCW+?BKrC|Lp(Iliitq#+NYtO!#5?0V6KckB!HdzdxVO2>wNGf97bvC>CQ2)4$bkKeMEN zGW73f@sBe6eTgg0FD^$Ttz+`Ct@VwizpdndY>NL$*uKljAAtJTA>Hy;+7|!Op?}e! zk-%m7Go3%%rhlF{wil#+$n%RBGyO~>{uNmJcb)vRx%w%r-}L71Q2QAc_EX${i`t)j z*ndIo$6Wtw#D5y?U)|L|M)T64{}DAh+CLNe3%mc@iT>M>eP^l{)V?d6-;eB%0`QlS zeOD#F;fKHYtbb0F1tKacD$oc@oZ^CAXJKO^?&eyv*mQ+WR3t^TQ-|B(%TYTqB) z{P$peYxYYB{sPu_yYV}){=)P>hVWm3#q?*e{=(q@3>M3aS^07J1>LU|!heGG7svHa zgY{2f{d8UbG;zNL>rbxhzku~!sDA_2U;NZRhwxv4#rh|({y+Js|3<5PH`%{t{eN2a z{Bqv@9i9ITr~mTX{vDk^s__4@KfgDjfALHIvnu{|RMg+~=P%s-k4*XN45h!L^S@zk z`rnKH@BGn!yELHx^}_O>lJR}X^CT+;so&M!9a2R1K<5&c%SzPI>8*Z%E} z{+&7a5uf~P-S~ULe_Y7?S!jP|e*V3o`>P-N#}NJ-p=J29q5DhL^FM>d@cU)v?;OQ{ z%LEL+7m|PfZ|9eTvcKIsEa0%=CTt{*Nt~ zzrVWB;?mK6w@!cj=-V~Z_l-5Cm!K-Av5tnO_9q$GKX}FRy*yuGn52 ztlw&xUsiM9TF}0%^j<9L%UX`{W%>B+6Q-9PTGp4{C}!H1HS@py?o5Bm&X&}-)z;It z)y8G|$rHlHX14k^G{R=uw)%qlx|VwSG;j4S3~h~Y>F8dL9s60JdxKiJyn zYn#JBI;I@BK{&=vO`S9!Gau96CnbuV4eJ?HNJfj%D}zG}N-)RycEK~g0)i031t#ji z2Z8*O?~Q)iv65TuK9zM@F0C3bmW5pPh|Xg&Rr3xh#HE_*y=m^e_}(*w(|P*+u&<=q z{q^4S^=+D=)b_H=k^6A{PMXUwFu@maJOVxFeT_O+xu@-ha8-maK%?_ZE_TwcP8*9p z;8WLpj|Iy^$*$7J&juL$@l@Ur4}~}TMT&4V&d`~lIQ;C#`$aXS4fJOssEs*5cq=eK zk6do)i_Z68wATcp?}0|OdX5IPA8{vrfD|p~&xF%60ry7;auz>K$yi2gRGXo?45@-| zaeCN|#MPZEEG>-kfOX%O9<59=++Chh`(kfow&<&mOg&DAH?`v0Ui*NvVQdIsut-`6 z(%@c@&P|}KjN*7`)zU#_I@$52VOjR&!Ok7q?LTaTsVLAg60Q#2&A5nwPI2g9tab$4;Zf z&){P68X?5-3Y!^H!atg*8K;>y>?APS(cb{gU&q}~oVZ8!nm$3Emv~t7;2iIUZOD3# zSAZ(wwAK|>`tD5oQsau~3t9iFJfSRB!A1J6#hpOa>qj2oeIVQ2b>?ki#*3NlvV0jJ zvOUeLEok8s<{c^92x{M>+bp(0mmRAXQ2l4FDmos%EfqGH_ho>EI^D7$=KQeUmGtuh zFj{nwYz1#O%@3XetKZhayFeEQ-+l=>e8ZWIAr z5ZP{oA{B7KPy}GraS9(5Ct|-hdj@O^oPOf+4%_ZI?dY^l8=fc)$wt zZv}zo@7~xAFj~A(-Eir?4#UCC88oppPn1{WXf{x>d#^84)l|$VC#Qx)P1!p#00RQV z=ANFC`f=~FjzLW-V9B65K~mU90}(`{ryN>R`yJG)b{evRq%YoUi8Yyn!o7l7L{s^wtn2A2a~x5NFeP^-#=`;W%=MnJ!^K zlcot5VceFMXtU|Gu85L&f^tO1rm>?s{domimDGHN1tDZ0Xi+h6+J_j*{bhzECqzg) zF@i%7r>(ppnW7jIWGwbT2}i*x_#zI~M!fn?n|B=W5}5twqEV%+U?5U!K3hui?}=ro zx)KO&bhyAJjP)Otwa|>td>|4n1vA3rv;Ab8k=k1xlyme-)7z`7dJu}LCGXXWm1khK zaR$a2FTr4g9tR@_2D`;Ygv)CM(qzOqD;?(0gyzG#cx;P)r453qwKWX4pvQQ-l$Ea} zPKJhtpzxfFNS+|t<$3MST0{hLYO$MSM4l~2d=)!daG90Hqb#lxt-@b5!a&W9CIB$s zj;x?FaV}1x80~-EE0Qi%UoR4=v|jb@QNdQJ)l_xN zFuE#0MN^SU1z~#@f;ofw%PR(vKIW>bB1=Q07*VS2sq(HjD!_V=x8)ns(D6KJf5^Ix zUHOVr16IH@hkE<11XExBJ&(vNaqB-2zsU@FJ|t! z8VS=0Eno!uH&O2$g=8*bz0Sh5#u*{0q`myXQN#AiU%7~ADI`z30vw|wAX(aUQln-P zk~JCk)tAIm9->YVB;;+C$#Qw=FpjtA#6e-RDxpd9TKKDZ*M^-7hJMxq4LS~wZfY^zFFTiS=PTTtNY=Ub z7LQm065$d(njtAZp1-0prZ<5!THmJo!ddRFN6kWRJexY6*%R9?ChQrCL%4Da34flc zlNs^@oD{cDYIaC`P9zAFyr{f9q_L4G9ten-9%X`ry;XR_(md?2Y(9gZ5+#|SXnzNn zib9-VcW`ho;q|8j=}SHR{79tCX*wlPelX9tj9;+>xac)L^2fG-jaj)M$nv)fr!+g%0d`2k%cBGRDDdWTUZ!G>@_tH zxg(<>>U(s#K;|G^qFge<&$ND<+Y1Pm0~{Tmnkr+ zGj!1r-aEXUXWt7T(UpLUi!J2a0w0ZAh_-aj-KbWuJ%Ah^UK8~}{1H#a*K!0oprV&_ z0i00LfR4rE`0*l#HdW))iVCw^kfhg&Cb2gZL^8gY6ZwkGmDm(tK~$$&9Py=^8GJwD z!FNa5&6Do1^WPUPC=e-(^_#T6y9{$r*_~)Gxepwgjc{`yI?B?i-FS0vf0XT78@?ib zJ56p%#^_l+lI3;u%GnT(T0M_)q26qU-e7))iazmqZ|0KrS-CiL4S}`JcL|Tjptd)H z-x+wk!(QyEbcxghOs;MezX!@%wp^CF24nNy6{f;$B(D8^q}vtyt+lkwlYhSEm2>}A zYML8%zwSs>dgV|Q)>WWc<^85yk&e1v^H6_hNn^1{an)2Bo+>ULhlbv9P0yii0RjPR zGOa5!oc>y0m*^HAa-8-6ZWmCXH09FtLjqL zRYB^7M+USbIZe-!BfMqzOe#!x{Kgde8SYWL>1jN5pqT2|YpZ$7jFk+YH1p(6=vjOg zt=2B)DuHA-q({VNAE~T~gf8TRcCS{n!{uzDb>Q$dpjfF6!K(N>P-obpQ5QH9UKrk? zfJu927RkHo3@oi@@~7?ocz}7{!wy9`P49$9_d>7zjODzR5AHnMvJ@vRuU4LJ>t}=X z>t0V-Ggx#`oYFoe1g|UaI_%0bzKSl>M&t5Z=Ihc;;vZ!Ivp?5|_3nH{*#(kE!|GWt$6P|K0sm$jV}OD;Y*B9-vR zXTO)h7LqtM|Aevx{V>#Hv7g@?-u-DM>wfI(jkq&%gU@ns`!hf?E%3!6MCCHSt`W}p zIFAje@r@zixj(i1HG(tn67U|!jmu!n0nO;~n82=`Et4~{Y#$GEzt_G%RBi%mFkhs2 zls7V;YR=b_g#cOLiVC^bE=veL;V0~E!$u|Bq*!qHleS}jN|dUwVno>r(%`&$>$qzO zI_*qe0R{$sg6Y9KrKB)hA(DQAC~71QgrcC>k2>?xx=Qi=R5Bj#Jg*CrPigPR_i7VX z4H4?B%I>7@*qkFPO^aAaZ;^WNu$Z9`@L)}WA`J8lP%n&p!^bFg@tjG9#u?8)g|kw7 z=c=GUqz4K&NZGcBj~Nk)+d~`iTxczgd{y9GKX|P>=^Cw7D^R8%xHn}#ptyJg-(?e^ zv`l#eT*d-GLz8{O2^NG-*aD99H4HQpt6Q#9c|jO+QH%jr-V{vu>v_#>)?8Ni`z z1?DyC&{U|=>kiw5RK5`{)jfq8%>$MmA+n9O%|`Jwt z(J>udpmZ_yD)4H=9Qey#q^N}mkcs@WLN{+prbApK8mEAqLc0wPDMf#j$v;nu^n&Q}ID|APK5pdPiP-V5uAZN$ zJ)k~rcV140GvHn2LhxKl?Xy4(y5Q1ak;_-GsfkSlvOrYumJit4o6J$u3$DJ=&gUhf z={ybE(4ves`B-I$?8=+k(FC>!ky3yyohHD{-xQw$H0&O&0E}VsF|Zf>%j>8TBGmP$ z3slKg0W9rhBn<>KFM0@3HB!=bZWEMB=~<%aQU_mxEWTB?J^?n=h*fx~0ySbqlx-im z7I*gd?URtQ)_Ctn22u9AU`=3JRpx_PD(^piO|XQ53s$y56^TW&0_MllizbzI#*pcS z;>@nJrtHzh!syhl0i3Cjbi^JwXG{S_WJRy!?DuC|^y<^3NYta(VWp|~ppCS-FB5Aj z1e4;3K`G2HFR2`+=KIM=5d{;Lt%#kK)P|EKiKP41I)%I~qj<%$q4%_%Z>$RE-kka7 zMB`G}ZmI|8Q_&>GDNF!Q2ZnT0cguyc@6&wZ)PaQI;>A5-)OD%r+03Bpw)5z@PL+DO zykE_i+yl95T#nu4PRri1evmbdbrfkYI$~A{;P6$yJjP27Hnc-LdYL;5}|bMSM&qr6FOFW(ZIE$d=js`eTX# z$l>NwV_huYr(ytA_+swop%Xe-$NQ(*`qB!*20d#r2aU2k#_{^yQp5YW&utG&EGwMn znSOI`aLl^dlw@!^GvPpdhB%8%w9VHf=W@|XLwAmst);ESWHuWNP{7Li-kl6akf6f5 zfr#S!)Wg2Xa_@St1$Ad?F6%+iEMsKN;&j`@?^8c7s`2(Uu0dVbltHD$7y}kb+)pAF zP99?SXYUoOp0@|orKxD_2f?@PXO8MOmcQ=bdwbcKT3>zfHZrt7U#z$E*m}|&F}DC0 znN&Q;wHKM5xOThGGz-X{Eo{;0jS3}ZJuU3hq?_>x*Z_vh++d{B%h)@VW2Zpgl)gP#1@WDx-rKDctj!E$m0b zGQuO5-CQn!*oTOn-4p=Q;Gzm>!zJZS#T zr7wsCQxrR*;}|!OMFtH-l8{8C*5y#b25d(+-&x#E>v(x)*{nG;cIrb7h^b$U;S&m% zt=!Y?2$9!pIC*tUJ+?(C#8gI|jWX8E7qS|Et(5tsYAOzmE|f@yzR^bdLWbT$x+oKv zfx$v8=u7R?xsCH!=k+uK?CFiu5gTvI#A7#zzr+Z>Cbo#UaMA+{sw?tDX zK5w>{q1?b5!WC7V;SUvGP2fqJ9#wOgV_)l+_tLv=jDtWe&tiFKYj_#j(=H+(J;>SH z3m@*TyoBO3)3OrdASq1Z@__ z>2Ft>L!ZXZN69VQQ6X2S9v4i8BkMxQM2$HJwC~=hXI>295L*Pdx)twHdA&wbu-=W~ zR`0I4I%pk8A3kjE^0;FqzTg$hlY^h6(ltzGg`~zcAV;~KXjw)P2}a^ZsLRw1D9vaZ z#hXug-uGJ27@y>e7*9cxBXCcjf7acxBhW-6j%pt3Bm7n5Xzd#w>2my{j+0%GT*v}h zlNbfDWFo1ohORo%pselaxhlnBE&AS7%W=*_?U_BMD<)O6y~2XM@f@v^0<^W>&t|ar z?q^G~?FwO@$e-oFt#O6}gm}FX*SP?Z&-}EiPgo^`qI<>c$?9(rgMi4sxUda}R(il% zYE{)T3`RKIJ+hL?9`pSFm#~^{W zp1Bs3za=Xw3z;P=@EVLh6Yq!2BT^g%S*!6K6DRs|TgMqN5(SnfkUfJV=*&!zY+Z@w zI_u;7K;4&p-N1>))p!B%h`?2nZZmdyw~qh8I!B4@h+3+CSDl2Ue~5&VX#jgDT8x-e*kvdkzpa*Ptj2i=RIh4T07lA8=9m4UFaR( z%FzSAhXUWSWRc?W;1Cq3&squZ7It+68)OB2Hl=O7PD$rS<*+(B)1ZQxDxamb?bKDP zP_HRqkQ%$Pj{#1hYQI;j627gA9fR*rJv_T6|D^f`brNcDKF(O`xafR15=ywS|lHX z?gGG$2Zz&c3N#)R#IyIP22C74JExCADX=hMkqEkpA)2gU(4j}U^hDT#-Wv}cv+XmfDSCht~7hZ^@10+l7@u>-Vo zjT7@*7t!f~&OWH!lBrl}%YrM4vStdiVlA2JNRRyVv-@*hk!Q}R;M zmOPWM;Z9*6VEf+lrC3r}H$D(;Io&FZ>66zz-^DGx8EXjCk_}jo4BY8B2PG!npACiP0LSwIHV%ek{5SUH@1(pk?unxQ=>sV!zrgeYmi|94`+eJr$caHNczs!1WMjx*b}GL?h9|p!uR}$ z@m+_bW6U^nA>C$K8$%46L69|dJ(;|(x)C7GmIoZ_R?s3F8DcgA#288qc_l!rurnf-7`4Wdyf}@YY*jX=n`8uUqpfcG6KT`_f zBs>7viV9M}w-|c9Uf?G>4%cuYc6yDoM#di9z_6xt(_|P$q}Z9}jC_8*np~iGl8n@$ z?Pa6G!o*un*UC`O7hSYZ{ z_5Lg5W{9<7++5oHJ6!=h%}OwfCJaDq8}VTl_WGj^5w^E<(wY!oPkB@4 zm%gA}?*jCwP!3urJ!tVVI*~L_`Yleh{1lQdUTe(PL3tK3zK-1rhYP9fXQ_OtMccwP zgsvOmI7>>=nQxkIMIMOGa;UlZ+S%U6=t__yjeQ~^?ZPgcZZYWt63kFqmSnr-Cy#GU zX${`r011CXNb)s~-z>8#TAjie-Iq6@tph)LN-!jmW%7N`vfPZ<2d2Pdr(4n%0d*gY zNgNsdclFNTBMFWlo95wfX+1o9dw{H$r^H_qtWmC)8cZ1)Kq7|-(BUS9)US0{xaRc~ zC2SbxNo8kvsw&Q?`2&;{3#DXp8|br$M*2 zEx+0wFds`wKsAtOrlqH2@C6uAiDWb zU=|d8xPj_sq5!_M+-Z8mqTxWX-m(y`cOYay1|2HW zT2+i}`Q_3p7l;%4xn~Yblsqqm;Vq)wsrRuckd$0<3nd$VO0CTTIMim>lVL zYb~jFjUb?p03%3nPy{v^PSpf}35R(1RtzJ6pl|%)eDfv*)Wd@F7M3GY;EByvqp&Jh zT(K}^e@6XXYh6>F=1x-?c7xGl!Q-x?I0d=*G2xtMmi|};Zu{iEji*SKzP@Z>*yd~O zab9%~`-9Hx+&5cWd}<1^vi|7=srw%ZpP|s)NZNNl^D00xT}~NQ9bkQ0{S0WsrhGUM zxrP%fLQb*`V6SLw46-EwBWLI7%A41$A*&(_*z5Pa+(c<7P={WJ*F`E)PV1gK8de-l z7DvIV^f#A$z;W};}LOM-xzXyw}^rf2`ZKD5HjLE^6K4w zIN(PFB%;6TRxxe-|m4q27$^sKYb<4&2WW6hB{mxvec zQERuDbMX}d4Ktok;;}`u_!haiv4mV07_+nUQ!dv8y*^=k*n*w~vFy1ozn(bg~);9MeEf zrR=z&%)SM>Foqwu$jE}_ysX`X`~+#3+P=yvh#u>*4qNNrpL_vx~9HnB|_hjT(o0 zbCm(=(i2D<)JX`WDQi}$lN-xAtzi!S^a9j7x7t0=#>Xl;3w5QtF$RQV^i&c#Sq-No zJ`JDrce{iecM;Sa^%=}vJ6s!i(Bp!+`xJj*mjx#*753n?`Lx?Sb}ft(&W-7! zd!VTM9HJiHjMa$K=&`#c@QmhR{4lct2N%CCzk<+!^1Ru0L7EkaAN)7J?wChAWdv7r z*pXxf5rkfTtspqNtv_bxhc72LA%Cm8aKq1?oLU>Xq3NBELsxh$h`zAzE7wNA$WuBD zQ8PuSqRlCOp1q%>r7BsJ{wiY3^{qKn%~WVVV2=@ZX`#3IWtB5f!n5{bXak9(Xji~9 zVZx>o53*Uohv_n{XyYMpY}uaT*j3r2bQI3K`Lq;N<7d_OfJun2OziOs7WxzKFjXGyDS% zgn_&Hv30oRdaE~COOOXpx}a+<$Ol(D%yjLi9IAv{oLA?^)7>#7!1As!?D50p9?|h2 zF&@#CZ98~|LbQEiUli%mpLMyPdtB|iUVhvjtZ_URQR3@@B&6z16sM-J?rbNM$O|h> z#$A%T+pBB#p|NC{E^!$(@sIe8ED#Xq+m*jMO!E}Om3WNbbL?AoUKTfeqAoxIFDVS} zpQyK+%2EunXD1iZW6o=DQJuyC4>4jocf} z?3iNm!#Sc9A~hfAC#dnH>o@3!L3;JYHD?fVpbDaBx=0@NE7Ac zC{Wmcrri}PYOA%%TxYgA8#hrQGnML$pEjiG4f{1K7$j?yT?@=t@mJ<944*=+1EiQ2 zoq8>Bso(4}&o~&$M40*(+TJm9PM#GzrrCekd|ce&I(n~HGHnTWJD609r;9=XbD7n^ zTLqSs{irRuEw};Ydu@%I2+F5kfhBdB~l6cU>is@`kSW?xeg#5s zo=%SQCS|4;z2f#4KL9D`7RjqGSHDMhu!^^>)-#u648zznv%ZH&&if_~T^fvm!*92)4W!R+xgVnirZTfZR&ZyP!6Lf_89_OI zdsagK9dffhpI!@E;kMxxr~`%YzuXMZeuoE*!IKZ(i*uY}tppCa_l(^nCqvUt45qf2 zn3`Wy+w+Tin-+k&wTM2NeoUv8ETrj_Y>(qvRJ+gzpP|9ZL>BvMuTpXeYfC2Hv+r1bG4mR$0}AmJ*+P73qJ8mD ziyCXO=t=5x$%R9TmXrfmImw8SG_uIVo14CB;xw{5M$*;Pk%PM}s`cJ`XVH5)CS?at zKuX%w2}_gz}uCGcYrAyO3=$0~p>*8W@p zw+-=m+_dj}iFmo1I+@#;Z)K^|IbLERKJFTtvo<^`To^PPQ>UwlENF}P06g9Kbz&Vr zDI?|b8ND9DTv0X4T)~LawQ<(S#_XLPo$?{)cDNCl!K1%m!wk*AC8O&XXLBbKxM)ri zhsu=^TU#)w($fiC#k5ApX%l%6@KTyJv3x&^abY2t=aijS?-LgG5yTvMo7$($4mmyB>yL2<+tdFyvnm!}=C_ z-{anYgdYD2f&U(<{wpk*M&3@x*2zkrMoIGRzv7Tz4ki1R9P*0{Cy%3*wyvqZEv}Bf zp|J%Q{&8a~KCZDI7rr8sB(0>CfWDEjsI!f}ytC9hU1w8WHa&bEZcaybM{_Ilm*{6) zM{_fa5A2Ry_}VYs(Pw|T{#H$ckNdrettl5i12r8L3oRW!HzcQxo&md@pzzO|UP@f} zMz*$A>@+kE4i3}~4Aho3FL7yXY-}{N^fdJJR4*;4J~&y}YCBR{d?5HmK~VpLu8pyk zt+AyA?l+3sI+k{}T=@97zdB=X^)I>>AE>`~j9S;yoW@bxiiVDwmgXBFns0ahfzr?3 z{h{V}wB?Kqjch;s^Al{oxB32{7odLJ!7iz7W2&#m{m#ZtpOfZ4s{f`(xc?WvApb8s z1NZ+u)cw@m)2lv%Js@ zABIzcNMx0{-pQe2Ht$DGX<3mF&d`Qc8hEPi`U(2#P$$$2J`MN_XZA*a)u*R@SAiiL zx3)WkOp=Y#RKKGO*7h|NBDlBjxgd&bbkoDGc2k9VtPyvp z#pQ7hgLX7zC=5S}USr2$139DA35mwxIW<**6WWv{rvVi=l?Vm}j1gwwG$ZEXIi2<3 z)t3l%@CHm+5}ipGfJ;I-R1*?=^f>U0-!?aN8kCgqJ;^#6rjYP|xwDx3ggJ0%*_vB7 z@f-O6n4A2|2*2b8eb1<)`Tcy*zZ?k4{IA>~W>y9!=0BR~Z@EEGw(>pIyMt^ZBATkv zRJSAx?CZ1LN}zKUl&Up+J(_L2v^TE@R<$c>zFexV%4MtEsWlu~ zcDXuWGl1|#;14=k9bN4=h`--Tnmz|#d-dsXe{PYhuB55UOGc6=7U!VeShQ~AdgYOs z-wV@MN%DEsf2eg%=@FB^n%MVkB8GSE1&jO86Dhwb6hg!8vRBK|a;qCz9a47-NFN8l z8?pIV6ff>j5jLRY0DEY3`uofWB>r*rb}FtVP09M1kWsb_ww;2ZB@WOMoP;NULy3&m zvU_0Cy!uu?Zi+EDtaiSxG4jfWpymLCPOMr1 z;OXv@q(wLor{%^P@U3f#hSh_?5WFtY!i^tQEK)?t#DS%w& zbptZUDAg{lGXPg;2uMj}n#TUESj=EGT8%f_{GVDbzm|Sg zYs@1UU7jCra(+M2Z#w_k+|*oI?!EFF1g~#cQz8ouC5lTgmU%9&ZhF0EI#_gE6+&w!* zV_{(mgkWDV2A8F2Be;U!IAYhXTE{%y!W|ENZ12?+5U3lNh*byvTZFvK79C%{B;Q*< zn`n6ho3CQ?gcA1+00>__5vvF_Ezly~9;Pq(YAHcWD9}=#S63trQ<%l(TA&@i7KY5{ zzwePWa*LlBrMR;H4AN%@6hRO;RDxrKXH!g4V9FcGhAV}`{0U(n%r{cBQp~FxXtR5 z2Cz48vAaABCD9O5tBkVzJAh{O>|Cg{-yW1!l9{9z>;+Hr z3b_@_;$l*Q09K3=^cvYUf~yboWq-!>bM7xVWd%ePW>Uu{DzcHxg1-aktCMKDnEuGL zG=|PSbMXq_$Y*x+4J1<_zrZJoNiJ+O4H`&dI>rh!WuvkdCMR<|5)KUy&xR5Y2(e^AUg1_xNBZq z#b1|-p`%eSVT<(ALP0r(<(w%=F8V7Nxn9Z{+mM@hV~X0s@O*-&Hyv}F7CXto1v%Rk zgkuW>u(+dCtfZ9k6t{j6BsejHBS2QOf%RNrxP2x!qb`WJq-|~|Y};hlk(Z1u1wwYK z^I^qyLR(PRm$+pxL>!G)h)~d$rTd_JYu~pv9RaY(1bWCZ!091n{gX9SBWXHhsSdND4NMwM014Per@8UkqIgZwxhzWiDjVVMZjOqye~9p6N{7*)4PurVkWq1B z-!X=?g!V2T*~77U^PrNc$bG`AcG^4NAQNywCT%VLfh2wE2vH?Pi-{qH-s<5I zQ{-Mpw2(7)>j0k<>e`@M)(p8=5N&e~TXen<2B6GH033wr#fj-s&X;7IL16J$vJJiCdrvwk0ZYc3MJR(P^sf3I@JyV9Qm6Sfc=a`c z?i8+1c5V?eCZ4s2jsVLIrGXBiewd9W1CW$ak^!E2ml+)HDiRi}BOmp!tNxp`OWUS2Yap1w$= zLZ>#Ulr{*_Xx0c;gBW_Lvx)>?yU^v1NiN-U(?~8&%0V$%9ksnuFf*wUq+TnhE`*z* zzNMT2)<718+=v3lR2`Y82Env)EcFB4X`DubU$rv#bq^8S_ulV1vyx_60~%(bS4eHF zBEdB^0Oya-tw1I<%0|i%0m1^Z21c6%s+p#eLn_2uMT6~qMUq(MMu3M4PK-u{K%vJi zomtRN@VXu_lW zd$Qa_ZLrxScam+55dr>y&WB3~cI8F@@GtSJcObm*E&IH@+G%lDf*fs&#L94(TSJKY zwg94FNpXl8tBqhvMCu;Gy~XGvMO|2BBM=j@(dbEAz~F>!7^EAQG6Zowpg>eGCHRa| zWYs1WHbA{tYF`{TxvgX?0bId?I07H>7J$v(0jF&{lb)9BAGFj8A-gh4}|1o zjA&q^(zkil%dg0@*}3|uIVg-^kVz^@Hz@#p?Zh9O(C)gQ(hM_T6a%+e5HT8o=E~#1 z*U%2150D6({(ZMNtBTwtYBYbpq2v$=<4z;21>>lGt94mBX}Ae}v66 zC_>Rjx#nZ~NCXa>vg~}e3lYRyQVEsSruKo9jPQnk)sI-!O{z{gSy4 zBDgjg8Hi`(xNNcnJ9)Qs-P{4@-n$)*(##bqsoY9`x!f7Bda`N1BSLR8zXcr=Hpb|# zjj4-ael8@5qJFPv$q6PpV%Q*Kt&QE(hzfeB9%6K7RK0iX$CDlFXA|gdF z;fhqnrRgThCT?U58ff?I&oxEe_*y!HcI$9+a(vRhvbN(MknbLlNt)gfFtX;ebMj&5 zWRgve^B$x1F?U68HbAqJhTq^B2KxcV{Z0|&D&J#^!UO$ldZA0OSJ7^{VwJ&h{|;S7 zw3}_(f+_kN;oPyjvG%dGv5xGs-4EHH!}s%qSJ3n=a3UVe4~&iwj~zFs%Cm_P&RWHS zM5=|4$3ls&b}ZUHTjc6hIUsJ#LE82Z@WfR4h-DO0WzdbsS^F^eaoliGntN*dJa#+= z+;6!bMYY7Z`JxqMpa`4aP9Is)slu+e136wlxm+=H1kkChRJogQQP{!RGvqOSN%AqB zwdN$0R9d`xHGp`JnsbX>**qF;>Y(C!1t?MR7;$U4!(ezO*1fIz_NviOrEw|RJYb<- zz3koGai5a;NEubl0)62D8gCEeMl{vb6`_Rx614HCH<5&03Cihg;M&(O?oA-a-4UxX zH_+}FB4xvYWeD|=IOcqfV+6Z|>^{rF2ssnR0|&z0z4V3&3}(JTWhr>=`RlHf8y&qp z%uEF*tf63*Ubw??F?5?lOax>WJM{Gqc0-4n_bLiu59)}ll^q?*Os~K#Sh!Cy_86Zi?ri6VUkhzbK{3AR(JnS|>_E+4KRV#Dwh zMhfzdaW!PZGvpYPTFTZsxMDXmtE{D?P@So!-y(rJP?cJDk>a+ACQB}xSC81(Adx$i zP7y6ncl=_Ko}y&V!%R2wH0!&-4Qre=X^7LakOSGepaEi>>5=IcwW9s`(s0i7q3Ccb zl2G(Xu69X%+?0mwa#n(i%3j*I=8o@X&G>Ku`60VxE>;qt zOh`Zqc$^@|*n3zQn65OvsNq>%VO#;lbP?lRZwK$%QXEe(@RTd!2?Flq+E2@}say8e zsR!qqDDDIv!A;1^2uCnrv&Y%>@PckAT!F-+F}pJi$8iza=@SpcjKO)M42n$-PxyDt z?A}t@@$FSQRwNA=kHCGNSbzu2ixCc)K2=v57XWu;{|8h+tG^mUljs+p`!<`vIUM^H z)L$?btZ?vWWMIzXZTJ9CK7?xE^W>}%d(klR!RJ2#IKnJt{Y(dQnz@77!jvhs%uZO{ z6#G1TA6gEdDfALLah1Ve#Q(tmKtt#aklWMvJIs^lA#@+Q9r*bMtop}L+Jg3=ucPmy z!=D|>hg4?n-7Bib(ZlF26h!|MBz+1-5S&Qz8}Pgh=}-o;tGc3nA4LE1pIPny4dAY0 z9tCNAn|YS4VU9C0>tZita(RzF<*1%{VI)?8?=TQfI2Enyq|15nJ z7dgxhb1pnE^!j*Mg+3uU0)+e~_64w+Q>wFc^mh4nXS-x%S%%?TRT|XAIoU21J!%q6 zWk_XGF;M!$(S!uP5|Hyp4F-z5@~B=9h!%Q2mIxiSCN0zHbirQjbY7Ugfc%$AT>j!B zo1|4pOF%o#pFwJiiUXJx*<`V_1fR-0lKs-@)2g$d{E934*mVxLyOBN1oZ>B%y9&yk zh2eRm#;A~Gxk98isRcEwc69=+OUPeU;;Mpq9*y=%^Pehlor+FDKFlfSSDbf4;w{rp zFtsF+zefebz08v^ixqXyIZD+MtQV7q+N9N$Ve){}O|^twqPjWZW;3tG*q|u_g+YvC zw3|4AV>rr0XBG0pQgJ8oT(&XN57?l~6!RFfDXFZ)%JXWTv09Q+Q&LiyC*Sz#FaL-9 z#;R}mtClTYRCU*iaPJxXYlvPv_{B52r6+ga8vgCQKM7wLzV(;&gx5yk^h+d+lS)0z+`PQGr6nmz%)L)O^2UlER4iKBxNzZJ z%V8}{Rrr~3;Tc{1uWtDww%_+-oVRP&ll8hY;RR%#AEH`SDfc4Mqa9Szi`a)ScT)3^ z&Zx%fq68^{K|j$AV~h(_CTe9rQ43rVCvi<2$EA=OE{zx+mqpE2&)x2AHeT}=Vs9o%4u!^b~2^N$JC=GOe+d7z2GQy48yi@E)@t+$7C=Jbqs4zqMH#moWbO_;?+XVKysW;f9X ziPFXl<}$|RBotkjU{yyMToYtqHBP#WQU`Nj`ZVKViXVj$;Lq{Hl;3hnNyoHd4dHA) z#ERz?O_Q*S!9>rUuqP?SHVG?x5lA{ja|wR$p-EJV%a3~PZU zF)S7+lPkGL922b0_;}=f7^}yUq-`@g zOb`w-V8}0kM`9`gc?UcaMP53p*Hh$G>Z2$^tOt-!k5Z$rHbpMNy&wTgFq@&x<~Ynx@eFTBNPvo?ZM?x?h$2cCp^Y~YHh2@^flna}kluVH z=?YKcFv-+BQEh^`jCWlQbviGBnrD|lKmJRA6&H1aHEXRCK`p~NCW5RE#Ow4sl^rS0 zAugrForJyKQcoW2N^uT27v5?~0q0WU_Hz0^zxUyrBt=kGT3UAY#+K&m?b#{GLe}+d z&DS%34sQwHfxm$F;&0*Y;V*o8tnvI^-#fo-`O1~oEWh~8A3Wc@qIo6R4d>x_8CSgo zLOM>hmZ3Vv^IBF9w*!p};YXkgn3`74M5UvTNk<=*j;T$rA#%|RSYU_2g5XX=wFXF7 z(vv3EKtu-R_o>bZA|(>}kp_6Oi3#Q;UsOt+C6`F%a}yJUOZs$`zl3fQ$;hjY1u1iw z9S>6LcAkPpA~FZr_l{Dxw+uEvJ3d{26T|O*?;G0hW6hoHn|rUl<>Q}|)oz9;fK$DL z^3VfxwIvyIa#Njlr=v>cP4$V(RSl_2#g^0#$C^2Psa>|A)SGR$3cKedTP%r_=?s%Q zi8bV}kB{n2WqEm;%QkCk(>VN@D>IqQ46@+Nl-!g|2ruvygXw=Jj1)j~_~b#UCL8++uI2Y1b# zBd#qg-Rv&7CQZNS_dUCkyA zHAMTBm*uBxt8|#X7BidUx?E{&b2ROx)0KmBh=}zG zWjP?*5+Y%`(UMYqE-)pR5~M&PHr9D5$>*aYw*hzMr4vDgIX#*T680SPCW8*T6Jd-~ z8RLW@WLI7xdDw+S_|}vd#`EGFdUTTAd0AZ${Oc1N9a>mZ`!8Ev z*DqL5QSYxF-#+-tvPAz2n-<&-Os%kT=mcrz7qHmtFXz!X^ zC({$Pg-++5?!E`A>l(ay=N7cgEiBx$YSln?cIuJgo#m_2GAzU+lmD^A3Gtr}oZ*{9 zm&cI-WJ|r_(Y6F-A4}P7AjvXbZGoj3c(pcR0%MM2)hw$)oZ3*G92)`-)DTk*#ltgB z)<-K;C?es7|9v;9Vt(YwRqknx=cc3Y6ssiC3AX ztIR$hIeWO<#{IZ=^3VBdXm`sF0l3YKtl7;->I$7FVIwIycS=2qo&r(w z((Ke21R-l8KcCN;bg(*|d6L(OV(N^c9&1Z=_<DqPLEzYt1NIC&^XADQKV#R#sFlFw3d2qPjO~KKn;llzm{Egg->YBbe|+frGs_cG z+dP%)7gpUkFL$nUp7XX9tL`mki>D9fG-Ta)_tM6d_~qbuZQV7lymMw}vNhFNRCrU< z%6>jhf!nDTByFZjOf{uvT18*J+vBcSnqT9o zs|YaHnpTUeb9%+zoFPwA7GF3a2z*jXO2%XoQ$E4#tZBrqtk%3)iphgW0wXZucV2rb&#owST7jj3>J#CxYao8|rU<~9PAOv)V*vV*!>DHix6q2RQKm!N^ z4Im6OfPhgKBt0<-10`*^B1kB4yIr$NE*dp}c8NOzMN=iGW${AcL{JezQpRL3iQ&s9 zqFRRIBj&rVP;(wr>Paf|<`9KiMMcLk^{THLXV{iYwMTmUe(YayZBz3qjP7^0IkdL^ zipe*ui@zJV_REV`H$7A2o!jGS_=?0Z3+Fr6lRDpwWnu@_dc=Z{iK&W- z;Zji>30Ut|0#?MZlPZ?cKyd10h9FL7IHGZ++%3AeVNS)-(4F{xa1!8Orp>;YuvP_k zAxVcA6+0OuWQap?ntjnA7h(#|GQI0X=D|ZwXdzgExkyu#Sd{K|OByLrO0RJTaEGczv(DU+v@W$J zy(O!8UUNxjS+A}yHR$Nd>nZFh>h*5)?Mk|-a9fdmuGLVgP2#iJ#}+WQ@oXKMeT*WZ zxVYS!@BBcC|^C*g6-mj|CSn*|zaucGR??AJLG9*s5Zvsa|g~wcfeZbir;hG4{MtkGHIp zX3=2DN)BtpI=_1J=6#D7+jo1eU6i?G!iLS_LgU=cruu z%@K8Mj+kR}#2lL=rhZ2O)fhnw90l5$$X@Fhv<_PjTc@m?HRj!{G4E!b@ov@>Lf=ZG zG%K|L>x_4^(%Zh(HQTv?Kb!Gx(@wXWgu==J7V~YXZd<8wA_xMo@e@HJg1N5A;9RPI zck}>DiW-69vt}F?9ACK}@}y2J$!cM)2+fkpqK+_+mCB0?JG{4kv&fs*RVIDA471bh zvg$=+Yd74ta7AnLs>Q!UYH(Hzb);FzYH{W^EQ#J9XKYV5){OIPPom#`m#0<>5<8|kF7Cuf+x%VL4IL~#`w_S^<9VFm3 zM#ZIJqT1(nSQ(xLP-L|xCnFd~~(PY@+*zja9cCwL;L`(M8 zY)w{{-Od+)v-*f$s{wggdBvdBrW&2IuiGz42{fiz2mW?A6{pgBj)NTF9c z2u<81LUG0-@M!p*9AhCP$rA)7TBYphBAu~*GY6O2Dw<%C+7 zSowDfyj2Ho>>Vl7*PdSU>|5ajr%!X+)_<>}V*P>(xOmRGc_p{3*t(@Q=d{gv_T%&9 z4dhoM+59uAzo82S%WX&kEJkD{ICp5{)rB5U#Y8K?@e}U~dI7qTJT+ZllC%FYFH)9MNz%iE^JskaHQsUx*iHO1%NK{&q}OikzU$P#eSgV7={>LKIl^P%r^3Gt@5VRb1*^uIS{`l* z-yJT(f5h#05FeiYN%?gpTSEgkF1(pJv@bjz9P-uv{jYz;d`@=Jr^gnbUyB#xuZLHK zpA8=iZ%9cyU@_r0@t5%y{82b}`gVrTN`GMF@Pid_;(rJc!AlSksF4m25)F-UOweWbu#sMn#e~po=`Ol=VCaF*F?P-A4AlDOptCPJo#sA6EOe#lAYK(riYkD zr_y@?F@vC8iwS6%X^a*t`cb82cz$uv{AGjRFc zlub&|@tz=1MwB#ptxg#yb|c~vEV2$3T6Fls_wk2k_e}qC4|B(xZ>Y|G?81k`UCdJE z#B>e#v_qh$J3voXl!Hp}kLg|#R0gYIuEAH_XlX2NW!kJ8#hvN8eEN1b$z15kCd)7x zjeKQxwmQqBVds0)nv`lCgn6+8EoCNzk=jytqJtD`QXw)*#wH_cOfi}GN@EJ4V5G5! z(LhciBTufGM%vv-XEPerxmVE5jnRcmmle@XnNkM%Uyc%D(N~K!?0+|QBe)QI+4zT; z_j_7OR$j4}8cU_pGo@^HVazrQWADlem7{X3tTTaI7YtmCU22ug3^|bpoLY z>}Y34PV6QWrXNhyI7)LtTv)rrAdSd+}zg`ObDRg>ij zYFPDrPf)FihEC9PmS+_mX2`qFoO3y!6EBm(%9X?SWIICh`XNkm@b4p)_hkJ`JZf|1a9U1ip>x z+;`6GBWY$NYaiK`yu_QlTe9NBiN;Qx&CXIFPD7#uLN-9n!V;E-1|AgJ(%w?w0=?w{ zZMj^!(55ArD1ceuZm=&%4FH%g_4#M#{sU)v>LE?dWJq zF)n{6ENX2Ae}BrXB0}x##Os9gbUeK_&Efp|IAGiaU9v<8>?VSjh)ARuM-0)TaKI{; zwBwhc3Y>r{FaRG>BMU2PWL3#eMR*;`!EeBdiW^hjqmK4>jx3yItI0vg-gEE(zTWHi zdyG`xgXh9DrSgoU7=@QjDCcl?)&^I7=eTS*_9j4azvgrlu+Z5O1W}FSvbqrI}3schz z6Vofgog{KgYJ;X5jF6h%6SnEq+6x6MWSb#bE*p~N5aCD2Auy|O*{tk1TQ;aFsnT?W zj(@*?`+E-*e}GPZ?yqOuaL3aZY+JhL+FNhE=D=y2HnZ+Cz)d^oowwNCWsW9t36%GkM>Fp)$A));1_X`c|j|$7#*Mw(x7dP)NytJFKXIh14sxUu;nfin@ z%StGXWi2x#5LwRJN1XLjrqA-fZrvSsv#dZTE6~Xbbh1K)3Y_YOAGg=uWzEvzb)gAX zo}|tS={z2hjM8}+6R8&1^F!9;8hmwpRbiC9t+4q3_eG(uxO#V?kNnwa;@$p}{|I}x zZgd{ZZdNZ?iHj3`HJlM@3uSz%_W3^I+s0kz2hR_yEorkAwYGYgU4CRaxd!6hT3bbb zbA=%_I}E8gz_fYWSe(%vwrYrNESY&5HKR7G$_N+FS!UGM)~olLy=)B?T@4o9Ubu4& zwiK|Dn&8FQFP`KM%RRDx(l2^X@{2v6;umSWBhUJ|{xFinY)Q{AEEfZCU zcO*YlNVk(n6kklyMC~vL6$4cIc1SD9+YwQF@^(ai4>0Y+Q*T=dIzp;P<^=jXLdiD@ zyv+vL4-i)nR1fXay*63u*Le@x-X5rbw!|VdGb~&8N-wA7{K{ld@HcW8g ziy_0#G05z!nR1S6e(HEB58=w!*20?}h3^$P7uSnq(m?$XmIC^uKC%>?7y72v&@+8_ z>V=1_wrP1ml34tON&H1*-(S9&?7qtt5ZJqJ;O^pfa~!8ZBUXf_EVu=76C&MZDwnfw zmOIj0ID$oYq!)jI;Ot~UQ$)TukME4Q-g1w!*J@Gr`5Mx7I8X0m?=0-ww~rm(x9>Lo zySLr;$yy>gW$MrD6ObWTo;|9d2)Ynms9lYOs=gp6N$wP<`2CX4_G^~Vd}XBW3ousy z7!>4f8oE9--4MGp8@eB*P@zbn!qJDUI1!e*PDavp-3efq7Od*alYwyVRGw34p~*tZ zCw2CSw_u<6>#w`N+wX3@EW7#(MocgMibd$^{V(`DztHO2np-X!<2Kx3+xrWkGZv;@ z9aYBBYK3c2rYnn-&B|Ammle^4YEhJJLyhhMG@zv23(-Pl#Jw7AaPLH4RCJc*)+2=O z$Fh)>gra4X`&qY(b6w=d>S8Oin{~OY@aWAz3&WoN8#GS-10w=~3N$=Aynx5{0v19N zoLGS7CVgF`unwk1iaY2!@8sm=g=B=E#Fv*BauJeuZoeRADy894+ZzDwK@ylA&N%rO zic^I*S775?_dg4_u@9^(+=uP&boRc&Cfj>*A7g0>%r2<9vmC}jGR)fruwb9%)EGwM z=|p)tQ9gj^M2U;EGzYnDcWBKItrxBNVGV)Fk>G=k>LHc`Xk&pI7&P$}+{Y)rdw~5m z&WQhLjZU};kIsXxgS8HiyU=uYy3p_1%5D|Ta_wSw3ENx>7&x$;i2i2C)pBLrb*7u! zp&-Gf1?^4WH%6gC6;Ll@g&f7M|-k|B)GL02P3b3?FfMt5e1sC}Q@`yFW@5I?9 z*mcbEWRgJMBXK9eZq-&Qz};o!ZNK0PQ}yb?X)kFKpxgxvej8RP4Fpz_P06QQJp%02 zQ3E2V452#VrUS*Dmlk(Df;4my+JyW9cj8v=+~Wn|*%QCyX3^+8Nf0RdZ?J+(+z_63 zNXR3_q(&(vjY!L+bJ??{%h>IbOGk_tM?SF$rNp`7>Eik5EO95=hW#tzMfOazTx5}` z`bY`MZ4rgALwDon7}d%m)+kv-tYpP)KS1ZB8k!2o#7S6(~AV zZm&dwm*RY5NX4(HrC@&45x@`cu_;Y&P_ENoD7Wb^d+ad%2Qv(DdQ(zQ#xW}0mE`p# zYNQ~$u>`Ukv0PKoC<|VqBOR7d2RN+*oYnzI>k#Ag093XBPV4yNA-d@lm+KUl>vSRY zjcw(1DAyiJujNWbB=QUxmciOoKFBJ~sl4Lgq&ZtDjtYd|*)#^m8oy`xn$;^-{q4qE zKU^`sIyXN4w_9#II$+M2`5&9}-<>@(`|)po`;pMJuK4<+4;24!&gOGAZa4?kKQw`= zH=eWUyu!Mh4~;HfJi2u3?Qa!-U;H)7SQQ3-4z^0N=?8&bHqHpls2L56)-2P`&^PFp zR?E>8p$spTa0FK(DHo^6zKX^5IjqPBX^1cANGFe$TmH7)JY@#KT!5;?Fm-wzib^!5 zNL0L1K%wTLl+cJG+K9Y_(Jc#6)+g+Ir{FB?St|f(rd6}WnWhv?q1e~j%F~k&=^`2I1{Z5tgJa7 zofo(aUE=*>K({L7EJi3^#w!^q)+DNmlk!MPz zV`q2Uw$u0jWcgRRldbHs!fxT&>b~APF24H@X>`xfhD3F^@N{ig+eIWMEuQ)lKMYmT zr(i|qb*Zg^WO9HVQ2VRX&5PI(*CNkI^}@!v&1bUXu9f%BE8aIgN`SZbzkqy-w zTh40V+`Xf^`f}}}7Pckn(|E>!`a9NeG#Ib#s@+w~)z;Rh40gMK1Q5DA1KR@(T}Ok0 zN!}+2a*A=muXl!PYuy#*<;DSvnwJ~a&mHXCH+8t=GCT3jTuLC*2@BszslA;9i4bM! zBxMP*`kfZKhl^(%#oMK6mglFj4*t|$TFp1R$@`}T?+Wh@vtcj!fH1TK!q5^3gX0W? zZiQiNVeFg%frV}EPPhs*>1X5Nu1Zfy$_{1zuJwwqir|qW@Um67O_Gcnr>;}p(Wc$DOpX;@C$1c44-p`*ka>4lG%ey-J zkn#H~{;G^Eo zBSU9jb?(}2hA&ywweR{BKb$!y&z6?K{VSeg1*nN(4U4f`?@q!JQ=p5SREt+Ih7)jC4kN%q5J z?U%EINnpVP{=+h1^v7uZZa-~wG^KHp<>+X@Q!s=(uiihh#5`a$wS4uQ+zl<$Vh6HI z=l>!;GIz-*>+7P7C(2FeT;(JX-%Brzkd5U&+^5gNu4pW#>V*YZ5H zlE;{NXdyd?8%HZykr7z(sh2T3IF?0FH#h4%fs6n>+B?Zve6lVli-1e{a(xK#PZyaNi_8n?c62-G6Jw~}&cA@I z#lR_f4dli;h$;%cCMUjw!6bVLmg7Vz_33*Db*H?y1MOZl&{*YYp(F9|QX-VxrB|Bn9du64^EJ>zz{S&tu2 zPgd}!1Vlk>Wtvfo&?GKmM$uehM3iL?XX^}cECLiNOa)ueUCeH4e~ZU z1S9c?=LC+E3Fn3tLSRdzsA0zJ4R8TLcadFuS=U{>z(Z8vX=9(aq7cb(Aqw#&QWMX+ zl&!8^u2Q%lB=tfs;jMvTge{O*AZ8&?;x$0j#W6rAEsYBd#Fjrsh+rZ=C@Kev${)~` z=vv{~6OR|Zzu1A6-qhE4%H7YyHX9kKE`NL$oET6; z#_vUlLHIv^Q?`?L4f*?JzboAzXZm5D)&6TrPP8|A0_y8R8$Nn|Aa&43bvq1w${|v9;bG zijo%n2lp$k3?WB7p!qUr7Vy!kJ!&Q%_jfLBLv3wjI*f*=gXiRe=^TUL+K*#lSzY>R zJEvIxw13UupK8Yl21%;ogVdS-b~bs!EMqc4@rqO`X#G2@?^2gm5POsSJa+EzqBr8dMM5c+(5eWflIc~4Jw5-fLR%#6j+ ztUQ@*TU%#SHg8YX?;6Vct$;{=*U{8MR;$WlXobZRw;SlL{f(J2ec!QJ#n-?dn{zNb zx-P$YOFkdj!9vWE$DZ!p?orF6j!wto?~a>f!EN}4`aJ#G zC>r*RXyerzt1p(6Q^t;ATG0X1hze4ecFgnx{EVrfL~6)RbFFPK>cch{R~_;?G*@*5 zJr(CnmKM9l)$MUSX^-2|I=@wbHKXHx*l_1Jf`G$)5)QETic4^{p+2SOx86V1S9$m9!hs z1yO8msdQWRy4Oz~p1yJt%iv(HY9M=L;9!m<7J-@3p4j538C%INcZv0;=4A*&8V78* zn(>anK+&u!X6>YG@+k3);3@?vT`^a zh%mLo0Ulw0BD=zC~$rHSCFV@~Zvi@x?mIL5sB~tY>nwBQ!)?ZdF8LS+GQ4Y~j;-Nudm>NBD z^kEQn0LWk};y*T*?2!rY;W zb~D*BKCtRL{h7hBIkWCtd&bU@iHUhzhrV_9m#$xQ%LUWA1ODLH!bPuq0Tg23G~8`dYhk{|CFT-qBvt85~5)`g4GC z^(Y~zt^;7sG`+(}=_C5e`fu|;FlXKDVJkCl35kBPbdmY0cUMiZ4Kij!csM$=*L%bbpMV3zOL+y^uyKq%`}J`?K~AQoB$YwAgPA={{?- zRhWIj6@SR!MC6xAAtcnu?+>Xj1kvjoJ01T=XP z5ET*_T7qpS66sXgp7)nh8M;Tj5B`zG=uJa3m@TH{LC;`pOdOFHdagiM^eAQ@>WXN3 zW?>C-jIhc^U3jQ_r{1?AoIXy+t@k24^oqD)ILzF@Zh|a~VYKh1FF!QiZjg0sC&42M zITH|f+QAOnx2Ai0C2HXk-B)ZUG!No5CP8gHL2W!yvhf6HNCIp;0XCih8&AN!6Wbho zWvk|0?pxuglC#8>BwM*aU^zI>0)mS{WYWZ&c_Nh>oWc+ZbotGEms%=;_rX6%WE^n> zIX57uN!Ve1rI?fH^N~X_nwryG%e+fwe)H}tzP|7~g#-RYU8&EfR$Nw}Fvf1&^4MET zhO<9jy<(T?{@Jmq(|)uFb+H@jYo6Qx=;Jerr^zvo>g{Z8&5x`b&Z27My8fln1xs3+ zx=+*>4;4Q)Li-64{R&~2V7wASlMY=}-ClXv&ua+DDyiZegEWLN?cShFyJNHfSVAg? ztN?^iB<%Ij-|?uW)I}BTkY%MVsu~HGQx~eG1gQ|9KF|v^TP_$1?g(;T)gF#2v#>?K zyiN9~g9zdzh#WIjX!siptUWLT$nrxy!NMk@ja97XHd7IZN_Blx8E3XeyybI1#L~$i zltWM5kxE=5=&%YoiV7c~vXB$ee1*JdUC_iu-4ZT^7%Re5fL|zxWv!ipSm9K!>X(P} zwltvRm9@Ka4ZiX|cABJwg51XwdN6$2{CWR6e`4Z{yI1}DqwLPbUv6n@9UVNe4<{uD zN0+_wH1bSUT{#lXYC9Q(7#FFjwSQ0m(dR0W?7cixF7pg1Q`BPS_hG@U%+yA*KG5)%mCy27Q(R zcJtQuCtIJNd&p8}M`Pw-GI;% zDvYrd?M9R68N?&#KI$1@suI;9oGk*~@D(T#0wqE`Q6e&yrPlcfKX>byWVu>Lg4Pa3R>5WmiRy+h=Sr0@)*HsWjm=AGe8&qD=>Q@?<(Q@wOy| zKKLSWwv%>wH)cj#*q71o6;45MRKv#A4zvJWhIS}q1e5oZ>ObA1A``=z0Yyglh?`|u z4(ES_thonxnuPUekDXoSI?KhnT-)$ubrmtH%uzVU*>FxB=fEg9L!b^qz^-wx?GrvQ z{bbz*Fa`n4K-l7O#%Et&4vsvq_*Qlo2RNA@S(MCD$vU?kJ5a~)Ebm!jUzJ&zO@A-0 zT{JO)9z9%4v#|xm4l!_IJ9@d;fv53xyl@N1d19ysykvz>{7gsp84m5!y(e{adsqZ) z&;LuuCGbwi1*hTRyaev~X>RC2?1q*KsL~U~KFbpcq?>2Cp>of_qLyTx?k9FXe4usq z9vsYueGN49i1v%qF%s@%Z*pjVq_)o07?OsYL&J5=d>vmclHOfR?!@DQrf?^t(MwG? z=%o>Zma|2VmTh?ztxf(+o85GO&hE8$=|D{cniJu-%>vdJU>edq@E-B?^;KEvPdE5fp+RU1HU!(68k*V$ z;*zVeIa(`)hMV!k1xAm_9n@YrY42WYq}_wB zZgn*p8ojYry0Io(>9S6|NSNq=4tLUF{fUh5qvKQtz1E;NF-q2K$QH7XQ7ed1yTE|d zHtQHvG~j5fqS;P9A_hH+82oMw>b$XA8QrTV^c(cux}fXbU5V~p-ByDtS90aB?ZI2Z zO1^=Cqh;iT-N7KFcopTK0EoCwstXP0OHwADU_az}<#JFNO+h=M5?lo>oL+7>2s=Ig zz@qGoFV9EZ1YFL#Hajt~=vyn!`F6|l@2y?1qrIbty>{`{(^{J5&+&C73U&6gv6(0K z@wuIgK6mD(wd*>1`)<3iP)CtDwvJCn=Hh1~^W*>L$Xxz^Mdkv=qNoCyBZq39TryPc zlHvbnWUiKxxorQajJ`!ms8TU#kA4PdKN*?#{&UD&_y@>5_)j2ntPudrF)|;RdXtZ1 zO>i?|bik<#!7L~1S%vp7Ricw3{g*u@(lq7bP@3m+X2NoT5fO?9A`}lqC=7}b`*=s% zPl!fN_G~s;!#=O0DGHsWD3lInYAJ6jFf%l&&GpU=jD}!jc!VxbMf0cfAT_&bZhFT( zF-8V;sJC_D4cb6GZd07RmM%DN##Hz}+DUScGuxx_D5|36f-0K7RN0y_ZM-Tbg7(oC z1hgFt$Ckd&YFpetE^dod^7T)m@7v-b2hXk~M_%gLyux$AY~_)c4B3!JDt`=@Di;O# zc=3a`-Yb5D{BOR6ypP{;<4t$odDFM>T0guJZ4rkXfjb>K$)XYJnRc6f!eWNa)Jl2YH_Ogo~MZA`@Wffkzpj3e?nG@+MWBvsKCW z6hC_E^eg8~Ow9YyhRK&6zx=Dq{&mixbLZapJ$9`4Uh#pZmSVf`zb?)$FFsTJ^JCA? zpI*4G(RdL$6UFsVo%Ayav<7m&)_TjlxmiYc^{m7gH)_nQ9!s!>7vN2jvK;Hf%YRL-x^)??Uby`=w(ICRl^{qjL)S2C zr;vV-j}|fWL_$LCa9&XCmJ@lGb+XYZRlk!vO{d+ycHdh|hi3mcH~ytz(p=tV-h9`U z*DbxJxSkD-j-Vdoz2UXdh09u+yHD(8cQ#bN`0M@8&$ZA4`!b(ns*oSD6jy0aymet# zaL zy`tsK_@$&y!PW!GyaLvvKt`chX$Nc{C|Zt2@z~o5p0u_TZ1Fp{c7QFB><@OWVVIYL z!+XyQl_6Bboklo9-q;|*D!T;(`MK3Jnx>(CM14I3!jMVzfFhGg z^}tVhNWTs$`8_?;GhB#9O5~<;#1fJ}AAt2e2$lgme^;VNc0j^Z=s`%dCa^fEMbnTPSn4C1#LpRtsjz#00P9 z3yg82irmluf|CJNB%_Ml(r|2*O;&82g@bj=r|RZ_`+l9)nbfZE?q{}_e0JEDPhDNj zwApzg9>zVJcKkk#34hY@qs{c(zRw`TqX)PB(sV_J`nxZj-LWy+5MP*Uyr}2Oiw^xF zH(|OK{Oru!m1AeLZ5r5l#Xx58*4SYE^Zw3gs6OZor&4p~hLwmm?K@j;-PhUh>w)1V zOXrP*+(9jV!_Ea)b@rx6HXfWh%>GcggNfOv!%nL)p$d>t+!-9p_}MN=h(rQeM#8;vkW+m1F{UayT+x8Bo|izPO3CTR7->&72JhtNV*so6C5XUP0)j-nE*$3 zw{Wn>2wK-3dzV=ed;xb`HTB88xk2lQMX%)xa-?5F%6TO5>mvL-aL2MNsS-as53^tb zv=@ut2T7mJ6d_f-KA&}XM~R3{da>x$fBW&ST@&cc;yq%(H#XEc?suoZ5c=sa*z<2k zL&e8#FC1CEx}~8Zru;znkrU#k-sIlL{x^#DI$4d3Ev_g5C{^StB6tKOhuOfe;0jyE z6hI!w+C-4zDcRf`G@FYVn!8l*vv;9TROWWa4BJVRcp%A1%7d~_>3Rg`;gevIz)lzppB zKJNXA6}O+Y@T%_a^n@A?FI_Zp`_RPBv8COq)E(Q|-xaP|d2xHPWyt_HOl(VpTt3H$ zXpzk+CVzjPiivj+!dZv7MS2aJx;-aR@!vHyi~P-s0w=ICsoPmxe8fV_gB22tDGCYB zN2ooRr0uV#7#l!_(5Dh%|{}7PC8yw3;m@wDEG;_D1 zdl5Oq@vy0A-V7Vk;E#43HVNC5AK^nmNZkjt`ts@CCrVP6=xSK!>g}sM{@Y3c9O8eFi`Z2BcPSPBU9%3Z+}N98i&g{? zk5!Nvk6V0Eppa8G$_3NJ9 z*_G`0sG=%$w|d%{*PrQrzkc1*)6;Wa|CxD>=Xo~Y$OZ)U*wSrR-ov>RoH{;+ZA1VX zEvly3i-kNj&r+Zj+P#8Dtd?t(Dr>#HS=g!c3b!Z+goDZf`z)Cf=ERUZqlBz;TF5qU zzgvvTcPYoL$F&vPy1kZ2x>PGk4r(!$B2`hXnw^Ls3>8dHvw>L99CS2?%q)BX;EqgL zWiOoJD`uTeW1TttlX1L(X6=?P^fwh}US-Z!`R9NoJOx8qEu-oj! zCRr(?b{nyXVD73Ss{$3?DOt;vWer4YIi(7@&>tZgxH+Ruv#5&Iu81Pgwyp!>tC|=^Gb-@?D}o?Q`MDs<&G=IW{&NlqvB# zlSG0BoJ6H>V7z4PMu6(US1_dCydC>}?42JA55(?!TgVV{e-itI@ObQy=n(_4+l9w2 z|2z6gxcj7j(jw&X7Hcv2NyX$REs3rD72a8R#`4uR^)@x4%7s#mAWAYd7tvzNf`-{< zIcS-+NET|Is)7&dY4mnwOql}rStLs`xHow#sgdQlYm+kJAk$ER;o88AB~eyHha>{u zgv%RWZ7JmM@nva3mR7F$wIkZ1ru^)^WpHIZk}YbNnW4;h%ur@#W@ct)W-2o?Gcz+& znW4+HxSr3#wSN4`8atK$Pl(9Yq| zsji;rj|)}tAuy9`jm~mn$0>cD%NtgoD+{ZO5Ic}%KunJ<63s{xemB)QF*0VyZbR$U zI1?B#-{wHwx`ww&l1`Fl4!#|;G8h-IZcRl;`O@4ewsVwHl!u7-Z5jc0B4-ZoPWlfx zWnt}^askU^64`l>3ttS#rzzAF)z^ySN2*EdQBKWH;e^7`d%(%(Z#cX3~`CitzHoE z)4KiaJr&DS$n3k!u*;wh@DchX4*A-{1!qs^8TGr2^wv_2$Jr=1>RnYndSOH#qE8TH zPv0Hxj44wtj+>>#n6R$-;<%{uQ@9Va?auSbCI__{r=zy-D?g_(p3~cm$sC~UzlJang`ww zUQs|3p*JW56kjxa*RYxIzc~maAo?cr>1=ZWVxMNGdRc%G#*L zdk24h=OgtqVyn7ouEesn5@CI1zh#-o`ytsu-dx-^P$4C52{Z4`+(I-^enbbWq6cH^ zGxRbtNo^$sUH4{5z*UduR_hE=d;78I;GKl!-DK)4l_)Nt z_NWf`42m~ti6T~&!X3A0fz6g(ABj51pQu7`Ttz}cQX&Z(=2w~eFU5YfRpa>BkrESW z2g*N+4XdM(R9#w+r}5RMDEk;N1jqGMTJd2H;{tm@10KJxjrG|z{f!B1!vXK?TO*!6tdzM+n0gs zb7>gImFIrCtK}Jba5?+ey!w2>;X`=bbWR#+%tA{7D=BxIi{B}5JQfy9gw0Bc`>IvpEcnoq@|Sw z3>_T{uArqOH$-ACXV($rr8uBMz##`em=Vq15FjCSL5(7lUB1EhwUPcD-{0`{&dbYF zce<7O3cu8opYpEhDA<62c(v!`Ja1l$Kz4kxssYl^qJ?r_dR3Tf zEWfbuJKr?Z-;rMQ^Uo8BmWLE;x?x5wll<0A)Wd`Y&;3LOV#aQT?t0|5(Na{sau%N} zW7+Z8D6nf*%>splv8kgVlKm`1r&zssciD#>$Z=Dw#m)e>je_&ghS3@1^!u)B1{rrV za!rp1-0C{Q+>WGqm;J@%`RK7ohob!aR>qJg zjvbjy{QLY$Y#UF#LU+hgJo20l zZ8sdUQDTZE_i<^k?sn>QZ%^W$k8RWF(A&tXDT%!4I*LNiQ8)oAcYrhXxXK zYt!T?<>LXuD`_h#?rst-D-Bjj-K#;}*VWZ$tJvILKFw#vdDqRH0sJgE9qY%oR+M8j z^VAET$d$yGlk*%sAY351Lo1;Ig9x?&ZPOJ!@`K;?M0y=CV)6UOKe6 z8*-anN*Uy|tzu*^(H2pR6O*ow^)e=o$;qo|PRdHjYgZOvVX{zo9E231U)BXHK$zR2 zrA*H@m6GW0{b2lcVt;*mE{EDg9RkWm@qrgy^stw*h|i97CEp)wSuh??-xpofHAA-s zvv(Wv$uVU5Q~f)RisH1ovgKZvQ+ER1v?uL0Ei>mJd-7H50|d+(%$lam&U1$som-wu zc^2f#hanM{O4nJ|O1+9r6SIm#@!e}evgy>B$obNpNBcAPamISB{Sm(%cN6 zwxeXk^i5OD_hwoz*sGQ`+CqU-Ez2{Ho!|{~F+r@^*kGnY0=Rz>KX7ub2S9Tq`*Se8 zDE`s-NpzLN>2m(GDr0;Y^tVn=pP+$X&+DrYp+6N;92-E&9?TBccb9Ug1F1!?6W#vD z?s=$XVCb_E?J(FbA{iS^ywo*!v}7Uw8`Q9|B3@AI5%kXiWyQ{*$^rWy*Rg^)OJZS4 zL-w4sd2 z2r3>(73&Ns9qUXG5IBkxxaFry=p9(u>+To0-6|z8OEkMBd02S3|WTz9{YR&*+E)N^DgA;s9 z&lU_Y1+Uw&Wep^w^M<>D<4@BkH%DR1O~tOH2wkr<=tAl(j>BVpLnD}KFC%r$ya7iB zswBm;0JC&X(BJccx@phTp#;_#B2GJWw+)_#9hjY0&Sk(lv_RQ4jY}9&K28%bZyl9J z%=SgW!WL2|z8x7;-^*;TOI8-k67qq=tjV)6`%P&<8EIStgsVS4ikBNEVTx9x$#;A) zaN3_r1lyj?ryg>3bbx~CzJY-+JTdu=IvD=D*R+!bS%aN1N+BKe6KtV8HbW~Uq4Yes zfErPeJ6>CcM7~P_n6#lAss)RKtig(8X^MK`M9Xo~s1vNd;S{GKfo$&?da zkW*EzG_KIc#>gyaP@4^d9%Oe;Y9f!Fo^_n4a=n3{JSs|en@hQM8FSLK-uYcQnhsJ9{! zZzHV+Pn69h2e=eX!7Nb@W|NT3FBNO#r=n=BCdftD)JDmY?wIe)_stDjlVLu_iIV9z zNc`|iyYVv3RCmTeIl|Mt5_!rZz33;&>F*BFLQJjERgm}5_3oDYUw#C?!<$h zw)@mO2JMU_JeKiZiSjq19 zK8w?v-EJ`9>7DFzoDIQrH8IcIVAVfqZ@PZJ@)hW&@mJ&=w6mP0tt=s5(yPHa%@4eE z2DLVUiW^kMoh~nY2wIT(fXO72)q&lhD89GfyW^oE1;zUZ1>xc@eue z0%L7i#LGi^W{Ac2tc?6&9uuVHide#IV|{ekM4>eu;kmbEAFg=4_4vLA&HN!YGP<*XVo!UQxKWnBLzmM1p7}WOy0xv`*p8FJ zm$+qKrH3620E=L|k-EFUUx5DYy62 z+mL&}ql%f8J-rn5qLVS@EosCy7LqJBegG2oq!%)L?03iC!~XTs5oaoL4!D^{IF3x= zDfC@D`_ozPrNm>%6?76h+ky`GrOY~}$EuJJtBa8N2)y6;rX9->&OL~zwGxpToqPAv z`kTDPlRj}f+`Js3El;6{;RwtN$fsks9(#zWz<60nqy7wD&x7#m+;#@Or<{WzhQaF5 zuW9m=@M4cPnvl4dc@2bIk_Y{2n>{yT8-jPUu1Jr54s~2XQVBJ0r4|zn*a{cjf~Z=B z$h&u~IqZFbqRl9VJg2Au%WjR)N^jBwWB+AYj2+!=E@?LNP0~yz#sEh~hqQI_EyBxq z+dxC?J$V1e0z>D629rQr7~LeumuZ`kp2!BUMpzEcz@Mr^BkxAHynZ>S+hoCnFmpIH z5e#1VgB>XW-*sFcZ)U)1I!wLUcbzXa;HNw{I{Lql>pX65Ll4AEf|}N_ZhZoI*UD4> z7eNmGie~Wda6|tNH}wB1M$12x{~g-qA4vR<@_)niKZ5BWO8!u&OtFG3(Y9m7{E%h#Hi zSy}#)*uEqN<}bZ3i+_#sl`}K2e68~@OJ6cG8-Rg<9l-Flp1(%=OJ-yGn%!4DGt*z~ z|B)D3=m1P#>t$qQ`di!IX2tYZALhUMeT_uV$gT-sXJG$JWc$L8fu8=aqz%vp{B1k_ zd&ocL{{{RP)?bBx{`))TUv>Y7c>kx>|4WE}+50ch{%ZL``aj3}kJbGDfcU?R_|GW* z-;n?IMgH^m_SX{s@!RRYi3i2-FY%wWW2G$y=wO2$d4iJX2Dg7t3!oFoDS+1>AxL`y z4XZE&i?D<@jGX`I(1%7{2J}3JeMM*Yyci*yzQnPLffA98wukzm83;@!d!pob%W|&W zc5anF`|WWp-tNK-w!E7EXJ{+&=JwTIpRcP#Po3Zc)32S1^PWg=7$7jzLITzz(E@KE1vFL3mTgz|)6UrR??~=AM|HUs&)_+3lpTcRe zeN`*`H{rBc*y)-6Gny7X6FnQ<{~k?iffLFJWjINBgK@6l`v!8nA09ZAp9t250P?Ue zJUrOf|1#v}rIR#s^VRe;yvN^wQJJ?ZX;7UXb@5SI%R|u!UU~?6Wd4W5@KAwPE?Ill z^;1yMj;UOp-^XJ*2OoyiWfLR-GHA+ARTpY>KdVn>K=cFUNIRuUU()eR zttTvPrHKN)={%~)0707!3r4+rs(Mx}rm{j_zn*_HLK@=;jI1*tV!?WS3RuE!!}vP> z$^Gf1_c}KNB*1=%Sbz2~8vnQvvSkIVaVcPZ_lr-)#)4>C1N_~%o6pE-0ZbA8PFFb8 zbEC$iu)O6*4xd>b%#aL3VH_fDdNI%@=#v3ov=~J9?RPQ(>HFy#cnRR=J44&eP`NPF zyoy;t3pR$e@J_lM(JR4poc05VaeW?V2!S_vAtPqTM^yy$Zr4Bl3zwRs3~t$6Z@sYQ zKOYX9zyugK%6iZ&ax-MEM?tFO80VtoR)GUeerCR$K1E(f&ctoyVIvZa=27hlP1N3L z&qYNB*J8vFG1jN+Fm{2jqhL_q+!%03X&tYu5`~XA>u}YmQ(k>96)F8y*LAJ_U7*o$ z=5?{jOj3e9y_K--(=_Iu+UaR-Rr0B?q-E)I!SLf&3lnT@tLk?qp0Rr<85~Wp1^+02 z7)^xWEUPwqGL2{XA^t_Upez5zzK6W(_Rg7~b;T!OjhqQjQ#$83b`B@vWz{17k>n({t@PBi74;08SX4a@-C>E@z!iLes{=zt0c)DEHb`zx z0wA= zoq%zE#2wxI`-1!H+4uCsU!g9kdejNmfjkOo$^5Z1%n^t z5URq_-u$@gYw0-*92Z*Gl_CKoWFPlEmDo^7inP}15`WL^JJo z7iq*7JtZHS{~fZGMJWnO^kHI~kbZ{f8(G%_hH86w=bp0J?*{1U?c@Gjd9b@B-sA-V zSbds_`Ut~IB0JF6`3^@>V($Tk^m`scfPG5q_^(djVMIRiCO2O@(`trIF-<50{kbYd|I1#Wq8F;qb*LR1mlZeKRtIweSc^Um(F(maN z!_csl8b*8B62RFb1j5d1LLKp`8LJ$-wqqH#<1d?kyvqodGG92yX92Laz0vAVWs=J|!?1+1Gt1o9!8EsCK zytX)=V&@IJEAiAVu_qy#mDMXD)4b3mp1Fq=V^bb%^%w<`7iew$JcoA<#vf64z2KA)1; z4S7#Df0&2o|H3pcn#c3)UcVF~cN1y>{i`0BNzY!Gzm# zvDO6D5_B6q&+sRa3w%-d#X-QtT|BG}fEk8H-JyQ?#;W5*rHTcMy7bCSRQOyqnyo?Sd#hgUI#uq{aq1zSqdM8$dFu{ClUHz@ z@nZpPP8O6w73G0eZ>9|C-4!B?&p#U^#BsQy7*m_xx?!6S_j&%|<2m{4UDX#es?*5p zfuL?nxZjh#bO8n2bR06G!=p!RxYT{39rD&GjXgh+(nIWaf90@oLNo{x?7BSS)#bx^ zTQ4;{V5B5N-`u4vzp$Vf1uZJg&LLM<>6)h)@=wMFVn0o#%8mh%S2xrI4gnfDC z8>pij_NJfr)A$qM$_`qVzpYo<;gs*R&@1ecwJ2kg9w7}s#9^pj(QVlRc-7=dj!J}( zQurRA3~^Qm=k}1FF-_gL4!z%yJI*;>a0Kvx{eIM8Bqjb@)+dq5-wS6i2bhwTjn~usWHr3jh;2G)}_KNgKyI#}gxQ^e- zdmSpfW4pKEmHIROXYwcgr{Nsw9RHkQF{_kqY8|@>bCTg`!@AxI!oF`TAuN2bNqTwX->+}|hhv9pnD_GFt-MF^L{ z*nB`C*J4`vWLJt$h(1t8&+Lgy*XnPYZ=!E_)c6i))xH&><4Y6wb{(w*7vt*z>r1VN zy+kqgHFhJsUSx^5Z_aO!KgoWk@{Z>0m-N~k7c&<(6=xM= z^F7QJI~Ke4#%HFnrle#4rk3+M$bDwH^|>Y5o>4rYkmOj9h$dN@wP;(qDcw)qM^82< z&?QGq7AQlu2*mqEdxn&aItgW~nIo&7lV50727gE8_33pRf8>qX`Rch2hek#@Wcmx+ z<^UZiS~7nkcD`mh#0&a_Axos==`?oh>|id?b%p?kWg|N059iG7 zk+?pBPtfII$rIT`QL;+0>;=Jxy1vp8`X;yx?G-|*w*ab+?Pd&u{V5=yxf9OYcT4mW zh*PvR>4@otYc=Gt*N;)(8_$%lGHW+^`~6_}xu7_}E99A_^Ba|#0Z;!{6qX#17j{xX z(e|mylM69^0M2t%;1b4|urzPKZisD}x>5Fi%%3fyz09<+bb-^&09R>e z?PltZ`DE+0@q*(noOJ#JM*ON(OAbLFvlRwUl~%p%Z)4_sJs2zUKRo)BZR*t&XB}?B z!>u2fXc#$rl5Alosp7 zF*5TDf+n1*Yuk$35&!sWl?D|VkJ}q+TX*{claG|xKJ683^vw>K0H&mDJ&^e{fgcXmP=!dEFS=(7+(sIs<+E zXUn?X=RW_A$@kBoRI}Brs?9dul0#*;)0AKI9WS)?=<<3 zag*?R^Y7Dbn&YvG3EWW}dunWTpU-BQJj;Qms$^TPXzS8hcI9PQN@p4AnV(Wice?rw z->V8tM$$j@!ngfCGMqixvX~dt)O4D?+|>oS%`&~zVEjpVYie_2$w%<8Vm6kN(BDV#MQgh5gHNSX=WZNW z(`_`AxLhs=Emii>wZ^ae1QEDBt*_WSheFoyc0bP-<&57&Ntm%!oMi8qtp-&;b?nOYO*RTW%AopGs)@{4`l06fLZ0 zXxL$E`Ci0UcAP7t%O*N8MELE=ka56bB`D0EPNSQG6JaGKKe%!>c!<=5%OHvrnbm!O zZTuJ2GgvDHYfJQS(6W}**z~lpT!W10?lwf-nhh!%m(_@Vk2@gXRCY2elE2us@Y| zlv#XX@{O?jF*eMANT0xZNKgiW^Zu<6uapWj6q&#rnPgFkm3jHbzPsudcy;871=3Ro zTzgb7I({>gcc+U7FAtADdNx-Wdi3__@q0{G=WF(*jFgmJmf`mno+s-}#@o#n{7z?s z-;cZ6ThEi)w0%{Oh4i+}OCUt)4W=jM-K!(CW?H>Tx<(KGKBHT z8w?4$1epijM{0+u&(xkWXf9!>0n(Nu6UI))o<8U{-cI6310o2WB#M^EGD7wHvPLY1 z?9!vRNM%*E4N40oo-|wq2vVK&fAzBrMgNV&x|p(8{{66!dy-=L>K&_pL`7y5f4cTS;{XQ73}BNTHog& zqy!-pGy>WY$TaOp_pOnf1QB9Uu53P6>Im2d(oLD4)`<-(j+vedD|!UD*rHy_gfe$I zARXm~0*^1oAI$Hk8XdrW&ra(w*8+;tP@ivM;DRMYOf9N3T@WW;bfdh`eH2j+2#R@> zaSyzKEmTZrrh>v#Z@D5cWKS#*AV#pQ1s$T!S~$avoBN6sLN3as44>bnkC_RxI?xOf zo?|v~3HI!peG;ZXpl2w4-O!?m8>g?Q2IWz9&h0}|=qPH0pUj6~6Go>%Vgnx@zf^%J z>q6{aiG24|kn7|9N1tT(`vzqvA5Ab^IpF~EDwre%NN!&)!~m2iH_up4F&$%Bd5-xe zL=D|FZrB+y{7V?L6RDsP@tJ&|eiGzia@fndMK9bO&k7^)NjwP!X|BI~e44_yS-=&p zDPMB$VkCEa6@DL>6zC?R9f)k8nvmlA381MvniPUN{NOs^5RAVoUFf}pA#zokGJ2N&Rua~(jcpn2l z>jg<+7ke&}77(bGG~MgsPIr>hh-Pmo3nTr!)F&e33a7llY~Lt>OHHBCyA18j2*qV3 zN8k@+I6%GcTL|YzMVBy-oBBybP)^FS0;Mio{LIl84NitAcMOilj0H*%Ch?uvB{Ep) z1iheJjCg+62_6AK6)f_YGF0AFD8m0lus%U!h284vLP`!wRFHsIo}9l7`E{P$C_z3R z(T^hN8G@S|;6g-|67)7pu1GSW+l%{T^!1*QPn0V}cveUx@QfORL)@rGD8-Zy0zxRA zI*nWj%4tXHR*(&;h7_$7M2xB&VG9(F6-<6bV$VV~IG4=&s|zd8u~18$U<{a*UK}UO z?Vij|a>hLP8w8<_F(_coS6!lHL4sMXx|hbT7tzpS?rD1wfcdWXd%KrqkIN( zPmb+8G!=B1>{ZZ_8M-BMyEIw`Hh-FNuB0`rKq(KP5EuMSOu%P8fN&Z-4t*1=Gl!pW z{aZyI)3-)ciV=`Ml+c2>Kw3ymGYbSS$$CP-%fi-zt6sP0`xrYll2hfEUfnFw1w%q62bGZ3YmoVL<+7h{N00gZTy{mV#SNO zNs)FIME7q_|6r5DVZKnxp&xe>mh(@@l_xCL#bHq@gG&@GY3RaWz@E7l6 zD{nQzF}wXsv@h_ZiEYFsOLZ+05R2+VEclD>gg0Qmp+r1cqR^#*(>zl3nFeY&`8rrG zhm9iVU)EN;52^Z-ncz0d_Nh=7Sziqw1v_<>xAzd&7R=jV?Hi$31Zr@sR77p;vFpU< za*Gi$f~p02ig1??1Lk3pWHi)kpNRGZKq8hIg4j0E;nh0#RNsf(aQ z@bMK18i@-*>@4(klWw7qcQZ$J6&Q;#xaPTR%dB10Lw^8dmW1jTaq>~RQR zqjIV6cl%3V9I)1$3eNtE{zP8FgbV>GB4wrwP>Sr7ld+M}=pTD(-{P|J+aITr+)@>; zX3la?5F1n(ti_km|5)*C8PgZZO}LX6i?+z5no#J*e=uj&BS}*(*w;_JI+5c{aVlt$ z?p}YiqW@knB9H!FoJKEYI9Z#i+0rSP!UAO5oIU__EqjfeF>y%`ETQ-TDorsD0q*Rr zTMe9+UDPevm=e2KlS4xlu4V%%xA`WXDQtE@RI;Y0a5hy$swheBdz^=NUUZ0Zs}ogC zcT}f!RFY0tNbe9SbUtCwTPxM45w=Y9)_U9;*CRN8+jspoI0^5Blo*SCMv+@%s2q)fz_zPU{VLWYKA@q;dz0JZ7o!vr$W`+w7 zs47qMd4!`9$hpcCk4&#Hn<&%)N6~vttU9ZbZ0AQg9hCG#k;COAw;Z7|O!~dzw-*W< z2cePnEm&=b7D7&pmNcQoP1HwB!H8RPno3Q&Ut9aEA^aY!(9`r$9#L#$7qGenA7sZZ z&>=SV4y>3`?fCVY+uJxR$mt1p*sESVwOJx+i3g%^O#p|vle{YX@g9|wk*f~yTqU^2 zhVe3G9Rcf)h9KeQ_{0ff?hv@ymCy_H%|a`RxwFz4uZp3i-@Kf@A7oo3!K&Ey^@=?e zBjS&zkP;sjb|*Nc;>d1hA5bUBOr1_VG%mjT0!*J+&jyJiqM+Mox#xkY1V!PSeTUW6 zvs3b98)W64+@tlAg=#J*kHJP=oQL~CnG9bXNjL=NQpAhbQmHc=0fUH*$<*RR_GhB& z^St9jrJF7)p)P%=XjRe+-F%;h&;drj!mU|j4T1uL?D3slWTxzP$M?jQ{LaJs3_UCj*^LN!dAQs-+^p@ajh*xXZq`;djvQ{>g!)Fd2F4s;@?X`o zgn+-PI9YNNGSbjfv(nKM@<4Mr7@2T8r#|Xy)W($3aW$>gr14%1C4DU`k8R z&dyFt$3V-#K>ejb?dWdfr0+&;<4E)m3qr<@h7RU-PUf~YfWIv28`wHKasQjw^*^GH z{HxNxnK%E6$bVb@H(dWMJpbDGZ@B&yk^i>*f6VJ*|HoGFH(nR>-)LR*j0|4{E+*E0 zp(1@Tn*P3Re36w{zbH)qM0fdOO8u`bOxH>ev(@+X5z zLXPe(v>6ZK6Xi0U`#l0&e;u=;#d63N4QuNkrD{#qfe#Jcqi>cuX@MaRExJ8EKR;hT z8zw8e7B?-=msTxnx~2j_0YG|#fg#(O&+b7`jMbLFfFE^@4W8CZFPRa)1%V`ZfQmL! ztmAXo+}>DxA3%XNipG~})HGl0;_-8vF?tKD)f$}Jer_hE=q;QABU`9GI8nbEDxQun zFXkYYR1bU;l~+J$&Ix+1OtNIPR<{>A?0 z{e<`ll7j%&3k7lL8_t$@r2%}$Ev7$3AiJEm8?EyqWA0oq$~wo|+XKfBSfKI1&@=$AjHj(FkiLj`em z5kuGp2;l8o5l1#hrh7bKf6_uuezF@z{jKRI31TR0SSa$qACv#o{HIR;yZGVW`-zeK zSuy-&@=X@RVXMaj^zTD_>i(kpj`wWZJlyknztz%?7?|U&9r8KRvJ~;3Q}~<$Mi*2) zQ=PQ^h2yYCv#rm4pvc#UjKq+KXYz|n4IF!iKZ_81uk$Qr#kMNoZ6bc8ts-mq~r)3;c?Q zpX(=MgKMn!HtV%M8%35&TJ;_aW2obv$u5o5R@&1HrY=zm+V@#w;WzcO@f3r?L154B z31s^(j-)aem*bN+CLTtvBJJa8$?5T#iK%px`YBc_5i3Sap&nVij){CW0WEckD&AR? zm$x!GJYoA?+G^9zGW;c!hVp-&Im*||%0>?@DNEblzDbjmmqnT*i&qDZiMKffsH()w zd+yVj=d1<4Ro!p;R>E7pQAPC#{-GZ6L6k9(S{`cghi z(kXN;&za9zi;i^nuF=>E70X4b<(hr<{AduCg32frHuQPy0>oi+){pyICd6KrTAB%) zGgxMWrIuWzjDzuI>L^lk_l)E`kN}U zKQ+?pc^$sZV(rOEW-Jw`aCZ4sd#LJu3p}vK6;s}uza>d$FCoYdf; zqKjHjQiJpIBNxIg3l3DM$d(R-0=SJ~@1@Qx5 zQph+-k;<2M`D6$dnmqET-iG)YiA>e{#%&VuAFR9CrJd&8E#@|!8S98Akt@w*`<+@! zIvk`C_9w0FER*7fIL;2~C|M3OsSM+dY05mNayeu{ z!`PXc{2{|(R~n<+RzhV`$5rI}j6fT#KcwI=^aAp8KP+4qfpyB0D^Rt8bq;Rti`!PH zp>h{|J(fL^6*$G_5XB|K!E9eCW7$OJ)2t%iPjKjxLWZV31);(2kk9lMGL$&6fiHD@ z1FmVGzr1%_^RT1w-q(9*bXp`3&1;^Lw8>m6iN!u_X*o~1a%!t9s>(suSW?G68W&Js z^TCXPu1c&|P#Ixh80Y)WKX<1nKj(U(3gn-jxCGtk<(lfNLK>ZnbOb+VmWFaZQsP{= z-L{2$P=IW#lrhXeuYne6AscEQK^~WC1bH<8ER7Mw^SiN;VhFiNt4yxkj9ECMHs6N| zQ(y!78;EjYI@@dQgu8})D(EXE%ArqHkvshaz@ol>TMaWhvn*>4@c}*S$-jY7ZF-YM z4s5wQIbVbt1kKzY@$iCxnvR}V_sEuUPHxWYj*pZnnIq~j)L2EHM8`SIH6mm}#`@mo zUN28IiC&{X0bj}yOn?9rpH`!&qlr450cq4(UlN$P)k$gTSRjWjgV|7dq6S=xDme1q zW#7yeyN-1zP^3e#qo)71I0r0=UwS><)39XI!kA; zMl?I(j>b5|bGwrv&R-7ADMn~}bW$Fs4>K!1QOHrjCLY+ydEkOvP9@t0?t8|-#rwt? z!R#MfN`!~xbpb+_T*S(e2Vzv{8{GuXgU>5ThASe$Zla^vIB?(D(5=Tk<`-m~rF(gc zX9o{(`nt3yS=`!G+_Cy)xLk_MeqGSu5N5M7ws)z~eTUg=E|Q0-58xQEk=f8zi&AG_ zOz?EZpMTC`KM$CxDvP$LzaUdH)WI&HPPgDjj>%^&%-K0TdO)t1LAKH#7{K15O z`c0FiqS z_nApcruLafzA8LUwF&NGdc&_%s9flYMXRvj{;1|ek_`eE+q0v)0+KTVQ85~ro#4yZ z<(!EVoAZHIQb~t`N^0kn?~Z1Hm{jP!!TI6AR>h(BO);|CrTZ!Dn8oW>%3lFpA-S+o&|;guAO43W4OV z)@Q8O7I^%1Xa3*HF$B92SjAG5MAd@pQEvX?txl5*v>iq1*IJZ|(t{MstwwA?82o#7 znWM{=48Qrc{M|TrZG^Ilhb0yXYy`PN-82%&wH!XRh1nkVJ~EgYYCWX$lF!3U(4Eaz z{DS<*vzS>WPECat#tJOJ24{9ho8&ooSS4^*g7`(ElKTXi#kG)S7@#1!@e~CR0-_M@ z`UA8GOG6Xq1|?7?>0|eQtb51)@v}=LdSW?<#@Q9?8PriTEJX5v#@Q~$pV=u5ghx<2 z59+WqnRVT!7zhZ(@rKB0IbN%c%GP5UZp5-@-Q^!B2rWT$z60eMzIKo324i{Q91*M( z(eiJ_z6R`42ywsT79+n?ckG!{{HZ{qc&GjME$T>KeYe z(+_3g8pdbQ55*~A6!#o`dJ%dgBB)|Xyn`I+DCA!Fp$(g)O9=J$z+cmopS#*TaP> z3uHpr|Mq^(m)wtARyP-5#>raj9=Z_fh?oM{j4myJFgN*RXaT`y2cix4O@IG#^5Xm9 zhvrtg{OIOz;!7jxzPSX1jM})j#87r;JsKpFbgx|qM3Z!%+VX#W{-_rI`eaTa7)IWz zUl^$ySn394PkuUR1cZpE@>~^EUSGtsry#ZsiO`Dv(2iDV$Ek8+zq)gH=so1ZUVD6X zbeJ}Hr1%J9zW{7nXA}H#Cw>A!J|p;LDR!lSTuJemIM5@P&DT;X^KM@GC)f~aQ45|n|_I<7}_t7n0 zBoqWacR0q312pAmn*9DetOz57LwUjT=zh?t-78lJYEHkg8+QAF`UpcD2?tA8d|iz`Tn*VExy_vuYL3}zc%85uI}u0{$`~Fjcy*}$okF& zt^F96-ox|r5Tkvx+Gh*cRhqC3g2C;MO97lGKB^JLqv;LBE-Vr)Ac7~lv36@Ae8K9y zTk8?Au3qDHJ*Pvao!2Rdq8`5$zI7|MpX=E56Il{(>(FPyIpOutT^~s@`#K0JoK)FaZ&xtsF!Uj#`U1=)gm&NdR|$P3iUl}(0!b{MOcsc0;}%&qUeY< zFqQIg)YHlAEE*}2O5?_8x4{ZR;Bw2>iIG#^gC+>Dn0R|7N71UhF|B3gXK*27^2?OK zn7fxpReOWEkLG9MFrH)$Txk#%ei&e@@B{mm(uDUJhJ8b>C+96Kj&IGUI{d9jAMeLu z`3Z<$F`fCs*GBzQgxe{L*V2P9dsYg;h@Pn2Rac1?`?Np@ji}U=j<2~m#hT8{gG=AT zyGtGJ-dkNgU8WwkD_zF6-m7{tVx=@8tLm5-Y)4r7aIg?CCttyYngXNDpp_0S4w6#5 zOK6@hajKrwnK~wINXcr>ZNFC;{iEEFo&GENaeVZkdsw{tFvuYt=?ruao!qh90bI&i zb(U$^Eb{A93HFonk z-XApcAX$JoN8~&Crbiw%XSv1HNXIX#n)7Jwh_?-~2dbuY>D@pmHMFQS0T^Zq)5V#k z0yQJTD$hE`Qpxwzp<^6F&!WPJshT}4fAyFZd zE1y-~>VV1>pGey(RQWS*o1+s`lw~Dh@obhhI*%BQ6OJY`)aRfwVs98;Ss9;%2}?g% zQ}cO%QDxWx5JP}PBnhzc-vlZ#VQP|#gru&c4GO+87@Q2>1d^#uc@n=g!>-eReMg)C z$+#uAS;hHd(7cRNFq5uU^(tr9P4QA#Ba8Vndk%!R+QbDa!Fh;V29e zgK6U$+;Mbl9I!@|TqiZ`(yXa)jcLZZ3ZMfm3pMX6h#h+cfB|lJb|E68E5p5d_abL` z_2yxR5%p-f_*H&=w?p(1kTI+((c^{v)}g%6|89r64##;_Xf+(4p@+xwEqO~?fhZsr z!t<(f9Yj>ll|TzbFjh!`5WkOQd9o|KsW||Q!Jc8F7T$&gU6`exkZn>Ig2WC<3;I-? zZWgVL+Cg=XcUymXstb`Fgj6iR#w%Kg2iXVpnHozE$qV5k=+7Qa|6HyfE&u$R>oVk{ zJuX*RWvG`Q(N*t08~E3YGm=B-OWi%5TTWqYMJtEZeqJaRd!z= zINqQZaja1yN3kDSVoNg+tx*7j7_cX*0A;gF?d2EEqsZ6NG`xMhUHrqI`J$N2P&IpD zuPg5-*C+bAZ7Jhf$!g3)oWjK4B*5zAq9gP-z*TwFcgP;$nxod++548)X;Y6kOHizktfxE}=Gg39H(NwGBG5#v zy;^r6miBjB0T6a3uRG*#SUG>L;E_VZ)UM;gLZ|?$yN+;eNpHSqB>xY4Zy8+2mSqi! zELn^eGc#Q=Gs|Koi2TZfxDt8n&FbH$4W`J7Lq*QdiZ)n&NFzBb+E6= zm>f#is?a1s+f~skce;7jwQqW6$rH&tB04n@*z;Al@rR0w=0m8By79a>8XXLs_wCg8 zbbxha*H9!8r|6R?IFYp=VI@H({{x&#Xx@2`F>~ep*PEuIO(i{%m4aAod0|?CQEGy+ zVepzyG_Ksu(Ol(`ui{rQ>W8p)P=gjZw3cJ>hbZcj`6rjq z7TVa+twLKIP58#pm66k3#WTY*=T**CvQ?D_As3?aJ%B6T#~k2G$%pY5(3j_z=N`f> zk}d8GxkhDYf71N(pBC;m)X7Dr9rbyJw zk_Y7*sHbZr)q(NcgAxb2=2&fMaMPq8!Yce!Ll$h~&r|c0vuiiV>fPgn(gr-`g`cM9 z9Ux!y#V8;5zomGC@83Z+v^trOz2>>k^)+#%O@qma2fA-sCA#2GOP zqwU5IK22UJ31GQ2J#UFyfi`1i7QzAz(DiFfMH|Nt($m((2wY*Hb)#)B9SD=Gw%Xum z3V46&ZHl%Ia35my`m_ozyi4hVhuf{iAlIaroF_@lTU7RdfFla-d&O(uO_gDQ_*Km3 zSRBGR>kQ?U*&-;f4RL+@4O!GXfoFJpTL$`iNMaROr5E-GfgO#-m*oeYm@i$i%0qiH z-yB-QsCK!<8g&)b0vIgu&dvxTK$%ymsm1vxn?Jwm0gHq@Un~XM`ia7;2fBL@h*Yb5 zlU)$#{UPuJDS`v&MUv<`oBQhXDwY~>vdEdAI6AzOP-PG5eUG~h=LyM*Xl20dgVU4w z>IxcUAyr5dmYXYP$I_)J!3_zxF_z}#v-{eZIOw}Bg%c*FJQRJ(Xu7a2bq1;Yw z1mH8!milfZ$^|%Aqm;jSgL(r7veF)4Kc>3x+d!W^W}sW+_IX~TpJ6xL^FJfu`sZ|c zfmH@C^Gkd^y3uv3VuS;GBZd&+_KxE#Ek^z-e}>_}2pW_=9J8IwQ^KXduJP1lH~(Ft zSVa2?D&Ef{dQE?F0F3VOB5@4oNdj?GGUie6MCWs{N%+bo400C`=iKRA15d^sEbk`* zsVsRZy@Cl7@_j1DUje%rT=qz%lP?|1OZzkVJPGns7}9jML3TL_RRQupcPJ?mAqnU( zA`8vA-JQ0CaYX0j*d;NOzUm>96+~yZxFtF4-Mfh6AzXk6=S!3@B9IR`Z!;c#!Rc`3 zlW=rgj_qlC@#|un&^Fj_q7V)}PsXP6Iv`i;#SrTq@~z^*X?`9;Oz+jR^3kpw?*@Ax z*z+-p@L-Agu0TaT2vErRnY;lvYF}t%xqC63W79_Y`O4fsFi})F1MzyloHEBOX zD{o*VinT_5_@-zQ35#^W80GR&5sSY00a*GUWPYp)p!Bb$p2WlURj5)s`0^(aOGUC^ z6;h~+vt3o|v7|Xd!k;gM3sAQzOC@RPR5A z=5JIx;K4Dp3~FRy0p1)H5hgrFkk?3FhgFzZZ81pSn#%BAKEGOPRmPZTe{}gtsY^vs zJ2^EjNx+dbZ^?wguB9(OAm3IzePWozJ)}2GJnY~qhB$A{Uxkaw9j>Q7zjp~jK7|TX z6O>R~w9p$irwQ!MjF*-#c1!G_?9(kwz-cPW#XKH}w(Aea_oW7gzq$q6emxG}p_*ST_6!oc#EuzkMCNlqa zg7cn5tKKj1O-2pcpn6dhW`bd3UJcZq36_Pg_#!-VQe&#Qb9zP4CTv&J`1(`4yz->< z6DQyFx{dZ=_=-*F)%clY^TY?st>aSqrA;n9rACQ!O1yc|HIgSq7Jii-wCv`%Mw>vM z)d&XX>kq;$;S3vkb?y~-*@!qdZO@OA##{M*m1L*+Rj)WD&w%|HzHNxjY>vs%Fz~a~ zHENGngl4W5@rN+l(p4+QK5~c}3rCoxI$;VszA|zMVU7rk?R@HhNhEf5#U@Z_110Jd z2gq76z;ql$*Zz_1Tz}lOl!_`Z{xD=>FJ0wxQ4MUdv{d%j*v>Hz|Hn^E1+GD^L6K=g z#u|1NmaF|QhDkK@IH=P?pQ^_g=Qx5{Y;WC!(+x}NF`cK~n=_s=wzbdX+9&uemCZZ& zkimSzjKWED5MsZKUt3&<2#|jf_MbMWQ7u;vtxzZ;I>?S9XhC!S#@~q_t}B00x8ws% z-_jZ}a8SrthiTZ~HZCM3$Yx2!kV6YgRE=27u#JklHj!;D0_Gzg>n@~Qb;Y|#c zBQU#5_hgOpTh-_M2L*;oJp*a>-i8Gm^-`vY<~sWtGEPW1sbV1gUzz}uT&GrO#Hi9ygzf#9`WSdgn$1pc{rcGPvcnvOYuR=3tZi+hK zO_Q`0!#j_DO|Fk=h`lw$2^v+WmtO?IIEc2Q#^dQxjgr@ZF8o*pKI19Jek92-vO5A} zP*VZW0{nU`6t1kVj0~cguV^?Oz_Pqo^)i88;rY>F9d8pp?4;qhW>vc~1`e@)FdG-a z5v)~{5{TkYK*3JKO!U}E7(5aB>f%;i5uXl|DdnWjClNMo^aU`%Ny|9FPRl3~9bTjX z@R)yg+!}&VN1u)ia>jX1rB9UBEYc^PaU4=RuJu#XR5pT|OLzUjY$?~~ z>ZD5c99Tx;U_N8Jo(x7U>yX_`DI!;$xRh_#nwS1avXt#w&3u&t2bmS4kF<)dlN> zQsODw>S7uZ*GPM<%2S2{(K(zsvyMZrsTZTRosyo`tL~6RaqlTl+E0+qeHpt>&$E>A zl(VTb^R4GL$7HkAqr3Tb9Q`vwSk#e_08Qw~ili?|_YUV|p8Pxw62u=blMrLEX_2<$ zM1;~#B>3^40DjO93XnFCjM*$EZ;vF6vj_ex&D( zW;Gr<&RU1^Gifk->l@n`!@iSHhPzG~ktALJh-%$8FYReJS#L#eO}y!AE6;kbsLWa8 zAGU`IDb~k;#m_g(x`nLfa-`Cn6bgW_v`O33C|Iv|>b)`J3ESx?SoG%DZO7Ux;_GW& zt{a5YliX0-7XKgUM<+W-y_%VNn!Vpc=AcC4k!$_UrQFh-E^k!O*hlKhqK(5Q(hjes zDV(HeD5WF@(wM}>C@FuY(D`)MOb$z`_?Nr*0BtnvD^I*^!oZL^oPIJlV zro|NUH%wpq2K<$nH2JHH!#5_WCP8AoLawNYyzh6@2fBFm?VdmH?kqq~Bxt`#)9{RY zp%C;ku=!TeSzL-#affBluwLYC5j#QXmBEgY#aT2|j|LP6CM`vo22ZX_)PI_?DkLk2 zie}wTlXkrQfkSs=Xt>;uo1b<5!^~KJP^3-g?Q?{X@uou|J!`#pY#@krh zBei^o6m3_ph~sW8GWf1YQ3mLO$;M&9Cpfk-(PDS;)f|4;E61NF=$xRnjE@l>G#uAC zSKuRHVh3s+`#STYK4-y&?*EK^i{d~^$BfH$Bvyqxed&L(@EEMG&Z6mc8S+Oe4l;dU zX-7!vf>MP@?qzY|Kh$n6Y%VaATS+RDpjxm_jag}?KF&Qfs@C2D)~9RQEgxAeFJG0Y z99K%u!WXBgTmsOoG}#_r4J?~irl`9dnu*S|DVI`Jne~&|+q#RWKYuA(Sy9pHrkP|? zw$wK{t^2LC`DnB1#D>T>7 zkB}p}z<5R#xZO(Xek}g6KQJ(r(bacY1hx7`q0obMrzs<4SKn$kGB?+6Cxzf1e|7}3 z6$$yuLU%m@FdO@NRl@gpNG85moVLW`ObD9 zO>I8X-K4#lPuepFB(pPO`ex>omSO}eu)B7k-@B5peyS1s%VYwv#9R0dW6(wqR*s5o zmpk}jtQ9<6=&l|J3%d&U5}!Br2F_Rq7i{(Ty+qY+R-?%ju1ir#_pKPq>B)UjQB2{F z*H8EoHT?MfZT_5gwXJN;-6ZP(%3_hnb6y$?^l6C+D`sCgy=yat)dTl!EMST{{#Ml;yb! zi(T!lL-EA%E+XrAkKcqao?LF%!e0YNI~KUdtkEBPhlXRFMc3W3O@5s*C!eWvG2CTR z?QV%7=|sDLb`@+~6`MS#U^+8A7Gf=seM;1s$`-7q4n=@M3u&iGifp-MJnOCmU+ z5)j8!fKb#+H%^bgIK6q--{X9fHZbpv7of{Uk>dxK1BTQUK$Har1q%V`4$xbO0SgHr zCgtygDki@R^MgI9grzPs7yZ`1zS2?|Zm0!quG9LqpDr#SyU=?7Hu-k{oXLwDpMI6u zn9L4fkUw;)kUB788l+V;(@?0TP5ETSU!Tq1^>f*>2r@&@3Nlg=4N-O<-tZElhv}2g zkATAJUbDi~2cK}x5ro$%HC`jcGu#U9E?3~TUgQ9U6`!+B1jKLKjdM3Udl-0)GmY|6 z6qeW=DGC)F4Fz@Px#KQbk{Wl~Qh1Nu6!bXGqbI_z!e!6;eA^A#S2yRU$D3efs>Yl* z@9ItinkSkzXsO}hhGfRqv?(N3;`JYMOl|HM0JUA7*$68XsIp+HUxD^3Kz&f~j?{_L z9{g2~WgRAma5Uj&xDbk_%DRMe^At3~IMveD4hPRPkC0HOgX_)c=7cqKPU;PJ7Ej;> zDYzx~qG%pfg(1&yk7u9qa6E}8#*cLr4~2{q6_6DAxqvaa*6J-G@6O&kLtO{g5l z`wn$j71mjo74!ite=N_><6}p7rdko>i*FDOpKF1Q%>JY0f3^RI7w5Q#U-fIWW&ePY z#lT$_EA;Y)g{@8z{G{@N0PY#thQsE{0$@jh>KS$+MoCnyUJynu~a%z@Tx& zD0Ls+IsFrInP&}X0L;D+clu5m_(f*91A}zFH$@-pR>pDzB+W{%^mJu$Mtbk416Z`W zTBrC_fgU+n!ZIuDJ3EuvGgEndud8L26_CE48fV+ooiqbLbgl7dj6Ml>0NcJnr}R|g z8@4FGa$_Lk2p!(LJLM~AUAY#L+y>aqsb)}a2SsXfUI#`hp8wNcF)z+74Nx9VNvHX9 zKHM-*iC~S)QOwCK>^Cu-I8XUtgAEu-XNrY8@&8yGnD73@eWZbTVg1SVx?0fF+}~AW z@xEJb1MX^1FuQ~Mpz#t?)Dr^KMU#|uIzyzkHqXvb*kJYrMa(@D@1 z_+N8x06mf!g$u9=@TAQlG=tcft*r2A2 zOFs`oi(&vd<1Us70Gfd$BA9~xT{F0we8`G%D3-}YTTVmoBoP9@MuC}f3i}Um7VPr< z`={G5$M{|;Zc#0gKr79G(Byw8z}9t%#N-QcPy~dK9RTYIAzr0N=8rx^x9!^x;nEZf z;EjMi#Sn0??S0xT5CaMPcpYDrawbuoPKLe<+A|wN0c7*!y&_8^H+g#Dz475G*=x$8 zz+@NF6-XKG2KY1uI8~7xrwVrI*2RUPo7ahswv14Mxq2rwy(&1<4Zds8pJfFCj8dFFnEo-Ul z%`VZq@B6Yy6l2f@9SMo2%wkX3(2$DBhIq*k<aiC8^))QF%!(D1mOrb5eAinnq>4 z6u?OVs3}(F@%m$-6T;rw4oEZ zG5i=j6XeKHj0nq!29kjiL5e@-2pB>OGcV1AZkD0AwdD9KIFvv*n2VcS*JF-Dzc9FN^ka24?Uc5%8G6H`M% zoh0+q2|mWMI>(?fZhFAy*f(*`Ma>m2h|lFzFAs>;)Kd2#?}u3bVeRv zJ;uicKqpIItLHJ5=x~F`laXx&*(i z6Vl{^FQ!sa4?A*f3+GlSHoIwH?jg+td8vn&$t4Wka2;&76wtkTR$wZ-$V>D}%+3_0 zF~_bX4h<~w zX@pIuvxBti-9f2PjkiT&zMQBxea0>s^B2^N@}YWjr?!2dx2{~Gwj1-6JbTYq5kxgt zSgI%QBjA=N)L`2wO89W#JSJJ1N0T7vy-i0dyz+cMIi{3Ia6l%IK(^MsP?Ch8BRO1G zK{lr7_NM>65IwGsohD3B9s~C6r;AV^wAIn>Cn8L2A88-_$Is3nDUlFa*fiLyh@Xt) zyU_3Sq>mORtHI!Z!*5K-r)~i`cMy@*o9f1J0ckVT@lTCB)F{;-G+rumz$3)Yrt>$nusf ze=#8%(%~{0m#>b6+eTm=e+mc568EtW;YBSc&4cO&<;;uC2g&D-QZ|-dc40D03ae8@ zi32zLa)gh0gWN@>T*b-bM&`PO_07Dbm8otWMtEd!zC)B?{BkO!P6P#$gh-=XDQG^) zgLrUXaW;m`4gm#AoO;S#4CYEZ&OO69j>!c)J?19c64rIvmH90aouK+)UZF1OO`cBn z*diZ!D49>@v5FqRy8Q-5g)TD@w+RW=ED&Fnuqg+XD4&C5mj5A9Z9Hngrjz=;KyJq) zR6Q4y1QB41mBuFCA`usSoq*)ZxQa|Srm|~h^PNzEvPT%oumkF>o4}0_=p2gI4}(pI zT)}9|R-jpoU_eM^gi;gq*Cy%CrF^VVWztRG91#vE$ zKVzim1!{1SzGE-VwUpoAw-)*+}mm9`wIJ$Jbi!}N;5z1Gcyu6ZBl6> z-zbbGIoggyB1(A}Pzaa@)LfH%?ntZ|6Ofi0&rIQ0W6U2wid8d?jQF3xUxYXoYV#B+ z`kD!0L4!L$?ie?5ae(nvwNYcnd}_J)6e-b$?fR#x9agD!YdlsZkEE9;fUv(kpf={0 zsLRAV&TwRVM&J98nt)O%e85kJsV_gs7o(_V_=QGt+y(=ciJ$S#DavRJ8J+IgT7HtY;wWSV^9P=jGdBQR|FUV0u|q~a9c!72onc{`JMjeiyj43 z8*Y9$^z4^BVsItkU0!s?5Il5)5hIyt+LGD;zETJA@S!i5pG*CA=P);==r8>?NkCsU zpnNV-2fIJDrR*}XWck~FazV;U9*Nu&+R3y4Mt5htV6w8qrX#_CK=5$Vy8=o_^RGpQ z*z{};orX!DTh7SgzML_bk?hY&6~k0wGWkSQa4Fj#$Y z6E?6=QrDJfzb^r29M+^XZdaFn({Lz)F$~|xK>Xs1ft8{JS6Vb#!9~0a2pm2h>=daT zvi^e)6q#>)${3hpH}-`1Cs0j59oVc_&? zq8)Z(3VcOHuC%nSuDm746IHn7eo)ni&r+jW>evv{z-|^7td!qJB?I(?E|KCNzYPJ& zU&Y^Q%r=3*ff`>ogA~W0^T1~ZAAxbYe1=?19wMmbQ`(`S2I1Re6YetIBT4Ozf@lJ> zsU@IC)?6T;!hphQ1+MM6%Yx=iY&s2MA43{#sUulZ^vXg=gY! znx?@8`Baq2gK=Ju_2=?_e_kIyDH(ac^6tEDO;%ytwr};H%bP0;>$xNbl&Q81Y zpUeHb?)^IK*B=6kL=HP54!MbSY+DlQ>AKStN$ar_x%UNwGre8z~>+e zD0N8mH>)YdSwN%F%yumj=`(!2o59b=Vi7*`ewqfNTllp(>r1@f5<+g5VQe;C!B+W@ z2-_c_F1M==R!AyKfs*t^SJ!M?Uox+OwfpnORG(;yz^@cgh4KeqKyvZA=~Hag=Bm3s z9S35)YIJm@1n= zl4xv(VwZ%Y3r#kDGX8*M8zn$%1hSq;1;Xo={Ijkn& z63?uL-^K3Nhbsph8$gFRn{kRY1mfL-fSb=ntCJ|o$HRpmMxFt4E6LDpBAlR%p3<0) zDo4Iplcu}X>sp}vN$}l+QR|YSbX?x4Q_B#bW~Op{mker^0k`H3m8K~e4)4}MZLlNv zoXHO>%p8}=6OF})W%PB`-tImX@_GZh^bOtBPJX0+O=<;A0gCW+gm@o)F`==#TD;0% zN~NjMTr-w>f8d#SnX`4GJ@}a{(#XT*Kz%qmqj3IgESe$BGrINo>v52C8qbY>hmDTu zR-Fi!Rn>#G2+__+yAoNtb}R1ySaR+YZHlIbHe!3nadiRFz=~l%JlloUZW1T_WXP!q z+}RS_v5)X2^H+!7(C@IvR-$9%Mf60BW<0``Jx*2(I_mLijqk6NMJtAQ*CxGt_g824 z3OnT;UxwELWMt_mp&X6J6XgdqvFDl-#$0i?xMib~jK9>{5TieF|)%fsH35r(yFM@^$|kh zIwRN$+cTEqWWSb|tSZf9@_g&osn)oP06v!l*laXNrrBAi@69T0-duUFIP_Y?0ydLV z;s|qOP5#`|^xg-~9}{25HyvmS=&S991LlIX)zKfM!5VpkepBpvNCT)V4lDaK|!a!$<*2>aClM1L( zdxO;RF(xy^Lyq(IWI1Krp&h?7Vo9fU6xmlSrC<4Z4Bl%6cdAJ1w|Q2(UDnN{td+^Y zP+cA)cAcleTt%Z@d4y2oOW;t=~>3S}eIXf&ED^T+~#;Nd(!j#=RbR7S>i|dG? zadU95+8HB#zRK1SNEi;wjBc=@{%keg%`Wu)HdJmS4LX3^_JW z?xT|bZHCv|zAHRk^c&mpY0}ng58TUU1GDF4&eQOmeWUjJo;|^%)|5<<$i#caPLU{4 zt&9{CUcuvBrOs-9k*c8Pi&<@UE2sregvR{EO4o{lwl=NxFBbQ;jA2W2T0EUY3HB!f ztM=CypZ+u3x2k9d?LbRjayB0EGw$LG+mN=+#}3guWq8M>VjvR(?C(}BT@HCwqnCRq zp7}E{GjpM%hw+mz@SYbG*F&4vu+J=~mGwFT7h87b97Dq9dXR9VK|ctopt*gM`;0#! zz1f)Po$uiBAy9kc$$dsl!6im~0uL&LcmjWd2zUqrbGX0%;=i3taB~k2HHJ_x=4)$r zxkelhExb_=3wKsWW!!tId6e7v)mLX+7ODW#kbjf5E7}(g6e8%26Q<)4>EpNmvxKjJ zKT3*#kNFpWl%dCDFbA~@EMlerW`osCfk&Ytq($Q`DXLs~dIhq^V^h&MOfHwQr^t?( zo2T9q&}2AX&slxQ9QkF_bjuuv@DaouZ466Mb_)2MqrTN3AwURPnCoKO= zi_@RHS1dhJCWm_ZvGLy#Tr@LPaS{ja2 zzsm2kP_!{K2ga|-A5|@#9iFu82fc22K-K&OL=&u30UzXql9zQ>$Nr${4P>*((9R@{ z(HZRqmJ_QFN0SezkS*j2B*YG;el?H3vexcE7W0j+4qEvIb(N^`C4Rk}kzH_CrE4g^~ z$F&4~Cqt=@4E_$CR{CB}XonlQY1O2|QM%>hy7uvQWn-zobYoGbsk80IXy9N`3l|kS z|CZ-Qj%@o*PxeRupYbxt=o!x1>?bX zR}X);pav)uV1O(bZoF`p{6WH(5WCLNeY79FvK;kwDI4_$-GHE!nTb&Fw%EBSlNG%g zf%Eb%SkIxhrDk^Pt1nP7T)xK=fc%e{4t}-v%xX}Hit+IAoQP6jNWj$Z*+7IS#LnKR znBWLD4;!t1Zz_+Th6UwMd$&!GYXgRW6=vKf$JUPWEYX>yS=Mx9&c>&m)hGK)4JNSl zr<|pNUE!$JKpet-Yc0l4ZS9!acQz5?nlF_X8AqU+yJa_BV zV}JM1GAeT}utDSYU+L9soDM5XrD9K|tj7k>j8!hL*hIyYJnjorL5I!FDak#J9fJC8 zSPagz1X)iWK-Dj&0i)s0FJ~PtJ;&E~ljF|Nb`PBF_9_Fqo_YXvcQ<1TRgZl?Q{5~j zYtkxfoa1kDb#`_NBL~q5b_>MU6e&1}vvtpC(J7ve9m7Au#278`y)cjzD_I$sFN%JWjd{s?>LY?SkaIJQT z);nCmFe|KHV|(sZCuIphB7~%d(gap4_(kr^$#zJmw^q51GH@7uVxC`&g)G8$2s+_% zHh#bh=R%)s6gkrIMjI}8OM?biyAwT4%X8#2XXCCGZ^j0lul)GW2Gpl)DfnVwdDi7c`O`w&xN@M@)h_iP`C!i(5^m^nZ$*$9W`)X+^sZ`jV zQZU)@Y5u;}Glqw)$8;EmYdcBJ{hgIe%~Pbh$3syW7Cu2Yt59`$gG-Mh{dIRFvjHC2 zSgIWU3Zvy|s`quLf^bk9rFiunKk6Kd27@bPW`3so?nMSpQv2?SAnzScr_n`<9&zSy9(n6v|^XKa6L9X{|d%&9UOVze0vHb zluJ;Jw2onUA@%;@b!nP(Pqy;J?_WjgP~7%3Z!HW4=%;v2c|C#`id{m_9U|6JfwI`o zBzrG-+aL7lF?|=Kyd(R}h~NJHm5(Lsvud_QzymUWj=}UnR1h@?-1{+E65&yDy+4#W z#Fw9N2=-~2ZAwec^o^Q{-YN#k2u=4(_pfUzB2EWMp5EVPoZY1amuH*Z$>!Ca+Yr-V z_0!6fWdx!UzAG~aXy>y1Af!uJ+zl`Ks>;?@Yq0`#R`aYTIJu!oxo9<9yyj$?H#yIM zx>A_{$HvpvKKvRX*ZF+i+Hl$0ILvi87Im;DSUJyN+MHICnKk6Pu5VK?8=lhM85F`g z+RvZ2pcJD1sD04Bd3&leW0v8#w)gAVMf4k*(^OAsqjee{ z55Qct z?%Haw=PPxlwBb}$54@(82=`XvIj!1e_x2}r+zU`?tle*(Ijlig70x zL`Mm~|4Hht#7uofN13>TykZ$ofk4CVZDDlQ=*Zj{xj5s#Q~oVAd|zdfVayk>>aaO?c^|FYoG<-*7zgsk@uF`m*~euiPG&#J7*Hrl}jNxGgLotfPO` z`?wH3L<6B7U-dRPPFJXl-rHMoF9rwYp%vM<-K|raX-tHIly(?s8#*jL}TX9=SJu=pxSE8dtyjDwY&d>G7 zQL|6BPr(n-Hx|6rPl5Z#I_TUshjFK%5;ePFx2??e?b1>UaxJcbXu^wR2C6vgu@^PA z6GCW#J1!GXa?b9~@#U2`Ju-Baj$a&gG(E11_N%hkm6F_9GSyojPVfYUPFDQKlB8i- z#{t~N>KVs-HnQZax4ZjzoKx`Y26*+iPdjL#8+rZS%5b#pVOo_D?DU(D+x4iPJ0~Mh zs}p+bw{wyUA~shX;IA%TbES#;0}gIjjYF2Rt*X&}$yC~SBkOC>SL!?-`<( zlI9T4S<*ED`Gt1NGj*{gp|4<|5X6|VW;zg>$H;UY~-_oRLtL&u_ZU5q_yS(Hy)a z$7ZBgDH@apjFfx4)GkZW<$m*Gah~8Hja*UGQoD~^nzR@o!@3*CC^!b^_Dr$j-e--* zLA9KhwZp~BZGJFR&sscn>)BmJk9Fit){>uF9ynJJoitT<%Cjsk-cvoi^Us1RUo=i) z$;g(vByYROAH5AkhV!=J{W;pbyIs=Mzro3i!%2M5TBq^K`qkRa?)V`KI`1VXpLwe-7mM7uj7v66!w1B{9S*yr!rB75YFnVhMQ$9_)aTpiD~dPWAR1Y zc!b$i>M+Lcka(UpxIJkBgEnEcYzA>>f1S0pgU2HJya^&=fWQOUI}K{~OpsF9qW0iO zfSdJEB>u552Xdc=HT{{bOq#9?sC5I?!5g)0`+0=06s?KtaMglHK^bulQL0{~lKr{U z3E}<8o&_`uTYwF#C12_KS^x^aQinmeUVt@9t^Av^36R_8yJk@%uw@xMSNCs20~x0* zAD)U2C7i{Xbs5Sett&h{~AN z-A{ytk1kxR`0soirkVfD~FLkaS9BoO+99vD#{C>sP@!Z3X9E#(KL$<@qGETUuYn{?n{}{CY=O zi)D%}M2Ic?SHtCbd_L(=RpCC6=dDK`re{*-TE?_n&J8UeSe<_GOulEEWsF zGYv#=xGKE#v8%P7vo0~SlY7NaFH|e9gQSs5%4nx-9#y+O22aBoZ)hymHm9{0+i%Cl zP?h&i;%%(16N{43tuo%rN1R&bfn|Ip-TC}{ko@H=iVZ~OB|KbR&wu^8ALQOxHa@q%Uvl55rv)OW%ROB50s`gg0&22BPqe*4I4|*~&{p_G89Qx2*9h2$F!U4zj!L}G zh>-MB&|gcq4Fw3B;u1RQ-S1QS9LQyX<}6_TqB&F?qy<+p%gV}pG~39UO&5)8wsu<(QFlvERL zR7i7b)vMDyfDx4sQc=~60c-@k<7sIpo%^(s}Qm% zgnW8%VNTf_&wIh}5Wcz00+x2RXS~o)_X=Bjmqg)d59|}nYzY%cSG8#OeOV-Ypdc|| zirGMlzNAy216?4CK<=AhtG@7`fpYMn%0Z}Oz-EB(c71NYK@UL$eq&vPpyY=whKS7m zln#Wm$wmlnjt+9)O`ZZY*+uOFyGQW3N5CKigo4j3hQ;8s8Xt@a#xC3=f43|O z3IvG&m)Pfu;0A#}Sx805If2Nj#wm&e5Qi_A0cQgGQ%pBhH@G6-kfZ{YzTqsQ7i$3P9eHa-m6wIQJXf;&?z`h12n=>J_{oe}Tyq1QHN33E|L-phr+41_~8HLg1-E zq~IHg;mH4VDBu>WF+|Sj-zKR0v2h&3h#FDXoE}+fMN%`O($7kv9ARdnx7k)X1G2Tn zGA4}b7?vRog6?@l)1e304m>R|Yd%(jIs))HWK&fP=rFK(;nm$Py1DejDUKg5{trK%;$7KOPsMP8d$uPoz)4?r5Sy6nfP*xooD{aB0z0g3Nm| z`q%oTxA!jPT`b#hcz`Acs=Cp3jxV(yfM3A8GV!ISNZ1erAcq5J0_+5!w~)4gw@6~e ze&R19`G;t38|krMvRy*iMm$6j3o_z2$LWa)%+Sst&bZEK%}6qSFBfzo6pjD1tFyzdNTf&0jh8eh8~R~)~3M?6RDDN89cDKRL&P@*XrDVmmkEgdc`C^c3pnj<$G z{n=zzV7C7=bH?y+;zrSpy*-$xtg`&9fL5_e>0BjiVQTL4?9iOaoJ+Czlz|DUNs^h9 z`Gi@C>7#kYg4ujaQRIS=37P5n!r7cxUS1h;POVmvps|FC_JW3Ug;nhtD0fX}o_3*j z#=50v1dkxE@Vn0&Ea+m_2>x*P$hR&8mO7SQOk8?wCIPG^%*%+Q2$2Z!fr){of$;%- zQYK{Hc+GgY`29ll!s(BR{_fJe-_^bsq|T+Su_iOzGfXm{GrrIDbom*|8QQu-x`qzM zNlS7hxBXzM+f~J_Ytt95zG_^ynzOu}ULHubUen{Y%ritbRV3`<*3fUOef8_&4|y4X6JQgu-|H}Yi_fxw_n?ITZgs1cA&C3c22g1x36;W-p$#H zJ(xaWI5z#&JaOHIwmiCE9=#CK7{)r1sa{*>&l?9yzq?!E4h#~Xs=1l0u61XY4s0^x$^ z!H0p6y)C^Yz4|>^y&FPJ!U;kVBB>%)A#Jz?=>3sL5d$K@qO3xb6*fB6*8M^eN>W~9 z7ZPiUWh&ZQ1x=KWbKg~mRgF%D*&H;5G!<4MjDTvR*wM~$bZ~e_?F>(ix%D}#C6{Kg zA-+NyGj2%RO^MB7NHtAvrn65vAGIFxt5G&`geuO>D&fh=v`Mp}c2{#!x?4%V zNRKZoP`OsVuV7HEwIAPAkFM9L60Fd#IM%M}@EU!phMmANV->*KVRf>eSxsm()vMj# z%hUL*A>Z&4W1gfD_iSd~H($w>*f#FEv%=NLyf3+XeJ$FsVqLZ5yWG7t-Dy8O5tfk! zwfJcPY8+}5iWj9itkTo)P3chux)sUk7EJ>UZ#8mhe1*Gh&~|bf=`gOIWXJvWz9D%= z5?Vs%GEKlVs2!Pvup$V8(x#^)ZsVD zNC|1(@n^wRL1!~=^Oa+VqY*fLIAc67c|7fnXXc&b0r38yo}g$^7g3RDaJ*B~I#UY^ zc`Hh*ptQj8*+IRiwTFSzvP6;&;3aXUuZR_wIg-rn()bu{3W zdzl}Alz&L2rb*kLZhtSl8Y7-je2a z-`{@Xetpl%%g0OZLVo+>B=#z=1@G3|0;e9A8?eVRf6umi`D#1=P@7fb^+X?gAMlcI zA#Yh@JEC`VQ#W`MSwxljm21?6g*X1a_GWT!@;1}^K75wWvo^LCneKrO)r-chvY;V!nysNXkBJv-=oWm{Jr?S`Z)f)2m;y^8oCqsKH&QK zU)+57n@T(v7v29YvHXXm`ahg>{{N6z-sbNJ>#gi*|75(U)wi~!`)HtJpaszV!BGG4 zokP~n+Q3oY(2hsiRNv0p-rC5arxIVq+Rgyq$l4D7Z$^9o3p3Xro&T!?7u_F>_J7B4 z{~xURe`oopoc9L$f1}d3akR7elStn{pU%+2(9+P#!TuvVhCj3WABO*6`~O?~f2iC= z*XAQO{hzTvoHzvS40Ro>?G&x8E&h*+|Gf{_-wcLAx($o2oE=ihn$Pci>UKwA2L4~wPceKU}hAe7vTrc(}>VB3DPhz^Rv>hF|!NOFav}b`58on_yKGzf0p@=eg7!* z!y;~F@1Sd?Z}>ln_IG{%r^SDaTHQZXBK}UlLD$sO^3Q?yM;o1$J)Nn+e;yGZt{gVH zb`Cs%KgavuR{uC!{#ensw)!|SEdQv7hyQObe{cOKdH&PO?EjaI|Gvrb-vadCaQz#u z{}uxOE$4rau7AVz-$LNO<^1o__5VS*{@2g`hh`Md$C=Q7icazT*R_SA)yFxA^M@qW zzqo{9{=1vzLZNvoW!-e#o}`gC8R^ z;~(-Yzu5o`ACCZjvoW!;{Kdu!_>gb;&5xDs<6`bN8$0t~Y%C1yzt_RY0$}{T-VYn| zUv12P!G)29nf))hu&@Ds$AyuVf#vsH0E{0}WxwUj#K6k_R~tLvcl?+b*jfH!`-t~D zrc8_<#^1NW$n+QNnLY~sYhO0D-|JukeCXf&9*>RTFSvZ@;`}9NW&q1y@?!?D|1ksL zANCtF8~a~!W@cvu{EiC?6T@F}VPX2HzblrQtCm@1Y3$BE^6c;YKCUZBZ$kp7}PReO}8_!6Z)Sy#{$ z!=g0ZRc?pkOO)|QFJ-LkFHxrTTrN5&`ywCSk$fl!r`m&-hH3Vzz^(ET^{iwz3s_z>~R6ah)@>!NKe1FHq=0HK6cUp7?c?Az^XnIWeM?u+WqzAK)F@hgB+ITL zU)!xqJ}{=_+v8Cz*~9k;vssqqxUpAQzP&Aw4AMz<<)c@gLt3?6Qpt zK}WQmYZt!VIsQSD--CdkDp@KZIPXyrMzlI4A8<(Wf&aX&=X``LBj+P%Gvf_tE90v} z%dr^RzQ`9oukjxj|M7Xje>z92RsI70lTN{Z(o5^P&%nMT*Kg3~h2P9^jdd&IQ)mR} zY&TMmY}v?qd0l_ZkJK&S=&Fw>_JxO_2@gRN9)c!3bZ8j^LlYi?COia9c<9jVe_eQp zn~z1ZUPfJ}VK}Y3oXuE|J%;Z&&`0(d!a01a9^RoX%Mv*U6vC;BR%QEpr{ z=VbV`oRgucHv(;3_zl}*O~<;moRfh9^3%05j%8nvXVwdtP`cVQJ+!VmC-3T<3??)` zf`s^S;Y@R^GbW^IAxwB^852SiCWIClbCm~7s8|PNkl)AUeuR1>@N2o2ghoM_&r2AR zUPARR-(GTF>|B4a4gs|X#6&w_Dz5`Hv@8pWRXOw|;H;OExUydncyql~2w2KTe+4ng zHx;vSUilEl6lOR^w|rESd5@DZMJqlpZFKP~^}^47UrLvKq2;=w6fmLeQKn)TqFngd z?+chP$7j4*{zto0m;st%7;xA82#Go76fj}-acHV5N>!g4AbO@#_|4qs zI-OkmOWnelrP7hjdo(H<(-bE`L%GL8WuW>OTEFZuE_(n5wC~I_4EVVYfTmc-?G?tP za#3t&8YPSgO}QJ_wU75|AEMmPalCN#<$v@9a}F(#6r1P?%0``OQPvebLG#;}^D=eN zw_$$t1a$`oC&}N^6ZAUGl(^C~bM-As5N!zilrik%^aK@$#|SpJfKF>1>nBs&(zcuUGlYRFAuqsd+LqrhMAt67T8tX^%yvm%m+PDbs{O%BuD& z$`9!PSR(ltR?2RSFD>76EMCj^h<2xJ$(UU>TH$<22_gA5s4(k*v?_kP`n;5!=0|W6 zzsudHWcMC4rS4(>KVLc{o%4M|Sg!K*# z%QlB*{V}rfItrDnD~y?axAL4pIz_;I-zxvfZj3~{M^k?i=$Pj-g-S#9))_mS-^_CZ zzFo?-bn9#n@So4dbSLYDwqCw(6__Jk@mNSc*{X6aqjJU5+PdN?optqTcwwX3v^IuR zlKJ8XU_$AS6eXE~Ytjp&eCY*f>visn@)F1Qh@PPQ1vn)6m=jyRiy!cQ&9WF1o>D`) zq6E|Z=uFJAPHEpuK1?KjxURqLc_v5H0K{nz%{f_ju`eZ}_h7Ile(rs7jcjv9kdkG3 z-a}*;w&1CTZ8UMVEX(w~hqrmkWmMC`VbE+}+F?2`{Xgji$RPVtHp*`6QH{ux6YJD( zyeK){2dSiF-I-;)Ti3-mfb#O^HJwA(at;L(DmL*2~9(p2>kAx9XKcb4kQ<1WJO=gDV2FH=PM+63$6{6+~OJVbO+4}e`2 z>!1l=K@)BQ)=5`Hq1=B4n$28;0k3Fo{%f}{pMU%K`-jgjU+|mBpFjTb;k+h(^ZwJP zFRyUOSMT5a$Pb-f9p^m%|Mr(}8b1Mh%e1q9|L*y2F>~P;VE_FA*th?`;@4N_6*IpE W`~2naC(Otct-pNn`t=V#z55dm<#aOu literal 0 HcmV?d00001 diff --git a/export_data/inspection_reports/80512_redbridge/children's services inspection - 23 july 2024.pdf b/export_data/inspection_reports/80512_redbridge/children's services inspection - 23 july 2024.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a9f9d0519003e2540c3f687e3214fef78881bffb GIT binary patch literal 244520 zcma(22Ut^G(?1G_-g~b>Ku~GYrAP#%35ZBjs+7=sk)8-h?;;=|AWcAo&_P=0ph)k% z_m(Jx2qBz!-_P^?-|xKVI@j6kD?3?x)tOl{^P5@Re)d>hL|jysiu`s1?xG?W=ef`0 zVdG3iuBa$x80ZNWQ?>TBcJ*)&duHtb_TiDhy?!pHW9{y62kd^AN6f(2+t1e5&>IYX z?&0CfBQ5jKdtGa97cF;t4_qIAzk=;}aMi#{N@99`zMg)*TJFAJcV8c~{|@m#OT`St zGz<-_aMMy2|4(&Q4|h8!UndWDEjwH@CwnKb_Z^?-8Y;NqpMxEoe0;qFpIWPGU zddiE5`TP5e+IqNpc#C>?JK*a4oyZ+kZ?LtmhqpYB<};qZm#($DpS`uMub(&ATV6{| z^`9~iJFu(#e|mll_VN99UeCNe?44Y}JW{ffe;22uWWgh*3--0P!x08oDD}^Zjh(>$ zVDD$%V0*AP*xeRKDJfa$f2&iGgWc`^A?aV@{r}PSADW7(dic5f@`#IzX*=2ZnDP8G z3Xiz#-_|@5|9Qy$^GotCcb@Y|{#!-zp8q z#SFm#zW)xS^6x|S--p)UHQ?xN=VYzo5nzVv|3qLS^V}?e63GcdfR8VyXsWkHN2!Xw-rtl!Pah6n4 zW#~gaKHY>RzfLiZp9-ZT)ZCTG>Y}X8ae4&|S8R5hpXtxwoIlaJxi)6H{gPhmkGdYQ z_>xSYyf8COMVuN4`|PClk6nxHYUl;J$6Yo{bdv3A6Zvfp^9PM-)B@f-d};T`E|clc z=I-?nHRw`0_vgf~tJC>OJy7j{f4*wt+{)^8D0KI#hJjF+K6O()p*6g(fT3EV9e#Bx zD-4JCB%7l(fc|EBvlsr!r?Y8l?A7_?DB!`EpE*V>sfRX?oPJeHh52ep>v6?wsYAdS z%ZSau`TTFr-W1vq-dU}X{66PZXx?XR}9ndm1f@;e-f+7=@j(s zx-YLjXcRF%8nOIA={d@L*DSGJUp)6~k}b1r_fc!dCXv8T!8?!^SI({Ro589Pk6fk$p}0%vVooE%1bE0F(myj+t-Yh#0G# zbAOgvO#))Z1tOa!m(jO4@%-!N30H#n%!SX+;i5}<&VJ|5ygoc0l`LrS6_X;1Uq^QG zCu}}g_IhB`>LqoLwXG;QB*Yqs`Zh&?y=86~`Gy&5M4GNeU*oC5*KN@FjN_{P`|EIi zuV(T?Tk^OMKVN*VE3m=vsBh18tiR1;=oQdxq!LWv9OXYGdri;kqm+~477||b6x4n7 zs@_W2ge?hlGb74P=QW_$F|nq`_#iyz?RA{(X#aOdmzU1?s!|6_DB85n^)RhD!PaiY zv!jGGS>;fy$Ir;(Y>|$m&f=9S{Pnv$ZJn_?X&BW!e4br~&3oQI?x2c(ICM1DCT%b8z;uD( zllRBt-}MgUEP98-Qdd=;?>eR4`VZb|CeX7lFKjv7Qcf3S52X*ppmRw9lII%hoRcy(=yj(+IO@?$68_47fGK zqOR0IivRd7@5G~LBFKBlPBVbfCg**zC(&K zNvpGCWtddwr}Q8E5#Bm^7qndLn#9NT<&PWWZ{eQ%l4WbGoU=YtQqvr{cmF`1J7|;* zUIbI@9E$HrSF44$D0P2&Ir5p|3F`B}yxxb2soBnLyboW9kG+iL2Ohn>i|37N@j^>H zh2rHtFC~-EUDgrn+vb@K!FHr$6#_kYmj(F+fY9a&W~2I#BC2~9<*skivxy15`tEJr z5en1~?|SO8%ld?q%wS`$ekDoRv$|uiv2E%Z0mP2Cyn=YWuZAxi#bZpEo-riEb9;W9 ztfun8yRBwQf!&Txaw?sngEd9(ZicNgsesRF*%E-#^Ve@lEynqfLoo;yS|)~jJR>$L z>oV?1U7(6=$}5LxNED`Sy^1}^d+})+uFQAlakDf1udzZhuW5d}iX8cVX~A3VkLq`{ zI^(!wDBj+M`utrU|5iKr_o9o>iPgJ4>pRUh`<$RG28|!Ri$W5d+>t}1-V~=(lH)Es z-Z3mTRbc@k;QSIx1M2nSk*L`Q_4drl!}$Ay;LuuZ{Sf=GDPaWl(`mc8F1a(wtu;#j zX;UZO2Rmzq_xRRGBG1`bHD0TvMSy|8kch~R<8G%0Ic4RD4QC>*s3h`(IF|;tXB$qH z^($|4FJ(vQ>Z{^dKQIwH$T*1HQE2eEl(?n$Om{Xb#+9+1jV=uJj=B(dPIq*=e?-Ju z_R~JzE1l3Tpv7S8G4c<0xfW!JF}A%}6TP(HoOLV0}})Zrr=J-*%3hq-SnYnT0qWWMyi2+92(r+RHS{<>w=_2Bm) zm+4khWdbT{TJQ^N&r2dB5rr*BxR1@4Ue@H7gVG^b`bgxdXQJn#S{QHlrKQnRWOhaZ zHU5lqS6}*cZO!IE)XrL)(q_G}{?!-2@Y51E$+-5K`@r|f4S!bl5=8_jw5IzvO=g;I zKP@DXtI><*ZMjwqR_sdu`Xf~+;YSO56O+)bk{eK60{#r+=QDSug+U*iTx0Nwz3Cdt zG0?SxL(aaDMq{`VC(c-p2 zD96Fb{`JsV1VeF?nRVN6re*GA>~V|Fs>O$B8=~xA9}BDpFFb_xau9aL{`K`o;e?_; zp7D0^8Irb{@5wJxi^yC^ zc^3m;a;@n6>hF-xhfR2yb2X;OWi$)BZ&=xsF*v^ZVT4)`Wp%45I%XY+*r|GImeIsO z(qKgAoC?Ir4}Ujs;<&m9j}? zSB2YsKljZmUJMVeo1ZObO69k8%2s?K?{uFcOp?4bm7VznL)ocOn@-{FA_2Ohg4y--~Gll0FrJ1dFw$(%mY?4-X7>qW@Kq@vjM zix;8n8X@g3*TGNO-Tx3*&>365$mRDJbsY=D54>*d8K>>BPJBA(C4vI0Gt~Qj-NhqX zX*VQl`t`ms?S!{~lhCO6xF8VUqwb6MJ(hapPF>CXp7CrH*Q-RJ}#?D}E1zPd6pO(dmt6!2sMI1^tScUE}evtkCBsKWe z7-_)%tdkm0Kt2Wg{M!8wua z>Pd?R&^l$KNZmaN&4`Z%OQ7NV-B#dMt>XdVuR8Iq9d-g+Ebr4wm(-|@?l>GuuN zeMH;WY+&PkghKgF<(w_cdEd(Qm%B7BPm)AVGj1Jc#HpB?*j6lbxOseb|0dAY;~QBk za9fall>6?WP~*I4aQdWb&}XksiTaQ1bm0o_g~~xs!aGOAcG-NRw@n@RYJaB%5rzXR_i}s8I?6{iD3Bxyn-pZoC{l7mfKQxp_aD&w zUo`h$`2H9F{uc}WgDwAqki`uAY<&NQO8&vgVkS;@I7le*KvGN-?Bw8xgVs{_aS#<3 zkTCGHwgvwOd1`oD2a2gU`T9Hqd#if5d3w12Md1&`{sS@}s~Y|XV*U-5czb&M1)V(h z)~-JPKhP<0U+VrpSoOd2yqUXM1JFKE*HQ=I;o$*NaDRZCMSv=R5TAg60G|-|L5RDE z$cTw>7X>LPF&PyF6%`c)B_%a2BONsj0}Ul5Ju5u}6Eh173pE`Z2OBdxBQp#0O(%eY z6oA0vz{8^h-1Gu~0015lZiv65{O7{MCmcQ_e2GYcyl`)vWiJ9qC%Nz2GS zkds$^tfsD^srAIb(8$>2#Y$wi1iB^WUldrze7XN%Ym@(-7N`J((6|A_D+wWQ06jqZ0E51u z^!{?ew}K7KCQZ*-a*i%2MCY=Sg=stI_|u{Y3d5{kjjJ*0|KDy^S{D8_>f*6tra?K9 zg1@hgbRi4c!{n$Dt`2Zted_1Uu#D%#P3A|;yA!g z{oaqBDOxp11hk8$p6mH!H;FbZ+PViH3d08ynSSO5B52=RiS>IhEAuN-=ysZ|Jd*z8;V1^Q5TvrGX z`O%fbrY-(MPVoJNDU579&tT%+0{z` zHF$F$$f?3ZhL zFa@XHefIXEziU75{35^m2Ee*!MXSWUuOx|>9x`__o&K_9rXV^4KITm1Qzdv|D?=0ix2bSEfwZ=2B*dy zRBXf0cY#L(un^z6aYfa&)~g2%*W`Ca7A8=toc<|tl=#ggE)@g`3A6+Juk1@P3?3*` zBunSvu|wa=19(lE#q=?A|H_Yk176dvHib-YfP?+x^#Ht}+&SP26GGkOCEe;;xWNi@(eqP;2hwn#}3AsbJxFeqJlyJObF z^^kplR};B)XX$O!19O=%?_!$tef=y>d2wTd6y+}B_Ox}HVl> z3k)N}rdS+dMh9K}L@q<^fmg*RfC z!I{NFL9F&f&=JLHeA_hu*qtYU%xGthUDqXfHq$^BL*{1dIsq4CyQT4??blPli3`dM zC64wf4-vf1!icQ7IUA-KOdfA#obg4y*vWRt+9dQ;VI$x2e7)Nq6#0Kt&T}E5s_j>u z7sSoLh0^W?cp}^Z$R1$uC{|!vT9-M%b;E)DcAC49L;z7tr(i;!Cg*IA6+)XP9LR`K zxYCu4S2SA7b?CXYj4w6s5ngCWTlh0E*viC9jh9w#Gn9@O^y}L-KP(NpR;>iYiRhKg zTvOy)Yg_fi`TLex5jV!VKfJPJd|!U)bA|^~MuGhKer^2N*%&!dsL?2r6`?X(Q@&eQT;sMF9i-a|bam-r#Wpknh|uk6)P_Z3 zLElFV^pKPm@WTzJYeiUphXVQn5j_AU#+cAVw*{B<*!ugB<<0d3G9D_L#r=t|i3Ox+ z{KQ*B_IcKuOha*`dIgQ|kgcho#;BG#b}&tN@M#rhm_@cXX9xf)ial#oNO>?5cehNY z^GTtvJi?Xe9Z%Xcv-1-?3L{?{fhW$1Awja$^S8~F!t+?wueZPK49%?Og%Iz(RX30n-_(8=bCpgr%5@k?ky*j zhc^T;v}>f<)_9BYLFTL_#}rpj_`w+i_BDaKe)(pnG*{x73{*^iEQqN{)HXf(7%rlg+~DnQOB1A6e8JoL&lWY*C6XL#K7Z>C<#;s>8LjjxkRozDG$D zWhMT6LS6LUtoNv23hNS3^Xez{=D zMT$e15win#6-5xi>cPOH6yza{>2TQD{X1LSZSTI2HrhE?cbiXCAJHPymBZCBON&FK zdE&zAkA-$_@e`Y$laQqDTYbS1IXODN4jO}{*;i6PfWoBa{lNHKy5}BehpiOT1VK@m zx8%dWhIxObCf0dM0KWKfm}4As>#^gd22-VI;M(HpnZjK|blw5;Mqp-oJ)xiB z1BV-cE77Jc!7unxDgJz1p7|4cN1B(&~-D5n4BZ1z9W|h<*U!({CDP zL1WrH66Pa`X_QS0j1VmL&dYt93lHdpyw}(HmMs(scT zhz7Jv4el7&A%iiHcaQYNu_zM#T0Q=Waym<`Z*U_?tM8*Ao;?cb0GjBtN)7W_*E0*= z5wl^{XU*EdW{xI4!+h07M%=|ILMR~=ADXHJLxq-Pj+FAW2#7GI@Ys zVSJTN@J)Ehowoz;ua$<3R3aQUo*@OJzWzW9_14wBBm|1)dWDZVhqACa-T>waeX7%b zLo!1HKRahEWaRsaRBnI#{;<7Q)L7H*Ih(}`Z&Dsw4KJ%|Xtl|}A}DE<)V8%FgSE}1 z@NLtqn*qhQ!9SvO8jn-(z2+mt9+6$h;}nz-$aJ>;As<#{VIa}Yo^K`Od#yOi?lTf z5xWY6j0frbxLDztkZv%CoIV>bF!CsWqYgE_(!i2!UOfpYMMX3r`5}CW#;g)}^z&K2 zm3*l@^HcFma=y?$PhLTVQPWnO)#FDa{SbOv0X{l@tw<*9X6ukhDt!~?{Czmdr=_LiuB%Zj zIn|Z;em+A7#k}5Hr~ri?J^J3jk8!ukv3tue3vU1eDcqg*if67#1U0aT8-R6w(n4k@ zC}Ai#L=@N)R3uUw;q}wO^ps zt|Sj}p4kDkcV$QO?2zrpmZ_FF-w59~BT5rR_r(--HHiE^s^v2r)&q8+8Yw70FcIR^ z|0JR7BbE4uh_{F@8?Z_F==^pL zx>^e4rWe+tH{cP`qy&7g=25l3e&Wk<0Ysj9B{vViG6nFP*5+=jL1fW68q*lb4VPsK z)4CkJX{pxCrk19(=x{?s&JYBE7FBM$TIC|-k z&iS+sh>Cks(EjoT@}o(I$uJ0EtPAZmr8x>Nr=e-98TjICjAAdYp?*H0yWRCLLcTwG zN{;LBmnB>czLo~6OGe3L()6FQ&DlPK$0SoO{QS81s57dC=gbN3)Hti&tH7sJLseht@b8k!kM^7A(BX%Zn3z9(y$P1 zmP_M&0qbT%UWGv#@nLRgWb~Fd4bN;5v`fnG20*))-)QodXN>=S6-+V1^ex$iLxbad z@sh&ZIewIQgcVGQr_D`4xnqisFwx14zl*HX=8GAy1mX|v`4QrD19&{7d;{qG1Mf~o z2kIq)_Ocv7XrL_GWbZgY?>O;FAI-NWnk_79a^=zI|Ljjj(CxN@CwKSxPemAFW){hu9F-z;NR~g(*&yJO?yuRYu{y3? zhsB#l!XnyyTwK=kS#;kv`liHl>D~ZZ>AZEkxyNhdu+03&u!^!T5ZZ(7lM)6J|;e!0ioS-$V6DN{mx#A2?7V2pB&x)aapDYQ!t z4yIz+j7t83p6tI&DsWrBmj8Vu)7VH|GZgqh&0qMa)cIZuHSvp@?bpB0-DZ!-t`vv3 z=gwAXA9-DD&T!_#ev)1bO~UPgZ}LdcG{w%B{^6ge?UPNvX~$zYKL7GXpJAKL zcI2tnPVseV2Vnri=0K$DnHBr(Gm+0fCts}Y{}%RV?t4ScSX-O^sv^bkdMtp4ed;<7 zOCKP%Hqe8{@U7+CwQ2aRb0I4$K_)78n}>kE3P8Aq*9idJC-Rs6J=-fb2Vcuf=#bPx zau`=n(;pmcS*-5Ao_&(RGU*`vOQ3txYdgFpia&1`q*8|GNetK{^0@&pwlS^4V)6*4 z6uCBzrKPF(3=;SeHTS$p!C>njwbg`lgFGh5*ilf;Y&S3ht8@c+JM`GX!Fal08O0_Y z|6$vVt25ljFp>C(URGuUZu4o^=wu!Q;nEevSqqZUEhIN+sYNTCywKX3ohNaQwV)D}8ReICWI`D3JdO z?+t+KAs9W`lMRe-6N0Y8=$%rWO`n#Mg`Z4#y-%lcmm_(=lR*23CtPUf20)4Jw8E3h zXA^Ce2#7amO0pIXQbT=8w7>7o)YxAuzgs6as+xTnwQ}cE*sUn3qz6;?c<&e)5dZ-4 zfV*cV8IVa}-EI#wDcjmm~SL}>ruFS3D+j-o}GdJ)d6 zRBf?a$-eA)ujR}!Gac!_fJc*|K{tSU|DLnpp(tadRP_U6|cm4>;MdQ=C(`^y@jZ{cMp! zGqX}}!1mmQz0J#H@7{~bgS%WtV?||P>u}ORUN{@bLo7<>20#XPI;9J6(S4&@Y~FGp z|Kv`0Nn4Mn8g~rV&UXHu-W>}fN3E>uu_VEdY>@`O~UsTPzeI3sRV zJE_H~U;nP9@XnAVC*a|5An^Dh613hB-FX9Gck<5zA$nzJExF*~6dKcO4BC8VgJ0ru znwa@<`%f1lHoFhQFpz8v;38jSknchE@f-Ou9ZchXcg}?df*)$U2wwpkzfZr-71qT? zEwpEawt^Et_i6%YZUE#8dRRG&rYOHkV6Q1xN5d!QjG)gs0VS2E!lf?@vXpt=`|;l& zX&=rHBZkk;o_4NsQC>W>iVCaKgu4lSWCya{#Uodip>yLuRAxYbxgZt(gMyLva?c(%LOEZi9k^EJ!8zpB+COR~)^Toc_!;|w!rp|@R+=P$XbW8Poyd>Wy zu}@$9j65{5obZW z$63WI+UzZR@@_jtQTzE~g9d1+wd+T)8C(tlu7Hb2G+P4WfJ|tDzB}Ev4z5 z>7@Xcwb?!o_JC07RWi&&Bz4_q&0}_p`4@^cl6QLmowhtPqZmp50r(}qk{B*lZ&I4LL8wEdT2rQ2w1?OR!iMfy{>eDF7LLE!SL(f-?vqiw|!Ey2FO`A<1jza+eniE zAWMjoSZte5r8d;NFR~4g-c+0L@sH=gM_$Ck5eY3hX`gkmE}D2N1~;nRur`v4gBj;O zrMVi?%6NkCLMQS9zGkY_m6mo7l*VZYUU4>rwU*W7L8` zr-IHz?dK!f*SilM3N@j_uDGyc9W-MCGYvF&T7eF(QCf>SZBZwhQg=) z&|>m#{JDkh?cu3R2AO>U?~{RVg8Z{{xOm3nLtp3uu#ZLXRBhcs?FJBLVU~6S_!M_7 ziG%kWK(xpf`6@Yv##dvQyFu~Qm6ROl5&#>%yoO!JRk81)G|*mrAJY+i@1fznUqEV= zqYDaH-Q9tFl#sL4rS@$IyUC##hF%q`1IGzWb;$)bN&0L!L=uP4JEu=Rp`mLcL|l;# zs8WCbdl6j$Hi;~t$e!6$x0H z5U0_u^<3256jZWL!`zNVUg_5KuqWILJFA$|x5~q<%pCTIB1HNIP{m$~jdZf&f&7I3 z@&?ktk6b4~XI1yE2MXbG(6xFXXZ5*7X_dg;yD*$Z^c_mFgecb86|h*CdT=C>mZ8# zai`0tY3|jgi@oxA)3I0q+YEcf8vc)IW=4N->XFD2?eG}`x-JD8j2-heOomw4w3MdN zyCn(b9;HPBk0oMh+DaRI^AYOFT*C#BarVrxosaQi%uep(eR)mB^Qkn~m$Japl29;FqsR)5|saWC&!d+i|*r$&FkxfsL$?~V(1T1E{N6W4pt{9 zbBIN;*@4pS*&>#pXDtcx`x%wk%2YjWTi7VP%=nr3Z-=8VIPkc@feJ;-ZjMqoFC@pb z;T6jiF%?e=6gaTVi?;Qt7-hd`tXoS;ZVootq++stQ6EfYdeHw!bzuZ~pYLM@Ei^qe z7^l(=+Frn&^ypqn-nr6?ybUI)U~FkzgHS^6UCZG_Y<(3ia=swgqlZ7o@O!jk=_g5< zrXlc}Rp@sT9Oq%!YOB{?r$IO$9X2FKe!blVS`7o<0PHK1|3ArD9gaK>XrnJ7D%W{D zvu6|+|I=*E8#X3!a@@*v4)4xiELsC5*hMYs&%oO52Hqv-ofUbl){1Ra zx0JT>7ebqio63}wI$xU0=cPeipkVKuwQmhs;5egmljo{5p3c({9BsP1;aehzS!}a& z{v}gMNZ6Ic4dDA=2oC$z)al#+CYmcQxZ^Me*G-DbVzF?SnY6k^0@?QlD$!| zMPvIGtQ54?+|ru|?PNNs(TXrG(=%}Ko0Brx0~IYN3ULqeBPWSX=;TdL1`qcFL|yB^#-9ZbT8m>z`K6YObGCUg**3HN*#3b!v&0JTG+#PS;YmH z1lSlkSpK2w;YF9EIrkduN*kIO1U)LnZR!CaKE{c<=#!PUPvNLUuF2yJ6}MBq!KFuv z{LMh&h}2a+9_%2RrZ>nWL6NB#U7?ykI_Xz&2j<4lM>xPsY|&E(@YJv&g+)NuzFGZZ zM!Vbq%%%0N$tOAR-x%tn~eH_S3R)a8Me11dMUk40~jAr4$3>6Ax-)l!=I|sKT}L+a45^Y|MMls^QEVf>rO}h4ItWa4|HbS0L0J> z-T=6Zuv|sBh}F316cnMEj|oafzfQshTh(0jahr)3iagj?!eO8;P`w9Uh#}%4(Hfl- z8Y&ol{y=PI`s}URhyL}(4Em1_tRqx`Pz(#cAds$&L=MQeZ=y-loKAKF7>f+CU6U(n zM2^IJNxCI*sV^@lzv6$c3pvw&X^B(Zslb;wGlt6pT#8g6OyjN`uoTLO5evbMs95Ba z{-x{qUgI9UDSrL#c1+!;^muI5XTGMyb0lw(xu4(s2Cf zWy3evI>2jtDZgIe;hXm~-R&G$GOkSy5CvqG`O*(_NNIUz!dRi1-BW|? zLPk5J8ql!_jqVlc`gA)BhbK{i)jqXutzeZLge1DEQrFs>WGVDi@+z??kvnt2*6 zq6XQ*j;&Ij0pnLm&!PAMVXwQ&`f`HP&D%d7{`3)SX?$=ZQ5x=oOxuj^v0}mqq7y^c zMp<7-SDxqC%P}%gEj`Yyd%W74m_(yL$V2<+2x_;wAUlwcr>HEv!u3u>^>IgvQc
4<<&JUZOhhfe40VYc~02=680i5VO9(PP*9VdsX>lMTBc8vxWPlCPL$Nu*( z#4B9_Dp1(#eBTO5(VXB7DsS_U>Uk#-w$X1N`vI84jnhRzR2vdDAY_l&&i#Z~eQT_{ zs~hga-&D+5VXhU{Oo>km`1H%4mK5PZy2m~n7ouyszDm8{#GX-Ju2XGlYW8_Iee@OR zxgG%jDF8MHnzLF{%kP9ncrd5@F5=r znJ#_1u7lctaLcwu$}e}aEplfD{S19WyVIe8li4?r`2~|cJ^WF`;(C8>D0Ot;J(=<^ zRy;}C4I0!nYOMTU+>LC0s&d*ovW*UO04Ex_d@Sn5edFakq^VTaMULGHEJpvLD8rz4 zk6??Z^NXG3h{-i*B!;}|ol@-Q0ixd63%ier6V)gQ$<%XL3eI{iJp9=KMEk)8SS}xy z%oI3Cec1a|+1d}f1I8qVkgY$oJnX^Vo0Pud`Mmq2J?a-=S+;+DR%u?}>WdQXbvx8y z*`UYx;&P;+e9!-sR&sxG-{qlE52Le? zY5JmEny9|9q7WRQQ%gwgy*)@2ZN#(-M7+QeAv61PeksNYab2XdU`|nbi0sX>Cf=}a zesI8)o0@Dc@!BAHG*tBRx6ZUkgNV|Bnc0xsyWrp$^RFp`#S$&mTe#?P(nbeP)Nod} z@Y2MJcs81gYG)4O?UTSCOJBM@E$xZZK$ zV+uv(?T?#oOBx}zf^Rs8C4xz$(KVrNUJilMx!Y}x7tFt;d{pl-1}r~id#T40PRerz zD}>w7EG+g~;T7cc1m%5L;Xx!$_50Y}rW*y{y&5G*QKkxe?@k5?FRtQ<7;+x4Iwa&cilITIChe~61|u3K?})(WiXFh-@zPD*5mnap)FjF$`qPjar@~mzl1v&1sGa5H9OCfPN@WW4%Hjs+koq>*k*EYxvs?RH%xQ znXiGL8dXb_;&+guXK}9iDLS*jQr8Eu`Es(&q;%^;WtE+o(Da!>+aKMqu-2g6tHL%h ztLtnfkmCh02mCGMUh4a`oQDsqX0eyio}gUi637UY+mEAw2;NP@#wQNoNMv_p!Cs~s z(u}l6tczh7aQP>P*s8*`zRHpSnZ9bf;EKrBZwtX+pVd4M&6?;yTxZ~%`PHaZ{IiJ_ z_L|^h?*Np=VJ14bT=^h2EGCWbq->YK%SO_&OU);rwccfw4#S7ki>~ieZ=bGL7*eq2 zb2H$tmKW8t&fuKgKE>QOImVqhc_f1SAh~}7NDMv4EfN=t+)>K#oeB^@z-v`oxF6Y@+t>CiQ;uT`C?<87)ll|wbua%U&juFNbbCP zk5qyMbnqjSy2~Nsu1(d(tl*}EtrMOUJ9o`BBBHR%C(RxUlIyttS&|45oC=}99TVsZ zj1{RWd}deMY-yV%xkRtbHJug2j%mduJ6SP72&E?J_R_b4NcE3ZY8^!d8*4i4vC-Gg zoVGkwl4E%dKLdPFudY8e3`Ir_t&7DLI_!B=D)qzTpFX4Moo&a^;kJBWh)(O2>$wMK zK%FikyX&4#^&GU+lJ7319FdJdY7a>W_W*pKYrCZVBwr*ELuX;O^w=ivZV?sdU=QWj z(r{9K+JG)t7}Pl*E!a2QU+K323O7N0r#!NQQXSC$f#@H`2aYIPJx*iA{#m2R2vNhO zd&cB%ZELc?t^YCI21jJv(7I)VN7~SVlEu5SbAi`- zlL#0Tjq}n7*O3p;QkF5g$cBtGkCajC!h&zj;FHfL zmF_jyhG|Zk^RVd4Z!w%7-F(7df2=|K^ulXz0LMfH&br`0L{4v=W+}&!h|)aUr52gr zwM!Wqe8mJA%e&v2puKjEIL`Sfz0>NQv944@HId&XbR;%EfFeS>t!42{V{cgiIh@B+ zHWpsARmuyT{qoj_BZ1ETi1AYdK{YPfPyYe9xHg|t{D5< za_%w};nFrnewBK<<7eOfM68}QRM$mtyA4kbG3sxrWm+C8ntpMY%@b8phJ=QeNfgm5?F`=I;DdPaT5O;XgR4fp@FLZ z&Gg|&O-Sh(J30MqhsuEdW#gd190HwdlLFLwiyQi_WjyD zAl+8K9N^TrP(L2YIqYR&+#gjec@2_ez={ULvK9=(4|w-mt+it|`)>Bi^LY7~U-UZO zCJ)v8;DlJ(kf2G3=p6b6umK&2^(!mV>X=>+l^Nfde9`taj%C;A76mb3Us}E0ZgwAX z_Gllu*ssLX0iS|9pVB+Mt~38JlOZqq!Ht7XA(PRsff(Li8&Du zT7PXAcf=^1iu}FNMyp+T6d_L+0+u^uF!^;TxegwCt5qh&qC$_o1wL4k{H1i#ZE+unjFd zyjAra`Q$!1x0cyZ50j$kQ_{f^m-OpzZNZx$a_rO%0MA#9Iw14eq|_=cI!+J% zVA%nEFY5a2ob97f;%o9WZE=F-ls?d-|CHPZ?+WlI)j-i8O0jI0P2OHuwEuF(aVh-j z1>MJe4~b+wrA$#Ru3@MR_6AACf;r3fI=11^U^R1~;q`lngMh)hOD}}U&==g7Lmrn6 zGpzMd*-m{@kt9NjC>(&<6P2? zYleSxxj$z1EIlbfFZA^U{-7htW@q*FJ24|A!|SX-+)De42KJu6_Xo%N73#ip za>8iuXnI&Wrw!2v03#T0I}XR`OhtLXb2n`wWT+2TX+V!^w690u6mQ$5m;Qg378w`yNHvhF6YS@Hrg80!X_!R-q*@S)e}m+#j<64i?LTu zo;uiyx@_d|n5)=6HUh+CBnD^2_u<;67p8Qxz{RyO=kD|om5O=lLdJdDx3wRihJ>oi zR+G(jS-B)Ewu>0ALgz5Tn6Fj>O!@|sc8;Kr3$&lHY?_UwCAGWIRJ)sz@iOdaUIc#P z*0q+JjxIc{))BfQw8CFQbK`OR%)IchIGggIAES)bx|$C%0+n)Qh&F)}ghB5CnL+6y zJEk|W-`4c68xHfRTkq;CuH6Maf9;A-YKfUsNv8YOzlyN*rt*m%nQ zrl~jj?hAUCThN|W1Bu@-Nd4r13;y>%u;|(q05DrhZ__1OUURBG_Hml3WjMw*wzp1+ zsQljSJY~dJkqOy;6tl(FwFri2h%Of)qW|^0nqmp%_0>p8Ex3<$8fM96P)mW+V(3hC zf43+|=}IL~0#%N{In!u@^A0*xW7)ZNAAI1+NlT|*9@cfTN^yT^=0nCj74!2sG9Rup zl)Dhw=dUrK#*2(c=)~qFYR7y%QJ>|`&T|?WBUa)*<;t6X5r-p=L*@s10$nl|n-fi( z59>F60B@pfkSMmKm5~t|2L;*U%O$Ywq>mg& z;CGlGr_dYaShL;N=@pG-h}ZKGbRV+4;WxQ>ut6~75@Ax?6{~PD};IXnB-H9$IAv@E*EYb@x|!YGR)o1j%eF)-~$AcsR5Z zoyv@Ln)gy}c!&{VfR_H+;6&bish(8raC&fAl$zzbYG2!1BX*c4YexhoPDzQ&^3Q3g zF#$HEJ=TzIC6osc*5(7!^(H31eR_@X-B(^36suefohcS#+atNYg~~?37rhy%0;IFa zq7t%bN(>U^v&MW6ePg5Rh*7{%bcJl(Com6KB{aj0*73cqxy7+8#4xxh4K26^nl^N| z@3JXQERoKrZ^PSX#>w#S5wJbFqmKfTo~A%I@{DyVpmU%)aCql~ z6}we-%t9A@GS>42VaY)nu18tqy>iZNI--GhPikw^c%{pG4K{U-XaPivF+4XMdJmN` zG}K9qP*|^Pn4YKhA&PwLvnmS{3hXzpWyB>3?%s~CM%`{g=O`U60ayIg6?`@@uZP>W}<@kMI?IL2z0f|2uzp8URF1uj8~}-@R6Vs9vZ;>jHE>x1KKL z0|@o5v57kjwrZ(*kjF)?`7|l(D(2h;b=L>|b|@aQHr4fG!^Jq{iWBy!>{sHa2BHeY z(3KCq@NK(*phL!7@U8?gFbigUjrt^zxYYihRr8l!en%e1w0TCke$(VfQtsF(aU?{` z*I}KKXgNezqLdLladRg=1J&14_zvv2^}?V~PpU<{44oM!OfigQ-OZ4m105w zSGRTps3b^?Vk7t(=&*INXw!fBv~{OYXS8VVHNWv=_YYnq`!8{w%u;pXWQuB*zzAY- zTAflw71{Chr-KQiw&F|P?Ch{VAr@~L)R?V+_L-c%c3H&5bOFBglbqIS6yGlT-N4*+ z#9`NuTUF#3A{E-{T)5g=WVJK%XvCIcKo-p7O6DaakoT+Ana#y<7PyDGiF&xJF|=R} zKacH6JZARfyEO0A`|GBt9%4Tk4U}ZH8(kUO!RnfNPN)n}nw2pt`-^S8Od1&?e5R@9 zv=$4&Z~2cxyFJf9sM|I@)vUhsNGGO~Sg53L-QZP2rfotlG@nm;tTu2{`p}2OZPLT| z?8+53B66O4g=Gi1eC7a{k_`6gJsR-hYrKIWBv+jSThB>Wa=P+`ex{>8gwz+!I0Nhj zKjR)@ocaTxr=YJLDHtLfATlJmHF>!KyeXRfF}aZ2W6X+*1>6EO92Sb!u|SUV>cFQd z4HeoPNLWYqVd1H%x@-dqzFo00c+k(VI-hVaFjXKKs^fn3h7r{rmtFX31BC_4O_F3h zMN;PMwpg0ecWoXaCd$ykHG0sNOSc+$NavxaJ~WR%d2yfabF#V0mZMN2cXq}7k9f)A z7QBoyMJCd)9yut1Z`YPjWFU{(26M-)RW)*5@g}8b*;}NHvVxhBHj? zO+_xFW;{V|k|V|eFBl_~5Y;wd(sj+!4rqJ)bymKh$5x9O2M%U6jv6 z`p;kIF(Y&95%oHMVBv4US&<<~ngk<=kqB{^Tg#|2(IK<<8!Q(L^^n+hE36xmXu=2; z^K}>mykFy*jZsqSULDT;zP?2^Llt&Q_Yw(g-NDSaZ8gO8Hzt(cLuXC!q>KL-{BjS6Ne-17R7$m{!Lo1IoZnIvjp+&0>Gu`>xr=#X3Q6$wNLfR zcj51y5;Hj`stI5H*evBeq`Eq^6^Oh?I*2_oc3`$$3niNmF`t#T5)ZGoNFjYdiD;Bk zxt_fQg(14EV#NF5N7vF8MzBW!`QEN*fmy<6AT*U-IFvc&@&u`@n26Lt*;ln0U?{G^Ky2JNN#}j%`m6UhYPxx` zaw`MtO4Y6c=PNRtI!b!8HO5A&O6arVK?P3Ua=B%o!B)t8A~J9eLu;SIgV^oYppxGt zXGM*eh-kGm5_}3#O}Er~bj-g^<^6&A;I5Ruq@1R3=11kZS`s5BhCyjOXT|C^5=rF`hu2!+L6 z*9SKujqP0)ssY2Hae+LC7AmoF#ZK5xMzqCFbpFW3CmTCE_o7Vm#(F}WgA4Kp>e;4A z9N-|JR|(NP(zNGs#g zwflTSH)#?rKV>-+bKB297-o1d9(V)~+t@uCg-^-FZd6BlRpT0>{QK+uz3WPqt*-bV zZ{H>Dw8mGb{ZjLp1=~oxM`NLH^91mJ9p_~PQ71zgIGx9Xw{OW=Qf9JI;f#-1yOgR`3 z?xsLpAf={d==SEA0{v%Z(=8lWnuKeYA|rHJYkO2JDDTUdsPmOxXQH`EQ3UJYS7^pc zRfl_ddEW&Wjik%#9#52qef+4UG))8tEvh2@QI*Beuee)thvyaF8(YtRa0*yF=`u}P z&W?Fiwf-!1hT6UHE2DhGGSqM~#)JUoNDkP6sKJPSs8a^+9O>dk0@aE1Y|}DtPqI=3 z*)=bYGsV&MiiEy&mrS&Pr-#b$p+HE<&w<42@$!AHs9lAr%F5(#*M-S_ci4s9soj=C z-dHIK)7xGoToiT%Ecn7QN8=yZRGpYWZv^j= zL>_9<1*HulYv9H1cBI*=dTco34fqCVlK`Fwq9;RAw}r3srJN$$XlwAW)Cf4%u*$m;2(mqIQ0yyYRGWpgaE2 z@p9YE-2)@uqauXPOOz0tToZ8|TdcP)p5~(sFY4GZVTo~N zt=MpH?CL@Mww6kU=3eg|8VWfQK_x>k;8A)+U5zF|MD`ttD8eiB(K7sPIef#EM#m#V zJhiVH71%}Nculb<3~Z~!2Td3tPI{iBiPR_uWWeY86|xnQ-l6C1SK39~7Tme_B%_ud zfLxW@q_L|Fuj4u;?LZ(I8o-@ZwX?d;ESuLrs+p*tiAUY)HXUB3i=W=6dccvM-6A9A zb)}0on3fUq1u}mnAsABLm~$}cezM;8uZvF+eKdA_d1*)UM~sVYvUgH|&V4=Ue1J;d zh&=4z?RQxu=)0dm9+kGQYU?R|*DB@6ooe-|ZLbOzf0*;`;JC2yk-&b>0W!=Lno+@0EqmCNew>p~%H z%2rUj&UeF$qh~-k4MtGE79k`PR$ycg73@qH(p3`v>0P@C68Y3;8T?g7+$NYW|GK#o zd;r3e!EZ_smA*Tq)oS#FScCINbE0ErE%XtY;^G-!bv&e@DPELWz+}Vc@Tz#hZjSED zSUQw@dXwCf5!X2ZB*PiwF{tX6;81uS*=5^Bf!3dES6hcf8PhevPvQf)fly*2vh9_~ zZ4c%R#NI{MSvXB|zoM{4 z({LyCrC|R$;*)P1GWz<13>{i}`aC!0R{-s7yW4n9`wJMa(R;EP>t2CMp_Tk=@e|{M zu#8JCq#a`5qQ5#sh7mDaWaDDvQ>7alU3oOhu;nx+*cSa@tHVbO0aPsge7f7ec15!e z_)t#wI+Qj`hKvGw*BXaHFhu&ci=K-nG4)-IhHFnujwl+PBc`#AhAtnTgZk|Yb3tf@ z0x0m<ub*zS?L$2fHXy+eM@P>FMoGg9dcC3K)GBPb;Am%)Bc_N!_EbJmiw`~Bi_Bbp zi*Ea{nvd2UK3q7$Zl|a6IDxf8$RyM` z!e^5_iXUR55!uPu4xfxT9xq&+iz*H@YUU*gu}ZWxB_zV7Xj7$KiMfC+^ckWiEB0Dn zqbAoY>HGY{>-W;s3QeLn+aD3yEOm_eK4587*T7}D{1u=MGy%e|Z+~G+HYTs*DghMM zfDa6=o%mB2fb{m>hg@nl9IVxW(V4KmlPj7Zlh@oaoq%f-Dw93?2NvxTmQDY#>q9c0 z63myi({v4B_lN|7T!)MCO2AulJeRSMt`{@A~I)X4=jwR_yEbQE+Yi-M^y zvAuJtdQvmM&w~6E!6<@5flI#+x+Ys~1*7;u z=y!*?NKhRBVod!(&|~tG3rYn*cW$I(Qi=lWuK0o>>t(r2!3;pbxB+Z$>B;zYV)ra$ zy)>6e%t_NPeU`$=U@?8W(7^-miBd6FJpG<>HL!q&h68DUbhIpRBwYZ8^aXIHHBNqt zKq9-41fWZygZc6;SUBkP-DGqZ@($4P!bKycD<#;7(Jxrid>gPGwHI^25Or)^t>Dac zL)h9OF4@n!{SP^J=1}kL=#(#V_Icv&LB6*f=mU4?*%})p3Stc-_EqX}|9KfXNcw1S zO7-OfI|0knZ~Q{@X(1Z*5jDVVEWUJvkpe$+{l!B>Nrp=Lf{OP}LNK+r3;cvvch(779A6 z9suz|OV}W&H!wBcE@WAR;*Be^%-B?nk2X}OE6d4TTP;afX%pdY51$`M{F96(x);p+Swn-k?+Q*XRSNgV^}sk--9J@J5G$e%eyM zqRNzdP4aqgjxKW+XLf<~B<&(F>@-D5eSjn!Swj)ZLt$Dh0NGjVRsXReAo|_oeU+QR zHCSF-G3Stl)rk|0>s&Ok8O%wbVWv7lbk8Q#@(#C_K!sWAo70=@q2!PFc3~(U@o=eU z8xFAO(M=c9{Y9a61eJ=@b)E%JS5B~Mn%cfNnGzRQM#|Pjc%TLh7^Y8A&o>=FWcG9V z0tsO|EBmf`%E-o(R`gM_=KZ{%Q=v+$Yz?D8^5WKv0Oo$+joioeF=x+X^;-g%?FtuI zreb4pnM7bW1%fq99SRUbM@d_gWV(j7OzDSfTYMm9Cm{oU3TJ*}L(_+9Ox7>5%Oc&{U+`0h`eYA_dQD&r;f?sYZ7qJQL)4HTfJ0MPKOPO(r9 zn%T4r3u1@T;K3bh<{5)392t=w=Z2CiJRoxa14h$sb0v$`or2U#scb3QR(M8&+G`qY zbU1o;d=qG1LIiaujt$}=s5=*Z9k791e9uG%)ZO0GlYt!E*}Uoc>6(z@7E7C#uN7km zxdkKCB_G>EP`r?Espk+hZ!TjeyRCSJcr=vVq3XaQ$QdziXG1ATL4X~4?EUPua1Fj!o( zaTzud_0p<(otUNil*3l9!gQ)5=F=q#>X4)f$+?z5j;5Tc4e{_J=l98k>tFb{((Y)M z5BB2S&}EauqmZl4gjshHqDs^Nlcl4L5o`q;(;+N{P9EXT zuYSm+jzhn!lA%iA;>fXdAc7@Uk=tK*F=2wUel2@Aa2>ie*&a?@Zi!92%2un|rZ|1NrvnWTBbZ6F9( zmhdpZVlRRU07AlUK>U)eBc@XgWwqf#Z2;>r=;ZV*+v;nr(5KxE--uay8E}X0s}0?y z{Tscg`SCYy!5*i%^3TvvcvJKVu>O>G5e2GR0M~S&@bR-$TZcL`BirmslL@-^3B7r4 z_5<#q4Zsh}O=P>-fJ%Zp^mpR7-7c@Pt6fs!ii;}Z5>iP-THaiPGoi|ngm8@k4SKXI z{CVIrctk_N9sud^B+dk;D<7koYWX`}H@2_)xU})z%qmz0iUD&oYmJe;(J~^?$%kv9 zjyo}|TC(Z-FX~u0m;0CA2puvwKXP?t$(cEG0n#vwB|}|=Xxx%OFmQ9_2h$&3L<&r4 z)aPn62q1?Gm^p{J@WP4OzGTUWtae6RXJU8)bx?^_M)qucC}~KDlmJqCmTKSU>g2d& zwV4!u#&*ig;tZ@QsPW*e!vZ;}#$;FFRUHhWbv(!OR(>DEg7;=S(A2f-h3A9f5~)3^$(W{bp8Gp zQw;%{86o;mBUVa$i!m?blXFCAi7h55=Ge!Cf3)3Pu8!LxcyvBQOQ-?sKpZP;$QemV1F$9rzC^F$n^h(Wbhws``|}vV09OFCo@N| zg&F&AzWG0y34gKd|4XA^1pNP?C42#BFZ|{!{H2lrkn)2cnR!_K{*OlhyPkpq-wQKa z7bi1;M=p+*UKv+;55U+6kI|-xseKD|{x6R+k8N~$e z1Hu%(e=;>ni2gpQ&fn-7#esw9{z=^^CJ3klSUG9418;uafk(eZ2n6m+JYfHI0(M~` zK!^Z1wh{a9j{){ZD`DWGe+xAHRY%~LGQz)H^nYendAWZz>u=43e`)oECr8{%O?tZL`WJfwWA3l^1Xwcv z6MF(J{%TJ_!N1v4=m9Wb|J|OyB`*GI&)*^z|8~LuoN@pisNlcYL+L-U$KUi!JpBZe z|2}Fh&73`d^~!@?==TT$zi@f!Z1+oP0vJ<&m*4oyP5<>jzx!aoF7#Xa!ifDZpZ-<4 z;;%FQFFpB_xKv){@vqbVS|o)3CY$klpaFk=;i9DSSk258{AXXmk9Gbw&wvk~`*{F! zjIa{4vX|3#zY_gVhU7XR$V?_T}6qWtCR|Gzu<{%yVgB_#9TR&o)NUJ$3$v0x$pa==^=iKL^i$t?(iy zBq8=66kd#0T$UbC!N8vZg%@Prv&Tu(LwUn_N5)NU%{VJg!2$EDVdkTang;Gxl6IJ@ zEs}FugOuXTB%d$bjXaaDStfQ}K8%Xb$e0w?b@*Oio{mFvC$tv~(O!N=&VTs$1$B+z zgA|RnD_{8O8A4^24>u~w^&U=^mGdEx={}pMbCY?x$Htu~Ww3QYOU~ zOsG(C6fbv@xn{f+u%=2G&`CEJn-1nqPU1Z6c7b;%l6m(lCa<K4u5*>mm zj%B=Onf7I`^L`3j>~=F~kcz*TIc~o zRjZb(!sc;#SJ6+wc5~wlb}eHXMAdlHr9*GONLto2V_Wf$vx6zxpZp#^NoD|>pmDq2 zTCtB8pJ_yJ$PEUeIFRQN)Xz&-u9(&$)4M>2ksqneB%@53+5$rD%)y(h6yBXP>~)h< zO^SEHHy@jhN4zX?Rt&wVv(a-Z^}RLXsvBb6)oFCcbjKI3=hMv`Re{erB!u=QXXi>b zUTGrT68vBi` zyjy4A6$BRu`JAt`wx5^YV)nIhSo<(y@TPlrc!?r5WM}+#%m55AH5F2#>_16yn&*{D za!_{Xq^~LTp{cU@HNTpp`Y?}Zi%lDzQvK$pDCiGx7{7mUmjZr7OiVowC@~udXRh46FzEn@+-ySHGEG*>o;wub(bkH&|P< z=Eqc`dHN}I61K%h&p2+Z&i=%7TD5%4fK5nkJ$#cBL+EWvcczA4Kj(+-5th>I0nz=5 zrIzKY%9#5&LSEBmnRX_t2z>~Gqo1c4CH&Kt9yOkO0yuy8had&dk*5L(={tAq z*~Eo*2DU%HRdW)|FD31x@E%-nJQD0kiW87KG$PdYCJ4B<*0Z`Mu5MnlyL!#^My4mS zVWk-n8`R1se>Okb_li^I;8q@MYtK8`E*#PgBGQJbXPjVJp(3P6J-$`XSXJ%ayU8?d zejLG$M+&Z20^a$YF{i$_H05>ao_oGid!P22jMEmOD?1qPfHMiPq7J9>^P=W6QyRqFKJy_&J*Fv4c5Pu(`{RD_U-@m=yU{K1Irr2M^_rHO7|xkt~okO~#MyD87@ zQb``<)V)ktawg+Qe6G1UfoZwBF(t9bGyPnF@Hah4b)OT{Ies@TS}yVdVO{Q|;W9tF+#5QNc7KQJsu3Q`m_w6$>dPTfA%sS{aw4~F z2Y22si!HaXS{3dpO~VgYbyKxl6@*fukX@^$!Mg@7ZVcb2Nhw>Ta{D2*y0;i#U>js9 zF3$_nw5jwwmxqN185c!7mKgX1QF>2sm7Ral9xtstX}|D_Q|B~=m}ie7bhYQn8kFEb z-=&ge$4lbTH!&QCajDT)ic=&^@nwA(w@*X&RJ`W7s>a?LhKJCz?$+W>Q&iYzT#F@5 z#x`o059#_RbB-S8a7WX>;;!+*g{s7K3F@_VN7>f6vb!MQPx4X5$v24#Vr zS+jZcO)#szcd}Zzu3uQ*wwNZb^-c=;YR=}7&<@ChllyQ`?%`~i4KMaegzA!C89!1d z@R?Y+05SSx&g>R3+J1J&Q`}jih#bS{GvG;Q~~#5wqNNUD!i%3a_*C&j&MtUJ9J7R z)V$lGh}(Zy%R^Jsd(E=F^Hba+V_f9*9a5J)!}PX~#D6aC zqPAgz_+21ffiRoKuWeyDk{_?l(W#Q~WufZg}*d^1a z&niA%68Zh(gP(92{?fu^!uw;Sur%u=BmHWQ9;mcK6Z7kxqAiLtG6ey@2F$_an}$9FGCRXZ_QgpBV z-@dqRm7B>+Y?{xSmFqe=9a#0BnfP4CTW*nTfgEc_K7B;lSMRAeR$FGv8@k{!_nDj? z;#MzD+u+(ClaWBeKd`obmnnr$_A^9lmw2%Bj5L|Gd_sxhAY2=Z`>r_ia+>p`H?n25 z(Fh@)laA9-Q%A=wo`sPG|K*MmBU?iV+-)< zjYg)(V{xCmY_e-m_o^0kM;eYh=HY#L;VBYzQZrauq5M82k+mCKDsj@|Opge7Ve$+%1(hn(a83oHw`~Z(|;V)U?^Z?W}6?;7EJA#Btf`EyBQHw_kVn z)spv5tSS!W$vQt7)r$o~QRQmqfLi@@**kkXjMf%-A~-R(Ur&ErXfVb} zoT-)drvE&H)ehtR0OR`aes5f@<%=sgVxvP6-#yYHdREkrCm0s>X2v9gdr(@K756Zd zy>TSHykWG%GPWvy_~j>m-Qj#E!r)XF9PvmbNU84AO~IHjBIJiM#uguw5Y~qevYu)? zo#hYPpKp0==>aMF8Hxwoi;!^Mvbjf~ulR>gGZU(RZKC+c@~kM~u3M2Z|T zk55n8U@dlZeNs=|*A|F1O};f7E*=uv&k7B0(c5 z569%EkTFt8HH!mPt-q^gq2HE|BOIz$*<~zQa&&gxK|pWVHzzwNm=zVs+vr5O(HIdd zC&KSTwAPK}Qq&cXb!k4oZT<0P#^Do5oHxvJBxM)N_G*u|cHZIdnoET0@vKyNAvzfUIxL@_}>V?TN4zFQs$L{H4i=d?6QY4-t-t_`{Fa&)4N9u4cO*Vf!oGeteASQ|?- zMu=I7mhrOdYvqZ?ulS~dB@#`U9X!`%GS|l&gb#Jg1?ZfwpYa>#MT!zU*fCp(7$7s* zIBlq-noQM={qZf>Kq_GV71biSID?>MSEs;*c}T%?>Sf;>+3!6BrHGfyU9!#|KCR%3 z*iCJANH#O6F_os1Rn?2%roNLDbZ|(gTA@%!&u;S3b@E0pJ$7VhI7c}qFgu`XhCzH@8}~u>`>~^+mqNjW zH_Z#OUlFfLOAls}G;uP;R$FA@QatwcW|HevGu0loJ3&{u!CmC=c(0{Q!C8}!(=Cg~ z(ew4@2Q1bB&1t5>IaLa`fV2iDqRpFZV;+kTVUK%Gi+DD(rNPT`pJjb&CfVehPO9!% zysYp@+5PD>SvE7URw2O`&fHWS=$OJg7?Q9M;L7)Lp`S_e`y4@i%j0BYr4>X=t!K0!8x0%Uj~KS|2iYzEM?qY(zEV_;?qL&M7X<%Pq4H&CpjB- z(d|`5tYSWS%FHl_T0dQmQJbSaTxb6%zhx#TIbUuI!?{IQN|K=?IIv>Gi6acbw*C7=c{e zx&NM_7T&to$9H2YyUGsl#p)}sU)>YFM&A@R3iTUaNfECoeLbE%L3XG)qy0HC=R%+J zv3|o)6dRH9_)xZ{ITwM4J)5BfPbqfYReaJeUyN>8{kHcGr|cG$Xp4r+NBwarultdA zU6Qv#6kmKNeSNe+{yZVf(M>8b(o!{J%0o1OESIf>^MSH=#TbFy;d5;>r2P+q8w{kR z3wZRTc!>{`$M?Ee5q_-rFKDS;+Y&Vi)OM&gwJdb0XCJ&a&6ha_ zjS{U8Ivfr?+&CMHlxW80MRq2LiobK!Fw7}4dwUdCXAlsc;h5ceQuBo&>y>Ta9O*Y% zhp1Lt*6Cxj4DwEg{^tTbhh=g~Htg0c*pD0qZ3M@{<eew$glS z6!oroE~9~~)~+0NLM|+LbDvzn@E&t7D&0e@&~0wZ_;>L*8Z8UUmZ`ypqxm6p9NYc4 zl>KjfNUbs&u=;<<>DxY*DkL%2pqi}8#%*tq_%mL@9JU`Pp zlPH{hN|bSWlBn$yOgndM7T&&@jb{toK`(=OrZ3O7n=$9Fkc*fC1`efLM6QC%(fyfp zM_=>Inl~Kh#}qzFE^ayEFncQOKdV)u{ZgR45~$Z)06HM5Nogx~Nj7+0hy;q_-m?{|Rq z&#>hGvDg@paQl14N=WEG5gP+!uK#CRV-lj`|1U|60eWTFzeLJz+#tfoC!!-KA*cI4 z{RQZiQQpLI##+Y3=ETCG#Kxt>{{O9N8KB07jfMMLi|wC!Z2v)xjS^5}!@lxyg9q_TknOh~ z+ka1vE%g7A9@{_U*#4@u-u|?*SL(fAiXa*`CC#vH)P{;tN2hBw^FR z!A9A%p%H7;OC*ciAsK5=g&R(jx!??pd`5#<1oA?`ga8qBrX zG$^kt6|0XB&t}(c?AP`9_%52O^NTT1dWHu>oJ9XvTU3PLDwHj&ym#;q8l5!b4$oJy z&=9gxkm5rZsj$j>WRV2<02nKV>zoEyq6yiLaQFbgbsHrm?!iCnW-OuXT#))gh0&C3 z_IlY$g<(A`ZrjfVO`VH;41ig?V%!52P_bh1MdL+8icJ93HUr8(Z6S{6=yW@na z2&BZhV?_b9ZZaPY3X4kt;3 zup>8%O#qvxyRdAlA4lhAxTX@o0$Ugar;Zi~dNVLbbT0tZ>8;gOl@%4+ZSBo5tE;pE z+;tBg%Sxt6VapQ2eC#aj=fs;dmmW2*@PEa7mV>XdS)`~VyVsK%AxFR-gQCX}#gf$_ z8cE4q!dj226Y3L52nSmVQSRqp>$>cb!|aWyG_Si=dBKvdE8}HlEV{u>{B>|Xx=8fGbspp#~tiJvSa*>*~F@qzs=iVAZR4zUX zGcU}P9!&UtHx%y$Y7znD=V4&EMzk?O%}hQ6X;8rvCu`iRLEhyAX!s4!Tsp{lVTPw` zLsy?hY{!M+ZWFvBf>n|EY>0T65Vn@x{#pqG*C*L{7;n0ajF84EN7E-`MVljyhkrv*p#E+jz8Hjr~^KBH`Ofj030<&SNA_ zFihx2FCX6sPmId%)|B}6jRU=fw#6+)$pe#;87@-_h>R(~p+y@%Cvc7Js=xwuEAPk_ zC<3s)wL)S+aLvRpW7hC|xK~=u7I8<5Vg#<0L#|@7DGQV`1Km9fQ~}qW2bAM_xOgG; zRzWh0Y6#VasO5O{6Svm^p?4dwf`C#rK(umgbM5|8Uy5BPSxsPYt0RssZP5^9ARrlLv}?mOH=M4(Pij#)YHev{{uA+1 zw7BCZE(;rr>se{Ofv)urK*^aM%4XdHzSS$fB&D}0X@PvV;gSn%4NF~>RJeOy9^-#o zKN=<&?gU*oL2UoPBHI&Zx-k?ZaKihvzeztQohIG;6$@n>mWYkS8Ergo1e6IgliNVz z>M+;Dv|3YO*dn<9a5WDZB<(t&5+f|jF35GE?1$fKvXF@6o9ny{9lxAQtgb4a@^V1= zpdL*;y=#OgVRvhigS+Rkl*LI_ob?5oT7K*3qUR)r9&{7K{z)t$q}-&T*BR6qC3uIzE17 z8EpQk!vgmhYDMd!tN^jCOUtk!48<2Q+x)n1-;gVhKeDr=W=6(g=g1QsI&4g$_#%%8 z-8PPRF*Ld1_qZeez|wBiYnS(o#OKqwY8(l+5{5=c&9$#7g3gEmUg_kyfJue`;z zJ82rzKh-(J7H1ya@U_$I8soCKkf(CR=HM8CW9w)5ACTB?^ zcl*gUZdlwderE>oShmDW*le!#gHdWyFU<{lI+>fb5W`)!O1uR}38bI-+929PTe<1WDo z7+PPjimlg8yc&D@r0X&yBLP`FcTtA8HlCmsz7mUh$86W_u63Z&p`K@`H!gr zMSN!G*vC0f`DL3xU@sChH1yS^k)Z!)CpmOdh6AyaoxftD+y8pLe{1_}C&^q9hJ4Yv zDH%S*SUoUFxqn$5g;w#aJfKfm+xO2NT{bd&;-ex}wO}o?oq;utQdx&lpp{Y4MZSE! zv(^VMW=bd@ODr+$f0a0ld0)rY&2$2D>rxE)9)uZ6v4#@SCnoJ9hp2Wfq}8-)dMisS@#y+!bA^RsL8Kt-Z`XjyrGX&8P{3%{ z9N{j}_h=Y-TvDF4J$RX!6Sd5DX=Z>@hrN6e+CsqogR_eO%HykK3l%tXcQD9iQ@mGNsRznsch8F)Hx_u>c%(JgzftDY zkzSB0HoP#(?%~Eg(B~VKk%WGM5O$KGlBXV_LN@QzFC84n`QW*IpQFdlU;WhPY1tS(_+IyzN4^S z+TGWdo@b1@O;>jbIK~52uK3aHb5QX>(;B#XEbl_TmpD`E)vcY{1}*VnC6DB?f;Qo} zkYp@TwB40@AQYjnG+7#`jo@aUyzICSpI4L)?fIxJlZsf{GS2j@TMX1k)IQAGIKN7N zey;6KzR7n!v~JQ(9u6U_f56{yT?w)&`U%~0IiPS?`%tiiS5Bki(pd7m*W z;(o@ZPt*@q5uN%Z?{<1*w3H>Rbv*_PJ&q#2f}yqHRe3i``WY(QtqPrq`RY}if~YPF zqi`fxUH4Tm@B@?lHCzm@ujJ-juoK#7J^Pu9qqQWDBC~bF8!Y`h&&wVRZ{^`pD6{8= zK-P=aYORytTgng`D3iX5%f`2Ci&@e419KWS4^;AbxgU=`O6A?LHgt9E6u-g?bm>Ih zL5vI{H;?A}9!{59RWGIel*)Il+q(Kf-6rjQVzT+3eE#y3d}(y3HNDSeL1_Re9dKq^ zdqMYQVc}^cDNV}A>z^?J!sT`3UbF|pBYUh2!XJm(w<%3T0q{6L5)lCgSX2)0SOCEC za4e`1nh%~<3dq!YN3XBkQ=q@ZbqRcD~tE{wMtXn`(i9a)%*n>&LEu-GKUy*~ z(s&wNodV^=y3Mb+*P}_>c#a!il5u$}1}mm_c5!f!nNQO9=%{i_H!p&lC@DYg?gthu zK;+v5mXX27CFkASzYVkq zS?tuiuIjQO5A9;?yrr<2?XdZnjb*lS%RpL1;N&QAkxp2aB$=f!M!4k%7VTzdadm&< z5-~=-ZByeqzBL{5=94T4DEYa87TO@kM+<$G5?dE*#Pm$PKdoe2eVJ<2Be|08>tnO5 zdtvTS{EkXD3O^7yq&Xq_TM^HnOPAxG9z!q_g$RV)ak(P z^)3+C_Y(Oq2KJ<>^cM7vq3z=sHJtpM{Fi0mu{*54z;Y!)`K1qb=#rY5gi6l|WIb2M zRE8D0QtdSWnSDT28-Rw974JU_Pk>&UXrZh9P^@ju78>eC-l%j(hJm2cgZ(67{urQ` z_NYABB)4OA63j67CzL~Ch5YWt3D{)KM0=2wbhJ4s`!fZC1kqA9)hkLphQy7C0uHL3 zoileY+#P|XTKQZ#*v{x`#y95_+d*)nc;pam4xkczT)}=2kBmoRz!i2xU1|1MqJok38JGb8?uqqoT zIlZaY*_yv%AqgzRiJS>n_t~6URb2jPXc0}+9hn^|e$-ZkdmZ$9UD^Shf3Qv#BI$53 zMeWn|%u$IDKEpl{7D@v1OZ8!UJoN{8_9+$Pue@x@7dePvrGut)y$-3V66lKR=+D4; zNMRpdZFZ+uz3)dK1Fx!g&WD3I{EV$_=}&F>B1a5zE?HW_L?`qy80E1V5hmi`h(v{+mG^{ zX|P8_scyjMdbRfXTN`h$B>7xaB2-kk(@8KtS0B8q&3fSUu6yEMHA=rFXHovx+}fvo zTVO5qhzD(50`qVl)-B+bUv;ne4V)iDt^}>+yh~S8y#=yo(dmP17AS?MU(K_NiZ={p z>sJkQD`v)^I|^YWp|#8)N6rl^wtz+N$RKKu3MllBk(~2tAHeOfQm|M3O5tBSnKM)! z@t|W77vAh_jlL@W3xZygRXh+aEw$cG8Air}n@G4izKh$xSG>cw>=a}5m1zbfV?_BS zJ0Rv&(#KeBPLx_I_}TKM#mC=s$qN*33GEF)kKPfLC>^oga~pVAH(jU#_sw{052DreB4^wSmW& zjCAA*kDq{13RgvdDA(>VVuE?MN=`9`%Jb0dpQRT=zjd9< zKB1WB%l;Ugo%bAH%BXv%w>+1QBS+x>pd?sOLM&hM?^xiM8jrcibqr6(g5$m>QFcErmwB4z@>S*qidGo zC|$n{%Y!e^^qVq_66o$5W7udO6Pxm)@G3IzI?m_K$ESp8jk>m`D_%Q@WaGG_f+mcR z3kC)W5g@>}?QmXjWxAu(x53mSNHF(G$C*+HFVT^*$TrGy^T|usg?wAM3~X9g=TCC>O7$dkPA+4X1jv0bFt}G*ip@N_+0TJ-1K^ zU=)5{KA<pdfe8{f} z#P#!&?=m5e=Gt`O&AEMGl%BA&bg}?oubX}&2bk~>m0xY$uRm(r0bTCnmV8Kx(uC^7 zK3#k_Gtss?&>t(zRvcPSA_OPmX)0CE=v`M*lFJ?6a7KH3c67xm_-*T>v$$ZCMz76Z=YCyna3sfO)YYyG44SU;*&j^5C@z2>8}PifcYpD9(M&j! zy&}%q8UMTzJFPgE8?WXLeWZ<>GYrI9^db1uY3ef$yJ5R9DL*{xl_=oNBe6i7?MWr> z_4G`!V1AqbBNfV-|BeHZCj<$oh8F!{ckKd&Q^6OIppl1MlGZXc56O9~R}Gc9l`j}f zFz3qh%;AOSw9Q7Rxxd^_;3}kLzUnAQT(AHIbc5;%!~_R&y<+C*AHCn_boU#WstA6?02kv^~#f$1&%kFoCa2Q&^WmKxKzOKaxkpD;q`NWoV~X|!dTB2N%{EuSPiYVJmXjA9b4_8W}$4fLc8 z(mX-i@*5yVkI=%YO@H51GQA(oM0q(_?B?}%=!RC? z`Ux6R7GKQ|rGJ;l=bJ{i#waD~UmxjzS~@2gz9d+A<$7e=H6+*^32)=fpud6&XW&moEUMh# z10G2%m(9jTbje2so2@)W0lU7XLg`sEI(wy-uOU$06I|gBf;DF8>R=;8JCNU5@ z1z0t;D*)5W(DjqDY5YD6kAbomWxO?t&}>gY!N+-QY)}hz%u(drutumJ1vD)V@}mG5 zU}3BDUTJ|6casmH6%?(lIsNx_GW1)PBIJCSP zs-DYd@@xo@SH^lCWKf?4nVT@SJ>Jl!!TonQtUzk{W61sK$4|e(!tGrF%SyXH7e2E# zMKR|2!%wd}obB5S;ePY;UOI0cKnXLzoaqLMDu_H?dWkV+8*uMpAl`WxZnFgG)Y7FI zU7?dXzyYLYOS=kSen;=qZQ}T_JvlI6nntkcNKmx;z%DePpx$IgUqQR6h37Y?qaR3_up5@Gcs>URsW!2!%`0lidD6@_mxfG16)*Ay4&-Xv~Q3| zXT&Sr_4IxCTlT9l&_yF*ctEEr?5pX%K*(H^lsz#=ZxzPQWr!OS?y1wSuV(kP3gplq zoX^S=FUpjD36lteqFF@92L7FU5+$VLlMP5H#io=qMYe}1Sj;@4O`$BUrk7QkIJ)lD zqXQB}I;_0E>~0O78e-URe)tUr=Mc*HdG}r$i- z-Rb96ZTzwLO`!)fpubz`z&Ra3j-WV^m8zUzu}vfKE^TbW0*Aw133haaK6n~RH_kO= z2?{Z;&aH6fBfsw_CdiCZB*;((aFic9Jkoi93MEzkRVaz%jganFI_M6vmH{e4d6jtY z+Xdtby>wj@5IwwKbxl!;pF^!3!3|O&s*lZ7hCKwW`=z`q8TJU>{RU%tPn0vPQwLI= z<-DN1DuWd4VxFeMUys6H$z6(%o0aH+EBbm3Q}|RO4g3g&2VtM-F5AHN-x+=6K+cg5 z#M9~^(Q)Oi9D^uOdu@`Jk8VsQlV-UX(wb$o2lsTO;tgfbp?A^*oG}CRV%&_-&#mvi z&iq{J0~pXu1GTkqx1}N4`-~1w*f~2Bj@I$kGOM1fodbjZUVDOYpw>t+O#?Yf%a+g5 zk;4#RrF~#`obw*Nh zJ{thMi8dzt_YUMGrR8&WeZUQ4(+|$K!aFp*O5QRXH!Hm z^CQudInj|5s2$QZiPTf6iA48dz=&^NSRO@BdkpKhf_*;vwL7?GVQYUhZ;q9INCEq__k~3Tm6N(!7cVKQ5h{`}}P|H$ipRy};>8uJ^ez zIi*^66}((`GYr+R(B@klFCA7KHR4PtxZeehPtIsznGExxLf-PnkpOuNEZ zNlDQ)$qP)vZ8PTG?vLHp-CaIg(}gnHK3`?K1w?n-39U@`KYQyj0bnW_S(DrJLvEzsdy?RU zw&m$=5cjx1hQL>jtFujv#mn3BjFBRiG~0vt0;(nYNPpR9$a|}|pbn9}H^!xbY?`aC zj2~ZIGQ%523R~LaJPbE!Df|s{ehCwsf&$EAPEZgeP;ARfcL;*#rdA{;cUt>?Nv&AOkNjuS|o^FLtyzmw4a1`cQa8>s(Ja5(25`u3mk>ObH4b2+-CtbZH~ z{|tx!`Q+~x`_FLrzrU!z|B3%TC(imeuKlm3`3Im)%KC?1X998Jod1hC;mUt-#6TPW_Idt0M@DAN~3MHt`5ETf0(+N-p^R7w)bD1Nd7i4(A@aQ z<>!DK0yIn?s(s5G%_ohLz+XWr>*eb1uFrWhh-8N&cWU;0lO@BWNnjqymoChMm#4p= zk5HyRuNU$ei@Q;N1wQ}0!~kuDYI%9OE5AH@cqMA{&yo66h`+}?YKAH$g*=RhvGrzB zoTb(BaOY>}aNPLPRrT<;`exTuTG|MrvTNT|Ibx{V?cy(sM+-C4W$gUJmc;G+wU>nq zdG{#zK3j+s4y`=7eKn;VWKW;C%qW!%Jsc0pf;5E?nCe-I(E!ZK2D$n)Y=s!#zUi9& zW;wA#>K?pT3aRd^&U5chzqLa^`E-%@;NUQ~XBl0~qo=zq2 zrM41EYXeBX9(DSz4_p)g9lrOeI)I3c*6GHrxlX)pa|8UOV^SH5{wUepkLZ_At++{xCpO zWU5>@y@J7>+u zf)`R_pTtp2V^Ot6NzJghdzyQ`6uGctivCMEo2qPu@=q=Q0jm z?>t}VGJkk0UzcrQ``ufmLh%ah-J^9B9d}6~l6y<9?D*br3dyd466}6xbfv zr@N}|H;|uHv2%^g)~u;~6vrF15QOYgxS|Y9r^s4CQ|EZCP#51 zkuC`ViACDUv|DHR_@Z-1Fj)<|kcGp*!k4O-lqw=C9cto2A8v;_=r%e7H+>DNHZP{X zGZR6yE+Kz{zFt;BL>4{RT)e2}9jTw8yeL(j`H-i5Gy%$3vbNTQGTDmRiw3P~hS54z z$)0a|NSQrtgR63m^b^;ZKr@;}&~aZC`xGOMPk2ldqn>EwBqUeu8ANTJ0nRbnkzvM1 z9)Y@k+%w1^dhZb`Bx#zr>5z<6aJH!2`}1}s4R^o&CaMq1LJMHU>kF(voazQwNki_` z4D{)P>Fl#M3h32>`~4|x9Vbg?H-9@)ij!AN3lg=Vk5dEOs_T-5wlk0TR6~Tg2^!F| zOZ;Yf|Lg=xUf<31Es>5Di z`$_8HWlYXK5_p&ZFicS-KZ%%7o7kh}q{`qU6&qNwR_3$qKOPR^dlVz8bD7ZU(%IG? zf2bo&*n|Y63iu@M!Yf(r;+~7)IDr}Njm}@0O%9w9ernL4R`ynBjBmsQFyp;oK{;K8 z^RlBnVoxc3u*xOcg-pEzz^h4KX)%c(1>Xr$F+C0N{50M7g<<%f6cI=09&43!BCdFj zer}AQbB8$IC|bXUZ~@W3nt`5Bv1;`TpS7YTZp|cJfjJ6IVBF*}zKNPZPMbGk)t*5g z^OI4)8h<#ZJY_GKH|xODr@aB@OT)S~9V^swn;0gQKt*a3Fbgmh{)yHH(^O;OP;@d2 zvGLppk0f|?)=uuaoAVva>)Rn-gj6+*s5<;Y7bBtJ#71gxXeU>CWQpSLtpEs5ddEEM zN5}bW=g%l?9S;&e59F~u%`RZKwk0IKK%$+nMHLF>rdVJR)ph9$v~IZ+x6*G}k39Tv z%dvo?Mxz^fZJ~N7=VJD6?-xKW0PLyHyC(4QxkDbKzkY=s!^=u@uBSJv;57M!0xqlOdBRGjK=NrZwgt5(rrlso-_UR-jY%g+|XUA1i5x?J5l`7up0kQGY1 znIn^7i0~CE3tPo?MO_Dq^vOwwm>r*|%11qaH!Yacg+M(wX4idD)wkwwqM=a%)u3VM zwIP)u7BSFW35Pd^>Ol!O%VTuJIqW$0=~co8)@$WQ9$pOlM`NyJ*mCo3)MdWm^lD*vK={ z!6d*RarZT2A9V>oA}mwP9_aKvmFaO>mv^WL5d3~qdXsRWPd`nJNyo3c@p&<92#}g4 z4}oyyvC&3k#yU15X3nmIq zn6VT=;ioKvT2`DBrX5)?dMxHzgy=#!XcM6#hypX;-U@gVp{4B&o+CMWU`r55xpOOo zs;BC$v8Xq~Q-B9891azxH#>Tc$8-pO{?(E;>W9{YXtH~)Aap%=b}B&N>Ot>EX+Cc- zqR}UElPk}HVct+PhTbeh8<)L3q)_r|wwHJrh!>t9+*Q^u1BB`MjphlP13;_}b`^vf z7gpc1NCL;n)3SAs+4O=aRyg8-5!>EcD{G)jO{nYQx$#l16Iu7hE={ zZDI=HH;KR)^MlOSR~h<>hp2Wj!ZL696c^1Lw+xNbo=i=L_34Xo)9>5i>rt?u5X{Lr z-E`w?Xusmbubil@=IXLc6~mHHa$we8z7P1I4+$@wHbsUJO{R)$rfugksMh+i`}fsD z@1cEnvN|PHwAP#h@$vg8TDF zZg$1zodBm_KRETNC>O46-ISd-ZogwQ<-={3_Q#+(u%J3Z%#k6D z?KPk&$*Art>~t9VM|RNG$IqT2+~l?ql2E(HGgn#??AY8 zt`1w|Ay(5>(=Ozb{XM3!B?;miHx>Hfg09L`O22D2&;a^|0cR4tXfOz~BRE;76n~@y z;ZxQBE_3!{h2|J`D%PNDqufQ4dsC7IIv}6dfku!?l{>;bIo8jcRzOo}txc&g(`Rv9 z51jVdrwVntYlYiK0rBXJt3HQW8bO*OD2r3gR|_RQQG_~!B=@^jB&<8T8iEr^kd`I? zL_70VB6rY!_Gl5Je?2Ts4Q;s5MR8g6RjQa_QQc%j=dU(+wA~F84uX;T%C(Jo&$CT5 zD`>}9)q8!R8ZYB45_$K1xHl>3YrK0jyI((~i2a9%#Sv$>GhEtPP_0e3Y-gJpPFmLL z0~E0bbC?It+lH*Ov`@QTaP)0}QsHQ9INK6c1c)Nh0{9L|JQC$RCk6dqQAT~mb;Ez} z=!s=h@KSnqhNsF0r6TOTsUvn7n+_(+`FR#AQd0`_@b#ZvN1wGDISY2mc!vvmup+Wl zYT~;_o=Y1@+Dh+C%g&Xl=W%rr)_-r=3!!Y)7?fKevNTnyp6z=s4r$df}wz_+tvs5rZSnzE*wdcLN9ctqI9=*kPDdtY{=AyK(NReYO>KH#k7 zQ;0WuzHzm^bf1=*xmiq_Ifud)Zit{cMZ8PmU`QV&s;-1brnJ}3gH@S|k_40V*=%_i zGUT8afa$0UJ$|eKCI?j8J`17WHCqz0#Mtw!X#s1kf5#jjS_MXJ9&3K7GdE=NHR<1jaUs*8}ISA4M~TgA?h!cR~S}YVI)r zf^h7oGF>CEGQQ8Gtf74-bFicQPo$=1olm5D1Dlg1!esiI=dbYK*NdX50=L3^HI$2< zW}DSJv9MMOZv$0oR{l^Z`GH6t@%}_ZXWR z+(|2VHO_I9y-!_I%nR0Z%IasKB@jVS8_#)PlzGH_>6^tq^+I$_In$kLQl*n|o=Lbu ztY_Whp^zvRHF+zp17LG5fhZ3spFrS3$+Kre3V3x~gSjB1w zh#^P8x@1wu0i8x;8}+U%_^CV|&H^D8GdM*qTMg%{&zTE61O3xK)U~o*$9{H|cHgXSo(L+U`89ol_N;D< zmdbg)te&#tKw1~-B!yKKHw8@}I0E{jMNFxHeKV$*DfCD}K5J+u_fO#;I7i7n_TYVu z6(bZ6)>-tEij=>}Ghdb3)coWhR%FbHeG7>~ewt}s!7oYeA~5Lo%GP$juy+v37%m%* z7fiVj4rsB_mcQ#MxT>){%N&X{fjTIYd?0Ymd!34M}>)K{!O3xv@xa58g3Rp z!F}ugr#$gYgT-YTM000odOiy2qq)jKoXVFNXq0BwjOhI7Y#KQT1{xC*$*+hHn!U|Z zW`^!;16$RnWl~mNt3TrL+fVnL22pMBN;l4ooP{0t&{UsaR zJf86-a#@Pc0*=|(%#Sd0dYz!=99IrF&k1$06WJfzV^`H#0@L`#U#knn{2i|u&IJoo z&zLaYq+eflmvOx{R$g3E6oBX~hU<-Luk*VK2o-6=(St{ea-Qbnd&@Ypvy3z^{^l#4 zr3$~<+hL1fGkgr<8;?68qHw52s~j!XI14Tctk>-QkE)qH=3&dXG3@=1o(y%2S4k_{e7zQ$O=FFK{GlR$MbkIDGjEH!NGjz8CG#q=ew zNyFLTlrJDx7uN3x0$Cs9BYl?ZG2$x%RBd}4q+Sff>>Y#mIyIZ}tjt8f!{SbS6XjD9 zHecN|jRcxaA{bY2yTy9eY_M$*%8Fb;PsrZct#pCl?ZWrLS_@-RjVMzviw}6Ls8t73 zDTuJmiTIIM*pLsNv1#{CiD8R04N--jy)ev0S>QFN%bKXKG&D53fbz|Nv&-@?muEGI zs}jGT3DsjjDQq%q%SC8{we<~XOhF?r$D%Xt4YVx)S0Dp;VJZAIG5T_VT`+<7P}ulJ z3WHcGmB>W!Jk(NeG=?|zRd^KmJ9kerGTA0Hbp@QuUFYhqy?kzNDMGI?e93fI6w9Gi zP9vYGLt)`+C;B{!Zr!Y1-NjT7a~WpjBtmrTVK1>*??aG6}?xy-?>`ecoy+_cGn9^k}zYC+(bv8C4nuR(snuYuk z1`k2W;85R7}DI)G;B3g@WJU9i}yZ0-%wchAHsc^Yi}>{@9F5j98d~- z?C=9+t%;STCaFvx&?5Xh8vz+JzL@WeEc|Z8+Ytl4RZq$HlfYOns~~AFm4S9n!;ETp zjAEZVtvF9J7L_Mu!<8!?$tIvM1F5J zc3UBdaKj={H_N`1sZ{qLFCdMNbYsw8d|wx(51<3#Dwb=`7AB=pcW5)|K}lkI%LbYUi7+qtd_=Z}Q8Vf^V?iV0=ly!b62%ox}Vg4ZZs*9>t6B`4-~509E}gvKwX z3)K=l12;C}5dufE6Pr`Fj#vB~Jk-^7-rJ-o+XH;v8rtczwo1}!oPGT;CL+y~`v_nk z@;CekWtYQ%bhHo02+hTBOOS%;DKD)~Ov_SY57a(m_DAMcLb?!}W08EG1!4o1JI!|L ziy4(Q(>)Jz9BT`$!7m0M#pOR6k#wgP5TSn)3Mi>qW>-~q9oRKW=UHw@)V@Svb|B^l zG7fX;?y3u6O+qoIlxC^Cn!LuZnEK`v_r)|XFSJl+sF}IYSbo#8uO}3Wk<$ojkPP`$ zgIdlf&o1J(U+U?D)7lHB&wPRv_YD(^j7~g0+crc1Y23aP(z&^zW?|1`8SQ3{NIbq6 zBk}^0O^eWz1%9Z5OoZ@jUSZFoJ8%CA<9NNhX^Q~jOJN9B$;P2VxtRBDn}pdX)fX0^ zM$p8toyYY#woKsRPrYn3zClUk#2z`uU)uIpsaP2crb9_O-cHgxenImy41Hf?`u(BI z!D44|0;BikV1!)8aThuGi_Njvs(kt7t2jmm@}&`MleB%OtU1CI(RQ&dwl&ChQr!G1 z$|WON5LMujD^4ezPzjhwaa_R{iEemQy0Cbc@U!a@Hsku~#;k`sJjVp3Am4jFSnzvQ z&X>5JecE@@;*OXtgDahfu8?rgKj8U6QAd<&G&KM=FPtl+bf)y7dDk;l8XPS_HXj+0_MgL8Qvh8HL5ri+bRMW{ zl-#>YqalyZjX?LCx_a+R8?`T2ZzL_#vA6L@0`*v#F8L7o*{QuT0D3FJOz%QT@5ps< z$P9iuQX7dzwsNV; z>|{3)++~VGgkAvD?9#55EZ@|iEiFjSXYALAyf(>pCaJ>*iXOYW)IhjZgypZDyV378 z0(D2uF;zo>1Qo7bA~j#HpxtYU$(nIVuwDY)){O~~sGwf6fB;p*952}M5jGZyP*phM zx>yk*UcjED{Grkpk0w@9`Du9P+uXtIrOJXDrvbt8UxdbRYZ5m0DA`2IERa<8D?$Of z*Lh7$htOY(XsMd(_{GeC7Hwip5{;+E#9UiarJCy|Rax~t_N8deI?3%aPrI4c-l^q_ z;7kEhy@9+gGS%m#asEH27*0cjVh?E3Gr)Dx^Vn16MW9&s0n6)IeWdmYkxNnJyS65n75&f|su zjfk7Ip17c>0UzkL_*w1)J~Q~@soQ#uhCq!c)Y;}Bfft$r7z+W!RVcwkWC>l)5cRbW zhhS0(+-=|`mUw3?LnQMpS!DQ>T|kg^V%sg7J)pw8EP-MNF2ggSl92lRDYWlx1nGw_ z6GiXI3n3v}N4W8sM5O3z5?^0+4tW2@&4@skxL153>F=p?4U~=mLPOt)`utjdVNPBi zZpZ4o{NYc!J@IAMHl*5X&w1VmXA?%KGVbkyTS@~SeLZZ~X>sQw3xf#o zlCOTEXzbBuH+?V>#bgNXVJ(J~#{79uOAO#=(Lbx*4&Qr;qgmtF6piX(3(%P;EL-Gm zz@{aug-m`dO0gg7wr@mslJun13~9DU2QuB)JWWQdTD%xcX6&~dFDIr13nTaszjihR z-Oyvh9<9Tzv3#@Fvm@NyHW9~~xoA*Fy*{u{Ap$09Yv1yd(+v>cSsnSiyoapUh0oN6 zTL2cuF&o{7B^`Bg2HKzu2C@o^#pLro{xGGuislO|)<-GoiSbbEu`GUM4QoVKMi>Tf z{aGs<_!0xATa>Ey-Hy?PBduQtAN?MVwrzl@ohfI)-+I|ggR5drfYJ!Lv`&a+d2fA0 zYQ*RmdSjQkfJAEc`6^cb-J({6q|qg?_v4pkaF-skfJ}6g?-R)q?RMt|*9Ahk=R!?9 zvWA3PV87PBpvGvtVkJyvT5|FU2BM%rw8w<~qQGQ*WCX@&bY^hsvQAgZk~Pc?hmG5L zymaBj8=bX&zqb{~T;AieL5V=i?G#WKo2ye^7&DBkiT!y>L&MESg52 z{w6m;xUc@tsYiA#!Q035T<-V%MYe{$#U;ES@T6h^U@z0Jl<7aqZPQxA_vXdXRP0s? zJ3>4Z6Kv}T=T$Ye1N|gw%&whVg_8%fRWm$g#L+_Pl}UO*%JAvB$PO$_sH$;ZAqyH0 z+Devf3kv1dH(VGZ>S=|_C^zKqKLM2p2-W9@TrxN7P%6tInZEXc#z!IvMqZ)z5w@d~ zRTxZanmSfkbYBF3>#{lJCUL941-ibk_yV{=I4lx4&BV4vwG_R}iN7iu@@rt+%zclO zur^0f5r(SR7BwuEKZYGmxjD_lZUH{ke*t1J;fEbOoJ!NfkoDl_z|tmXV4mMb^BHT2 z5_>yW?hFOufF4bC$F4?LVzo-(k>5=?Lt+1NAR zREj96%`TY%&_>pc(Y^IB&@0NQCi>MVVJxwE`a6vBM1GnR(i@6Gzco$hhv!!b54pVD zaD?p0Og#qqFmo6urz0O|rS3ti{erJwXh8mWt6*9B%c^cc(uqnHcBt2HtWCV3NxN5T zJUA|Ea!fq0kxelfQJ0=Y4!KRTqDH>-hN9J3Hc;5c9xN(7-506LO_uf>2*Nw0i`{(?nDot@fHa2L_azggJIbaTe2WAs)GV=k_Fgp7^tca=GdS&;H)*o6e&V++e6p^w~Nc_7|v2dRR(=r ziU)}?$@Rh;sqFfDq>6(M2#G;Xl#G`(mIrR*GTz{ZzBCc}iBgk|Ze3?}gGA3t!ZkOy z79adxZE-MkjmCl0>QJ_T4c?3i!)QD(uDom7##KeB5JLvVB`Ao@jzn``x_HN%cBnyz zRkaNTeizdr)h43|xu$fJ8*9P~>odVw0uS<#!D_lN=M**WSMVLL@sBC%2EsPGDlM;Q zZ>V_S;EUh4MA5}I9JO~Mh4dZK0acFrYh?=MlacwG8^u_QH&xKiOzsceC>qQn9OP1X zXo%qMMV({rORP{z18z-xa2?_6?u;a7A9W{xQoQ?)>>`c$j%2gqifD^j(BC{0kA2rw9mmTpZ}@T`*VNNy zd>C>&qZ*l?vY~%2w(h0JkVK{Mj9yPFTnkrKF+A0~DW2YGsV?@*Vk=?hvV)V+gaKEZ$ zhFw(n1-8pF1RNua5P8cG8hjEC=&T$w)l62?Z`g9HIC0E>*O-bJ(wk(;OaINw20=88 z#PfDW)BrY2fw@l0mx}@bdIhIVWwl}pxgb-G=pl}{z*U8*GVH*Y!#e(UqU&JzJ-2k<)y4IN1YOonYY0;2Wbvwp0We~=!7hTrnf2GhmuyP{58_tDbcn66!xkuo30kXd0wr3637QQ%l`r4) zixffm**hHBo(#sZ=1bSQHy_7%(aUP_A8W3jG@$~Wxtft_=Potudi1UdKkr#$enDdu zC3l#f@UE`>l!VS*>Xq<-58l&c<}f_9eKJodEF_IoF(xj48?ZN2GF}kHXblOnbl_&n zn?Go#;bar+ZISs}??Y~J&J`5S6F5=zCOabt&-^_^pLjwW5`iv^H}4s& zt0SLhbG;GlIJa%e^%(9Y0o}-Q2&}olKuqhMch453xR(xRs`s7a1q|uA-u(1;y6O0} zReDswB?}x4Z7RlMkqjxaSis!@?6AgItAxE;UvP;san;Eu>&*LQE-#m`!^Mstc4(u^ zGr1l&)B&Y#UanN<-{`@k@*{i|>vr)8iUCsVQ})0hr_IbyjoL{+Xg#!S1iEW=EcJ=> z_rz_tPIxyo`0hiBP`@(T|~0|g<;!02l+n4S<&0@$>RSAJHdVd+~Xs`tY?YwAH5t~G`=)Wb=%xtz0o><5b# zj=ztYSg!UHK}^Zbenb6KG7}xFFq4gpJj;#i0Zq#;{IRzr8QR^7#A(=s->JJKR$_W2 zJr;1$H5%7l93G-08)S6R5vvuv_QZQyWjfy2$`1!ly0vCuX9STSEIA1AEE^tcCixwEf(z5;EDlMsm1TLh&)Mb zcn^OXb_Cv#izMdcSlmsI=%v;+Ke5nIkr%=Tp-|UBL#~@@E&N;a+7%8CCagGFJ&3#RF`+vvJ|k@+ zy|it(>dU36>*0xo?6%6_HbGdzaN$2A8dx^=p5rErZ_p9=a);_341G^OMZ&%iLLzex zzDxgFE`?6s4C4sG3{lc+3tT zKG{xtsS^p-Hdl{~c@E?1ML`^F6)^cMnn4`I%--^GuZW&g8FpLivqr_ZHSCq#Hx;+V zXmRL`YMP+U$1ddaoaXy!zL%r^4F#}ji7tnUtRVj(4=!MHd|bzu--lgl^aD)|13tBu zWyWHP5EFME0Whd`{;=__Rc9Z?VMHvy_RYois;^?$osvEe*%fAaHQBYzo7W7tHbyXu z3ixK?UziNSIe=64wA{hATv9v_@w+^b%w}^g;Txj&XYoTV_r#1&yh6Z3vn}D7qH>>G z5>A+tGo@Ir@Hh&XdSsj+yeXm_lZKsQrz4XBs)RADA7<{6@nH7+lSL` zTHt<7W0E8F0zLCW#k287uZ@pBv{SZe<$Z!&VDOe=ru4y?&CJo1FuL_ zn~@!*nP6t-eOiyB=RiK;5dA86Eqk1Lz`G`>HEYx8KZD@ogk_0t4jgq&s%9@Xx~^jb zDyrvoPeb`cxMDKL5q(QJn-3{oASd%T|Cx`H31qo)FcS8Sb%&6W<*EAX2%^_ZY3q{f zL-&u*UrUxDW@BVMDv^^&<5BWz^SULrdx><5jL zaiWi`W$%bLhsMqSb{T-}FY4g$N$fw2!T-OP0sinbO#jVg0QP@b2Keice{aG6V)r@- z`uNYg*FnnwLkWK^1N2D!A{DF8*yx~#fUL!^ba98=uju4Pfjtr-S3zIGELC2JKH757 zPNx2|xy{FICnIOIN{=a7AGil_@H=T6bk?m1^6z|FIQ#u}I6vRz zc{6OHx)@bud%{Hmcp%byo;InaU2S#<_7Lhu*?fIwf#(ccs($x*lQk!saEtpPQ!-CF z*{=obMEpOYNyXur}+qP}nIAz$2`+kyR&zSjkVd7GKspyukv*Ks*XN&nfH3y@5Iehb!yq#Wp~EN*u0r?jdPAGdK;$8x~V=&70dKy{u@K|Vo=NGd*R*&C=cl& zZ=mvyG4fhGr+a#@WNGK|=32+qQ_RZg{A=^kImkDzH$slwz4smQcAh+t>N;=giWum} z)68}?;&&9Fin;Z~7Rv4Tq5VTWm^Q9;Qk-CcQ$l&W@wxsZofx(ezvz&j4qTNC7lPs2vp*}WG=Nw;MEpc_{tAFT5n8{5svR8d#h*^IN80BAam-yeJK|wy zcff~W-mOns|6QB*Kz>31tJz?vJO?r3fGV4ImVKMup1$bM^T+5RhI%_rKo3^`pK?jm z$l!ceUcDcV^Ps)y(XT=?PU0=9D_Mh%D_Wr7}TVEgcA6*AI^KuSALa!NJ0Hg6h zxj&7NNq3@I5_${M3k(S$+i8)@m4YW86v&Bd{H?>Ebh*n@A|VxIh&?xeMW%c0cbVp^llHG)@U@-ywL7d zKIK4N7!uhe28oKmZvh$U>+y*sBV8i(^LQSzh}?Y@7)qtu{sh%h#ESnE!GWF;MHs8L zPl0-D{$ZOwqu|JTg46mNZ}NfGamV7)+t4;JkXd+f3`L(NEN z!B{z1TV;RJ<|1|BBs&qBHP=Vt?-^8aWy2fXxEj~}r0bW0?&G&S zanrBN;D0{+g6AmdcyJCZM3KEdE?W^tL1lp9E-mAX&-3vxR~$*Cz%#M3y%Y=TDf{|>Cwd=Vm|0KmO zLW3zW?g?nUFAUJDYOtEN$f=x#xiQfGH#Y*a!Y$cIZR4PJJrQrQ}S6SHH@l+ z;)kA@kr>O!G2LYy)wHnvludOO@r&NnP?MKAM+~Q?k9ms`dD`d>0J3mvF(d1Iiqg*%xD)gs1T<0yC$7f?*|UcqFMyseKU>(3DBuIZ+md@_>ZlQmVpxyN~G;^9_42HPLPZi!23Kw|j z_LUwqxd8;SHOKb!ub)#2RfA`qv9YdmqFxxQ5E!Ex7_BJ{EuQO5q-+038!^~Eq=!&~ zw!X`k3dkZfba06>r~as(Ga#d^+c8ud<$?8T0DSREQ|3MU{;lnfFYnItXn4_a?q2_} zHN+R-DBzAnlW+ofGcW;$z-2i+VE*?noPk0pH)>{t*UK*f+yNAlGc`hEy+L#>2T#uBam!~8M#O7_$2!S03}Ib_9Sbd zA`cBEDZ%>E*X?a>jtkxYR*$Ju!+9mdrk@>D1;|oE<3pd_Q$`H>$Dg4jH|)zA8N-bN#w#g7}`pfUc39`4Q?&+0qRk+=ZqCo;*_lau`R6l2h|l zAUfQ(hL9kfxFSH^$ltbDr<{{Wq#LzhnNSN}CxkZQlk$|3O9&R}Ahj_3f?uZr?-2D7 zH3f{*_6#6O46OTaj=8N4F4u`Q!?bJ{B`X*vD1FK3xcv2}3xEyo{MT$%(CZY@gxhK( znO|vwKfVQij)Udpj!!AmQT_7>%xtva7(|$?VsV9a;p;ymV4Cd#kv>E>msR5r7VIW@ z?=@Vtnijma_1wZJfqJt!(61pa>q~&SsKud4$&~18(h{!%rf7=6#_-0J3uY({NibII zZVGiXIW1yob+=G*^SP=Ub;2U(7!u!dI5Uu& z+iVDss}Ev(Nj1tGEg`P-b6^f%u_M~EQK$E+FwV=uNl0lO{fBCWgG}RW#Ph#Joem1= zhzR5q!kS9yKMF;?ERt864a_16|C!7*C*{E~ss!T0AI{#(Lq_ft>OQsDTUzhK>QA2h zRN;C603!_jWad?JL=I9Ew`l?)nEZ{)t(LEap;;D$^hYhrx+;dGrmIO7@ERFMbzh12 z$JXck0sjqoUN2%Oq-#pmac;nbCpdd%y9T&DzyVz++?N_CKOLF_k1Lo;^I$;$qJ4lE zGoJud_rX16dyzn$B94Ihm$7gQUhL@aB{VTnc(>acy$Nr6h3aOs9#9C27{K zAzKV0slnvz2)!N{YuM*rtZh8gd;(afNa!0va$a=51a z+&j@aNU;t<-`5U})wx{+pq#cW?7$qx(Gk~`rqLJ7MZF7WYUPw@ZO96RFwpH=Lv3HU zgaxwE1kb2H@!KyG1^K~y!-36PBn3jzB<*&BZ!GY~mhzkkMzM075vnbO!48n0YcwLk z8K-XT-HSqVVm|Kyb)iWWi45J(ItS9QX6BRfLl=S}ib)}Ry_Hv*h z^~t?34Ba_fr~*VMw~PYc;iaFAF}`V+dv)n?6AsxADnY~?EQI{tCD933Nx*MK=57pe z&u8k{Q(Oa66%_E(P9Vrv<9CcC@km3@DXiBQgxUvYYNJfixaP$vP$oLAqzw+SS}C15 zpi1;TL-B-uzJj@m-j0_L%>ge$}g+O3~o-H=`UK(*c^s1phlU64D=B%$-CES#FGy0BKO zOlL?I74S?+8=SBok##fwxqvd-m|lrw}Us3wIScRi4t$^-lE zRnSodW^Urb`nd($J`EICwQXD6zjn0!pa?*{>xe_GFZAaHHKpkpf-I}R8u)>0;Jz2& z$)miSs;*4&2u~c4ix_tb;=YW*Ui=MfYWIf&ry$9kRq8c}9{0zAqg~*B2QaXbsNp?z z!c(XS<-!Sw-uiN>=q>8)g=W#-mTOa{p%R81h_;$nCR&is>ki0X9R2d9qwDwVwo}Y- z#4>U;8KaP9$goc(xHanop-P-1o>S#5E`Wl-;JFC}%IJE~Uu8ayg)u(q(ZEs9iO&Nl3o zcugq_K%ntnmewNsKYgZrEo@vf(Y+TGfv;ya&wwNqLr405Z1?%XS2&;=tsIRyfNLdE zfSQ}K$lOYy%IoLzv({RjEAAEwtkT^Q{5gK`TDqL)FtAr3Ay5|WEAN0?xz0TwvbKiE zKpU>-3eELuPKXr)0#RjJJr}{r5HxI7imQvRO&Hy38U}L1ZA-GCFq#Cw(!=#EER1Z# zwb=BTbDr5gz%{Y54Yi{R^wyJN2J1eKDJNWB;?t=O-$m0xOFGD0sb&ZG`O-#sZWqVX zefY(xaX|;kF%DZy8)5VX0@d;VP^TxjQX;^Sgb$<|!Cy~c1gHl79i`#RkQfuqAGsi1 zBvFy~m5sjw%;8;9eFU=RFJ!HBkF2bGNOrV$TqcmIZY5|t#j zOwlfuBNKi$W{`1zB7X2UK!<~u-E{Prm;_X?>x@+Ky}zEyMIhnlUC^PM{6b-(!P&;S zD$$Mkcuj`9tOgXK5h+uQe2EJm&>vQDs1RsW4VE$FWX(9DZ$Jw?sBBsuT-(@8C1$TRxOdiL&hC#PR3HqPv(yJ;noEgluxE-@G0%)f8~Ydtn8I z$K!@eQ{S}Qp*|2cPCJ&qY(UTqz}5taczr2be7OeI6Zt=WI<2a7?Ujh{c%LA{JEJ=r ze5GDZqccLUMyKKVnJtqPRuJV|d5JhB)uZruI8aXb9AiUWjL3_Kp7cY>E>j!yp{Y@U zM5DQyDME78f$5cQ5KiBgpD=HuwCRFti_zQY3+$QtCT#FsRKqe?fCYCK;a?c4SLe!@ znb@tEW^{y)VhA4*S?X|mFE(OqW9C`+S4|t%B1Iuk7Fm`JJh?!VY}hN$gj_dhTX2xi ziR9@+i^69nwsJI6P5rA1@QTrXBn#bV1^wJF_bjG;qDfz;fTSCVE-$t04lj{?9j zVhG&)U`hy&cbJF^6%DjFmyBu^Zt$W!-28SBLOg*vJ1-1Da0Tjx1KC?-3jGL|E{MM^ z29*mvs;2vd*^9SU38Xc$ovJX)S%qP0?`JkD-t`Zf>Z~vi=ZD?+`87;3jH7r%QH1J} z2p=}BZhJqAC)F6&@B2KjNK1R{LJj#ot;d`UE*Lxk<1-<;Vxw@=9A|jAjlCVF>UYW< znHXNc93hIK*;y2BV09CN*#yIIat74U?9~cY$xjO<`?>N~wp}6+^1yU_C9F1EA;tPq zCbkVehJP%MZ^JwBCS-JK3}jP{iY58!*PP6>3I#mQE}6h~+fHWgrijZzT$pEYX=dg* zyT^TlSMe}T=VT_K(kFyaJlAsFYDQA=wp1CE6U}5J*&7|=-MAcH#9PIU`e`wVtjkXR zTBa6mSqFU~Y_1)8VK5q6I{UH&C3`lqS!KZor`6$tt0H7C9~?}g)M+-_X~w8V%Os3u z7vcx@!wmB@RB%ea|LF_XyQuVf)$s=C<+DvMzyhs(n`ViuTe8&d2xEbqZqqBSSzc~s%s<=2U;I!BQ`Ab2Lb;Zq z=IWgF4?tyKVP|Oxrv`s+M-_C&K4CzudkyF&7(t(G544LYFph!gyp`}69y|j|jofkgA^d0X+77%Qum#u(+B_OU71m2pDGHk}tQf8c8cwJLzDn4PXEV=FEE z^`_+A%H6H(KFFl9-|i;G?fMb5^83Jz*Z6##Om4FCl;{#kpoHXxOC-BXBc!_56Ucl& zPv80xFK@D6=;(cy@@4EK;qCOaf4$YMAF~kdt{&;VcK4hP_Hw`pd*n&9r3I6m+>hu# zPUGJmb@MACdGV3EZMND`1Qw9ocLzHmeGDKIwkHvIHzcioKXM9A`P?sVvintyz4IU4 zq_x`l#_v9;?R~r801E*lhbjnl$HQY}A`KF=<5X*ZAZ@KzV8)T32u_JqDj(CS$q|Lk@gsyb81@ZhD-zuEW@tG;E{Hhh>) zBNSMtagPc>#AP75Z(C+SsvZrWEc>2*e2%^deIxaMAn1nN`^DZ4{K+d%Bl5)`6iw(j zJN(FUZxe@jTPb~+w-0y?-i>ezbLahmt3?DBz&qzQa)BP!!#_SIQf?iv!y8n&#netH z`*>`1#t*&4#g{=~q>tRnokss+H8_BTlx3h#hM8)=D?@R_i~EJEldXP(^sWu@vFD%b zOcZl%@cd(v%s3iKH9M!Td|jW%H2fg4Ag%=cT&gc1mm<1HnS@8a%)||~Nv(lQ^bisR z%b_Txmg0dBat4k(dM-L)K6`qFwRUDO^6lD!99sQW1)y6+1)v+=z2B^7z>XhpZRG-( zpYP|Vw-J6HaWc)sm0cZg=ZEiF!(Sn(Qb_diOStt2!B?c7s>lV2^hT7P*|D7AA8y4e;oThjt;;MDO7OIsA))dG3D zm%q}Ao!2o&c`N{s#~Tc#h%vCZnz3!a;y49Oi@!^k2o#PvAS>Zui!3xxXd=(}i`CjA z_-CDll3#JeCZ#Q4(nlZ7*!~QAZS(JI+5MQ&yo)Oz!qNjWbQRb+Ci_#ksWEiJ5#ksw zzsIR2jr@%$8`s#qQEVW<>`#w#*EtQ6u3@N*?GZb3Io1OI7CmQb#iW={_D#IM{?gkqz4E{#0fLtkK9@jL7sPRf#5KNi5*$Fb zFQ=l^@}Izp=JO7)TejR~mW0mQWF^Wv*|dT*MGTv2z5BzyF4aNZ>U`rYDtaQykxnyh zgEml^tTAi_F3aC82?JKp?lIF4$vx7CX`vyjzB+*{Bf6aBgtHQdGfQ z)!;eAZcY8()!a|Idq~}&9us7rO6#V^XP0>G7j<3ooRIDFQEl2lf86YP5~-) zAgUYCFdj_oh>-4Rj1>|7-8a!gq+1;K1ARcN?PE7BJ1|#a*Db98iuQzJzaCu0zD#ol z7Kx7Tc0M#4(UkI!$g8R&8qSGZMQz1>mk?us)2fNUHRPq17MpDV^b)Y5p0Xyqh5NPU zQ^9VIrh?}1jByVd)_WI<$S46WRr=~1_v{PqIr}ICR%HEmjPB?XzT4;grAe$ubk7AP zDAju`2`}n#6{PETu?}2!Sc*4&m$L-)%8y*nyTGujR5u=#oLh;(WgYr!NE-ZX<7~9cC8u%a)dG;#OHr& zlu5ZiV3iy){af5P{w7RgEn|QF#_JLR^?6XtE(BJH08cFf3!Lz7p8Ua46IbkESl?@- zo(RTsP`)i}!VSp5M&W2ndYQG7QX?76XVKUGo23-H%Sb9F|3=ZYbz#W=Owmkxw(1!T z21q}epQa-YXh<(*jlucy1kh+LOt?EdS6gj0VJoWG%5t8mM7 zSn5r3BDUL+L6HpYj0<46`8IfXbV2k*@oOC zQ@E19YKm77U`b+=84O5J!3MQSxqY#IEGxSYC;A2aXgS0_I9?;+&kQS#AjQqU#VHxxR*tWYWuxgpch)*Ycb73b$3k-?ULeSQRPN z3t070HX{^w?KK8BnvFmSOBzey5^vE}>4|vBX@s0pO`@@8b$=fjfmK>ANq`%FP~1^K zxzylXJJ1u)BGO*b6(w9E0Af@XWeX3mm?N$O;y3Xfw;UIzaekT>Kx%E^q=_Y}MI3HO z9yEPx4gdDo91`=%jUjm-v0f+0--H=5p(iCXbq5U<%x=ksx}!E?pCOMt^IiXn(#1u3 zZPM}^$a6LW82p@zPl9XLe%tLtX6oJ$SsZMNqC5a?&)Iu_ML0g4;wub|$D zsI{6BZ4S`_I)NiOUwMf%GJsE+Dw_F|XI!|VgCIm;^!pBF^~s$z$@w8wcNB3eq&RHp zsN^4Af4tJD3bIi*X-!f38flvtZ+T47#7;mVQ_aj8oHU6>O_noc1<2w^wlZuVzf5-sy8aF#$}jl`SO=O30X zZ@^5kPKp6dJka#@xrWK`nSp|&xMC<{iQ{PLaH7W&Kbr&yqK&FDK45m>kx3^o7XffK zy6F572Tgv_J>?*10(}m^R98E?+8{&3=wu$eN_iY6Jj}x+ah~jwLo07$B#AC>Lphm* zfGGQlqG9Z-KQZsDk}pzRI49s4>s5>Oph^|fH6FZP4Ac9eD?TwBUGeNIc$)@#*tJ@n zBgtUGW;tb@1ayAW@Q;ybz>@;QF7zobH!AL;;)9aYjt@H2hkU?bCFW}()doLozb$ez z+F^iM5C~*f2DCdril!K=nnk!y91rz3JYX> zQ~C1-ff0~V`%n9c@pcqzdW!F&nkooMNoOu|Vv#f7B9r?BS7*dR#7%MsQplR9#X6~+ zzho)JZy8QeRs>Z}_^f0{7XkV^0)1~^7&aHmJs@A`U@VvZ+zOK@{#Ps&*BcYnTxTz2 zPUCvoK+o5cmdYjzQ{jzsON?nD0Td7^E-AJ?#LvXq_%j!tH``6PV{rsaCDE76VMnP$`Pfamxr^|Mp zj#x5M+t9%>RA>TK*Ym5yT7eir(#c9tEC|B17}*QI@nn={SJj_^HaDcNPyGG$vtoevRO-#D;^e(-0e)D%z2|&TWA@TrB^UnBBb9ocZoV2} z9g`3~@*sYPnM;AKkSy_7rMD>59B}9T>BSPOY}wFY8*L>>uM%bfLbB@9e&?3vqT7`w zX@7r0tLa3mU@bJ9_P=f9u2Pt7F+n9jgi)FSjqrihF8tVQxEUn+1|X*$jlMns_Q4J( znKeFTeJy{N>XqYk%g7MTn)cZ){n$Zr1hCf>wgPt<_?Nggzi^9CM3;vyr90hg`Fh^KU&f7l&(6Rc6)4_+v9M zxoUeH=HwBfv-p^YBiNBl%{>P zjeN8k3Encr^O|;-E1W9B)g)+5sf7T85S4~|P8}NJI>Uhv?u>B&;?Na(`@&J6yk2My z45Ph(mG*+Oxe-IqdiPhuOu5~NH-=4CV9yrHJd6{#=LS@kR8r8OiW)m*oJ1xOlpXz) z{TAst^hJu&o@eWqCLCGt82Njg>1sjDn0lOs4q$PDG!qS8mecynq(#}JvUDFZtdo3A zo{sxGMr-8OONcOEf|J?&X}Ndapj5MD@NQ!teTcefYGtXG=cR#qK{FFdv6uE+B5)dP zxohz**+&pUV2kZEeQ0Bc!%JXQ^ncqU!dmtUtFj2gtZ2GM+QBZfj1{9!H-x~o$Qle{ z9o`Hi6akeo(JYYR9jx;~qdsIR#r9o8vYv!yP>uLtv{^GbxHR!=M(RK8gOl$sm#uIH zpWw$VMEiWziNZ~Pdc;QkC=yjDZw~)Tr&yE1I;S8~33hC9w-8{$_@kbn(rbEPNypWIZbLblmJFc=AEm*t>v!;)OgJ0V)l+-h6}=u7UXxI+hSBvuXoX>fF+%tZ+38 zT7dzb1lOJjqY+0VrwsL(%ZASo#uv%6U49h)QC zbdeU{i#ZK>-Yk{pV%xlp5@MV>HVnS&+AK2lWrqcM89X~{YQDC=G7PoQ`v(j?oqq<7 zzTV1QJYr#YyF{R#y~q+ykdn@k%0Ps4pnBZ{FV6M{?hxW{@zja#RQ(nVtE0}fT;*Yt zM%Wu;nxC6kN+#ytcoh@U*Hh%^$Ki!^n}Sn_7N18_o0-x=stx{4=2kR1^G%LA8XrJt zbi;oEu(>5IzTOKpdQb70x@Tv_EYYVm2fT0??h`6g!H>XE9~8%L!NbkN1j zgkM!B;O%VX-r+fw&I#C&MlO zx(^fIbvwj0+gcCDOEI16pND@e>_q;;S7%P|BrTuWFVr9)CF7?O(9Lg|XzVi;1$yJZ zchC?(pXDbO9xzxI$SdG`8x2WwDKyO`2(PcJk(%LVmEUvm*9Ew3s}3^?*#Vw(0EHL@ z?*Ls{=>3g7j}~GSajsq-1`Ix>=}QI`pD6T{57pz~2^4&Sf;)L}UW2ks@se~-uCd?3 zUKL$R8yKxu?gKPTUB=NVJ@SUI*Yq!#Z^cy>t`xI~+rZjhB@=qXkLpcylx`0+?}rf+ z;8Z`|^;hZA2P2Lb`Wg-x-)F*vA>JxBL`BmtK?`4J*^g2TlhHHyBc-DHy+-MG{S#9a zfEHLY#X|MqdlpM@T`p+mwc5+dq@CjPcO#w7jEf%)_MLWvM$h?Dqzhzz_2#|i8VlK8}MgW@r79R6KVH`y_NKaX)uo>x4) zllG1b{uF~zxTHErkN9kQ>T79xO-d9O(njFa2OFz%}TZ`a@ z{(Bj~F!sXx&}!W40|OK-C;iN6d}nL^>4r%$qqI*Wz-36~B@rl`1s}BhDi6KPZu*A5 zjn$Qh5plim(z<+;Q+g(3qS5lmG=sTeD)lW{IR)#IO94OCh@UEiaBYy!77U+0Zmp}dC`;MK;aF;2rDG=1nPbYwR5Zil0;9Ab}i zgifq2hyJJ!JZM{;X9~JvQ~yI|9%m$ z3v&cayuzj%%Y{*4+?O4GCwnF*R+dSrKEB%RcQr-LD5yc0Kccx%NF)OwOH1r!Kb`{xfNQcbDO6NwOdXDx?}bxGFO-*F2i(n+C#3a( z<&XNPZp0&Q(^rH?lQd&7csP{R;HxW22;Bf1Z*|B}$8Tu*MUB08M&xFK+Htyxw%Q08 z30NV#8>@V|??^OB*m>&DK#Gk64*v-ML$G#_S(P?M;Plb*lsiYB*(W2bc zJ(}lwy*OZoRN=z5h_ePJ&>;a}ar8x9T(&MeV z`|8m7xB@6MFnmtmp%bv&F$B)F?409pwnE1c&z92DEHM_(bNmBoqFQkp_WMXDgq=B{%c z)gT;MBcvyOd)Hq^ej0}xfM#znd=_N&BidExJwC4l-@qtt7uJ?0`~9LYt4Ink_r!&L z3SyLd`Qv#hL-Jpf;s1yF{QuvvAdRzjEB*O0Ky_)XzA#=8y*1?8 zZn>gL96nG}+v%}@8@5cq9g^eU?%~8iTPM?tgwd5^*%4)CjROcR{FFw@@^x*Zbec zuE^7Uh|eAFWF{~x5LM!YyFG~)z0d{f5XE+i6oIzr_NZO79@#t-V7K%51X?m zjr@NS+mdmcmDoXvFcs~Dq^szr%+x#XDUQ7H+&GZxUO7(e8{ZT5bOMWMBjqmyK zPKL=>)a-G-ed+El(EA^P67g5>S7g2-@IZqtU#5Eegx6WEhql-&@%>$ffKpv*ccSJz ztKMQSX3yy^7Qw16juV|M{>|D5MLBFoO^<~2K7%q|i{xzd5sS>d!^+-$^hTJ!o6g_E z3?yT}ka(zI+uo2)_`@^2b}-M6Ka<^ne83fXuk36IyIG3-IN^=u`;`5OBg;l zvF?W%)Dk8<6AZ6R{as|1>VahBiqmY3lcr`M9eFtI3HyGPCR0*0DR0WwU{o`D{7{Rl zw-`KcWEWG%d9ObL-Z0(}WN_IU-X8=CZ#X@Mf$s8YdXswXKJGZLC0qCtr(px)liva= zxLUNBF|=u?xc5fHkbq|*$9}A2KR~E9M1MA_fG)HA)F>|uH3xU&+#_2*u#Pr*x_o?jrRlGdKE%u5}wIMkWr=r&JnVl?o ztU?|+w@KLUrRGd_Z?Bh-hjwTTjIQSB%BE+^1PIawx}J;us}=T5cTl(!`sv%8uy|C{ z*I|Tqp%o*iW9jH6fj3e*7MMU19=&A{Cr=b($=zIn^NIxnj)`do-3^{kdczD|DB4p} zndUgj(g=WY?S>1~Phcw^NSVP4?qMxUInBr^Di5BAJAha%8* zf%^7Ekl%p5EhdO=A33`yBP}(I_3s9&3Lxtk;l+MM>$cB_aVI=OKB1RdgV=>MH%>Sx zF2Otfm(%^(MA-F0_nU<@vVeJ`-7H*;2qEdQa#Kx2uyZ*Cu2T&L>90m6dlU7}BmfEZ z0Cc#5u30tE0^+E2)|B>yvyT>wds)j|yU&+OxNRy?zk3Z+GGD+K4n;{AZb>o2$qUQ< z`m*e`7?W7y#Q!yqq><%HQ5xO~xUrPov`l5{g6ay*P`}h0+PANu)U$7L0~~{INs3!> zRoU+WtN`Yw<1Sv8zR65X>zL1&082vNWbefyJZjn(uiq}Ir^|XlF?l5(3IJ;ObF$;e zUA359ji(!y2+cKiPhy|wkQvdFmOI*67`ci5#;kRpAWS(Z?&Qs_IwQr+|$ z(I($yc(hJy+ggid6~LvLJA|>Hb`Zd$Jf^z`f9_T&B*<2Ei@gT;+mLoSyQ3Eg2@}q-r--N4tz!&x9@~-{_+&ROZh+hH#v$eXY z05DWzQsA;l!Z7UWBM{5nSITATiQx2mqgJuFV4I4;byQVWgi9 zJYJ=e-oXxZYo`>7%=Ufai+`-@cYU-! zYH`-v!n*fR_9f!3u~+>jdozX2l0N`nVx)sfjy=g{7 zPcqzw#nol>yM2N%ZA9YR1@C+ZrKKeW?BryY%AcT%!~{cuUE|JdTZQ?>nQym9#1gZ- z9cpgU3H|L<-81bRjCwRh&rXlU)C>A^Oe+x{Ob}OGPX(xis=L#Z&0R<3--jr2f+q(! zNYRu1ydk-WAq~UeX3$Nx33m3MBU~>ip?GM?&sV=JI<$cRxF2F;rrW8+MH;p?hwuYN z9W^3tY^Q1xFo8DRO}bN`gDOKjOtkzrjNsMFDS&#J83%45;3&fgsbLdN@eins_n?S& zMP?${Hq`YFmS-VC+~e<2T+V?#BDr4sdT$8c02Vs9c;NSsXj;t(xcMWVg=GF6>VHNs zl8}np87Sw3T#UF@toqw>S-0;FdVsq-kup7iZ3vvCAT9XQgtp=D%iH#-AbC;tvk!5_ zScHe|{oKiANEwaw6O~l)%`C1P*ohp~`3DD)iXBal7@QJIU)7IMQw`m$!U3;nitQDB z1LmN#A5FmPXPh&59*{-zNv@{grw}|dll3J(0l!Yj#%(#ydkJpz5q!svw-NRoso8rQ zIXACAg?l&{F2oG>KEXAD3jTrNX~#VQJYqm@a*aBXcZr=)HD2*ZLG`e+b>wc15k)RR z;pasY&AqWvehk0okhnKD`?SDgwF_E=K&n%|#BIGz~Di71KtB-MCt9_vHv2 zm2z+6A-_yv|5p80TC@PX_8)@1qGCRz{xhPNEMFh%htD6wU>?6@x?(iG+OL>O`_+Vd0#vTr~dmMiY0`YcUwP;!qRs@^Su~N+)Cq z=OT)5D00VlI)*f)wMDaWg>dJ1l89*o0x^JicgO0xLc{bQLi8V>AiN8Fbz9w(!H{er z#HfUQ4toyzJh%7_0Jdg3BuUdWWRs2OT&7tLO)U-B#fUxfo*TSa5NHV(a_z7hl^Dak(`VvBdL5P;9_Sz4Wm&%T!s7Zp`O$i_!=5DbF{c*{}5cvmh^L-{{JbG{6^ly$Wb*#FV(OBXx5bK)S zR@bX=JU8f7>L?{~%h<>L&q(`Q5si zFNSZr0ed;;?U44NJT~@c^s2Sf%@?MmGUai+#r4TtF$O|YqI%C|e}4#bz@Sr<1Zl=~ zZliEPrpx?$c`-&B?o-z@jg*L-Vda-XPFcZ*wn%XEqz%ElU=g z!JMFPHGymsgsv41nXWfY8FO=9?+7?W_AZYBHY{cPz~3+M&jmz`w2Z67ZFstl7H-QT zXJjNwGQnWkH_j+616VhPCEZw(rTPXLU zq4NF+ED;bT5kcD?ShA4_P%;`Yl1%K(o>ZGe(9$oV0E`Wvyz! zzuPA6`SG>h#5b;f9*Hqx&97e@85sT$vG~2X2?fhDXLy>84;rU0MKP5Oju(RRZvV zqPaGIa^6L(yg&h-v)IOZYdir1ET5rwRE*<+Rbx&NghdQh{Cw3`P;{p9i^lQsfz&}+Mk)2Afo=G3+1&7!tfSb*;=(*Lt^9H^Z85x zBVNVHBj^n!wjCm!ln9629+g>Bs_=gQ#FeZ zzo^pRjE$j5%*Zk`WAq(@%N@tT9nOU{CH*gnAnqm=f8(EfP~NLq!5dv&Ln&dTBbQ*Q z@}r1^8~`*e3HjtT(}RTW(u^hZ7HQ`Dj}nSal15Lupp{aRe8t|8(9$9x7k2PaW%(_i z0-bx)5Xe%1;8ucvZf}yHKFohBHcpJxU0nObVs(I;J+4&r*d}`9ki(^ruQsihw+kJ# z9$_V;40xu8DA=35k5aDz*cTqx*4YzBVpwFXm8#eaxm-iKg#(5)Onp|14}D3nuOR3J zi##&tdqm970QV_`a0EX069KJ+V>PQ;)*vtYXs{JOa!E4mwao}%$Jod@1-+w_8R~I? zuvh9dPX62#y7B!D^H6g)ZK>mQY*&-YkX)b~KAqUmguZdaZK8zCR8h5G44M>05v@hB z-;nm?$u5xtiFiYq@89?QM;8cvgSRdTqOt{2e>)Z}fqP;l(Bt^{&UZ4e$q_CpX>OOm$zO3m3ayvF4LE3NT-9<`Rf%DPyu;bJs>&A>Z{ZpZe%+ z?O)%$KgNxxOr0wT`C?1Fvt-5&{7A}PS3og0{^U;7YaBT*hCk+Q73U6ZU=2){$<$y8 zv(bIJX6w*hm=bphA6a6-?{)gnXEl~X8nP~uu+=8$mnElY2tt4rbq1-|4b4DSL?#fM zGoBHK8Yl(hu#F$b8-dQ}O#Lh2gnlP@4E-Crck%_$-~g!yw?^1(#S}}cPC5Yu@i`gE znjk>DLzhOTzO;52Tc3PF8G5X3OqU-mRCHvl7iT9bZ~#+UG4W>;=HIQ6kx;ui9LiYF zac`-AMKQ#NN@|6>kTy(o^%8``3D|1@wzG@M-Qe^}Zxw_4ejV5;BY^445wd>))H=Nw z@5249w43j>QC@88`~6B(kho97#m=e&hfQt=mO=FNEro0pZ&n<$AqWpJ`xvTTTkpQ& z)r_IhwiqkHFjP_V169C2@w8q<<9a+e zV?%4hGC4?Xk9u~RP8u|@q)5`vk?x@+&8#@6$tv=q}r92 zL9l|VLU#vbUmsu)CJp>?!>IkJ-Ds1 z;yT(jb3qaGWF(2`bV#X!sOu*%x3%oV{<2ZF6t>_MNYm;y%>xHzoteI@UbG`9Ox!hp zY+^qwsIsRsWOWmXeg<>bjirxd*x7{-%%yy3w`0gTjy4L4Nphd&I6#C)_|u1YpI3MZ z^CpMmAOHq%C-Z>U2%QF;c^FIH5L2A4Rb8)UlhlZOY%o znL}Z9zF5Cyj#_pCL&w@Ny;w(O0*l%*Z-00ISNpFLd+18k*K~~j1Bno1vf4U^zV@s} zC)yO>$zDbz%?&Hp<-RU$WEkDeIMBd=Sw!{WtSc`*t4xU7CW5iu+j1k-b)Zd6I#m5l zHlEMM`*}?lQ{(9llv}Ig?n{_pR^K_0_8ASE@=Pu;ee)z$Fk8SpFMrzS%P?@b0;K-m zH`carxk<6r8B?rx$;4B2$O-Z^D#vg)l!s= zO)0f**(#BGCg*P+L+mv3mdBH;85mRpK=l4&di7&)vX-Eu*gH+?`JHbu1Z;9$qayVi zkZ}~-%-#us0!Ueji*o^Fzy-MOS#ynp8aq8c?6tqDqI5jV$_+-out2Y#UCE2ha zaKE!PhX0zA|L;{k$^8FG`Q(4LNSfFh|7ULcKbQP}k)Y;e_^&wmf46uSg@g^>n6gXu zVGy{|kqe@Yk%7U%Mf=Q2Bo7%yC{tMcpB8V8Q6*!bO=8&Mik{`C%8Sn13ZtG(`q+c7 zkIviJ(Ko{++Tqhqx#RC$x4hh!^=-Qc7u~5i4~?xa2TzUxt)HanGz}L&dOq(Tg{`m0 zFx1Pz-!OBJ4>Bo}L`=95cDnkIMSjejMLdRriQVq!Ex*XW=NLbB=bw+=Y(LX_uaA?P z({1mZab<74NWcA;P(g?v(un38C$gBprAQJ-eC2Mt@4IoIXK~6zg6N^r-wZa=xCCOD zAeJZ*q>O&m>ybpT;dSoUc^nES{IHzeu6GY&qhFL$+;OaKC;sI9TFv&ZX;!9YYw~mCbzW3PH|JI3umjre5wnw0 z$Ld`!#dcK6$3yjhxI0X+L@d*DcFkH($g)J)C&MgD5(l+QI_573H67w% z;+}ml#Q1lxU*Z&A&~!Ck$Oqi^P0GIhByIgt@+9 z^l>R~zc z%|8!-r<(mg!ZIb6`I}dscf=?cd)f zdm`M*YCU6TYl875}@oA_-%+PXl!1(_^*2(;|~k^1*{O;$A)~CWscv3dPX)km8!|s z$8^m)hjiU)@p45lL-d4?VqnrsaI*q%Pku!fiLgZJQ=?mR^5=F0WguA&3M%_l%eNEe z+?1zBl(Ek-iRE~ohh7~}iNSIR?U}@PBV~C~)DQdgg+0!~q=V_gZ_d7{pYtB&$4x8% z{Xyz$Q{ZbatMuuxL+uZ!z2Dyz{yB}X&52{&x26hq`nY?p7dohKE-%cX)2CZ=2ZnDn ztJ_acN8<1f)f$?;1#=)CYq6T4liK7vx1XK7=N&c?B&y7OjaP_tciQVBIoFQt4Q1`kh2 ze8Z$hi~+sX@q?jC{Dm8=OP40^mW!VAc=OA|W*l{Om(2No zGdRPzC|K$y^yYyKEhxZX(|wyTxI@n)Vd^EBPA2{yQrbVEO%?sI!0YJ<`gS@;#1N{oWkF=y&o-X^$v^w|4mpi2vy>cPS0%e?cKK_P|1c0+6Z7D1^yI_+Kx z5I_a3xm-L(p~AyNCf*g}ZWlHaXJfJ~F+}F9vPo-2%QJS;5j~Sv459LQN?8?c*&9x7 zI6J84(Q6am{CP92^lRXZtn@b=99j-$)zTwktK{YK%MUuiZ_gjm+UPFcEg_rW5>1}~ zB&I}>JmW6n+^{CXbFb4BWjX$b(Nlcoe^`8Z2&8&C@3|4RpHm|ZHgWm*RqtSan)J@S zZ1D38Zt9$2+EnoMQ;$CPGRnwuSjWR)n*GM(XrK)LVr5<>$S{pC$(Nz!+|qX9S$Rw+ zYps|t?vN7BQc(t3eYv6el^QuKnLG0+T+{~)zvuSZ{H)R_( zUzdng8P64E>wswQW?o@rckyvf?Kj)|93$VKOp5EaRYq*&#Y@3TB=25+zGI_V&%IOb z#YZ6f-O(@{rR=ysXgX}sc{BxGU5A-762O}a9W6mqyh1hZlD)seT*V=8TLeSQZ(a!c z@R^=a*<`c@duL;Iw7c$9)0ypT$28+)cOjkuHd;1KcZH95vW@aUfVlK1#KakIa_Byg zMfhp9&02(V7#YANuNh0y4b!%n+7&<>j^X=<;B}bU6+?;NYlW7QZ-U(ydt6SUqg-jo z5so2wdAV{=5366q^l6)V;=<^fw7gVk&qSi|+a<=Mo4Ru3u4%WcP-nZ%c7a*a39`W& zx4)5#SAR3rh|rF<$wrO$>*q0JQSLZ4l53cVZDcmgK^*dXi}fyAqpT<8x@uShWfTBq z+BAjH{Gy!U&^cL9jV!eqC>87s)LomSH!vb|KBSmiZ&sUWlC9vP5&_p;1swY3fUyN~}C)#54y~oh(jM0tJ8ex=fwHG+I*A_9^~bu7uH!Vm(AKuyXH@VU zk34)AlD!>{C5ZkOA&j^o(t+ePepyN19^)R44!3Y!kr9nkeRA?s$18gfyM#!!L!V0y z#|66bS;3Z z(Sf>La%HsJ(sF%%S zm)uO&nKXXV&jPGH?&kua1kWG!zDMxsG^38`%F)JFNdlGeyNL)1Lz~}tuR%Y8Hf~di zq|yjrh)5i|p^P?=qrs0Q@-W6*N*g!w(z*3L(~Sk@lhEX1UsNf==m&ZZY;0)4-c9V% z*S_JZ0;9$e&c^b&T8qcF5YV1VpWJ7t<^-p>e$^RyC zBqK6MdzIlW0kbsy(owhzPFhv^hSXIchCUmw$s<$VIr|TtRz@MyvKxGUAHQmRLqvBshGLkY>iNxe#7wWiAjsJz7g)BQMf=9L&dP*A5 zkYlEuqBJ)YN$94|7hLHaxYXT+C)%F23;rO}(SAufoC023LKm z7^N13-w1RS4GqC^irXkdy$ABv1)n@W$Fe(;zD&_33+R5TyDhrTC|;GG9g)ZJi@~C$ zgb(9dT90Z*@MKf9TTD~dM}U5#@ogn|Zq@91md3=1L`Xn8wCq6&Bhl2D;mOjFxr)Id zSKJVD_=9GF#6lb@mW8^w&f#DxF;sst7NDNbL~Di%J4v|J&=>{Uuyf8#y0e2Ga#wV1 z0_3NW)OairCTZ>>9%^)kMO1l_8ae=ex-iuV+^jB(bYGCMklLlcj8~UTxV|y_GyI$r+~QO8JR{`SqF?QxAY43Hj|anjMv5h5?)nYy^O-sD57?WZ;BWRQ z!3=FWi>?UAn0fe5xN0s-s&+xXzEga2Fg9yaiS>rF!z*sCIU%O#cF-`{kcpd#s(|2k zfHuiEmZb@z0vmtZ^DcA{z(}t~^-xZ1XVoj3+-;YnYfFJ~UbAGfRx`XOlPm#cx+7BA zLQn`%$IP}ZrPL9R16{E2nr&KB1q8q!q#4urI?uLV9@S6Fo_k6?pj`~r^h=KQ7k_C6 z^yP)J*S0rQNNpH}^P&G;&?am@=Oy9F);Px1Tn74k)170#V{-VA(EtYY4+d)|it+|^ zWns7Q-I_Kl#pXiaLjwv@rW`dIQ}ZL|QMUS7$RF6=h{M9f5rpc&^sh$PHZi!!v?RYe z7fjLD;H@D#7y%7_K{qe^2}G^Whu*znz>Ou|KigYe86V$NT$iuLqJ+hmgRg;=IU z6&z46d3lAt&4{4Vz2HO|E*7^dL}@6+aod>K@p%#}ZfM&Q-Q zu*}%8PVkq{Mgd>?;}tz3-vijqu0+H&u|*vEV>sQL=)SDcx1+xMiX!qvkr*7XXH17+ za%;-7*c_@RB%(4Ia5q7)!kz5m2W^~!Snvj25}Y5kL$$k1{e-10CQUyGeb2;H<^g3g z*pHdiyA9(nWCTS86YAPY^@07p#mZ9?x`Q-S&wBc!$f~1;7X>U8)0E+)!_-a`M+@%j zCl&e12t)Y9g5R28K&LFLGZuROeOcmC41RRO0)-_4lf*UZRUshrScvQhn*l16ODO%r zk5sU_mvhW`VbSZSu5yBN*fnhXc(Ck453}8d_&6w}Jj+k%0s|pL5rT9s#qgTnP+qfh zqtQLARG~2N`rO5s*Z8BV%gR8K$7E-=i)9hGUaW#o7{4>#Y$I%Sci{mJ)gzrFbAqIX zje6fwE}Id%1}Nf|v?MY>scGuwtjp-BAhtf*c?Qo>y&w^XIkAEw0u_n1}WCj2}wi@!($-6 z;ve-g$KnX^1RAPb@JWPvB{XNdenC3OA0ZOr{EKdWF6hg+QmdjKfPp1w&x&i9>UKHy z7(G>}iOsN`h?ew1Fg=~l#g&S#?DP(80&W3W*3H%34jghf&tQxt&lEm!8>v*@)n}RI ztrjmmrr7Zqqk1j}jTmhVWOh#TlhJu?in9ImI8bbG##BG3plLsvf<{GF*||qalc#z! zRLw-vu2%UuHGJ~cX#(HgB5BhNE;Qa*iW+PO zno^@*YF*V=1g1A1Y`DPokobywP(gcj7{*6oHA`rAFT{xoDnxMvnN_pX4_wzaf& zKYi{!HQ8ayucZn4T{Wc)!<8ph3ZzYDX*Hoi_N>P*zgT8gm@p1HVDJFkw&eWyk($1C z9-!k&6Vu)Q#+8-IMnX!Lz4Qp27^p!NnO9XSP6jPn~nEyqbO3@wOzZ1RK zl&nb6sB={T{8a=sfuI<&+I-q`QZTEJ8~s1|})y zA5`>&H1K9x@#GWUzUhKByYT(BJ2sSQ)M)L2{csXY=m!D2J0?!@};sh}>+Fs2Y zc?sjpm58axR6a$+)L)(c<64r^NJ9-eO`2N(Qc!_yWqNxVDUD@gI73bEu8bhrQKHeH zk5icCgS1rq>6psE2cV#XQw~8)xopX>(^}_Vw(;Vlw)(TLf(j3WRiu8@FCrG45<)0i zhj4N9zA7BM}g+%$RF8mvUBiSI53Q262qMp3E02^{#5;j&bPb%zJF@)$!;k2l( zF0zxU@-e>Cubrwa=;|iD^J0uu3d!6u@jpSvy%s1zZ`?;SagT8-R_V4r1S$-p&@c=c zgPRF1v3SGZywmh>(j(Xvi-m7u4Kmj{nX%+L8V3ZWa$Ua?2)6taBl3m)AuB$I!_cmb zH_hkCc6AC_$EQrA2K;O}MQ6KQ+NT%48&T&-NeA~Ywz01+grIAlpw=&mCr<8i$GBL5 z&%ylYsekb8+dy%t<%v*ljC8}e{f1U0ZO@UE+Xe6rVf7Or8*L8}8DP|a1mnc=#91h2 zp~%*Y@R6>HgElN%T;dfBi&^2Y!(IRQ>2W~)V}1>;w64J0S1%gwmj1U;C&}i0VRaDk zqUExd77QkK5N58iKoi)#)c_a^5nI(v5Tw~fr7+DSuoSc$-lGzce%Rs<+>15;h(@ul zM*(iMQH1}RnfQOsUzDAY^)In=Wd`y8bQ)z4=OASLOM^z4pPxa|$=+DS)J2CuQB<5k z)zrg=U)d+2;kWh7+dVx{L|C*)*hqUU1PBV-V< zw{tPIb8#kQ{lDTl%K5KV{eLg{-(V{^*qHvB_D|2zo_~6d_DfhM6s%3#>7$1N86?`E zL)CZT?;0j-LBNSg>B#jFJ$H#Tq?3!J)x2=x1Z7549Xv$OeOdqxB@oNY7sw})N-$?qOQh<5Mu_>e}z zIvftn!#*Gje6;q_i@i_rEp3F zf1vu3aLS2mHud%gBi+qxk6$%Rq-AgADy)*b+4{L`?Wh#}@4EgnCv3T=4PGAE11YAK zBxwBuZ+$QZ^qZZw8P3UA@FnUpRvvR|KaHi^I z?VROBDDMDs;k+W*7#dgC368&z%P)lB8@zw_(=;KRE`^~FEl?Z*dCzk%=g8(z8|kq> z@%4FmCh-a9L23&wD~ouG%`Lr&e+UhDfrrTGk>Alqd)4;Fj)hY!vlDlbt#WAOHF(q= z?17(ItLwuL9h-Q8oR31%m65|S5QA;`@*OpI$M>-3w>Kxl2k-NFKTX2ue(_YN?~&5q z{`d`etvUO1ku0rZ5bQDv2$6ou?kU_nB}X zSa6xr^={6F+v@*;Y+-l8Dv!NlR~a;J9C$G0gxSVXrU#x^9W{DYVQwGz9@V&79UD5z z!0A&P%jn7o*yvt&LwN)B*HhbW&Kt5F8EF&1TfI;~Ae6^b}UA$f=-_LTikIdq)a7jUE{*VjiNOT4wpD4Ik4E^_*EAdIf1}YHlfL}wBtuh9`e-~ktuvd3wt`+^pK<%g%ZP3-k~T_$<9>T2 z2Nl7b9vGJlX0OLI#a=5gaeHhz=(p3*vKqV2L46OIHU*BOHz^?-5X)tedb;xu-ow$gU3eqvU`^5zBch3hDli?qzZf!vniJ4047vstFbD7E=EV$ zp`Ey55IJtpS#us$Nm8VNEZI{?KKamE#;Njw{(=}C0ZjHq%F$$jweeAyfF!++{IhGyB5kmQ+RlA#e}qWNK;ORfm2-iv>O|#TO2b3Jr&jyULi%o|0p}nw-R%EyAO` zaZGeYS*$mOA4L>(37FL^S1k!tHjoS(|LD;Zh^u#IqebNI7_6?Vf-rn47?XNi1}8q% zoolLOS5~~e;&w?*mQ!19ovil#rS8C!i5gA^7i$69zC{X!+!<4xq52{3l8b%}9$lA5$LM!Sk|s>W-bse6J%uY%)OzuGUKI=(4TJCVCj^ zU{PT~;OMQxZB7ON26AOJHWAv)zF^YaLmIA?dX3{AjvNpZ6TO3$UZp96%=d)n_k)j3z^p@Ku4^fCxt@zzr+DK#-a(;A(oZvAzC9+t^&~feNRk zL{S-r^Fzrc>%+t9kJeC(Kri{JPRA7__ftXg?0H%dfrX$IC7gP_^BR(=AUJ(Pz>aqD zyp;d0Rp^uWIet(TR=u$JsE|-b^}Ng8EhTR0#{CAg<(FYk`Y(^H4mP2XK!ng$5&Zz3 zQ1f1gSG}{UU&Ark0Cpb)aQxw0>*THoCan|VyoYv@>=Vl9=gPSZj6v1!Xw3u1nnv?w z2@QTzKe4H5(E=$QNoSF@e$l-Q^>VJ$ij3Je{QxcEQg`oIdAltOtf+ zQ$J&(MRy>dzQ0qXg$53+OX~j3Y?PEgmr%Mw6m-@kDPCQkhl-dDCGAO?O-%-T_^K9$53)4 znlKHlO87KcJ<-Vn)5?Ie$OF^oYACMn%dHh2k?!nVRqY~gFe+Sn_yy#1IZTsLYp${q z45z1NSks$RPaNwI47Kp|jWE%2d+T8VrJDmuu;F=l(H{*@ zuYv(i5)pe)F*IW2srag21=3wxB zFev3~Sccif{+c)(Lu#y{1#=GHmFk?U5w^6G+8s=&@nVO3%tNmtq#=u9&8|_s?VY1B$P8%ZoFqS^>ZL`OB zK6gx`>yikv@XH+w6RM6H*oGPz)}0yrWxZapmNnG$ip?eSwS_ynG>0Wq%jhIm)7@L0 znm#EM+5=C^z99KNHZd&ME4Rnw z*)nO4TgkGx73)Z;#B#-3B?Rl4PL~~N+%T91zdWpd+?Q)Lk2)%z$|!U3Brqv|*UgUb zQ)$jMP!>w9tDz<~6sNq<2w&0=m+M#lACmq&M!%7*XNJ!eM4|;Z&8DW|=WpXllA!EU z`wiIyL|_X*lc|$Gz$Nkp#$rz&ae;Ko1~{#9idXg*XTE8p%8hO7C{{j=So_^PmqvRw zxdwjZc*LNm+W;nF=PnCsTqqTjEV)IS@`^sUAbU8IdlF94`x7&<$(LvKY+REf&xmJ4 zKxDa0sr|rNy(QraH{@fUqrk&ul(TBHD<-Em32j;h@W68ketHr^l;lrfbFn|P9D);F zO0I{)E&z=7!4842N(YAoC2X_>#>aoYu2~ED%U*1;=OU+ocsFs?9;Ut`s@F@OjvGDV zE)=9n43J}tutGqvn>oh93CqU5cP`-s#qJ{&6fuGYUm);35Y;9!bw~?OxtRdbp+tjN zz|G@Lh8u=|%xCV5I^InUpvpOfdcmY$o{`ets_NykTgICvL}eDE`KY}kE89QSlW~sxLQh3#6xb0 z{v%9*`O$KvP8erAL^SFxFzg;Z$0_0#(vF`#3CnbB+fFDL*6>&veYOe4T7e7M_{0o) z$ev}ag`10%Rr9tr)vb5c=LipA5knB0Y6-09!YovbL zr5UCncg^$7$Sn(}i*(wl?nuwpo+kcNal*BCi~M&Ff|C%t4MR;w>>?@PME{zYpQKe>_MZ1&Y#j2^{a#NB(2=Gw-k0qV#SA{mOP{&-j>|6;;)Fynp0j` zQt%CvnTO#^D-w$yiU{s>R$-Qo%gfbM&ei!FUDjjb>zRZhXY*8_8vOp>*1L>i>5p9- zhGnuxtr&^IsNw=#cje5*ok>#cnlY3{O+(W?&?sB%O~a84+xTkVet<($$pp`+B2F+W zMYX#~gdipqZ^$;XGnp|k4%O1l<495|_8z%O81OXL&z0sHpY~P*c4<-*kd(nxhLLC{ zBqmyQ1>C-QD0$uc$c-6n$wnhDrOkVKqZ93K$ObV{sgE^9o`F|zubM=g3-Q*hyk2Ck z)V@=i>!-u+$zh_Cr@gOjS5<@rwUp!)WKt->dN(=f>tHg`4govgONzVP6szJlrl4Bmmyjf; z4)aong}B#fA|)rc%)--0GaZKTW1TgZO#RX$p9Nc`NisPlJ*Ki-#m{$BGSZ%dqPH#L zzg*};yf(Z%()&;G%r==z=WzqQ2~5JNHRz33E@jQ%U#mbVZs@-69lf& zDfG$hnHpR0m_=(N0~wmYRF@CVwc7~y zK4-#if(60Q_(ON6AN&b3AU2X*?W*W%Manpoigc-s5ah z?(|x%Jd;~uV4S>SIu(O*z)Dq7_$B7m_T2RyB?;}w@(%)xu)Gh1Ppd#`XKs6P=<7V> z{fd24uI4OG2yTNTHYXA18OU z<~qg#3dzW6Z3R{@%G|Eta9tjW{kElv-)D2mZwLJDpP7Eh<7#|nX-C4z@jE-?9C6%`L>Q0-@=k-Z?k9xwn zU)J1Jf=5au{NS6G=#H~4-iw-*JNJw&^E4us8n{|7TM;C z29TJ$Qav-!I(#g!d7|?DS*L323&LhJhmcX8-(gFKn1{e44a@gCz^A=T3Fj-mA!V3y zWCWSD1>6@h0GUb$_4R{8GSF7yeIJbKuKBdMUYNMy=GHh}&OzCFZhDkjAhH~Tcl1PY z7J2Qca1@{k7>!DQ(>l5=RM}~1k{rP9!sPyz$p4~DGL}rhNE{oBftD%LZLdMAVX}LH z@S@%gI!;a*25afQ)gls45XA-Na$0+SXi1RL)ZO1I+t>vaO4Tp+*jn)vwxF+irF#1uq|)y&Dq-7+U>#;N;cWKVgP?o=ZgITgQs4NhNb(J$IyJr(t>J!0uPr z7hCfQ0q&FI{a+FTe<$JpGll)P=)3q=!kj_H)yT!u!IVMO$<_4lZ{-2DrVQfj48j0s z)4xXui-<~#iP5N-n%kSINim4o8QYtDRg5ucSlS8MIa~hE`@aT@nmQXhSvt7bI}x(} z!}3$y(#hFH!~)<%$imDZ3;2&~HukUSCN36V$$Iv`S}DGWfWL$OJHEeX{x6aKb7_XZ zcKSQa|4(S*HUM+yzxI)G0oYg?3)z|5m=ZEF2ss;n@dAWQj2v7Hf35P@4IMKRBZCOQ zLDJOH+`@&BgPD^-$j$ukm!@o!K3zXs9M^ZI?J27E8E)w>=aexRR8-Z{X-l7zeb7mpD1zs&8hrb%>OEZ|3A;u z{|2T1I>`SsUYuM^{|XoTzre-L#qv+MSQ(lA1uk|b*8dY+vZjE)4)53L{14<<8UGEr zFKoV!20I}$BP%=M*Eau-9LL{8*1x@l|7QiW{{JS~{;x=9{cX+rpDjUOZ~VVys=&y> z@)rdELbCDc*l&n0Ujy9{94ToJu^x}WC}K*^lV2J|*|&`sB1HMdQ%UcK5~D>nu6+K< zatZ8K4zohqNR-TBF`xNh?)Kej{u0h=xdN3 z*;1iGt)xER`!@s4$EO%y4%W{N1^MgoR{NdJKaG0T&bf^Q)=voU+l-KVeWVe@&Ux}` z@#3^fN8(JcM+gSfJ$almL5dA^Rc-d1L3_0D!KzfLA>4CFZ&rdKHnz1N?_^?AB2O=u zS^m?j?>iUg2469Z`^*vqzKuGfM#Er)I!**j;xW09jQG7S#cwq^5}dWxwEgLMQ(d{N zclXD%C9s@U7ss&pRGuzc^Gh?oGr_rn5Cv>cP3S(5wyJ~(Z8P)@>BfeMI>$+i1ekzf_ zLT;yQ#qe$Kl8Sw{u-$(3z#w3l`>Pq~3bIZ^V3+L`QgL`IC!**3K^?-86W*H6UYqo8 zB@dKF@l)@W&MQI@&wdS31MGgfn|-gl0ZK_A`))HVF-gC4rJy7_IJNu&D1*TVSYNsc zQP13WjLF^p1EP0BTM7r8nG|1xy|4D=lB0@_aBV`^o)VO`l~Wx& zXcCJ7O}HPR2*@ICNC)KE7c(;S=Z+YATz5})R6ubm4{I?Unm1ql|FCO=Q6=5TwTeJ- z*#UYkZ=*ly>o*v>#K6S&R^s~J#|Ad~=qlN=4wt5n5$*-5p7@rf#q(`uPk^l(RF#-L z&{$5L+of!~@MMk4ui`Uz4#T6!3?NsPpN zR}V%_?Y3jhoEuMzL_2EJ-ddhe22Xsr!V1ED1jDseLazzX9`2%d$G<{3`UbzqO zBk{^#x{KH11gF<;$__^kjah&ZHfa%Ru!=ehIA5G`-LK5#Lf|QW4%?ck#!W+rn&xRP zI(XIk6MwM6o52tgw^x#z0>tv*H;X?#Yn0J6qU@7{lP5f*UjCT*B4^cC&d9kt8W2Lp zC_-UE4E^1aFbM{EsY)#t)Nsp*L(W&zK2)Qf@o7Ua%=@?JfR=&9PqcLl%S#aqsy5-` zWe8IHCQ$!z#aohmm%pf1ZR+kCA^I&;9umm$YVFu^0jRAaRnXHzVR&`y zJ2MScG-i~>)en^2CM(3H>oDB*X0X};Q%#!FkJTC7 zW*!|lpoM4k!QfsIw($+}6_|J5Waur-6e#{?d8J|&#>x^ui0nym63rwV3x&UcDPo^g z@pEChqaIns2n`Fy2R}YWE<1B%h-**Ybf351FO0J0Wm$%m%A^)F;6cz&0&dC!uu@31 zQb1IRps8d^HrAKmWSvZX(@!u-@wA2b77*G*t8Vd2X)xbN&{WYpUkt+nH0DL*IB-&{ zO`tg{o;;T6Hp(1nsGBh6OP-=X+*3$=KO+U{J}8>CxRtlR`Z$C?i7htxdxiEO;_kxI zA#x+B*mvB3jN}>1X8J?cGr~?o6G2MZ6QzEf#P$8s#>9DNREvgSGq8QVLAW*YOU@5Hi)gVg9 z7W$X4XSo5{eJMVi@bET3Ov()VavgW8bPnl9-}(oZZI;{E7MuKn{M0<2<}G=G4nZsr z-oiv=(7=3At3X(#q!*FLN4rwM1Ad#T_daI~fUtw*eh61h1wxXHOC@t!MQ0<$y zs4d9k=6Y1#@L`v*)>kS;Ei+Sq(EnA9+}}1NOIrfn9EbfYll2GVLKk;5*< zYWYweh#U+f6Y_b{IfqH^E0S?3?7}En<3c>*WhL2?s9F@|Vy(?FwAxWCWtWRhnh5~G z^FE}V|7p)g3%LwHlqqLSV6@0h9}`UZ2;?27qb%YjG}QMI zZ)AtN32;PBbzTQMi$n7cIg`GJi?Bk`9dkVYvoRN#zVo0@qb@4{9%-2_SjIayGXSgY ze%A@g5u5Co$7e|QLfdBxj?lY#C~_LeX@Oh-oBUKDV&}3SFv@TE9QGo|OfykJ2Qx3M zPAvJmB^64_^b{l&Z{lgLBbX4GCRONZ)a=bo%q?KkfWm4`(YkR3;fXzSNgVG|NOT#; z5XMNX*l2Ebg-C-T+z~hA4tTY08Pvt@!Y%j7Q;~8~i#T0@n>re*nHF0zQv0L1e^R2; zB&@Zp{D!^@4yJ1U92U>*fyL^~svf!GHkD82(mfNs5HPYTqjz?Aib(B>Zy2m&+0mgb z0^3qBGf8QvO8`7nKTqg7IDk%w1#r9E61_u)y3u0T{{*g(wrv4zruP!GJNK2*r&dwK zxc!DZOcCF#Czo(2Es9vm4@wKNLEC%T9+6tr4vp+l)YAMS@->IAUiQ z&)wQ>`#?vhio!^Fjhr^rKXq7O9`W$Ny6yHZfN7aVVXUy_@ zYX~|9=0T1x(^SP|(Myc#0O|FcQEQD~`cTtt1Dmex?@mH9HncKDq}!lNFL5U)nBf9a zCp>tKiqOPxh}ECZ>+&WDYRES<8zLNI)x79_Owo8v*!a^*MK*6+@Ex4IlYxsq~Jr)7KG0IC|A52*uVCt1sjD}TiT;I1My)x~@ zC^pBHA?*yWX+m>f{Tm#@{I49Ys%sSuE38X+p_o1oMnC z8b-`Yl?FU^j3nCAYZ}5uuZJWW5OB`?MDv?4R^iwfQ35?V9{n2HM520p*AAzl!=tAm z^lsZG4eKr_hujz?_4=>|fBn SFG$UaywyqEXP(wkxMgMtpbKbGaWPr05*T3v=5s z3aUMOGl^q+9&ww~LE1qmd8tiq`2L3n$3n|uuEdFnRYdRGAh`PMz-*f=0uMXXiyF4@ z%k_(RU=u9O{ITU?UZ{^~wSscFh-W>?6%nE?_yA0_w#pskrZ_^qxw&FBMFcKPrVAfy zu1(v)JWy;UC8kxDieg3v1AU#&@(**8<-OmchDbg`>tMLJ9y&DkKs*qtxdcJoT^ua zWY9rthYe_poqa1tWFA&cNb}8iBH{yK%sOAM)}3} zmAf-$oEc0Ela)er+8OBEP+D)a$kVhxvgL;=aqbeyB7rz|a7b*^^M+qm4dX(o(iY$1 z5h<+j{T`)l~ zZ2@kIx>x_mW)a*9(~DFd*l7A^@Y0-x zY!z631y>L9T8ZME=d_v*v^5?9F{|6Z zb3YpBR%I3rC!a(LpP4m$rdnO^5>Qm6Gj~~g&`V6Rg-I`fS}U`93%ac*@~@ni^ha=? z$v}Ul0D$l&8Auwcz^f>#e^e@h?<)Y%x3}atwa!)WBFN|an~&rIp{tf0x_XT zbflQSFD$r0qv2pjVhC~UrhIE&-5=(^)_psU30X>Sn`_Z{FOuIVE2T^xJHQ+A$5&JlO4)YfKvDqIo zA=bR6Rs>x$R?H>Ksly_>6yE_!@#^+6WGSi{F{a~J1OoAG2+#w}S6vrE<@WR^G{T`G zId!bcuD{sKA8C=(Kg2H0)qE$O``=(Tu=(<9=Ga^f%DL7%>7h?!iEV8@Gi)L0^Hxg< z;^^Ep&Klx@RZ??Z6=^&$9Up;72+CF*xWggR&uO1d%7P{}2ylUk32Q z5A@-ZQ`WX3&adTCi#Lyvv3e3?9^5DIOavV^tr053aF0T9b zis_PovlfUS(b$^6O&9ovj|CHvD{Pv&*}q}@D)#ZiQL=y2?0y+nImL#gZLTPA$qsoy z%J@1dVvDrSgH&6=>^r1}3GM6QJcb~x?0)wQP;!@pg3lnzVlf>D5wXW!iesV2UZ;o3{P?$yAFaDNhW%l10%-U^yA|-&xc=BByj*_DuXh2 zq*8+DLE!fcUOkI-jBU^ad%7L>Ic!L~OI)0B(UPuk|3d;q9|^~eZ>4}M#phEmB z5YIWdnM?%n_AGa zQ%mb(w1^}K>J&xo_8IyLR_N|2&Qned+|jblVEF0NqW*G)dsXC=1{{9R5@KOHCy=+r zRdzuhbO(zk^T!u}aD{-yO@aSO@~u)_OjY?bwYMSQqvm7?IQPy`v-Zsdhx{N~yhG}3 z6sH>8An&qo&r-`YqGnH`ogJ)x>iP#r{uT5YmXMQTc$%NpGiJzVQSFu^l5oo$RN7`n zFfFQNlXC)xgnc&|zfiIaoK_(XopPxIeKv%q9-#MR>P7_9@{K5fY|Y4%a)Yl)qSi(4 znmvw}*W$9k`~~S=MWY5ad5rg*^1h=NGTd9wH5+xrXMOMYg#?aVT1(1RMM(JQ?uSxm8o?q^FH1@ohHJ7`1m5eNY+(}B;{2fc z=5;S6P;fu>y8;t7tRr|%!JmGXPF%h_5Ky3|Aca5Xmta>RQFAr{ER1csAf{t;%Ohj? z*G~XdBX}kY+1xn$`2((!6~Y%)Pv2Ev~ovOSztE z7a(}0x)lVhk0}(YXsSmcXZFfzs<=~$$|fI!VxxWA(KR2puh7>(XSMzZb6*}0)%VA( zNJ)r9ku8K0X2x1%%~IJDrDWfdeaTWpSxRInlARPvS+W+XglrL#ii&KJN)n0Z&b@b- z(Y=%3_j&$!UccYBF>~jB=5yZX{aMcWoOAAawv^33wp`1xaG7!Kf6Y>ul4K-Jzap|C z;P>V?GB-=+*G3q8y)(S(Q-9U3E+{%WI=Q2An0H?8ZioLTXER~IQZuxo0-X6%{^xcIvxdKOcm>E++-ST%a6 z@c6*zQ@ce!y6>)d?JxYkH8OYF^-5Ao%*9u6mYyDcF&<}pz7PL+O1t?IAI-{?=K)lV z8>2%*gQG2TU&c)JMvV=Jof*lQpJ_5nsTufT>G|;5T|?omclE#Ti1@6>I(I&8JogOt zyKR5W3w;jn6a5#BJErJ(c|7D?eZ71hJF}^-j8jckQ!>;Wjxm-vzrQnQtV8o$Y(@Xb zkN!v+mpQ%?`K098)MwLIy{nQ`wKhrVZc+)KF;PytCieZw?wX&R)yFdTMmf${O>NV> zc*L{!fG5|9D}sOMU%xW0P3f=bNOum@7_HODseFQq&Jpz*8PDD_&L5H=>htzMvs3dy ztwRw~htD)_IZL(kRc@=$<>%kpUDuB&J-KpOh6L*GOtnvY_7qQ&yQFEtcTTRlqtD#-fuhROQ9Jd#zv z=~r`F@my&wOR^Gs;ljE{U6*Z(OZ?3g-(OoQ=ZXwPtC^~|tnpHM7qUCbUc6XQ@C+?) ze#;Z%VOJ~Lquz8{(iv&yyBT!WtZv)fb~`<(qW0_-Ba)SvOEhBHbr|=Y-)|tX^zdWSE`Ym`IKaT)mlaFQ_OX9 zdbyJIbMKE8H`2I&{kpk2PhMJo(x*x%!i>ITRd`;Yn#9k|Wly(>c_a$sBq*P{w$R${ z+CQkME@x-5>)HC2bu{H0wtx72JLFZ_!1Jcea|I2 zh9M^91BW`F8ohbsr`4;^e?RbMq=RL}t7awzE!Tn`fe9tGs@kGjb{aJtjD0ux_>rX5@!b#maj6H|5Af&mV>gE8vK~&@P;k32 zewIgzN$udi)v`Lp*WdFc?0sX9RTD(V95?HFj<5BV$CIat(Vqh?oiFxQrLQP19q^%! zQ8K8L_w z@72^MJO4g0>VXxN{iIz&zfE26-jP!q3-VfBzvGCX4;_p~M|_VVV$NfzA=5}<$Cmdd8^ZEsj@!)d+C+rGEj zQ(I)Q->?_H^)SSm_qnv)ubc1muKy}tX{$H&{#-=;+X$VvBUUA%cANa@3NGK|XtpT5 zX{hXZIPqrPI;#HXOtq?AIyx*r7?1Ab-TB3E=$3j!`0;~U56_(*%fEbA{ZlPp^SD&5 z{r&ENqN*nw2Yup4(kW@I-tZ3vWPW^_;E=h`)yO7$=PPR=S8JU&U#|6Bm@?g-VE{aj zFEQ?MJGFc0xz*H1c3nP#n{3bu(21aSIn||dRi;{u2E)U9(f8ml7b6Fwd}kRtquvW@ zuLRTha&+$7>`FSBIZVm&jbgayC#7;iChv|`$rQuQ8k^~wTR&c<>%FtLg~`*qyg7}- z^qs{_QG3{k$bQDkeZuQG-rvl~h;6wwl;NhZ`BBLc>dS8>&JIfOO;ODn90}p+7j0A@ z8NYBtWAKMDzw95|?LmFE#N#&0pyjpBH4m~kW~&_8!?TOi{;^a+_;~8+J4X#p z9aVHY9Ng8ewXs(B8@-b2`EZ|miG1DTd9CNFH9Pn(xQZLw=e%z;wcfs}qR#$#U*^7_ z+@INv>AY1Ai}EDM?TU5?l+|qhvd5z+^w6f*4TkU5hH`v(c4t*{J4Z`kGQ=uiIuG|wD+alYg4Mox*M%l z4BOun2QyW$Ioq$IzFvN=jlNm_K(XCf4iyeo`0e11Hrl9q@=8wl zWDX_8#mEuaQfgjqV6mvE77n5Tj36_5e%iDOh z#qx$jG1b6z%1X(66Xg>^QtR?3N;efuOExE`R-avUuhmzfiY71WO4I6hoF}E)qmuLN zY<=|<(~ozWk1)AMm~wKMmPuVpQ@wd{bGKc&@nMaV=NkkWIFFCI&xXl~g{ld3*1Wga zeM>1jKP-Ake~#g;PJYD}F&A_3$y!aT#7iS0ucP+Kr0>y}4^l|hE-2MFC;rv`EI`SshU*2~VRDyBNT8@~=buli8y z{pw3vPL2#5gH?%+>-0Juj#~{GjIgyb)+I&xOERwBI8_chklB@jcLhtKtA=DAwum^J~+19xwW9!g$$Iz8sa^F5+ET|81 z-MP2^&ECXEM)~nh^=mAhUAf5gHMz+WOnm4QmK`47{&g+xcycA@q@ZwZfBRIeOCwz%`%Yql3x(Q z<{@c1dG-1A!0C3@)8?BwVyG@wV&ARbdGBC<4#SHO@lmGW)HYvMoDKRHid9nKnItEj5~pnI(F+^&wRzt(9VPvvSf`AkV2dAD89;Ii_C zr;S@{3SS9_ejSzIIClLMvyRa3BD*>b^ZgsI?rWl?zmb1)y|qxvoi#C0G*88No>D#7 zvn@Y-!>X+vm`Axm3cj;R8$VR@oWZ#$ms$&PWtR?2ZA2#crR*ZMRx} z-`ez;bN}J}HJm&Ly65tqeGXFA+Swa_sYOWDs!Q#~dac(@C#W1YdP&T3jE*sO4f{q$ zj7<*txhQY{ZO!$VrDFB)d3ITY!ZF7&w~m%n^&x*cmuC}$bgL#$jXzMUc$Tpv>|DaJ zmbZO2>H7rsc1ayOA>ij8{?+ztl`(%USHRD_@4)=|X#K-b>W9Ld<|dx{+c~itxFsgL zt1bdh&j`OS=XZ;aA)QH#(lRYlszYdPmCu&P8SB4T-q33K^UX4@Hfld*Ye_7RY;kPp zLD`?m8;ULKW5rxLdw& z9ymOHyvtQB>srVk$u_;@jWY*13oYxke(w6S&V#AkYu0{8g2w6QygSa6EY?EW7TevJ zs}&+5F-hl+zmijaN<$ zVptJrU~9RIj0g_D>s(SqObQreNdxbI@syIjtgNUZH!#o$7Nn3Y!=Ut+rUS3`z zj%N4vqMK5TmZCyIDY(0Mp=wB zRzwB|918%_0tfH`k2t9M|3V8q;%)%su2#-YuI_FkB&-lcKvbLrQQ{?jNVJf~iC}Tu zIN$}3C_oE5IVAr_Kw(x`Svh;SI*3>}ofNe@=&Is~pqvDWa>Q%-5R{V^7r|j=fPThz zFgHd@Tm)Drhn4(~+Tl41*^(%PA%c1&&s3BkUSy~2YGnqjFBP1dr_iLZqp+ZGrEsEf z1OBt7aHq(l;HEGH{&uCX1pcxH|KdjY9ybM!LXtv42skwYFAgvt6*G4$L6u!tF|4?l z6c&rY0{=?v5W@(Fi3tE-({!@@$2Wj;EG#`Nto~mqM$$dR3*$ha1^J(Yu2xohPEPKk zdQJ{jnr6=265v`|QOGahuX0O3vqSrhxh26lCxGyaSG9oCHuhV210728Ys52cs(^T4 z>dHz~3;)kvN6W=G__I39olc4B1HM;O9avXsqm{m`8L-3{{319L z1|kl>cXhY3HUlJpR}Gz9PnbJ7oe))Vvhct=EK&R?Znjod?s&c3frXwHu1-Yn@hgkn ziQcQ&nK?Mw5PhKUU}tFs-3xvf`W@hFHm+tTMOE!=JY0dr&vxz(R-)>pew=s?Ov~dW zFncG)EeXxhVYo4Xt>S0$u-q63bZ#85+82bMTbvt<0b%FHA9w;z=WzojEd|Z}Npa(V z^`-cGrMYq7l1Dvm8EzbW6(a`tDQH>{12`!$=pGEf(HYGgCR5n3(baNuy6ygkTeVymP2S54*nbmcLENU z2c1sOje%C21F!IParnA8)EO9fo)rU6v|=FJ06GwclhC=6@b5zFw7D^o@O8L(fct~s zmxARIx=tGYU1|8bG<;nez8{D|V7JM@p95>d@$a!>(C5ICWB5IE9Se6p7U**Ddl>jS zj2jll4GZIhg}HzQJT>@z9E2+t#t(~wxPk>-ICvd8CkOEA5bjuU_&Q8VV0An6J<$CE zdP0l<{673S-1%5Z_&!NkF0@u0AUrHr3cfB4-zN=!E=~9xz7I&CBV4mS%{BSVOa4>#2m}fW`KOBr7 z4#p1$7lY&i@eukx z%tLV)H*uI};xMnoVP1*Dc!|S!iQ^zXio<*Z9R1zZg`36h^m8)LlcF+xCjLF>u7M2#8fna zq+tdcGXMg?=}ZLc!k{^RFme-VM(85MT!i3rME3*3B;t$)#F0n}*o}CoR1l#eX9{2r zK_rU2DWJs#kU>OJ2o4sR4RGo!L#_+K?+{5OSOhW~pd=cl^T3OXqM%<#V*^Ptg(i@c z`_PY*V*^^a15-94%?PmllMN(OKp>8bQXp$aWdoESqP2{a=THx!L4`q!i=ZPRQi#wj z6gEJ<9|KLKpeaV`{2^C`ZzG~}fW}a0qDY-TH10xcBWW6qCXqBNf_@#4i0U2Casen? zUqo&}(!U6SC0P&#K}jTLAu=KQ2Y76N(m3eqqA<9h&;Y}tMN25GEXw&u#K6GgTMRTm zfT|p+r-x$~Dlst7Xc<)+Dg9v`(3-krEQKl*kN#r2VHL>G1B({lp+OsxsDJWWruratA=8a#XFB7y*O`s#a*x2paP*YPB$3gE*eS zq7Ak%;0*Gz#h?WdXaaiKVo+TwIFGnoF*vmG6*T?5Y%!=#5S#^Gwir}L08YLyTMSw< ziUH?V5yYrtk@83w8)$--I30z`E1(=>pwQc zVF12PC=9^sui?S~@k|p`dq8N%0Z~Oj54=-H9F<_O@J~Q@3P!zzGpOVK-sI7fB8|dP7^65b=fzcIZw0 zPxK~PM~BDzAM_?v3-R;n2yG)-(FTZvbS8&420cK5m0kja{yD>r9!pFrhf zWWb3C4#jyAM-1Lc5W8%GldQ7BBSaX&p(Gg4asa5;k(5|MaHtAS4sbXdM3S{Ya3C9m zmmw@H-++swn1$sV_%8#K&V=O~aP%DRZsMm{wH>WLW%K# zh9ao!hU%s0N-SabLZudU1P3RTNI3m3?1pnLBr)XJ4OM0l*$vG>qPCQzY`biBgF=bn z{)g{|LLRyjOMLgjyeTT&grpJyC@`!p>PFsq6LKyjIpp{aRa}t)C(6T-#QrCKFDbfW z7R$HD-kZ2gjikg9enYFV$hi{?dbC_pfBgsG=;3ln1$IFWn4Q2SPb7yzTscK(D@hr4 z*$iJ&am6f@BvHa8A!);p29T6k!tlj{E83J020dObsktrz3i5o2K!GU-Y=xl3l4S8D zMcCy7Ma*X)jf2+kp$9ss?uo9%k~9UX^^#*IA&W<7&;rYWES|751YVp9?7IN7_Ql1} z_%GuZM}xyYU`0KAolu)uTos4`MJ(IHpf{C_N5?{o9+4ajmbl6cO)V04BXlQ0yXAHx zB$RL$z8lGVbQnIgwn3K{#lbq0>qdfq`KueD9$J*OKzGD^h2UNg#E|jlSg5Fq3^%bq zM-WTQ|K-C?N^^KAKC0CKn}hJ|M2CBU>0maFg_g*YgPY)85E}Hq5P}1T|kFWaEG1 zw4{zop526O96<~@c0(Iukl`j`H&ostaVFrMgqAKJ?j`JoYQJRQCSo^|5=+<(?e8JS zZbA(d>=)7oEwI}d=r{0pfmaYuZY*Js)xriBI2J$@;KnX&Z~9x+6B6LQs(u*T$XdM~M@l6Q`T zMIi`c@E;+l19ls<`wFq!pn@VQV&I(wvCHl@P$=OpAb3FVp<4-5RYg~Vl-bzDA}HF( zg0SiZ0VfoCBU%Yz)eC|cQun{mYY^O^DImiQx?A*?67zlea4(@XR0JjiH|(py?GgxW zBV{%g+H*$EN(jq({+6|*pt^t)BHV--4+LvlQb}Eq1L6&BdPBq;+6RY!3$?+aO3j$%{2@7p}M;H5_9Q%@*D7;&oOm`CV9-#~H zmx*`}=}fLW3EAe~vOs(nWs!%QkZmG}!5b8U7|^dn8aD#Ue#4g)nb3F%A@ZbG(+fYblt)(Ocbf*5k_hRUJHa1(oV1hM~#-QZ#Z zLMH)kc(J~U0ylYfgL}=1#eq7LgPV{||J@*xf+$gPkLXMY$tHpra_ol6p@?up%PLTb zMN%nUHoHNgMEES$SCQc+_*gJYL}=R*c0)RogPV{|BgjHwH|Pc6!X%Q@B`$G76BQ&e zl%!(1e4L2M4A636Q!H{>1PiTsfjbM|5RzjJpv%Ot5o9ema3F@lYi+Pl zVU!ySACZEEcS>U6;|H*WBS4^f3~&qN#EOMWynr~gkp>|q z{f!f7x6AE)LQFysgLl6OVnDdzt)xiCMzSLnK`b%Pmk&2y(4sQH5q)@{Lk4cpC!zK^ z=+cPAfqIfNHbP87Xwd({Zo&izf*5k_hAWT=aO0rjD0)l(3%enq#P}?vNQmr)Ljsx- z(B(yOu+HS*UYOze3n(b;EDBq21Bl*aVFCm}4jF#qpzW$i?gU4&=M+Kgf8jSIbg@zJ zv0AA7#z93*biheHH>@*Rz)_5t;RHGw3_%Xwq2Qo{ix2@PIk*A=@c+bc zlG>>b;oLHGzzInWnB@Mg#FC;a4le4F@!y0sEq@0C=5faY}AM8d3C=eW&nFvbYFE6$Y62Gi07eUqn%YoyE;R6qGa2*o|A83e! z_b=k$&4CLC&OuX|+_;4U=fH>oya#^=I34n@EEW>IsQW(*0UZJ|o*oC4UlHv9I&u(Q z?0>R@B}G&CoIdpKgj6 zh~83SyI8h0fkGE41RsM)25#a!2BB>W768s1;TFrDXlWxMOGl7}|7cM)@^BNfbObTv z*bVRgM1q@mA1P#mB+d)Glc3$Q;a*ZR#X)6Xbhsg>fZFHaWr7j_yCI#)v73;k|BVw# z!Sr8aG(wh+Ach>f(Kn&ups<79(*MM6P$)4zKl$z@HBLE{N1)CrBfWFGdZ{y zvUCJtq>FqP@CK7TxNwQ&21rVvcvMIx$#5hU)n&T@l1-<8-NJQXw81(K+7Al%7J?E> zau`TwazGJg>JVftcyJ(xfe!&*INTPh3UZ?#ZVL{}fa{=KZX8rN0ABId3(UyDyYLnd zw*~DHIPV&~PCP>g{p51(gD^vf&>V91fxe3sN4$#_G9wc2Pg00ocDFC7xWZ=zquU1r zH)^+&R9XQR{d*THA-DM(rzQ2*1@k~0#1e8F1TiSypZp9Rf*fLZ|F2*~i2Vp+NDX75 zRiM$sXPP4!Jyb452Y$gu{)ZVl94K^=(eO#oWO^SoCUhl8nGK02J8&VyegvHGA1$i3 zfD>Zx6Jr10V!-ZDU=4P$@8NUI(b)}!0(2#oup2J% zl7V|6_9Fm=|7cOS1tuWUdtrv|Z#ihiRgm9sRT2qs;{Brt{3h9sx@>-v)KUR{Ln}=AplOk;PNUC+ARk>PY60V z3kQ`>@Xr^5k~HKe1&}0X|D}A2pf=EDV=qx9xsxBM$CEHWs$Ah4=9C8k*u#;>{1%l9G859k6I0;3UZFKU;!x=bcn|&_@CttquA+#;RTOb} zH<&oIAqM{-KQM@iLo=bkbFiQp261TS5qJ+874QlLyZ`=p8dwhexF2z7DuMg2$JH$E zOopDYvs}3084YN?I&ty>J)mc~VhAw>q1Q;`6L}I5VhVy7Qllj=hTw7$#E=>*c`*c+ ziy#L7(Q>g7hj)_`o~s6P4|XUB!bzZsTIR`ET>^4=fp$!AvNru07;WD zoTM)NFTb?tDPW5vcnWymDC{ZFK_j&Tak!klj9!%?RhrZg7UiJ#D(r$F7l*DOv1yR@ zDm>wb(yOGl06#KtIlYP@Iqe;Cy+qx*e1tG0&rpP(REQ)96(Xow3wU+7_KiYdlA7@n zh`>A1?jz06;72Jg3nG#SBN0NH%CH3P)L8u)GuTFvUD%6f7DJC!J zNH8Nq>BuGfZ{f$7E~{mvF$6@AxFewexD2Lk@cS2bQH5 z8}<)5==mSGH+I=_&=Wv#K6BY}&@;d#wc~%Z3q1u~QZ)XD9KvYy?`)4`gYCZznDDRy z1Y0F35dTvSVeE*Y4{4r4zFp$bXpivhU*Hv_KdQNcUtjD*_~Dz&F*_`&wSfCukp!VS z6bLdvLvY}Rt|769U*b^k$e`u6pjcvsz(BN|mf=XVAd-r&4xlgetIKdGIMOU=NfDTQ zN8->8cuDp5A9BzQc(L*eY|R1ZZ}9WN|I7cN(iwDz1Xy<>zFP_;mpCxJDgjOoNPv|E z;%`WTgMKmK$#7r-LwpJUw*baWr;wva=G`OkwpKM*V z_VLX?wr@{*Z`?oAkv^HPZ5*eO&QkP;P2Rqv_#pE|-}^faPTc6;H#|?{J(2Re`JAT1 z@2TPWsp(`Jt$`ljFK3#|29tf8sdyi+;o-GhH)2vMtv5GN9%0P*nDRyUJ6{iNKkvS` zL2Eju6#r!RG+p=89-p^nSBl#iNHd%BYb4i@LDXkm8a0>FuJMuF;=FR~cePCwnUp-e zbd-POPN%%}`Mp|fidWr$@`Y*bmj<&x-0eY>hECnzRa4SdjMuxpl znO#cLQAL#dhv4g%ti3O|{7p+Rv}xWR3Mm|nCLU`}?|3l(Zev!tJg?|sYSpUQFD!bT z6)vgMh4*bZ3*I)5pUq#HuES)?8QGzAPWbNW;-7`XSKr*f(oESGl3CMs(UYgJQ$aC1 zm7n`Yt%u2-^VUDwrx-7u`pGG|c7Jd*|3j{a3YWfyMxP3{-W+Ux=KQ{GwYpQ-czuO! z&BsS4cz($=xx7|T-WmC=#BY=K%y+X%lb`&Lg`U6H=hNlL{*f}|IHO#&;g3Ak2&Mbb zN6CS0;y+#u+`FkmDKvaM{nI+tM9D!d_eha*U#8P#8hr7rY znPdJ;chyNH`oKbLw=!M&*pc}Lwn{ZG`EKRzYuZKMe8t&H6y(@D+Af+UhkJ@m1-q@?G%r-YqQNhw|!|pm;_=?}>TZ;*f&Q4vKt?hEKcqY%X|D4Z$BpY<-PcHt} zIf0dPkNx?R{u1!ZkiwTq=GWfKhqza>D$^h1%K2mXG8X*W{K`k6opTCjIWa@Jf9A)A|J^%^R3m5Q$IN81zFIxcpm)7hw{ z)z{be`c-R>_XkxS_n+ms6kN4xozkmwcp zR(p#c+!oijgHC2O5m{yt8=C9K5i z^qi^+jSh|2CU&msCR~27PLt+KHNmIs7cMe&ItQ+mh!T(2aU7=Rd$DGRV&vG-mb3NW z9u9i(#7mxk9lc4*nT{r@_^y+t(y&IVu^;c=z9+s6@vYCl+^ZCQ@yd-~J#V$`7De}4 zcBx5q`C*w~RvZsJTXVmWc4uYQieBe{&`$CWV((`GZyOsM>h-d3nFCgtQOm{0}a;V$#m2Q4Bzq8l-r)sRlKQfP$UY>3V zO>H_m@a4mYfq=W-rM{(ukNWejtVod&lWl9mZgCn3KE~?t=r(1H_PdXo;^Sin;wx5v zb-ygv8Zb~C5&z0*I59^gA!n~LXZNgckB-n1t;-I2KNcXc zKV3bw^yT|-eRE#yNQ&nnSvsNiae;2{h83&soZDyq%8H}DoZ-%oh^_og!4pH<+_v~l z!PiaVoX@XlVPJT|vxSDQ@dMQx%$GZ#e_Y#Xx}t7)Cw-&C#3r=OwOF?{3n3k!Sb98*`E-C+%V1Y?jbPYL1H{uUBlleTFZ< zsoX)OT56|Bx66xlEiIa392v}6Y~`PKs|CJz>+Xi(?As6%b)+xO@x?(FXg*Lxt@ zPbJhtg2Z+zCLd%ALG&Bfa)&9BmON*is~R&WeHde)ttkFDlwO6%I4NlI$mn3z6k z*&L~Z98{UM;s-A)jn465x5ekiQcC-`_qDQpuU$voww~>TW9M_-*Ec=RsXn|W^z_34 zo^AWrGETBZ;}YWHlnM%C>f!~Xtz4h|@X?#8J?f~}mLU=+8Nlfgb7`J-w`$=h=B?cl zPbJs7F=*`xO3Jtxmw9;=t-iXx{#rX*b)HqLG%SVV_j@`=l)vkyZ`QquJ8vW`q@w=( ziQJJxS5=-}xKPJ8b!$|6($ebYW#+U_j1hIPks2=g^AR;xVRatOLVa~Xsq>kh1zH*= zoL4fL&ExGgE=8%GEM|`0da(0p=!6*O&N#FEj_vjxyKc44_D_Gvf3Q+%odk8eV%W`F z>msZzGuOwIjjZkpJ#49ntvk7qwTxF91n_j477&re7A-=m}=liMjLv8G@zDwiz*=h>B9pI0`JiPNb zeXnrJeB0GCzpHZ0!>`{%c5YX&{YSwbf976KW-gfvwUN>GqY|@ixtQs$Tu$#-qF+T* zht5dMZJ&%`UHd8Jfevm=z{scaoA>r_EWsTqezYQnvsQuID~_|AG^lSlPk2_ZH{LZG{qAlQ{IU-2QiHQ&;3^ zFa9s-<|Ta_e|vt(@GFVv-8bF2{e+Ns!2Oo=vtL&D*f5A3%MyN5=I{z@-Ti7O_S*dL zt4Xo>!?(jfFiMx6d&eVhT~ZgRr`_UCR zv|Oz=xP1EOu4xx-ow?wf$A9`f|CE$`n)A6uOH@i>QxwO~P=~_b{d&3P$1EQ%TltvwrX7*g-Im}J%PXpLW57ZdaKwJ9q>%g3^O`w2i zNpQOJT1m&imS>tYrQPKt$lZDz0$2KKF$$gS`TsLQ_b)r;n88%v36e>HPM&f#-1) z-3nt*4E2r&#{W5!b9N-PC#%x!jQoJ^j<1y~dgrFgy27kVH@tMgIX>C(O>8dy!pFly zUPJogE28h2ZI(OVqg30f7XMhbxX=5Swf!Csw%k*f*{ydrrid7wq)VoJaO}L)#}%>x zT8u|yo+VwrtL)RS`2F?iCqtX1bFsH?8tP@Z?|67=Zo`hYj5Yb9JPbBjT6($fCBLY6 zJ<=8kG+phH@wv4s?Fsk1_Sek^Q|rH(Y|3Xj(_`jy?amLkQ_Odi;xY_$IQQ=VcJdbM zyLGcowT>e<>mr`r>P`RM`uW#BAC~f`}6?<(g=dccr%bWwUZ3 zSVVt{(TD0C)$s0LzKt=XqA$i*Xb%pB+(-x)CpZLGkjws6ZA)NpY74a0RAxdH5+&)_dJN^8=>=?820_vbZ_h1wOJ8=HaR*_jOi9^ zncCFU5pKKTiFa>wP*j$=2t|l!O z9rHwv8WU4?Wc|@?ySMh772K4=xb~V-*WO`|$livp{PREpA-?E`FXR2pdV!v|jHzobOjy;b?du~i9l}fw$oV5B>`BJn0 zhnRi*?8b^~e<;_c-`y?~-hbI1J76VT;J%C1CeQlSPz;ak`16-aW-O8@Veb}I;KI@CPF%gHx}8hp^^^j4c5tvzPO(! zLzdprpw4eCJ?B%Gt!v+^=|u;y-14X{ixSA+@f5Rys~|p#>r@GqtJ{RDgo|_HlSY+> z+?@LQg6oDkE${C1+|7G5)mME}{%us>m}ruxn(@?W+==UAQ|!K1j-3uEx6(MXqmtGs z@YVOU*SL14T?4+S`8{x-=^ga7=bbJ*Rvg`mJxtH)$oiI*M(DyZ)ATJn+jJWz+Vonr z3fuKQy6>+uQwAH}&1S7{3d03ag55uKsTM zE;Oq(A(+b5bwXJ8W{moZ_H%0jdk*!!_+I$#VPxkZ^WDVWiq2v4j&VKt8tor`C3(7- z%`RaE$%jmSI?-nHcde=DrR=Wa@U+pbj$v*(7QR&(=3T0cKFs6s zQn@izny+R!sZrA9CZ9$+xA)$XgM3%oaPe#|!I>{;ubqE;#wte@$n{Bk%quZ6-dq=LJ!)L!Sd$RV{KZ6i56$);^)K`|5!9Ub>MEdwdz z>sDFFdtEFy{L_~?qvjzm{eI%>(b-LZ2A)o~N8osV-k_16)EbeZY4qh5<=C!YAahjX zWvCQQfkJ+RyQlqY5vS3D1Y)ty}YWL)0DqO&_CvY|^Y!<}mAFHeuX+7E7akR8a8a9(&e8?JoZ4 zJg;-S>5A`V>Xl_SMZRB8n|*YfA?rYpUgeox2G#9rbzOK2S{hkLYUu6hs*ZGDkShFr z>vOylEyIPw&YRR?H#<`)@mNL+>iV$j)X~aj6uJo4T5zyGH7j2EszCD;XTyYeA~lmV zTcPapV41gP>yPiaW{EYI7A2=HW|6&)u>$WZgn9le#ND6sz*mH*R9-k_HT3{@=w^cA3Ur4 zaroR^_qC4E{WfoZ{N{_A%JcjFs?l%2=f#A1(Xo8}^Tm&EjOtBs?;h%T>Qq;jrBf#- z<~>StYPIvRZH%Yx_vj>DvulV8ihAGtzLI;xx*7B70~pa~4(2S|e=^hUJ-|3BPOEoc zh%e-pj{2a>v;7L=k2W#=xh^OwAf=6qNVp=C_He_MMC(;!{c{ziv5L2DQy8zmy=T7Z zD~A5m@42qByaK**OBW3ZDm7wHovdleKh+{s#kU*?fmPFTn^7RJdF)*c_ zIdM|gpZB4Tt&5cR^aG`!vTk*g0~@%lOKUo;3-`C;6t^~Hha^ScWp8MEkS)hL>kl@1?oJM?*==Gh?xi8fF#p}1{)){#zAwH* z&D=VgT7#a}3|&F%kKCbB3SRp}*q#U1a8J54s(awQ+__PmB)+u7Yg-ECDQ(uXu8KGx zdx1R`!~10AV4r6Lr_1SNA%+k>296f~k*-y0%$N9D1m14s)sD%EcKDta{Pu$vllG^_ z`uY6F9Y+pNR<)}+b2Ohby?E`>Xi@aXorN|IBD5_Y=N}i^bUHMp`_3FX*Dp$t*D@ythO!2;X=G^OwBpl`k-*@jF!^gc(DRi=iNu0>$iSNkXLOy zdC<2$Okj&TXXKM{?kp*t&8sx|1k_4=$M(Cf9<;dWv+uO&c+aaIhlgpg9d5;|PMnXi znPZi6*PEMe;Xm6IvHgBb8K+}7O-E{}>tT*pkA;eZO%uBl?(f`fQp0)~SO1~{n}e$x z!$jHBH8kd!uA4MVdfhh>>+><0m$S3)TZ?O;)3tF7Lq{O{sORSg{NIK(VlY->6#Se9 z!k^TWUf%7mzQ_7&y$wTd!S}6Aw|~Cm(LV9z{_c~UQ&#zPSiiouRkS@_9R6k|XKg&i z-m-j|)${aJ9rG`G=wklm_O-B$alPVA0j$cga%ocj6FS1$;0>H6|Xh-_)3963{OdGa=mS8OiB z`%iKHg;O5{vOhj!KV5d_`1?keP;5l=N#8$%&ime+jg`;bnsB71S;(3Bs9b}d@W3^v zdpj<#7C6mkA@OXbw)lxCg`2_?^&3>|whBDfkk3vyMO9lLoIW#tit=RzmvNT#pY=a4 zzbM%#ubsa&_sQ3xRX5gV>)OX0(zwpAm0n&`sved;5dFHyu-Oz__ui>ZcFgS6u*6RZ z}k~6e^o$3ZoQy>?_k8Ug%HnWLi{$YmD@o`6Df)J6hWqVqfBuc|k1L_}jygxUb^_ zIqwqxG`{=gYj1r)+3#qKc~1;8b=7yj?EC{lx%V!131y#cjQ+mw`PwXg!xyVQ6rXF| z$NzY`R5qj~YIU-5#w#urA4%TpE`^)@x`KRWMd~xA%4IjpRs5j&!zgzr#kF;E=Hpg3 zmrNs}FCtoHL&pRJo;L{yOLS}0JlfCAY4Ga&5x29{GSO3}+h<&jy0~1n>EGVwuNYQ- ze05imvvG2kzSmu&Ka+uT`8!x07}T~NeEpHGI#vGtZnwnkC*G{Ft(4=s&J+2xP-wy%u2^CG?H zVrPgsPvQzuoOe^`aLU@;m@Jb9ml|)EYkv|Y%qs6zX3m+&rB#MDJc@qfl075gfAvAC zY}-f!{lF>Qn~d{@r!2V)s56qQF{6(*p9-D{pHb}nGOOf&NU=vV*KoYCiIzI(!yScB zocAMT))rthgx$-`?>xP7_);n6L|FE#qM&yl29n-8ho9}BTJ=k(o?7Ljt?$DqMx$}z zBkw0!Ox3O)-NjHP@@CxyoxCtz-^4pde$jchg^OoM^Y7iEHKWIJNnqgC%(scLH`l|& z2gi@Q4aNIt&v&aEx>zgM=Z&=sPwG$BzxBHxn)D#6Qu9yPOvvi-#^&T-*(S4x_GJw3 zY_vah*C*u#?ICHe^qW4Vu?I3XIs{w}uM`ekl~>--AAKy=WRS5_rp3fPy{P$`H6rFhS@Ir0B!l!~KNB6vA-037d?zPUR*jw^|uX<<0(|X#W zI~}pwPT4ws$7&noSfwjtlo}D<^sZay^@?SN1>HFD-UL?!U zcK$3Gv@E-lP$1fJt)w!Y-`}`D_?;#lU5jJyY~Qm3p96JTJ0$L$*q$d?nPvYu!uygN zeZ7HVqSFqSidp_o-qVL#t+toW&s=@Cv9&z(xSV6S(P;7oXU8aISEGr_a*Gd@1}q5?#F~yU-RRjm=ydapt9!5)19pmZ=7U&X)@@)hU|#o=q_CCFljYn z5nC@^fpNPgQDGg2`zC889cGg)FPrUnYiteGTI|!RcwvQc`mf$q&wd1I<`^h3#np_x zXqDu8EAYH}?N|CEY=>L-SY1)k(T%faSJ0Humhz5^P8OlrCp_3{@eOxepUcQ|D#1za zQpKu^WoaVqT+bRxNYKGmwEO_Nc%E4-I0 zewM;rU1jI`N}GTUZt3so6bVopDy%ik2kjoY&A8$aI~ zOhu>HR;HuTb6`e{sx#k^Y{ypG5LAt-&2PRNp>s?qk1kqn*h*?9}<9t0NZF zT^;2~2NTPJd$&6S`mNAI2*uR~*^_GBO4QEbgrF}i6 zN~%$hrp&a`_PDCVstY51t0Fe?34Fe)L_I55EtAk}eYg*z@U3t*Gep<{wpstqErKe-x2Hp?CAM>m`Y^>L^ zTvWzzCtNK1@T|Zut2Q^j&-%H;Gfq*q?{~hMm4wB8NPqF*`nRtiy{jl+IIL4)+VF{O zrM9K}cBTTpq&Io}B>{sqiV=k?m|T1|JNLKW;p6oA)b%!L73Z6`Z!1|w^mR{fDtURm zWnIj@p|2Nx=EQC6*w^csU_K1!zke3e9V^JYvmwjD)Y9DgF%^@MK!ZMW-w)|v*B8v6 zhN5F*#z*T;L}kvX2=6=EJwaKL-9^pTT)y+y%k1@e`QDu^j^(3vjB|M?|vI z!A(z}XlIEU88WY9>1gG+w(*8%p$xBE^@ApM$=gRej{1)Q^DiDjhiu+_VwO5R@abzz zp`Tr`&2Vw`js2@jT60}hEX*`C9GkZ@Pk;K5Q1^j1q@I^OOr=qc{yKxPJ%t33)v<$Br4LGv4?eiZS#J9$`_GW! zz8%~5jq|-eo^I7zz+K%w;u@fqZe^vLbE$s=XPd$?f6vjU88}#~Lnw;EGk-E-*mhX=rD+>eGHYJ&yoC zg{+4rx<_Y*v&EHUUG`K_$t;`q#4R`$!(S}9%^Th6qsI5-lq@(Lp}e^rOz#l0?R#`XCD zNv~@570?N5SH54R*P_e5TldI7O8WP^ZQf}~tq(6}PBQ&C6ZK(w%j>uTenbNga* zyS6&s;Ev^!V`uLY^XD1X(3sbxIsW{;*xl1uRkXsMDMY(XYqba z+Lq)?_1E;yuH2_`Dl{>a?;3?uc~Q9Lj9uKodp#}w&$~U<-??IjkCzq2d1GF8-Kq3X zdwDHf%Do|AKs4x;kkjxb5C3Z%;U`r_FWjgze23lP;Q5T@+L8FS5hEiCd7RMc{d7hh zMn9ar`&IUh#pG2+wfUX?`e*-;Ws}F*&s=r&yG8A}=k2K5?{lr$Vy$=N-gx;v&&qW< zF-qLIwvJL0_p0r;e`Rjo?)iFB^@MfL9P%)%WE^dPte38~wYY)3)ypmSRe> zp7q%Y-A+1O@H=?N_{`kevgcn47zY&&d;R_x@p~k}CbPfmZS3JK`2pM&CS${|3qy`+ zzhv$cNnjLA{NQZd-q&MZb;&Cjt1L1&ZB{#PH-5zYO=;dxj5S{?cIW=g^zv^4LFKos z;;xQmI=7W#l=Qi_cQP>T+^u-o^l8ebmweTcRws`z3tpi9bGzKBI|1sdv2n=!Sv9r7ZCoLk$mw~ zN2S+%7qhMk<6hvOUPhnOAOB?BjOe-kfCc~AkJDRkw0C@H`6XJ{eUi-)|((;*jmudCxT3u4xUYZtd;Z_qquwtg>0%$%&in=8daE+G##ZREKn= zdl-I=3bW|^{its=BwKq`3|H13>OBW0!m>qIy?K6ZW{Y&Q&o(WZZSR<39&HepzgD`v z>(EUm*0TbKBfe@EZ26#FAiv=*?Kb~yodGuwr>H244aan?ICEj(<_7=u4!K{ZF6h+oz-Z<-YW-$cL(|%rR%oikexG zHO9mZ(Q)2id&xR?tcixpO$Y`+zr6`?MnN#Y0&x2B-R~`+)7n zz($!mLFO_G;(2Lzi*i*LSTt_G9Y`1T_BvD~c%|>3 z!>`Q~?rUYEs%2Z)x5@Mtd_z=9=%@U4zDBV0f-imPW1$1cz!!Ve@mt`N6>r@s&Ds_} zvD4JVTx(4BXNu1~z6GyA?UAypqwKxoHV&>~^nHOFB!b~T&|`B*`-%hX&_e1rQxS>z zk=mm+y)Mo5QOw&-K-^MD18)n-*c=%d+>FFC!Ha$j`F{3(&xhuj@mj~>c{9@PCxO(Z zc>A8Wia0GDIWy0L^AOiw$gEl``8qof*%Y%>cRA3TCExQ+FtX>GKi07`4CXk@>{AF2x-+$j)D~XMV?rZzy*A1er)nB;#d+uXFSC<{( zi=Y0RYh2NznGrz}f+U1v>q^!IW>l&hw# zAF6FirQ_&3A+8N8PTEf!){hW80T!6;*kglqLG8LDmNm{%%hL7XZmwh zCfMf8nk5RP<8zXhn8tL1xt4Qgbb)mq9<`997jEGtP14Zk%|HmVyZCc32U~(37HZWk zJ3ui}%(XY_0ia(G+3S=a>U^4wgA51XtKgigBnH6L%@&??gLzoR9Fu#5D%hREo!8l6 zC0lm8K<>~rJN)HWD6q?*D)npXVUK^;%v+8{j?(PZ$L^Y3g8dZb8hq$IyUakWIp zMT>wIU>OWmkcSpy zn|uWewXe`#J~932_po*+g^lMTb#2(0adHBKtiD^oQ_b#hTeeUH0k5Xr6E6v}nHLd; z{>eP~rJTBP4lnM;*V(sZeF-sbET3?_Um~*C1pVf{(YN4?Eh`yd{rk*-*HE{qW)=OT z{>%TX{wv;V>)YMT)uvarwz@$^Fy&SXIrAia1@A+^6k57WwrU}8V7qbxv9-tt_M;;B zeZ`mel#3{*;SqyI$0W>G=Lq(@zvU2iR#F_kYupX%(FfoZRhbx-9B$kM`hVRq=J%K= zHLaVz9W6Z#9qqq>X#X|yzaae&@BT~Ae}}DLZffS_`2TFd;h!=882THi|Cqrct?yuI zY{aAF;B3rA`#*L6-*|-gzupzmf-xSI7H$(h8$MXE2 zIr?wX=O%Fdn}PqErQpAc%l~^V%HJyd|I(!YdkJvM^ir6x37~`P{Gj|J1q+X6H!lWW zmKXK+2XxXiP_IsDkpa~K*6YVRzj=m49k5v^V}s?ey!w`^0vcA=Y21>Y9VyWYU6kn* zK+7y-82FGDT?5{aiC}@8(a;kYIvT}V6xodZqeVo*9OL%pU0o0+61OFc#wd>M_Qd-B zd*vc26drW6yu2Pv7PE)dq9P+ebf=Z3y(X&3w#F3ffwhV+VvIOia1<8F65VXn<*%bU zZIEeM7i4gvp3)NjC6~*Bx$GDG$zzcHlAP+`vxQd4&YS-1;gAJ zghP~~`;A}NnuA235brH+ZYyvj{b0EeX)RzC;=6G_&xB8WxWYnfjd)Mq1ubpkJtb{$ zcI7C-KoYaE?Y!bub5mVJot5V0{c+jw!sB^^-T>SWo@dm0Yi6b#vGL$wy}=%M3()BD zVsnLF-g@!e1itjl?^XHou79_@<8`759s~iu&y*2dz5RYM#XLixl;Rg_zP%K{YNOGt z4ujvg9Wgr{=l7l6-SfxXj(yS#Gu##cL!r@}7Vt}}^aREVdwZ#8zy;-8mH>&1tF@}d zbZM_@g}~{VOyD7BbG^ZG^gZwFWwr-uI70Iy#B;ctcPpsY1pK_C`f6?c$LQEE1pZwQ zR-kMK+IoW?3p$UM--i*K*GctLsgP&xXZx=^M z7liz4ZP1J`nltoTO|olyu{%oI+r$19-6?z??j19_H|`8|CH%m2h0&=K8#XR z2;M9#2SNbmR<5Y;l?VQyG!<6jLLsY&Qy4uRP11-+ieR9mbEu36yBFCNwyHj#y_OD;WkF%EV1;|KGqWLCwQ@EyX3;~oBo zjAQTzVyV2j|I36d=rq=Xda*_%WYn}Y!ctJ<`|nM!aG2j9l{c~Hzmz6yMMB7^zia4B zNj1iP*f5kqW~m#cwWI6Rc3ui_b!=?ycO~VCc|)Ha3rZobl{;aT<2K}225Lk&r#sDN2EU1Za``BXX!g^@?*Z)kcfOWjq6sP$D6XE^(Eyf3k5c~i3wAV*<*C(7s zyE^OJbMj}U^Dn?p769(IsN??(kqY_go=E)%bDTHNDhd4>r1TnhO7S0CpFjYF(O-Oi zzwSc253*u}dcikQ^CcD|*Jm}51X%M4Pk%ka(ZDwu6hAzc2rz}8)?gkM2q5uUuBK+Q z8#3rYh5vmyeXbWUxxtRId2M~3a<*TAG{0_Xu?x~H zQl|Fo0>cfSDkU!%PMEq*V&%t)1FUi~m~I@OE@ze;O)gZ&M+sOZoSzbJ$t?azij*-l zkA_zJE2{QO)QLlTX%+@gIhbhcy0T7|rby*)zE*P%LlkhAuPli>f3@ceFqJO=m4iVI z!$j>56Q|-A*5x@Q;z=vW=Vk84hc);mQ#;)9vEnIk%lT(7MsOp}ooyVu;HRRDC?G>k z2xL{7T!d#F>BU6CgcbxX>}`-pnHjcB%#uDmRf3H@0mKx9IH{DxJiLem4M2M-2;z%{gnG zsbYQYtByEV2E@{K*Bongj?P^o!bt*^F4Hsf$Moa0Qm}_Y{TYy-AOVqK3r)Us2@3w}@-cJZ;Ic zvmFb90-eDDS+QfEcun$xw(m(te{P^D@!Da$GWJ6Ad8`>j09fw2Wt>Xo^(7o;e}hVH z z-H}3Ye7`1ybqP#!;X>p_f1F_YeEkFK1pYt~HQE^rwJujc!sX(y7X3v|{zR69dN~|T zGI04iSASIx|GPP^M)SmGcw;ATt42@{sYX)>elGq>ML&5VVZ_BU|MXlIGd%G@mT>b0 zv_`2uHENLq(9A&V0zOA*%j{mlg7sW!bb3HSe~6!t4H|~!EB4A7s^<>pIzWfDdXPt6vRQ;m< z+%L_pWUA{ykSD*2;LxQ0R9fqZr7JS`DjmZPpUep|cC1U^Ema3Bks(CWlD_D;Fz@ON zUz{d+p??(c5RqRzxYr2}TnuEz3p$LhIqjk0%1LLV8X);5aH5kUI4kej;X*6G<@@In z1(%+~1Rg5WtPYBx!kwR%443nRidwp2vk9Dk7Y^gxy6*y{eL%*51}r{7%h94HC%*(0 zB}ZFmPQGngZAd%E3RE>UvFN{~G<}GRm`jgfeS|c}t+DKW?%(MJ>UI6x{xTm$1DILB z4}&(y!LqtuMZ^Gi4Kb7On@6Gz=_5$NOB0jyHSEK?DE!t?r(K$V2C#-Dy8^UUm2BGW z?SqV9atQ1o4kf8yU-PpChH9qVF9}b=O{z9suDFIV-oCVM2Hup zX*U}&k>Ep;X3!u}9v8?KP)rgL+k6#DK ze36)4+MuRjnV;Va#TLtwHb2vqhPB|O&QwqsY{UK=;rA`* z_#f^@G32{3KFNV}vM5D~iuCJE00*!XI`}SFtwk(=9sUOx3!hPz-(bjoC2v{*oiGBe z#}8HFmF!r{MB3i|1hmrgms!jRrZrS9w*H*VY$mn}3uJBcL)WQW1JZDv`oPrOUJPJh zBlyojr(|KpMvD<&xL|wi0cP>Np&`=BcNo!2NX)@U6|_|_lPZ|zXP^n1g@s79zmwrO z4yjq(;j9>V0?z@tI>pNi#|()xIuny^ zQ#Hr`sk%Ujw#$hLWn#G%~yevV#r)Yf& zEVC!X(6Xw>aF~|n{z5R~Yota}D3o(~EHfX!_eMTa(e(&wisV|$D3AkO`j zE8L#Fx-fIh0@xwNk(ge^@2|KCJ0+Ej$7bh&c~-sSHQ5>5H}6_0f! zq&7h)?&`KNRp(ch(}Nqdr-?pJc)`{LeT{m;GCdEU_LRoWbf1>#;Lb&O* zUA;(_o6o~$X`_yedYwrYG_WSqdbowc?G)U&lpVA{8xTYYpd0CW@A#7(N=cWloAIA44_yu-$;mQJk@p0U5z?AbRHc6EZe z4N*Eeh5?)-y;_lo1uIamQCd@W=jju;*@7s0eJT7^5e_b{SHeCu{~WfwM(^yK`b3oY zMC4KM#>8;N+_>TJesE=bXRFM7bLjb;t*Af8q25KDvGy(Xb*z>5$74#&# z%qzYt|F}x2(O|peh&G$+WtBH#ih(%dZ#ZQrXh>)%I(%4XI--NUARW`iDPofr`fdDK z>X>Fr@P7U(p8)*Q1Dp_J5!GFwK5;pt6QR2`J!*DSINX4JDkJ2Bu?SP-Ti@(AY^J;1 zw2rhh>uP^%k;>9&ZnO|5eNXbe_nq*Sn5M^%JGuTm)wM&kaosBjcDKE8-5nK))n{h- zFnkuJRcl%rlDZsrajiBYy}P$tIAn-hOVtn~NM4_M6@*f%tLMDiU)wsC$ z7V8^@)@_5;yK$@YNyig5v+HVybP)-T8HWin%hHI-9VwH~c#4fA%#qc+X+tCuor!PS zN*3nOi9c4e|AlpDczBYYq3i~D9MHlSYdTSec1_(>V2-l_(Pk@sMXmdx;ZpU9ozCV+ zNVwL7FJ`Oi>*^16gGZ$Kh@YA_3Q}u`*3B7gT+NSy0qTKwRk6cQIo23YwFE?fNp6#P zUT0;F7E7(rWf@{g0}zFV0EGHAeI`&1Q=auM+Pix7w7P0zOIoqc(ij(>0P<{2dbdT2 z%OgHcTIKR$`1%^=^l?Bse@TkdvR*>6vKk{z)5yzlRwv7sM)j~kdK;~0+-q19T+dd! z+D)`uy8=>w)#S(gj6udv=Eo4TrMPZNOZ~7u(OKnUs~-KOep9jS+O;XOa-^3!_A4AZ z-o1K!x}yA&Lplk&U0^mmL>s($5VTGk1{QXt#wnrt)mQ~@AVpX7%-G-6uf+z<7ZN-( zs(6ABU$nM#TRH3KWcr7KjEn|qMBd0u0khc%ct52|b z&CpkZEd@7uggH4BfyyS|U6Sb}vx28|7(zdYL|zaka+wnM7j|9fXL2a@743$GxI#al zIcrxx(7QDRF}{u6!r6NkWA+4&HvNtxcPo9{JbP}7&^d6oJ|Ls|h#J4{TT!=Qlbsne z{$Q#tqj7*g^Xqf|fhmZYOBoBG^Cn#%^U9(0>pn1}Uk|nI$4I>r9l6y$#X1k1fn#fN zd_BSQN*%)$1=6z~c}rPBKW~`>ZNwN4c$NQ7Jr{liX+$0;Z$&r?X#@fGQ;njEfd~|B zY|VMwV!TvPxTNEplxfvNdm0Oc@RGOzhkM^xwe_9KRLC-Ja2;=H6{-S|myvj~g!}ko)+WD#NERrxTdR^@FbkyPS(r|uW(7iv(Y0Uw6@faB-0h=gE|rWLYC&`@%;a7CSM_XS)ky0%a|iCayL>@8DxDO*K&6qIS} z-fxEt*GqHHT$~g5Az(&3Bb4o>P+1&XCQ}5{?@85JB&n*#T7VQ{U1G3FI}a|zob<;q z3@AoJ0%eb$v)LEUzKsm4wm|Z&+NU{hvpR6Xs_kngKZ0){FX~*R0Jrc{qb5HyH$OWJ zWA(X@_`&aKd(ZGYN1jMg!qq`P;|%ZtS&KmJaT96zJlxJ8=xI9`^}bk7l{P_S^&OD4K>2q?50s6=ThJvHF2rDKupOs-?GRkW34B-Yo7PuzP0qT=3# zEiL4OyeQvQ*E3d>;pe(igjpN4KyLpmEkvF4_UEWOk%3k{Hl-!El8HKK^I>qnw))fi zDE>$~0u{F#@L8aoP*xOT<`l!*{Q$M@s~dN}liM@fY&I*5N}-iElo!BfG|yOSej4zS zz<5*^W0qk)SfCJgGbS3YI?J`fml}JFAh5N=m)7XL_n~%Vr!cS>X;W z?qMg^{&~{HfwOX6Tw;{}9;I^Mq{7UedQH+*+%d;Kpe?giJ2C$Q5N$%<-xBQixLpSs zy=YnhRwlc2XW=1y>MtDx-oe)@y+o%%Y)djz;aI;c#Y52qWdE|q_TG8)p=Uf5Dl9P$ zB1dxX(=1nCi0JGXEYcqR=S#)Pv;eI}e>;>_guU9)R42u4z}gkBa^Y$()|~n%e$?2A zE0lztNhuz_bC8LVmkQ2Pbepj5;S1#(Jnncq-?=6a`=st)tY@wn%1O%%q6tlXeFJZQ zSX0xjgp@PGbgB|G_EQg?hDY*od$qV>K%1^aLVm|n0UqB0W;!Z>jCR;fquP1DYZzLJo5iA0GxCFwaC>1 z`uj6P~{V(6W0gvCi2f-gQ4^Z zjL*wvIHgKe`+fMs&g-`$HKnG?+=3lU=5ydVG2Fa;aTC=NJ^!qO$7ma~O(1SCzMh2! zcbK>+Zb~!{3ASQ~j^I%~YTam*FGybk-~t9-TyD0DJtzf3sZXzyNSq!+67H2RWlE-z z%-u-gqOynI_9u>o|LrNKA~uJP(ef1sNS2Zj3>%Y)XxfOXj)jXI zA|nVJ`~9|SPxTkh^5$4qlh0LD&S&Jc3+14S&J)eJAZ+bcvdNTdamOW%Xw!JgbxO4y zb1`j-#sVky#qmpt>qhW`ZS5A(byki=9g(at!hU8y#ye}5=wtDHC)bp4MpKg|mY;jY zah$ul)4;=gruhS&*@3zLn)?dz+{1Pgch}-obQR)sxTM~Rl9gpP z0F+|0i1s$IN$;j!8R?XTKJzPw+jqlMm%~MXC(2~Xa!QKz6OvY1p6-3ew&{*e>IGJ5 z=XnhDVN!$YSL;RHiVJnycy@weLu$kn?P`Vh%j>!=h=oY9l?SmH@gkyE)Q4)U92{m^ z;Bpc1i8-nUssv9JX_3M`N|G{**@a?y;d}o3IE%HZM#-W|YjAGZ7yTO#OrD!Yb2N8(T`aT8>gSWIc5ef(aNk@zxEfq61|fE<{sZ zH6*z=FJc>XYXw;bmQw0MK^gyew&C7lZa|h$>Vd*>s~!Y*Qi>Rk3_fx#fHS*Q{Do!l0;GcLg?-1iSy>guYGldEe>6zXy-@I|RhEDvL0hut9R2wRO* z-CY{8RrwW_jvK%JH}?x=XLS`x{qu)-pS%jUpZ1JmhJ>adnw9SCZ!n8>A6__ABV`V|U|V@@98u6%>W5&_jf6x;tVwe)@nlE~ zNUJHl(kAf)vamhrQr0%S0uaK;8qJXoHXZp&~n&vf`HJt(mo7genMs6&JnB@ zlIxmZ?icdq98o0Vb}1Cqbrp>s!C7w>aw-5sI@alBEFWJ?&$p}@GD%1kT3lS$X=DLx z<_>nr15hlVi5E&z!tv^Ww7!y4MKFxV+64=YEAaz}1#ugM9R37&i6>%@4UC2MCgJPv zIJHkN`~t$KHIvH`5KKuJIYT*Xg=Gy)#x52bfB&3lGIcP6%1>rb&Y(J!U}egfW+OPo zC-PX9j;t?W|H2a$%*Y<16r@t~f`e7T1#Y5ZVSh_~aiZ8pgd3`hZs8QBzh)P<*qw9? z7rR_GNMDS$Oc-wp_v+AE6l^ywkeux0hhxMU$|{U7@P0nTv%4Gx@dV8Vd05P)vs_s$ zO&UBx7?A$Syz=kMz*b>Pr4KmSwpBxLvwBTuR3$2D@vLB>sqVJPbM&*!yEsm&xFO$@ zFu5MJp6tG^K9a7uod`g5eo}3J$Y$+Os5-0O@4v`UwRSjMV|*fdw=+sTc^Id>E>T$r zbq|ns{>3g&e66PeZgEmp=%jeeRdG1;;>Mjc@nG5Yl!RZu+$f@vutEBC1mme#AJi`{ zkEAd^Utg>sHdL6~U?SI1ukmn9Mgq(5JF+))Co2J@liPCeG+t`2s3*>f>>Jd$BaRg1 zrSS@91b(2=5A8IAS?m<*ZqzLFVmY@EiC?nAj~EU#nGa13@K?h&_<5N;8k+e4vA96l z$U(NEV?*VyM#(LBvUGBGLQObGQZQuvLL+JDVz@j5hGJuIT>Bm8u=EG9G}fZc6iH-@ zBqZ#SrHXE=Z2b-bHCJ2RA6OvD6_%FD;Ztwf4nfNeCHALc=QCFU%brdr>4$}(Zji3+ z;TquI>RN{ys?8T0uTR*#73OLhx-A%(Ij`u?u(mrD3pq?C-tVe0vJ{#Q20!oILHR{^ zyw-VNo}?0+?!3i5V4yz6ehXx|w2GXibA&K|q_mWYqQN3I%=g z6>pQ%xM}0Tcq8lzK0R|tDvo)f+#MAkUwY3z$k2@gmbUrYxJ^KqA(Sd&4*>FG2;156 zi*$063_y+zr0pH-i$@R_ffEAKnzG@pm6|MAQaKe_3R_H?OM%3JB`F(;ZU24Y>$2@kTw6$m;GkReD)P*lEE&m1l21pMx=ji*eY z;LA2lme$0{TUN!FV^NQXRNp9&u&MYfiPpAjrO-leFv;0ti|5ReG@FGkCeD~}OtU^= z$Vr*7;!MFoGuddHYZHa@|;D1it=-~oB)qu zbDm%Gpy5VQ@0-=gaHBGma!N5TQBQ%wftoOs&hRBsFR+knD}7_tCfmvf z#NLEd5u_ELUX(b3rH_MJNk)G8xb+xipsVBReye$unz5&{NQJKJ^W+tw+T2uW^V2f- zIStZ2NqtnJ!_4B-Rb}iW_<&(^kww}y)OPQsdPUQy8Id_0-{F#JR%&fgs*d<}dNwvn zs2SpF2~C>NK%B zlCIWOc|7;Eqr4Y{c!ZpJ;pENn2EdL#^Xsgq*O5DKhGi35&+;KQ)VptaRPn5m1NCI8 zbZN=7(Zq`7$@FseYIK!;2G5K+or*IM+7_j5A;79oqrTmFBQ_;T z6-vXpeUACX{-a0_VZxlnw+CB%H(0+*VR_#3t!xW!# zh!b3@5ya6T!)a(_3Y4ZvnPCLi&&(~nXcx`F@;VwL=VqC5n6g`Yw}Qt_d&jJ;`}(on zbUPZ0%PW1S?ye@|!;Px9DSP0izA{A%OeL3TsSl$Tv}=faCPosg^Q9g;#MVs1i8 z2lG*=r3R$jR_|xd0P@1EcPv$;0|efYAw!1SZ|##I(MMA2iZ6tH>i4gte}udYkyjuK#u}EJj)0yQYOjX8D+A_ zvhlL@4f~(-o$eN^+{^2g2duce(S*1iq38XJyZohtsVdkek?U}z1KwR2uE3bd&(i(! z`Kvv@3zQu`80^qVD436n@Ang4Lwwef*9Jq$nW_=VyQ{dRI8%ZV0@V^@tj5$^&DRMx z%x|{+%(fu#wKUjB9QRrTf^X4S_)cJSKa8_mxTRS(Spyxhl8BzdFhUDH3x%|i1tH$- zr@(S{Hrx^YZj$4nK(>5Pqj(rh>eK_b}UeC$rc^A;m3Z)SR>$6gc9im;-OTL1`_0Xdl@Bwg+`7j3)~oYNKv*bnbneE z3pbqsib_J2OyT=mfqCC_J0SCYm;9|v{#%p_e~wxy>|-{yR2gf{eVja#6jhu=pIZ{PQ1~iYyv(~ARB6$>~qFGl!l`#T?gTIb6B5Xeee2n2~5eYMpn0q*#!E#F(1c%qmRK zt#`C=2b)>R zsl`%_tdPo-b`idS21MCskB&w0A-9s(NkI}o^n|3UZ|SAFgO4vW2r?>HUZ<>edFFUk zE|%9%Sb6Nrmx>cG-nDMi;}NNuTYiVe@Y(;6dDZrJrDq-mu_kcJ{+U=s96^TLYW5%Rx|;P(7d+10YsX^!&3Z z`F_kaNxT!?#%{vJcNqB#PNAwB;|Ns{&HC^D&`k+QRnz@x1tZ?Z%)2 z@6-b#xn}qh^lbPLhhOg%XONs5twFda6@fhtnYn*YngQB6z~)>`u9Oam0w+j9_&2>0 z1ymA5S#E44Vt2e2Jui%c{_;D?FNE*nhJ?frtixZ$7)XcNSU4#Ao(`dgiP=~O{8&`k zG^0f9KDI~Ru{HWWnY!aRaM@e(tF44T^Dx6%=IGgF{hwGS7;qkHDgxYU%M5~8aX`zz z0GDMqeu4QgD@s~WQO=G*IMoAYRnm!r$OP|=Y&EH7se8zwhU*oHr&rD<3=qc4%fbu` z)q`Ar#xl00^C9adE?F0%lPVTlzQmAc9w3>8nWgOi{LhJhhoK6;GZt9l7U{3qAPTb#GVUECG><1 z!EfP{hO7?8r?JX2S~%24+TCRuibzXmnUrjesmRSK>&;ySld9@T{=zH+*NwEl17@RI z8vW+idd%^Sz|QfDSlo&GtEqI_;G4TuV0-gi0Vj-t=4L0rgh-Ks2AMF}#<{I`QJ9{H zNRi3~PyVIA16X@F$O$>3Ql-&hvjkDN&3+#xb&_%csE9Iy-Fgt20^yUvZN%Gp^yv8k z`BHb}yzy~tUB%`&wN~mfBcoJjGu0NCyN39gYoXz6ET~_3yP~P1+jt9Eht_^x@>b<% z!-$Z_@eNgH@<^Qz0(+hd40G}cvOe?EvT$=#(@0`_VO!fCZv+!>|sOtQzl>N27?7 zPN#C^?WN;~F70lT4G!Lbf+HIu%eNoqoqGvzxuCU@)OjcvO_yF92Lx9SfUj!6%;chS zvW`degUw=13mmqlHe!<)KuYD^A_z^I-xYV3 zs6Uh4pXMLWbuTxDx??MlGsn0lC-F@a`*PnjYMem%@WM{!{^7Ks)U3mJ4UQ(`?$vK$ zhC^(Dl-it-wjW5{iib+oh+~Dm@9W z5u@ELk96uCn$W*5w^;359XZ*e8FS$%1>{lm{I~+eT*Ib~w?d3zU5{Z6=diB_b@A9( z)##AoZYK9g39B2F3ND=_61Dx(vnjAj{(kiyyPKw7bPm%ZKBH7tb!E59WE&|~Xm*EEZcM5B-h&F?EPuP`x zz)K)QBvN3xkKQ55mt6^wTpefmx}fjXS7V`rmpGrW1(Bp<75@=1j>!f2I0Wml`O&Fa zc2hSwN~sJ~ck>rMJ@29g{?o%$o^g&zqtRQ{vC#B_%4dot)4@<3nV$r)k}IWrOo^FP zLrF`SA5I~kX)VyC!F#Ui(dcfL%}`k-bkS&iIuSlrzo`*83#5ipAFmL}bM#9^k^PAP zx+0=t5~HF#+Vk;+|Mx)F_r;>@H#Q-lAH*WJhg|PTzVARRFfD3sowzEdcx6CY+#yW+ zG%t_0I}i53$lcM=n^ojsmL`qZs)T*(;`2MdXDo1W2%*e(P`}W3l=158@~7!H%X1&| z+eh73*6?=D&Tc;G%kSjkUaOEw&Ix@SqJd83To6wzIYYFt62zl3p*OgEL}IuzGnjcT zHmBo|arL@SgUODqQG~@+k+oqj{XdlzNAWi z|EWIiJaV{n4mPKvSK}`Po=BCdwfZT|jhDr%Q4{pn$<{8^7R4q?0CtEO%;M{CRxR^& zO-XI}5W$mJs(=pZDirgrN2PmZsZ;<3uO!PLDCT4aj65#|g;xodOR`(&?r)Za+`#1r zZ3nmJ%6_Z)3skHbHyQrLi(ar>l4OkJ*h&t7yn(Ra-JMqL_E)asXlLf zi6YJnPe>xqS1Gu)Pj$z1$K_Pq3T-|78txXy4MdHsPIUe&USK{`1Rv@Y;~S?zLwyi~ zI3hF&OZR%16b}c=zvwBEi$?*1f!wu?rx5ZrtfSlaN@`Ghr(c}!HCg+*lGJ39#blD} zjru-3L@*_>sJS21{T-f5Te!P5oCrEZmtXO=<3kVGT_Sf&`H_l1=>+77^NF&1T%ocTa=dLfe;7G z+pJ_`{*mL#*(2terK@GZdBLZ#V7G*|aLNgxVgAZ|TdF`qqTVusr~_r92@}G2Pg2UL zA0eHuL^^kY1kN1sPbRwmB+9Hgq7RoFYr?(5zZy+pTX$I_Owp#`U6&Pom{2$2V;^eu z<#dpGQ8#Cao5y@-5t1w@!6`L{;0Q*K<5_vqgv#gBuqLktOFIK6$NP$=4d=XV4#U+B z>v1=$p~i8-&eyeJo{jWglPE6L=iOzLX^pNcOS!ihR8kGE=Rn&VGb=8ZdaIq$oqtQW z;;Z1^O6klP-7RCCa(opN_+|Zb;w(8bVP0G~@$lI($HTk>`?fTOJ*wnt0A-y`lHy@+ z;SjW2B^iLe7~bV?(wIbvzqN9#wW?Tl4N6@Y#zQqu@RY4Yu?0Y-VlEp~#ubvtQ}B96;2t)HQ6dS(xom+WS8aqfQKmR3>EJ z!?fyKmC{PcU`KT}afZO`a^)fy1%9<<2dM#M%`yP={6sZ^@aiGn64=?r7v6mhe6s62 zBXz1nKR7}5+@9p#_GuB6e+WF`xQ*JiG4VzZ3+2T@5X>a4u!`vUh%Xs>2KV6*Wkm-k zejx&;QYhoo2ar>Pi5F$ZvLPD;g$WE~e9R`PZugkYg?sjNbvJdHKbU*^v_D#2or$=J zdxzXwxvQRJq3%44;5gmvwkx?a{cMak7e|E3YOvjzdV|;J%MOH3+ALrSo;mSu)Vw6W zEY6sQEWLH_-Mcq6oX_ZqE*%}C*A*RASgeGdfI99y)j1zsU`|_YuXZ?g4=_!3s)96(GPDZ?MRopsEi}QG z;LU?!oe`NxbR~DbO|pz+_}D>7u*a{q0z2G(6D6$>oppS^%zVGY$^dMY*GjZ8P9meKYq8 z?Z;eW-guwxWg9kru^RYh27h*Ao0*wZma4BH(@ zg2Uaj_PC;s9S}?8E>ruKs~)cTrr&AvrdMW}5t51;e$XniH_6au@8;AkQ;@jE?WR)y z2a(rM{{aj6268jn5zZto(OB1KA)IO-Q6cHca{uOPvXJLqIl#MR-^fqnE@HXMB|!7f zQW)#2Xx$*ithrta59x&$1S9VJ>W#1H9lNMEzqf}_&@d0k43dJJPBvT#s7;A{pD(s52Jn8??*q4?%0sY zrzHi2(-17B(Z4DEnnCRIUW#-M;!EHHT^?JYC_0LnV ztu%Hjy3LlIf$9(uYRcddxNG`=U?QRm-=Ox0Jw? z#g?F!qn^AT^Q81k#t$ZCLoa?VZuPz#1O$+}xH3^_fh@KhbpD1wefeZ|EJg;QE)eh( zYml0Qtw|WulpsYGJv2gdqsS#tQHI9p=wKGpulij)Fwo823l5*`#rQ3s`88^&vvr5c zP(O&UmjmDV8|RE>JGNjk^Rz$W$U(NBWw%y)N2-vjKcEj0#kvJ3i$dcQpO85$hRHjF zJ+J1(KO}u6G4woNa5b5cpt+oM8sQP&8I>7a_L(eP5p45o2i@%as`5tkt#4bRZf{;^ z8vT{km>z3(kF1g!wAy69afW`;^9D zsvWa{xu|I$U{K=4AZuf3o0o4p%dHezDuibVs^;Hh=DCG)C)Aey&b6I_mB+#%w)e+K;PYjQu~wZp21?rsj=XzO(MWF~A4dIa5e$q{YsU~f|l z)}HF+32fJq_9&NjVcNLs#8d;u&T26`{Udi`-~w)Q^t6kURKWte9OSOfq#3&CWF16n zVtV1$G;CB8+@GIit`hcn0Ez8i<+1)23n?$PzpUsZ96V6`ka&}MIZv~Xcb|UEQcz;a z;ED9%!{9=PI_W50rvb$U6u)@%&qJMB)xZrM6wiAd07GhuX*}gJ1Ad=%It{0IIrADb zs&%$Uw6Gvp(1+r}<|0Kdc0|JKMkRC**Y+@18MZ;cYVx4-F(`TJEsn*B`(rRuTxQ?1 zcN6hJKP0hnNK8HF&~S)UcX?Qv7%DniGmH-qIRLb8eE3)2BI&o!bQ&S56&h`OO}VTn zb{7at}r5kv$LL z06`*?Bd0{=f+o0NY-_Ds7Pi@7OdvOalhww{SWnVo{|23Q+P^-1c{Z@IuHmtg*#SY% z%DT90bBVcmCtUS$w}iT#mc~5HOZfha`A zovhmpIkP|}p_HR6fnP;_B_WBPJap?a;4oURb=06Aj(Gnj2T&P0Bq6EVA4e=E#~tI*V|CM!~80}I+@!jpgg|> zO7uEE9{+FbM6sCGzT^gUL7&wt@FlP>oT(*l8QGD^tvLf{rJeY}glF^UWsoeUTx?wE z{^puoWKb5k;6a1bdJzJ+*|FQdwOZ=Wdwo@T7ZM8NhIWI7;1CRd+mMNxo~vGE?%>ZH z%6w{EekK9JP~S2NT@l6ekyxkkArH%GK}{2BZ|*n8(FTbg%Gux#75ZQE6+ zY}>YN+qPYGN~dhwHc#18->>`j?YV2F*PWSO^VeN_$BsAjz8Ozu?u^L5qZjCNqJdX) zW^-@$QN0sw>h0|!T3Oj0SyMU65UHWFwW=RsqHq|@N7CT!cn^LWNWsP?6H4p0RYeXb ztHT#-QqQlooX5G@%P)OuW3Jgn+`wQ(y-3<0dux61gEv|{=w$UIOax3+$VF- z9aLFa={hXzn@^4E9F|sMt=2mgvZAflQ5j_f+V(2(U z13eZVo?e}YCbSF)~3#< zcRnXpCC}|*4=^-X?n)U&s3d{`){_}HBhg?6*Mri`dT6z#YOI(rW2qy>AaOK#BNXKl zLj6^F$cF+6!WPvzqNb<|FS-!yqYBujQSc})*he8CmA=A^2?p#Vxd&Y|^gH1lSovl| zOIuX6pHdJoz~+Op+ask*lu}bAJ#`w5s$3rh_!-6BECH`%44y|NU^oy!BgQR$^tox< zwi`Re&mdUg`Y+LzqDV_|mHzy71BEMw$aMpMSBzV2;N}5Av$pno(izDNa1&(PlfMH#g1*bwgzz|4hhix&H>s|Gx99xVlJqItloxZ?~ zg&RGex7NLehP5oPUZ)wg+C0ArP^ER@KevG%_j<3(vh=hWZtKaO&bO-$Pnnh%DWCE@ z+zWGwZSJ8v!^%t+$3D60D~R~tZ^vt*gD-qE`ei4!tZh8uLKM3X5EU>+YDdB z?nh_oajNsZhf_U$WgpaQp!(RLLX0?am7xI+xJiGs=_JIckigGihylziS_~s5bG`=H zVh})_rQn>uB=)qbh&LdY^AF2l;^X(41=q+WCx0&I=9-u}GZ+EqBEDf%9+CVT46{XR z297rhDM+R?M4>Z&`w)gNv57rcb-tj~xIe}rkbgg=T*I|K!4#W6c(TnszOy(>JpSlm zP7)f|dIYyYIz!&r9w2BmCMO0Gq{UO|v+1T!v~4HN<%9mxgEOa=Z{a1hrT0>@^m0K@ z|IKi#o!`fw>z0`Q45{5NyX7qho`KIB?oyt|Y%;_RdYThB!;NP~ol~Esdh7684jzO7OzIhne)vk)N zCZ$3&y1A_yTY)C%Fh)wtgP(6jVN98Tu%i9}W&It>sykF}&idt9rVCSD$vNZ`m4>*s zMPmU3NNR{MYF~%C2$@S)4zXfIA0bSFfY$7E%h`~KHTp-0!0>^1yc@PPyaTs&{;AVj zC(xmJXy+SVt-%xNLXXc3>Q1(sm#?0^uhujA?=&6NoJO=w_b($mI;`;z5g*?YsoNj=5UcpSB1q_rBk zs8f9eT;d4Zac6i~ngDh0mZOXg-wS?{G@y4BBu%+>8lHlR)2AyI>OCCtbic|kJH^OJ zJy7@4Bp88`+>;>cfMe2#=@+1td2&G+goXAk(5#6!1C|s|i(gWlHo-J!xv}lFzkO^9 z$8vd%1HUhv`PlF6fP0=_=G;evc@glFtjDgo7~j4A21)HA7Jv`7Cj+kRSC5*5V~Ncb z8DB;`aUGQP8mLc2XLg>> z3$BUmug+#x*q>*zr8iW==ZvwuUQPenkMeeXuB$)2p`{UzGn9p3b^zhz{7nxyC@&0| zET-+O8Vx-S0hw5A!oi!IyiTGT8EO1ry9C`jAaWBKe*~xyF7nfR4E+?8R2%2%DVUtH zPvO)lvUgYvrORWwFf%|Q1A>i*hrrIo&0lmL&|fenlyn4`Cx)XPMz0epA?Tv~75GxU z@Q!@tNP&F}Z0o1naL0!dH9bDmu3#?~E0eUq#3@&n<4M4|cc|O_^X@zTi1^)&41L)m zA$N6Dqapkir4z0D#qhj=T=b4lFk@c9>&x)^n7ck7_u=S*;mz_?3jPfXhuW$u9}0=+ z({&Y}4`j#}^$!>!JGJK|?^yuis2r_$iKN>VV_S}#bJV)?_jRco zvTIj>59X)f9!jzZspwpa*d6keD!xzBV*Fp{w6Jxd#!B{!070rYr#}_ee5O;xA z{KIyKky%=~S!H#l?QjyS%izzh{%1HR^PE1(z(u<>0YJh21rBXdkofC@jn_aJK>(%% z**EuZCjx3{Y}?#A{Fr4I;9S7`u2{fPloyw1F!{NAoTnO>fK-oQ%bzv%o?ojNo(~EI zVX~97&EW+HTC)=&Xgo1?`ypA@$JL8FLjd?P3(lwb7EnYM{iU;I;KWS@69X4dF!~8W!V{yx(+2e=kg=6DZQV0VAc9O`cIY@>Ikmlk&x4cj- z2?)tCFD>beCpO)w&_Wd_0B9O}qk;%!qcGlNZR5K^&qZJa3mOO)JcYKVo-( zLN9|S$OIE8<^Yj%jr-q_G56GF)&NXPMDYz#Yt|BRP4n_qCrd$Jx;Eh7Tm

W@G#2o|yi!9hkqV%l+NbQ4-Ycy0@f+b$&bv(_Hdb<=PFp6nAI9tZnMM9}`=( z&f@H{^Qzw))#P}Ui!Uo9DsN^o?sJFP>GeA;13EpbP;wH-L-~F%x!}4K<~uB-L)Y-Q z@x2J?9nC^3E>_a(!%5;jVzTQV-{`o1$KZI+&p*Q`2EZ^j!{d7p+Z)L$a9CuHuZ}L5 zIosM4WqTw!Vq0wM*%eL8%|aZ)hRu6gjuQa`nb3nk=&wNVU_OQuJZAA@u=}Nm@qoVA zc>Z+-qKiX0$q=Cn!_?`MTUe>6ShU8MMnM8ZG)$brqb${z4BzwwZRW<;FTKD7LEK6m z9rqkGg}9CwHeYe{E_frdJ^UIHi=xR?cc$2J^UnO}VS1BVQyENJ>F|7?W)MIV@QJ2| z%lmOO_~^(iqom)%^5#TtL&9*VI&yHjEX)hv>xe=IP0w zU2(+`MjEu+?hjr$8aU^e1}?1ZIhxv9a_Ux3J{rKi$#?XcZ~sU*!(5&_#BiXt|J?1=IIXbhn5jlA}3+^zTH0>2f*A0`)n*QptytKXHof*@6L0Raj=HT+g|XE1TrU%s={3`z zub6Ap=-J!N1%4Z-pFY5CWMGwf@U6qdO9p<;zrBvD%aNE%H+{cqyfm$RxA>dQ?=JVk z(by8%t+TvTtjyRWh6j+tR`DU-m>{2{=P6Oyi~$uRm&1H8`Gr%0)oGFql4U?688h{y zEwaUmU^tM03Snfc6kHMp_n~Gbb3(&C8w$k1+h=LVP?8KI4@7F=EbCd2c2Du3;aocf z&el(^U8n%i?Aub5WUeRSIKV$&acM>qJz*tJ68h?59!>ypCK`*SKcaCa10m-$X?oxT z`P!6%jepiRO(P-=x#}xMiPn8h$hX?z3!9-_qY4Lr2GtY^)|^NuK?`bRl#FIEpl24fU!Wnh>^CzS!vRtxt-hCqw8YdH?0x{<^=E^L zTQ=uS<d{^x|_1lIQ#i3 z@mA7iXBvhX`@T~w4?bpuP8X&~$iGj8jaZB>THT!TP*gwa>(ANCkz4N8K_)%PBO0LWb&5RQ5HQEe*?V zU4&|~mpkWJ4A8I;QwxsznXYh5dAZVbChSm_$4{uNmhPKvE<-*_`c+>YkBAX|9T9O`P8ag7 z>#yDwFSNDRip#Ul3o0e=xwH?(!rMtzz+3C#PuGfk0_7DC1O!rOC`!(=frYMu zrPt`Wzwc&F$@i|4-XxP0`n9ShPsm}p_${RD80>a)Ld+T$S50^=lW@fR0Pw?ZWcaN1{}G!p-Gk4+T|rn0V(9SsPU7BDTf1Yk-R zS|ivbLU<$7*?G5=WcSLd>LWtYaMSosFiu1c-7;&$e{POAFq_pWmHXOu9wBjOI;@B= z(K1A}nX8zjdm-L?u=jj)-;}2Iz_a@Udb|NA-2!*qt@sgdNs=&mEd1=t{rqcOBL0Ir z_Gnq_??rOwe(HRFQw`lIS!W@}k^syW9atC{aPkfEk7}XDY(Q5PX zB-+t8$x?KK4Q$eXLfS=*jV#&`*a=kHQdgePU4oFM4#0X)Etb=<#GT2^#^XKF`Ut!! zCIP+EC9dRkz*gzKrB`8ZYZm`}$>VxlpyPYn?Pt)H9AzXZ`MoS2>@~qgzIb&`@JV1Q z%|Pk&S554i%34m>yh*RvEXk?8&6|gT0=ILp6f#y=1Y3J zMW1J#lkY7Dbos!!z%b-SL7-@jUOotx5-HOR072ay5&Dbr))0S*RqPDAxaphwcFXK% zNz-$Own#X?6gcl;#9HCM{TODh6;t*Xj~2L$QW>_LB&?`-M6S4LSfK+n6xLKU0dyr# z1sZk9TGoE}=k=&=+D+ppG=u~9%(!(rfUiPrJ=Q682&i=yh6`DLKE~#(;pZ&3^TIph z5mm3wMXCIXy#{`J6SmqKvCmVjbx4&Zfm}sX+QT5F51J9hG=(vJOpEq{>)zfwbBWqh zin;U`*C}7$iJr9V9H_6~rf>at<>rA#HUc`GUTV+%h3(lRy|d3fxX0fpv5_G78w2^5 ziY{G1kB-qSikjtvQYErEWx7=;p;RH^l&W!)_9~q0OiUiu=#m^R$OvysRq`@RK2|GE zD|!W23SUu06fe<)PJ~3diGI=yiZ&n-x{?(mIWws0qtGD9s9J-ecT%z%LoEYAirQZ* zQHKTDRO)i=Muvg=fsm<-mPkrvjm2uZRX9$3&oA_KLG_-`&c3wkpB<%`Khtu(KPdUN z5ZAc;$S}+&(x%RpTsGU@5UI-4>@%Rc-v?;NTYVILCPsFx0|xCpm33YlJ4wWz{jn&1 zjpAe^#*G#Yia_tfyl;tLpX$o8 zdEkdH!`?JyfP0!4f|Wb2xOiQhcWur4s9XgYiaMyqY~SCmuTO5yZsl=w{I>C^sCUKz z!}AhK0$_cXS5cG6(ay}&aXka5bfB{*W#j9 zqp19$hWIlxJ-*ZQp^?FU1P-sDt+gFCqx)PsKO5hOzRsKs2?AYNm7~{6nxJxtM_1-uP+x4WL=bfCYcHFFJ1Sg z_*H-_KEdwT*?GCzA3mJowzdwyP@8s&bNS#psL;T8pq$te@kVOyXx}1p<>*&bJtv6R z6rv-wg%yW0#;xmU8&EQy;HdCZZH4-pBw7L_U7v%GS$o~`FAKj9yDMISD;u7H_5jySsdRQ1 zhw8zE`C2pCo&q}alf-#D%{`pm!>^*z#uGUjaRxM?Sf317cMqwpp@D%*6d~SEmO*7* zWy6A#i_pLc7Mf>I_nWZaU{uULO%2I!$F$*7f0yd)MD0s2#MZEI1>CqTPHCxt+;l80 zm@q88)`3w61@Ui*#<*Th-v?xi*@Y@2kn1`ne-<((RTv38U+h@tJ*roAeZ9Gu)9Y=| zJ1~v+exoVavTC@x@hs&(7uRNe8;pW?a!VT7IRq_XRJPnOEG{ZPp&;tPZ$>Eff3D0y zaqfj;<*g==v6Glesph~@8#Un*B9adt&W?($Mm56Wd>)FtV<_-88lCy>d1R9$6&sFp zyQRHmx@!J)9g)_8(P$NX_MPeD7&#HRZtuoW*<5>oK)z z?wlZA5VMq>4T}z))0I^Vf;A`K5f{_ZIUvcb z)j3Dg$CEDQ%%8HLT~kKB_E>rr#wDpS=Qp>oqBysR1#(kPIb9^`oX|iTAiNr70 zL$@Wo45exh&}B`%gTK4Zc6J5_I(U5iT0YOK&MU$R5Lq)i7k6!~Dk!PcrEi^Qq1@WI zM{%SpNOc|0YUwsMVe(rGEvq=U)@YS+RJ#ur17@Tb3FT$KS2b==hNOHoj1JUo>U)^v zv$kpN%InqC?$7kAmJFz!med|r7LzsZqg|16Q21OY4Jojl<8m-8C|ZxW70a4b`WM0J zAUp-ZCJv*x-1X8$+!fs=-L+5#{Sx};SzjCX!skpX8Edlg8b5lDHmKCg{%ZcUUAMZb z_(+4Yg#HrnSWlo(hT_*+)O`?fXfFP}sOQ=8V7Vqejh~iR4WSlHtp&I}1+ubzzJ?3F z*~Hzeh+N@QaIO8R$2Q6S#M-mq-S5KaRRirOl(u~XMJ~Oo&VcGXk;!9 zkZ;9-65DmB?Y*oGT7Q6ZR1nTFJ_zTK0Q^6QzR5x&AHjoA|b1JtU2GYrKJ686j~k)A`#j*&af6R54DDH zMIx3)@P+?6dw@&~zGsT)cZd-wF)Qhfr<3x7{Z=cvpN~4E&Oc#8BB(ip>k}I#$_VkM zCIS5BY+sgrYiL&C5hE}~tT)*YO6H^BhdW^n&mxD8Pwi8HnP%kRhZ&(bY(}R3dKPpC zTUa67!AQmoO6>0g9NN^EMLawPS;hvp#yfKu@B{s8eQN1wl?*O{P!C4C2)TStb};%$ zb?748tqjy0t>Kt`(hV*IjUcTg50C;GQ^hbyPeguabCw}&(LT0?kQ;!4g)OLI{C9L* zV=ue2Ar(2EE9#??NmqPpHXXUV0wXmCgv+oz=~DnXWtvF0EqcBixh~Ei7UR?t%mjC+ zC`+mM*u}^ji1jx_b2*pHz2HJc4o!awWV{f@EvQ5hTd^aeU}ib2NQ0Qvy~Cj`UC{az z8cW(*Y1-+%)t_c&ITXn%5#gzCChxR&2&ZQ<^zqkV+u@(5yVSa;&MYuUOh5K8oS(>?fzKACCnC=D&F^= z;oCLwJF1zaFjlATxmuuggE+{jRUQr2lgHir(%9^^og1l4Z1&`-w73aa2}0(un|Yco zBOE+3;&)9x-iY?BxZ{^UQA3+Q-fOQ^@-n|`9`S-z1;l2m=e1R9NCy{>V6FLH8O?@~ zl|cNJGie+3@l9@9)1dei+*X}0qSpkrS(~)YRK{vsq2EQ$D1x1JZ;})Hb!oGY`DMx+ z*G2)~eM_WUcD%hl;nCEUP4#|RRk4_^w{%}KpTc=;%v0<|q7tV2@J_8hk&PC6Micx- zUs?c?oO*46xx_3X9sR6M&Z2Yv3As>^XT=jhOIkaZ-+CpZ)#+1l?&UdL(lavFeAY~| z{91liboT2C^;E(oLz=9#h#*p2(@c|2I^IZiC5*&wFG&L)K@@H=*KUT)4lh7aZT8-p z_e*d1OX$jBo=MTGr8)b-m-N08sO7y&dL>WP`XhxjNmE4L+$}a6aN0@uIvb*36c;n0yh9-OuSKG+0SwQ z2)z`Dk2(IK-oP4=CRh$`|IU=;Uyijm@>?h5k0En!kK6-U$WZ)z_Z>~+;frf6FZ;EN z>mBtduPv{YpQg~YPeTT4ofk)9@XM``@ty1aCp@x#TH^oBX8ix`y8mCSIRC|p^Z$rS zA&FmHzfX3{(mRy`hU-g!|`vA0xbdtEdoXc1_m7h z0%k1&W=7^8fsye?;$Z&A{S#vS2{HVH*nZqUJ_i#4D+}9y$}zLD{G*sfi-3ilg@BWR zlYotZfq<3cAD@xnhuDRHm5q^rmFY)jWB&=W5-_tf6RdHdeNOVmY*a^fUcPY(F((W&bCR?I(_viS;MvkIsMW z{P?U)Y(KU9N7s+c%0a-y#7V&PQ=@-u{UdX*{2bp;JS)pT>Hp0!voR2`{M4A4ndM(; z|2i&~f6B1_Q|`wSBQxiZc_z+(M2;Wym>3!VaXJJ#1pj&%|Ld{K!piyYu>Th?~wm>691=j z_H*k0z18%;U@T(#4-7>*@v@eK3@{%kNYeG^-7)eY(?M-w%|~ zUVrjBy?V7NxSFK$n1GW?#O^}cSw#|>Qsv)#2V*#5a%6#o~5 zPi&lwEdPV=iIIhogW>;7$F;-_>5MXxqO!%jP=vgNlo)^q1{olRwIzf!;tvN0`tvV_ z)Vgw>VPUbJnSu8_NiZh&aVra=OWlwdle0P;3-7HDuTLI$LIMXFZ0(wJXwx_Y8S9kJ z}bn`&-BgW*6Gu=^)?FS^s@u z4nTw}TqcDOr zRz)wGWqy|2-579<0`o$Q!a88EsbBWn#Y^;E^jyMD0X72hSOLwU$W;A<&O%IdXgx+8 zF>_<4E^{~7CJF}a-@k@jGTLWr>%@_xF1kE*8dSH)$i%i31HmyEvdwJ||Ac4{WG@k~6z$zkb2Ed|E}Bj}=p=h<~Q zQ|Y`aPw=lJh1~?Vo>vy$S@4h@2@`Xw^9dJTOHSHypL5}JS4_v_0+VKuBt1Ym8-RX^>kG`XZTdeYB##isgMpqM?pdVy?1nKY(g_OEiNl5 zRR@h)8+5|pGN_TUVBRbA<#eE)MughY-$jaxgUH7eziX>;!PyMUp`u za2{fGNNvZesdWy=b!B|2yK;3vy4hZazV*3!;$vhJ-K#-iOPP}cbGBwvCv-)5T_3`@ zM&~xn@$xpp{k#&mkXwzOan2{MumC6pM7d}Vi`|`WNe9w46Q4kY(_r?mT1E5n z61Q&Z&Z$Q@kme?_tM<~e6ZeXkT2?y?-(!p0!WDjkZ2(0@0d1MHF-&bu7idF7C4yV0 z$8+f7a@A*o?s%u3?{=+o_OXjjdmF`DLv4t8dRiUUnnqROBD+)K_B5ijNy4}~<&ABf zyypG6_PxCD*J#UXo^>O2Ax=ZuvZ?n*xFS&!oJWSQQH{Xc9?53bM}ODBhpTdRwmz@> zTX~HDCWJS1r%3^bI3ysalNgD}kkwn?5DL?kgZ;Lh`jp=L#;Ei>rlmfvI%N-_iP~l7wE$Zf9jGDi~-$LW0cVi zu|3H9;%_H$5}!fE%tt;V0*AEri9cO{BUDs|)M`lbi0ggLeQTQQcID2O5iV=O8iv)- z%AuWJ2EX*8kdT4ZYeP8+*bxNyQT;H0IC`-o_@YhGo9wn3`77Bj|71 zg1CD{fI0b1X`{Zi;#J}|_N*fI0_D?F*LZ^E!`ugr>2NQuX_JPZ(vlzJa8H33oP{W2 zV_epUrW?K(EgW6zHt0;(Mq-^^VnVpyU=zs9^tSYnoN!O?4HPV^V=ahNHK<<@skH12V%at)>kmwBc#>za-kmwCoBr>fTm zGh?dP`moTgmK#l3tui%?3}PZ!d93O$u*`S-J<-nT3%cO`cvm)=QsjkIWB z_{m`S31IZfW2l8V^fK@fL{Id;JodlX8g$8H+@Pjvq-ly?7+$C>8(Jl_^kte&HJEBJ z*PJaYS1nmKWL9UR!sV;e?F_j*TKDNRsPUFh&<^vRHpuTU+Wa;$eFwvtI1|$0W3T2611(MNakB zBPil!;F1#`89U{`rR^90{mUk;xz`UdGt7SfPaX$1c#|;UzUwnyLm{k>%}Ub~Mp`P= z--oo-H#QXGkY&X^O&ig+lxzkp0WYJ1i%y-mD)OO`O@7dxl*RFwE}t6tz}DU z&H(r`B@Kpb*vgM)dQ88&*E3Wz%Y1ixdN=Mi?EE?+_AdOu^N=?J?+h9H5e&G>AS_^W zXwMCAuqC3H*p-5r{@=Kt=oHs@T#Z;A2HUW!W%)YLPI%^wC5!>^vrkU;Dp>-4`>_t> z9ZAlvxU*YA4C;Ha88dwx1#aY?fZdQg*%(`qc>Wy+r)9>d3b{X2h+*wGH~S;nI{~% zRsfY$ZE@VAL+wf4c@{OV(WE2uBrgF_q1?D}je~!Mz%LtM z-Jc4xehB$Cp^lpJC%9*eP6<3=c!Of|kxzdc%R8fWNAQ7M(fA7;TJ}%5qyLP2VD-T6 zfWEEfDPIrh4UF7E?%s&MoNOY+XQJ{;%(QnUd4+pLydyr-Z`O4LK8v^(1J9Knc=; zkG6nb0ab_zCeHL9`9y18K_sWmPAE+0^CNKPPo5{n&qr@KkZ(hlz~6*o3jl=ONoW_6 z-zvQz_(B@Lawf0bX?$pXh=1VG;ya?%`d5WdtV})H|86I|p4bf9Txmb)BaU;Zv#)cq z3yeN#e-<2O;R~BNLBGfKCQruwaQT4nBlk<^AIm!`>$5#8Wi4$f%_+qecv>iRDs}5i z%+6p>%fz0fRq#H}e`UM(y(iwCQ#z)U=30`9C0&`f>{$6*ew2QMo@zm;M}d$kRDom} zjQ5BB5-}Hb8q!WHPhKOhu-Lo;?t#Yp+xtH8)CaTc-D?vTjht%O><_l>F*-o1gkhXC z`UfSHTeLm-!>(ifV%=<*H`F;(j@a*)i};<(RpJTrmnoc+|@&*PETqS7GmuvfM&AR2W;zJZ+>ECoJq?3ALC-3!wfR}%an zoY$D(9q7540YC#cS_I!vS^fdNFuMv3T-l^71Zavo6V4xylhLFE>hJWEU2NOgY!q zca(M_90Y2Yhm@F1I2h^J^!Ni(jF#EG92RZ$&;QT@F}*7q*fxRMG48zBeu=~12l!D9 zt$r;e>wLg3C_F>&WLdwv2UXCd{B|)oeyD7=yk^t7YYuN}Vv=s3gStD|vFY@EEPP<` za?-H9o*zcFu$YM0CP!$L^M{4r3pN+To`ZAd_1sM9u(Scb-dJm|4C(FcF()^F&f*Q% zYB#UxuuHV!Qr+(|W8M_d*=}N-6~gLHP}*D4}x}>hI+v@G1A%F#BN4RWdMa!}_ z&$njTQb<%z#cuIjxti`7BP(oxl)&CbxwTVoouZN&!{Gme&&KqDBz@ zHgx;#~{bVADUOtc1rfP z*pZM`ZS!Fvi`u^X2`3MJy!6*SY%??8aB$1EP2w$&uDzu>R4YX^Wl*l(hpOWduN(E5 zqg228&RPgNO~!k;>&EF1q-V6LE_Jo;BbSo}vYj6KX`Z*?N&W*d3}1IW2hXovpEy-s z%1r6BI=)}sHx)7;m>ZMS?LNmebUIA;(os#u$K9yCIh+YGb(yc)Y_ajtZWyxa({s^n zAX^VV%e#8}NUG(B;sgj%`nZ8vM0a7PFQo)Myi-97sUJaX#iAT8emTi4zp?m7*;9{? zFd;A|v7ZoDfa81u72}oDfP^CvS|E`wE3>n%{&nc7`2$uPeQt^P@*B1@CKMgNmBpva z)svr(FAzPKCjve8XDZTXTu#?}?v0#`jD3y~avR@^O*ZrWb{l?|i{a$+zRu3;v<`iL z4MZ`c9qS4(vB!>3IyZo1&Imdr`z^d{h_lbCvwgqwts#F3u14X{44lPtsh0knb2#U) zF&Ig=DC&X66_CLDXQ$^ZMTFPkNYtwYrVK0 zW9c_@pbA+?8g7EHYwnQKc zGm%B>c2viN8P}cTrE;~9Qr|3o19ntT4%BU!BDe7MXQv2i)Wbzf$yZ<4)RsK~D6c?b zR%BL$JR=FLEQO&G9J|3s9mA*X-Zv}68={WL;*kZ5~|z^btXR+8@seHIVPvPLg$ zup8i@OD(lWQZn?omv2nWC(A|xX>tBzCMpqv3Zh(4G$u44puMr*QA8PBBxDricQDJW z69Z5)1t|jfvO>jTzRW40Erh#@AiXmORst&{4_53bV5w!Jj44(AYEUN1UrIcIxIoYV zKXnEIk3)OylYC1^DkB4drNL{qFbVaT@=RfzMDeZ4VvjKd1pr9aG3GI4ZUfA0==H%?;K)4lsT7q;*hfO5ptdeDFa?abCXh-cknUipo5TZSXpVJKTs%61cYr zC}%QZW0K2X{RSxzC#ex{o0fgB3w&$LB!>omQ#Gnx1iTf2A${$&l zXn%dfy&8b`g`WDG2daZ9M}pa-6mFYwsJ2xy@SC!9^?_UjDg$SFJ0%aE3b07Dk(x^W zT?|eN>``GdQ%@Xh2N4Sj&m3?XU6o}QGR~y|ZLIX?2H;9Eza|Lg?VAx;lxKUEibf@1 zr%9?7*LbEf1~pi&GH;xw&43UW`xIG~v)|%PEFDewMP@}n;z2YhbX~qfFP=_lJUbPi zTcaFPjCsEPJKPi^3i24h^kIL@KtUDQQACM{s0nv&eCn5e_Nwq>9NfG&1f_lal~_hl zuzJdDpQ{JMd0I1?gOxnA?CVOun1~y!$`Y$XvlK2ZrDoqMlnXN?kF^3}Ab`;z?U8>m zYyb^I(jsp9Hw|GW8QU79hG^+4SAQ%RIfB9&7#=GY2w{X2GKp(+sPZ{_QI7=4;=c0_ z8Jrqu^chw7FEf#-z;ofoB+WHW>)UG?1xRsWLjGSAf)z;bixkF5zY-AwC_`Ssd3gz3 ziD}Y8KISQuNT>Ara9@mn`U!=^`65J@#l%9dsBt(X&H6+#EQP?pM6&6#NYx4a=X2BBBx3RkN1c^3*stQ3f3b2Y@bl{6+#gjbA3b(Z!Xju$9ePc6V-evGfa*NnvM2`tmO z#*Zbjm6R^mvrIxLX$-RzEPW8&f(Al~da*)b$N-~zrs+2e)^zrFv|5cALn^$fuk{#K z3nVwiZI$m=r7E$x9XSnk?yl_YC8;l3w8c6yMzIXmd3R|yjIVu4gs`uKy(pyM)bnajG1*{Vgj)e`_rb(TZW+?4Q?tN zbIl8)PNRwAKi1`r3d zJ+F#;;CdjLpC~CyNQPL2B@2WyH|>0UbS#$oP#q{Cr?B&RCdEBn@pkSq{~V!7jmbuG z1^vL9Z^wkOL}AKYRRE-=G~bBXNFr*n{5B?s~vrE$(SM* zxio`O#%Q`eTdS>0IE@X!t~GNI;O_rm@1J9Z34(=B_}G4qZQHhO+qP}nwr%q{wr$(? zKKJh3-FI)YZ@%RF_a-%+sZ>qROr0+&xm(^eqFRq|y(F48;;Sn2V2IEnr4& zNv~9MTKq~~9xZjGx-EqK&X+{Ci1`gs*`~hY)ocl=k`%fBc>(Tq$tm)qZcHuxS%daj zStflkgJZPt^|WDsz4Twrh&7_G_Vf0HKB1+@zxQ9mGjOh~4Ne*>a@;|fSaBC-J-3a~ z%dkxo+1}YxVQQoJH=hP2gL-fj5nT;HC`4= z@MmQZi`8kK+1?ShF(^Y$V$WKb4c2A3F0b;s$eE|2r)w$hdBPPK3`eD39~8EZ!egDg zFglKHgk0!t8Nw?&D6beoQI8h1)mroeyT@!{0-kJ8a||(_G3;bFFnR<(Wan*AVYUvA zY#7p=c#T?nd)VtpnMqGr8{WM2Iil*xCt|QI_>PMg1vL(neX40=cU@rl%CN6ZlNBnu zf;K-*AtJ4b$Tdkmao)ktsj3VoZxhnND2cNa`NiPWC7v<|Xn>XY*%i5JoJy&F*W+vBEiFv2JI z!e3!EA1%Us$lT8*u;+~ud`c+qvm!Cud>cWgib9{8`rSZtU`Oqe#@lFayF1CO)?URq z_UiHxk@MUB+@h3Yb$r+@+5~zYzzs9TCsfh$04DvL<*MlLZXtaKNC+PP+p8ZvwiJK= zJZ{@7;Mpmqmdxy+JJYj_wIUI#l(NIW&Xer3iLt_b_I4(L^&yOB(q{tVGD%#Hg;;o| zN%|x7<}%78iPDKl;;WUAdF{KY4;1(tZT>Qhf!OjE!|1sP4AJc08Lv;NQ(e?imH1gk_{)f5w z?-BXm>i-k2|802wyYYX*_1`1%zt#W$CA$8xS^w1){3p@H@}EE#0~4bbJ{vRJf5VVi zng1VOMz(+W(*KIPu>4;(Zf?5&1>pD((C2>#a4@hl(*HjM$3HBKo%#Pwa9sI7yDKlZ z+--bjGdZ33n2vdoW-w(K`%B}?jWvyrCy9Xo1;uS>ScTPOh!wA(Yh)0f{Ln z!nfvyyjQ1KvDs)i2%ipqK?A5vu2x^(c}2(|T1|c&fu8Ucd2?P&T6wX$ zIKV^c0L;2I-s^0%w4TZ@H*N#GdV|q-IDB{R$RuE|ML33>*X^z~`O5u*`vIi8AoXX1 zTi1H}4}9)UY8Y01Rh=OR48ZT;^#T>yQ@FU;+iL3`SOLqK)ovaW-E|(Zp z0{enY$L0XhqFoX7pJS|&9cewfN()gFJ4qz;K{;3R7bZm1X3n$spGHPu)$@W0Wiq)=hGs%P8`ET&LAlv7W;ij=#$eMBqRnL3nd)1~Z z(|ce%u};l;Q*O2CP`fl9f~lxFPK^b19ls2I+L}Z4T+fWq&stAAZF>d7Vz}CtkC=5b zxrVikYpyizdZlQ}WY82jQ#ZQVFUhGkSvjC}se_@p9U+y3s%WsID(9z}*~sSzw19ae zFO{`gq{`J3Q0u9t2NZl_gCnkTwDd@lR%5xw48aonw~tjkFn<#5s7$vPup zgze&(iJap&pUybhoT0*t#m6~akrwhy=vksFcqFQFk&P<@EE;!uTa6r>ZQ8=@*s5ur zZrSns!z{!h@^1!R?p>1#NF;dPs)Np*%sq zr;Ng^fuqF#8-+UDcuK)(4f*f^`RpU#o`rILWa`8VQQ#5||dNOCj4w*huoi7Ovds3$U(p>Gs)u)6<^T z=UD%x*?EOPte|yP$~JqmEFSB$t?fGP&bgzZq$UqZb5#TDY*J8T(-$KSswTNnQFV-w zagzU!z~YmV!lK)a8bDxX@+wrbw_CcuDrsyg;u+kcc?RvpbUBl?^JU$#RyV~c7=SUIg3bCeW5QkhTt|75U@&dCi`do zw1=icI>;v_@~Ll4i3h_pzGY+Mo;pTsc16x2!V6l?TVNBD`rHnyJm^|)YN03%Fsg+E z!s!hG4Lt*&-kBZKqWq%w6F(_)Drd}TxQVI)iLOh8TU6Mztj)9SvwneE3WH{mBA&Dp zs2~9b9-U@MR|`!hBjUJ=ffOK1yR-7@xnLf97K@R}bRC#Bb!han>#?~VRs-8euxOW3 zS6>4gc8?^jX~oNY=q?*d_x#U&a;z(+CbFfN-&6T{_2C*jy_E}SGpaptS91cwwf)5i z*MMVdnlb7Ty|ky<%lx`;3{p&}sV7!y0hkcCbJ?Du$B_wO>9I*xD96vPGT|wCLy)i) zH?d0ei8wXdb}xa;@cVj-(Yk1;yV!UxHtZjEG@D7!rDa(cnSQ>~h2azIzdbrLtnMAE z9+-o&+^(e+12?qTgt=@?ojvOGf1rCEck~}MZyGa>H5nvS7 z5VB%1ty8&x9mz%z7|~*`lT`pKy0Pozc4$%AGK(H9M)u;0shIIDfwWl5Do5R0yQ@Yg z1FI&!cr1NbMRCQzA2*flLj`r82(S%Zi71U8c~wrc1|WP_K6`X{u1wpqb*?-M)!?ve zO>tH-n+7f+^P#3!tRq4PV_K6*wh3JAuFjr{NUjLP#A%`TLvQ2P@}@6ruZP-6r5uZ@ zXknO@Z}E zCP^ubk;~TzF_`Io5an8Jl{L{(uPweoIYPI=^ES$2GooETw~f2W)BeW zi1_|-e)YBGPTSGjSN)sq)}NqmUX?L4jvn~ftUTh3bD$Isj_9HO*F?V~_?&eJ|3CFO zf`cf`QfW$}TA{5N_dtnu=b2@?u9D1qZORpyVT!eOWA+eqfg}6u@ii;PDFN+3cdi3l z;hfS@$rS=yA?|Q@%_MSd$6p;0_LrldEEdLkPnm+$>qt{H7xVRikO1-=7BF}KJOGKBkp4hER1mSMrdjVk-#2y$WNQF{5!rtgN&Lbkqe@=uvD{=%<#uR-}n5fgE$rc za{Zcfv6Xs+FNZrJq~Y(xmKT9rnEo=h0b_9h&_()Ze*c@~#S6d-&#!i+>g9Ci&mif2 zxWx|}xAka?qwLLjHB2Sx-MkTuCF#Ai6ZltB)r$NpS<(nbk#-xG#~OxKdqFr--%gtG z!z9vq?~1DLZxT7u5IROg>BOjXVpTh_Yn(amo*ZBLPr0!+Uq783=L}ydej+$-@ONx- z2?jif-++;>2nMXg?=+FBi3f&>&&UMOAWh@*1p~pwDKZJglLsCfO(dZpd&L9g;`Qku zKg8*?K$^tmNl7HrJwMElEs6z*fLW{;3BF}fMDehm^F?^h9&w`~!5MfW(dQkZD91At zj+bCWnZO+@i{8hNLoV$Ew`DY8Tc*0`1!(i9wYyLF{cZhprLlA|q zjSTj?&6cH53tU5%1Ee9F|7biL_Ob+u>S$O8N*n!a`HzOcc|l`~r+4E+qe48AokxjZ z3(hyLXbmRu92f~Onm`f~Z@I_yQ7`ljSD#A{>t(3)OXz1dPp+t)=Qs?WUcaa4o#VB> zyMS&ogdO0F?oZr`V7!Sj&B&fDU&!_m(WpUDys^#oyUUTw*5AF_uLuo|nx9*FU9z2g z&LI?ycW=)D(5k87Yhrhq=>4` z+vB~4>+r#AZMzr7&VOIDfC0rNI;%NLHWW=9&?=1DnNSkIX{85*7MYTl8Y$iB6Ea4W zY!*BYN7b=Zl|~#4|Be98pFT8C%Wq#sdBii_q27^;C)Ou?*Ge|MR>qL+vE$ww{;N+K zz0-x8l<0#T=Dq6*wXU9LN4?=fI|Mqz11LKmJZejGi%YHIr=?dlaunE|+K>MJ=97cO z$B#~n>bipyJM-!c7S*YbOw|Y210>Sikq=4(pOpIEQi{dqUVf+NlU80tOJJ9%LTCTX z=(E-w_qaNl#1%CQUhRE}juDPvwX`1n2XN)4Hq{n<#`)q*2^Q&Kt*D6VtFDQ3^5aaX zIH&Ndm8ZW>rQOdq02A2C1(n?{$b5Lki76N`48wJGzbEK5MqT*g@GuA@ zLDqpg0A;4kE%MP2G!1kip?8MEGm$$0vh`_i61V194F;dz2-Cn>kL0!+*oTI#Ysf|O znd&8OOTPlxg5B?rt+;oc|Dx;t+A@4({Q7C#U8i8w9B> zQllQNx+=H0R?NE~dXS26i@!zj6QB5?_z%1X;L)+wk>34B(F=U~OE9Ad`gGg^ssn%Q z5qt$@jcUsD`Cx#$RF((7?NPR1x$cUsM-#L3ae0AKcV!fbg5trw?y9$d#pK-xw1I`< zg%t_${<5yk^hCC_27xj!dj}BR^&hi? z{TnzVI);BVJmb3O6~|Y#b6Ou4gky3FW*6cuk z*Td)0b3@x9HQ94M;3X`^Lv_#tpE5zz#S3kXWmt(-&Km-0S`a1|7~_1QeZj;c(!De2 zkfnzR3Lw^ocY{I713=q1#~DuVCdr+%yjdUSo?;QT=!;ehRa4c-jpDw>SOV zC;!6CJG_HK43AL1PlyPk##cLVg6&B8^1mYCBMw@dWO#skM}TkbOQfT~-BcFKaZfX3 zqomsoPh06a|9&Fp9X-oCJJn`Pi=gXLYL}$#uNhRh-n;2PwYah2jp3URo0|#wD{IhJ zuja1(7GbYxw&I6I2SexgJeQHpWEayv7DL1(_8|sFWG6&eOOPw@2B#KLbompFACE}tBh!Uv70z@W3A!?17OC|jY64Va*6h=t zb1Sop+fRQq2c`*SjCrd|LFZSTA-{~oDc?`^)BV6sU!YpMMa)Q7=ae{^p8j0hB`4)M zzIW$&LGB#I{^98Z_Z`HNV8kembDTZ{oqbRd#By){+?TKg?!e3~g#{R)8`heOGfNt! zr)`cGe84~(Ks#7J6Cv5^vd7UD^aCAikFyK*8e{YY-2xLiqIAc@9nfJ=Xje`vk|O3S zt9nDg5d#Z&;4}84$}vWi75BfC0C&r~LH=g34lU|N+&TF9Bj%UPJ3f6N2mLrExdo^; z2wP9!NMnt%@unA#(x0F@b|Rkpr$XsDmYj#SdSFV3GgLF^q9}{0I`Lo0hlIw6DWZW?+HR5(&0H z!Y|lV*u@x4f?lDUTt9>t9rf_$twi>**xI1;4FYn^RH;vbs4dUTEBjOoH>SfMqUz}C z0FFBt?rOArsoPN&)p0ueUNu4Z9JKYJ=jduduB}*AeLrA7rjfj?H`sru`>8$j&3g{I z9qy3NBl-#M*g5^hjIzb{B_*oJ_l?8TFTXB{IP$PY2ND34zve`Wa}S;ZR+XGY-A z?D6=6G~NnsB@V5RcE^SFABim{ zK&Ogn6Ph1@c~@FQtZ6+Q+6FPIrdX(cHB7wRy+4o4>dep}MpL?E1AQ{kU@II=X0Km83(BAT9J`w0?#RP2efu<=KWWn#S1rPd_4 z{VH~&8f*ADQ>IPw*o|3B5w%Y+lI1!R^#SSHL?WX7Fs6n4RK#LGflRE!Z*uipg2=<$ znO8}$LpAEu&H)0c#L_XWSfv!266_BRhOAjG&@dJ^&f}JhArXvglo&Lrf^6hToNc{5gNN`v(%eOD&K zZ}rMnlWi4aiqpkCs7k+@vTj;tVyd7EY0R zh0BIz(B|w9^Y}({e0++e^fOobh6AQ2F#P4_^cn)p@gL z=vryBqN~SMXPrj{9&zT7H;qDJ#YUrW>p0^kzI`VpzV@PS?FTE9q)D~`vQiv0$1Tcp ziVWEAQ3od2ELNDDts_g79knNRr+>mVSUDqYGzrr=@KyhW6BdZF zI;>=ln8#q}*X#jAv{ItZaRP0ZGg(Xn892SO-x^I@R8mnDC7p-QoMfv(lr_SZ%Sh+T zCiG2t2fc$bmw1GFgvMlznQ1xJ*lZ1dnWWOJ;GoV6gEmYtE^~&lIy`%dWSdm9V7kqF zb>w{H9O&LC^vnp@s9N>%{{abzG>szBLr6fGezblJ7bHg!37R)NUYCtS!I6%eSp2@c{ z+dAR11YK{{B~(mr{Simy49V{|xZ38@uY)LlQ(~w!G?w8QY+be2tYnVvXm)BO<5I`2 zTrylaOCp7ZzeOPZbkp{6A3Z`Ag?hN3o(;D1#dte;rA{Z(D;({GV}9_ou(0rFt}soO zN#Cqp;8d}&6$@(>=Dlpf%#injY!=qtJf&zl@tmMGFqWFA4k5w(d?KdKQAYL3+GsBT zW_6B_1?Yu4@YIlY??GNeQ(h{)ULm}$h`muyOy+L+mx4lvzh(EA-#HtVR`vR zm$ugB5lq5Kjb_=(0(HcXCUrlaZw394+z8VIdw+}zIJViaxD1?e6m3(3*T=g7xu_Lg z4T!AF7PLW*JHXadH#v4%;9>G-`=q_(9tCX{BSruBLR%jQ+x*BpA2x4zdd$v$e_ zRV#4YwrO(;41DKoF)^AmOs6qD1UZO+f`f*I=)I3HY$oE{-Ls)4DH|qN+EtTZGIH7! zg=vP1mT`uImQge=s!WT?d*#z*e+*m`eLg1C4d*kHK1D{m%!qWsWlZC;DNsXO)f8$u z+oPVv zkbQ!lfA3veBQ-1`U@d9VRh{fJq>9AZYQbSA4TM_WIe(B+RG}edz1XpR2& zRlCzZvFzNY z(d=_({gs7+|_&O|V-fU989W$ZiiZqlJo%ExZY3$iTn zH~mBR1JZ3M=g9SQkur&LF>_(1>(>5~Y>|5MsMwKnctIG8ItG$S8#<;Y6(#l6`IgK_ zfVWkW_}^j@Vk~wY(jJ`X2-=zCK!Gc!diqg8GARLFC*G%cLLhL_Z#x7%q$}2^>88ro zu~8#mORQz3MopXbMCU14;x5D6X7KB7EryJMXrpT;WhwE5a-(TvJDYF@e z`B+%=j)Vi3rU&B3M+5FBgzKxq2#3y~di0B{L!?3NTtn@_jPPYB(WF03K~~b9S+4g_ zYG@o2%~f$`kuzE6k1`al(lnIPk|SBn65^DUOWAZvqbV=gJ1>*dReD{uPG&p(81H;+ zdM|f7RBcxs`vF?L-sWukf=*WD&rzZm?(f5Re7`4?Ve2(!T)L`xr&ay3PnmrxM=?Z5 za^2nxdZV+aX^&a%IRmtq!a*k4+xmdA#H4Ama?bk9((OXThNaxG(M1_A^JfNlEj>O< zFE7?WSCX_SGBmu?zQ_cF4D11Qbk_Hxbv%(dG;DW8`^2u`hE=drWQo?T4U@s;A*t)J z7GbkHk}aTfwxwhxv2kn%Su!rq^*D4-CMFxhxW#$5^_FHvqoUnKvW_!-1^lUAD zF|xC+o(2Y2^^}s?ktZ@MOj#E$5ii$#<(eu!_Xm|58r8Z;?GEP;BO6w=>6-56mSPLts+ClAmcwLD4ql>~ zpD0zEn`(LkG_%Z_PNZ@#CbVJQZL!J6I2^9QI&_Z@55-1e#YAUNV>kv^9p&c<-Q+2{ z5f^&-Uo1Y&{DEvq-%NM+44ky0Nk-1fwSD-01U>S;2E3nvFJhmEx|4LYGksYkd8jDJ zD8>x7#l;Bw5ru()gq(3DW((?oJ+{)XQ%Uc`At9NJ9s%Q`s0~j_rQU3Z?K$a3Mz%*W zg@u8K=>)I%ixZe#NPixz4R(^5785>oeSH~Hj3kLXjd}H#eRZ<+xG^%If5--aQvE>q zy%pV2A`My;`+EGfb@@q;Qco5@br;S^78k^gEUhSQ#0fTGj~szB`qLhkG>C)basgPA ztOLd|XyZm}C&dq{odYqpOFr%lw$4OEJVXYGZ`%e#7VN@G_WuTc#Ww9Vpvjf)NK?rS zZJH?{){OMVOhTkb(watqRq_T`d%HV!{t%~lymj&ILvZe_(#Klu!eNO z-;Nzssx@B*q9ELQsCS>-A^$ z=k+s}4>u|MA-64!gNZ@$+_gsf%#?YQR@qWZsfjin)K;J+pQC?i!=?-}$IuosMi~uJ z{uJKi9{evesDFKMX~UppY37@M6xRg8_nZcwDdG)o4Nt!ZVE5pkV5Lp}n>_?X{e!mU zr^6ErytailMQI8fY|eD08qU^|W~;(!_dF@B7hP$*_W=re9Jk3Uk#CWzPb2<=*8GR3 z+w03ckScXEuBTs3*AeY2ZF{uLs3;RMvq#!=5?hHDXJ>o+7Y3%LexH1VO$t_#@vlJyHrD1MB4DRg~8_1WN z-(Ce;-yL%*m+7H%JvOBswhbjCCf5Iu&(GKvT>AvizU+|MKFR z_6}_Ljw;1GHL7oZ337vX8(;*)sT6nqMF#LoZlf22bY(Ez2;^DLW)~>S*0Az= zb8SK9$L(wU$1%7?aKJNc06dyx%~&EO2wR4wAwy$kVlUXkjl!W?E4%MkZd+$4NOK z&NB@_5l%&))n_r>IB$hequfRO)gr9EI8LIEVwmwRjFcP2>WjpGX(KBG$2=EWn0I!d z9*+$|K2|{2_f+qy@gyQ zbGOlZ5ZqiEd64NqNkM5~ zlcUMzq)^ey`S80T`nr+$>G~lt1<;ZVZ9VfHZK?3j@_4 zlfX>e!8&kf7iUAjSMLCBwEaQA-BA8YkrDiQARm(Tr3;G#&s%@g0nS{O;{qAL4g?_R z$pNY1&Y%Es!i9oOtPDQ=6;RVdsyh6|T69Uv!6_1jUedmd@pbmpiP6h~P}r%2GtDW8 zBE$+(kj0c82Pz@Pp~Wx&+;G>b1erPjB%_(bf;@6~+WpDOaVR#(#5%7dUZfC$K_&s2 z3rdI2a8@0QgNEn3F{k*yDV|ZSQ-N!(0MHccm0+9uMdOQwIVpm}$<6=`g%KaJV~Qu= z;<`_r#&BuM1@R_8KH>>D*-t?CO2mOe{w>E>r(8(Uq?4oXhxW+DomSS z{cU^uNb{YuE-^oX^Z-zWdjh;p2h3EaN}^ln0lFg+K}MRFL`@IaP$t?WCXiDsK%s~v z0CcxY#kq(M2{9z-FVyp7Pv%0qD->2td@#lLWf}7Yj*oRfj(Ha^D~4nC?7GO`&j#{9 zTjD*E2z>iP#9p%U1A~0(C@dDyPWl?ztWLbqfUvJh2)iXx0_nWecT`mt0M9QW zuE89hOUqU%|8zw38}Pd!8p{}ZM@K^9Be(XqYHUo+d{?4kjCV>v(uOo}>!P}15SYNA z_cJvvQA4Y?MViS~Cs@2iQ?+1=T!f)|egjpv>a0>2EYcJsQL*eeRd<>{6|t~a{SsWy zw0V|j0NTWr+zfsSo*8mtEMAm#LJP@Qg&;i$a{>gRlZB6F#vso`!p`Q2)eO2t*ND^h zCx`Qi?UDE90VCEO2X0H{cABUk+kz}-Ra|~L+2T^9$<41S^}PF`?h>O}JCWCM2}}*F zxJQC6-rT~3P%qW$dWN5|s@WxUiie&FBH>4Z>+&o8iK>J(C<$2~2mdls`<6nmx+B*w zclHNR>x_k1xRI)vMJ$bP$ea}IEHpad#0nc*g(YLftlOFUr^SXreNMJE7$-s@ zC81@ENpIo})|>oOa-J9GX|)OKu<5FF@%yx^U}enPlDsXp?xd>bq}-xbm=lXpzE=&O z662#`s9#8bhmfWiY%PjtdD58c3EY*kK1z_g~YM8?uC43ZM5wkqayLl+|$({=pUUhMx0&{u{7*j5QV7|_) zaH^z`3preWNj|37!Cug-Fg>onqc%)v5d-!!=v@Q=+ScU22N5Q=zl=ZrJA@lhdJK3T zHVyU`BB-fiKl+Q20xI!2NubV=ML<IDQDjUK zBCP?H(3Mng;?Yy(#dtDD1Y|4;>NziQm*7CSY5a2Ub@WVZ2R|TG=yEfOdyr5af=PABdkRn~iUmlP#ZVl7%qET5 z^)fR`6b`*3Gz&3F5SbjXve+d$B@@FQlaV|axBk#gsU2C`XAmk;{uO~T>4mx(An+sv zxP{^i#9-GWS2Epq5bO{qm;h_?LDq2Ord6vBO-^how$wHaClf08OH^{sSRqb6*n$ig z4TLbf9I2fm4#dmI>>-!}GMf@bLa7aWyhnO?ub3cQoBA}gj08zLE|C^KjKn}oWaiKy zOrt1~BF`@@L_H5t!pM?TlL#c}ABeD89&9KPE1wcW#rUJi)j5uPB-=~Oq(-W|uM4S| zAPK1PD4SBg6faGmgpVLE*ogZ_QM*|(oh-%dpgS6-ALl0O5#?NwBbOY-gu+;m1y~Nr zQdu!UIUG7zT$E)73if_gseidcvP2rHcv60hMcUh+5N#ImDi|VM+drRs35!{Y39wx!u8M5IKMh%aUfeNXMn#cdrFtxB5?Rne>Kal)1rQDR zfEQ)L61F3Qu3V~ye zZwN}k7Op-#9>%i*#(V_Y(3*gTcCIuDdMBKy0ptXD0ZuPu@Ub|Pn%!p47N(|4;KpT= zk>XA%k#(qq@DF9ae;|b9Sicjpp#|7iGJXiTQvm-3HF7V>lkV@r0?|JZ(i&Fn^`9MAR4xCPZc6(K6gWJyclr@CYhI8Os5??#+CyH5_J|sPBEw%%}0h>K`0F}q1^TOwcU4U@8LqM*jjS)2Ps~pl$1M%;%i}YKZkYoVm~h$$jnRko@WCm#o> z4$s`nB1?-K@}n%57vr`C>p$i9^|mExRx0Lo^Ve<1j;zM4`_%UTk{=INwjDP+k6oQI zoWmZs|CHBXgV!Bc*?K``BIiR<=fad`_I*jsY=e1<)SZNx!q<|~g~5I=a(~poDe$_* zaqkq7ibCZD`eeTSch!(yP%sDcKE7CkJnja?t4lxf4LQ0u8`}oy+=^?iig90dcNfDd z$0HbSN<9*zy#`7NR^T`^%OmR)`kVm24zSy)1Ox~^(0Ks5)#JUz0OHfmaB{~SGt2oJ z_S&};*x_hRg(FRnQc`&eL7PaH*vECp1l;u#81A>IIex`W1Y zLqF(c2qrv>CqVx}0#ww;p2F)dcL+MK;M!S7NjgC91433aa%Tk(i%5SXndV?XM~_LS zd=5#9nI*DgDvkj(+4R-)8KkEl#3?8^C`dzCkU@kX0tNN&ID1nW^}jAuUYJ>E!xxgyq++$> z8iMXgEE@Rz9Dzf)3V;d0bcl;N*H~jfew_%o#oV-dDPsJ*-1w2?IWW&s3+C=pK%W6T{omn`lZqYd3|T&LU6-<#p>A2cPe#4= zdKUZ5qTIH1Z@QvHhZ8+2WZAl1d?O%fg&(x(+FH7ZJ-wF=B}5~eCd2UTceY2VT=28u z*P?JY>+F~QBKIt^&Vvydu$Q)CQ{-jzM2wcaBDH^AZ5i}5lQi0XzbVT$P4FJg2Txuf zZeEoRt9wz#w}TfTxM;un$|C!Bpd zJsrF*NRP;32$=esSp*Eh7cwVKkltj*&c zTgMOHfzO7^`t!FQPdhX zmrL>jb7EWZ*2m)2A1(-!$qZiC%R}okz{DnOq4C@RT#`99Zo_5$M|S#nbt`$zOnEM~ zcei1Gd_d*7sg`A>CGm&Z!hWx33H-GSEi|d1 zI<+5AGe2V*3q0gB-`_mfoENmqUq&pMtll!Gn)U35K=094ov=PN8KZ8W2G9HEh4k$z zIT)(@OT_*wcDtud2dwQ#@~)9=^S(S+?h^x_^(r^#RWl`OK9@u_-bt9MSLfc#ZPmjOPf2QQZnOj^muH2D^QQM+$ePQCI;v zG2C~RpywRlpHmNby0{cjGWuh~`HHT$l zL``zi%y=d5%e8u2!)5A1+FzDU`CY))ywO@Kcbom2O1iqVcE_w<+d1PlR*WCE#@HFQo&C;5b(8le z$UemjFbm5OljljZFz`Ni6pv$jkFcMt*R?Hrf_M9lR-9uZR)&yplcDv5RM0#DX+vh9 zNI&-GhPQ`!{0P*3cnT1R>A1v*A7G)S;2&Tg;K6U9AkMF^C_x8l1W&K9OAE0?Om6q8kC@(t zr;ou3;50ZspGATei8=fjmJVgNgZY|QlOR-BE1UzDwP2%PE03S%Z;Y(kTQ6~$`!$>s zhRmF%=VvABy}ym;v}81>IW%q&q^z|roSkg0b5eQz7*wZE@U=3|>nrE&+Z9zJu2@02 z*4In)WsjYIG1z!?Zj9SggPHhB=8-Iqk|@9MZnpN*k~xQ(HyliZs?6IqK3p0oIiA&Mtz@ofi;2z#gc8+nf`4~D0Sa#dl>|r-AcCj2ilFK zEiR|W*k;C{<20_0XB#u~E=F}(PEIR@uA9ZM!&%Yfm5SqSlp>9H`9@=F`@kq&Xc{Rj zCM-&hm$q^}d4XfXLv1U0e%Nd`TMu{sCR1p_%-BLCv8>O9vJE18Y< zcz6eShPFZ>12V~j;3kRmE1o5zggf?4o}$$c%5%0fr|-5H4={zMFU&-Mbtf#xnr|8| z2;Nrr!}^SMuXk|RJ)l6va|c{XG8O+L9Ri!2STvwgl#}3-xDcg5kN~NF^8pBviQW8A zF~Jb*-*&qKf7IT6OiHRhPM+J}w?|BvHd%1nUAlU!^TZZX7umA^aJ79LZhbi2YcYfD zd=#vg9Erqkh2RjL+UYQ+pMCsE{r+47j+30y>}f2a^H6kLxEAI=t(eT~8FM!1#`Chv zybSV+sG_ps1{pQ$InHii=W^a$uN42NWVym3O(=WNKgCQ)+=Px zjm6+bOOW^B4bbp)9XuK3_I1&P+VPEx!%1z#z{ikD)63J$THX6J(83^3 z#g4Sj4(C!|q1n+RQlks=)jak2RmEiT>1rFWdF%>{ef^f*V`v+1-LG)3@& zRxRt|wJz1REc<4O?R^m|X@jUeg|^QQ2vb9@dBF_(PaqgC%)`4{9j(EKtBpt*@GlkV zl{8H=%RmB<8GWHWWJVVBDN;xi6t*=R8tiS(MaP>h+UM&wCJks5*p`M8g(lJ0=yuZ> ztzVRqNnT`&*1__(Uivx{i7=7|ayv-55Q+lI)j@clpH8)&DqtjiN>O0EwLHQ>I6C1* zK7Q~Q*XodbEIHEUZZ|GiXR8)>k1IV*=V#0(SKE;eU(POFfa3I0G3YBtC94rmc?i5Go71-a|yED4%^3ibW@zC;!nGaeQb%uV0F8e z97rsid)CQr2bmS7iOoz|)BgqvS)A5&+v#pA?Ps^kB`-dhGm5^U?* z0}L=Y41?R??(T!TySqCLjk~+M4esvl?(XjHZXf%cdr#bb)8-+lU(aXYPtw%HuTaVc=EZ0t=n%gHUshWpyb&tEEG8{s@ zURHtX$|jdSdHVa_NM-{9vWa9F!VN~t%T(|CZaKlA_OGI~&)<=kSkxF?!7~dp-4Aav z@Dkb&FZj8i@H(AtHU+=3&XQhU?f3bY52l{NybkbQCR`+29(R=_+QFo5R|@f9PLp?) z@A^*23^r4WaGW-|Fgs5lQsGkna);a#a<4ex7|n7JwXZ9%izf8*2haIfn2<5giSQd8;Mty=e1elBkAf3pI;@3Ls8qyf{oC3#(whG zHmbxmu)zG z6d6bb3jcXZnn-YxRPP6E0f{mPj|fQ1Y*Siprfbwp@KP~MLTq|metch75e6P5dU)y1 zIJrp*tjspMkuIn^wIQXy8>E#g%kW3WrzkV~Yv-_45zxjj?S&OetFpD#TCPH0)V!(* zOm1pYELjg1tplxcCl}~ZS1aP-*?8L8hu_2HI$v*F8?IX$hq;c&B9GPuDi-L?n$v1B zvxZzY3~cjf!;;%O1A|#d`}uMgm4eluwU64j?$33`ENS2-bVlzxOaN6qJeONNRfCt- zudsCh3DJ9XX5o8_G~Cu^fl3x;q46{atFwpdew>N`l}YRyHz*tXSCa%!u#2(t<5uRs zUhfxIQ6Ff)sh*NXn>0Lz?YA4yfziG>mkT~EbAkPx5a0Gubt|(&`sco|_PQOl%0O=R zQC=p%_S}2WI`m*Qod$cJQfG1-PG$ALds?wjZv`H3&F*h+e|*OyKc&X{3V}Crd*iwiuW-s7L|^DcS6N^u?jV*Se`B7}HzN({4)InChf~SD5VgIo>I%|AlVS-$g@z^Q< zks5ZWGD&=XhlO3_a2lDI{EeG8v}cL>^aM?4`KmAX=A6%HJmRIho2dG_`z5ywfJ^Mt z_ot?*8>^@-)IYSNf6eQ(03lcdvHrK}eNe2PU>BX2m*PPnW;{Djj35zaeDhGJ%0Y*Z zj=--9|FPY>o_@h?{v6v(Z81qqIku4CshC{(bkL7^dWkZ`Vjsg9>}(31JVnM@CU!v^ zZcqxOrD;5;{vG-!Mv$w(H@dr`NcXxl1Yz@Y0h5rAX-;IP_Z2>>Tea&I;!cvoMicF( zlHs$uxsp1^TvJaq!{evh=LLWTQEzhi)na`KfIW@}H~eY+#(7ep8cT&YNgEC4-SxENN!4NL zh#q(He6TXDG==H3Kcr$V*;=Gv^<1NNy3f^2VPTc(AScusX}#tZAY_dy|J+5K??lqh z#&zftK1qA&mdTBHr@CQux^9&zWn#nCxUPIq?=0qPl|0XQ8#`)U|1r^+Iro~0Tc=OT zI(H*7O2})y?CSJde;PUaV)qjC6m@6GTm2Gnc&dZWZF?Mh4kli+7kb~yT;DDwxhU7- z5`ZSOL~5vtvk`MuV>cm)7O?9)@gnEs<`h>}fzu;HTj7Y}sH5qATXalw^0=+h&zi~e=u_$bN!vXQ`>^WbOU@+j|iq$w|HQTBh<(ovQjW@Ef z?sQ!q)SSD@>x!tEc)9jCyN`pb*4%03_UbtxQ0faglexNqEOqy^%xZIR5PT4jp^=$7 z#Hkp)P;BpD;q^!#wVXJQbjgyg$(UDQzcN!7QygNK-WxNR7>Q}9hM4q@?`1UZlb((= z_+;*uMlV*VDs)GY6Woy^o{bm~_OTjpdfEtsehA`7l)JRsI^YxomJY# z)&BI6k(qZaYqsI?<>hD@UToH>g~0|15Y;btkf-B@0}TDVXihQM>#0bPA%M5Oso`cB z3wqGXT4ox2&scgBGZ|rakvxvJKPFnB32IMV#Gr{^E1f~wJ=|bz?clMDx@>|BAHa7< z_DX}Ey%3;KwyZrm;pb+37LI!^$c8$kW=(%(E0v-x{nomP>fnXiw(~kdP=eOPb-ZRt zsGy8Ak0e^tLJBpR4da}HvQ)M znBUjpi}m@Z{K$-1y~6}Jgs6h`x-S8hHDh_ZNfZR|`#VZ!b;H`M`8d3| zrv6%ySeyg^USv|!S$C&zgCyJ^p9DrGfMiN$oNAkTsoHvKdq4k@rkwL2W24=n;&Kwk zHLWk>@MYE@Zlj~LMK+81Tt!Lf?yO?1ECXRflgcw1xUXim%<_^dpru_Qo5|_&Ik%qg z8C5U|D9vPL8 zKx477J+Hmm`8YL!u6P8BwXwQPEJ;MQ%6P4ugmAf6QIT%F*2Q#v`-GI~SJ?X(-fsVJ z-1)b++rPct{-3r{|0?)z_pN_bng6!`-{tym%kr-}|6Q(sRhj>`|NpnQ+kb(Zzrd1T z7|nl;Ib`?(Xa4UfGvhyKlmGepYX7s#+kf#t|Jmj3A2a@6E^qA2?5zKV>0@SKXZ^pR zhvyzJ?uzr%Pw8%#JT=24t!e9qaRGZIY5x8Z%S365{J+ykeZK#|7flQ@j)NmY{7nM# z9i_^fzsmFEFn7RnzVg2IA=}#9TvpM%d>&fI%Ia0^yfY^swUmsH-4d{aq0BELmrh12Xm-%%>Y@vmFc?XBh2yx+CGYX6#WM ztyA~+$G5TvS8wn~{pV7xw7@>vYf2r^D;&rvqly!qc5CZ(m{Jhb1wEJklMd?A3pZXy zyuUKv=nfwoUf(XeTaeD&AOLCz3}e^D<7}Q#iM6f^a9W;9d_A+Oo*;jpn>*mNI_eaxcn~fsvFfCjTNtGk!hJ=PYY()74=@d zTe7A|mIE&wD;-{cTR(X>#W}xkwZr^5%}(__u`rl~PGi+dm37oj5%BPsd7U~~ zXtKZFp#O6BId)~X8P_p&*`IC$yZ_4ep99~R`JQ;nUjA3A|Hvo1RSARk;zsV}2jraW zy_Gr8Iy%JZal)rdVa1p$0IXi&ee8RF&FBr`qL4$0-dqleqPLG|6RE9gQY=bB)Qy zdN)0ACDmMJ{!A@_(WHrTWK>*2^UDWr!Z+*&XZF^b^C#c;6M=Kv}A2l2ICdRio>R#(#TGE$7 z_NCqCp#!Lf?mT!F^y-@OeS=NwOTqF^1f~x1S1SKTreJ6b)>s8I+s;{Z z`)h2_MLxTLACkg0`!K=;BYysPO)#2w{&y77Rkpg2@Kf_h#))1QBe+ z6Ut==y>jl{?_w!?sbf(2_?RQ~jbv1+-9fo~$v8neBG2em_O>LiJXkPB zE`gG`FMRnpc;luWH)d8{_uemP$DjrURic17WjD#yWBkfRR+YQkcIBK1^qa3N&X(8- zr^31&X!dMi%kjLkwc{n~UK*X>b3eRXL&@0@J)I4EFfxFW!>`ymH)Vz%-R9oK z4yn@9@UA1XK=QemgJrTjc(XJ>u;mV_944sQ`x(_?l^++~x-#ZD4i)ITl<62jR!S&+wc2rMAO1GL;Aw&)I!#yrK1zR2> z@A0-xqM9~MV9`0;MPoD#&23_;r-6oqCC=`fA-cKCR~6NmC@wLCZ`h_K%9JENVz_d> zaIc&62C~XEu!W1VRQm)b(T77fcxU@sE5sX$abEb*9Mr;Yf2fB0tsY5lw=dtfhZ%uo zvyQ+E>~0XGg!vg7PI1@SjDcmS{y0;eqe&1tsyl~_n)R_*tb-AWeq_n#b@bmJE+B zu_k(gR7KaQ&!z8W8-BSpXFe9;o7d#CV=oH?XNgJN3YHYGWLpk(W=}L@{m)}8wSYPO zBvx?YH5=k5i2zw;d4pEpkzcDL5@DZfbr22k&smXyUYA9faa2I0)7*4b5W(yhKBF8- zq9EhQ0_|d(bE>zpV`9~B1LsOo1g=j$J@GuT0k|xV!s3E9-FzUgM6w`KhHee0a7rcp>3#>7jE($tRYb(Q%X-XA<_+}@g@#-0ATaUxMF-=uw!%MVd6l}*nk}s)_ zXadzuN={4+(AiE_2!Uja^!1v+-WNYf* zGL+XqI$S@wzb|eM6j2MvyCJ)G=~nTw3!Zyi;ZCjSppZMknM+@m2b2a;F*v#OxM_3x zkPTO&KQGi6ckNE+|ur0PlSYZK)QBCK~%`9hQl&#f_KJY z%6pF-=+<_Ko3^YeBvvm(0RbqS+G}__({g+#Nb#T>5I+bp$YYR<_Yc{j+lEC3*CXJS z>=Zv4Br0TYl7|>we5t?Gk&!So2CDR0Q;G`jfUarvweucGjJsr=rwl5 z2+KQur2xx2e1!~)r}rcmNIWcz;px47ioP*;Mc38m*Rpn zo)@1i(|jr8h`x-^99B32B$AR3ZhM|Tw)Nh=zJWF#KC&1#<`=fo%R9$r)~~K->g-E7 z(OU0gmsi@u(<7ET;SpeS#6|$pxpM*TZ{8!`u3r(#8kS6V3nw-)qLTV z(oz67&y@5t&t3Y7>!lwHv0AS-i`%>A$JGL^mXAbRxA0?)2DvdBifm)oK^tEvKbw}A z!aCB6_dcS>w8kHiSaK#K!RIvvO)8Et8aCT`5RHb1JFjSLBTfM`)2n!Gp@4K3u|qaN z}#Bxgqdiv&J?y|aVg8zlgMOrO1q*Z5j=Pt z`gF}vIQjP2E=L$lqfuGLb)?5k>U#*QY$AFln&~aTJCKR%E|y`?Nz&vc#3<=eM?8|n zE^SzD_!_s*s>u6vdoA@;x67(6^o@MLnE-pmhBUT{6*BfJQ0zq6DF>L*8f<`YU_pO5 z&<04_a`srva^K*@Z3|V@akx3n5>{ z1Q92s|3m$!-}}6v-}~ZE>PXx$XOaVwu_#?nu-n1pdDYzB7>6nZMwz)xNo+C`b@z)p z|Ct(R6}27*5%&&4{8`*ABN@?-Oj)XXlGYueklj4K9PsNv(`2}7RlbZcO$ z3sy==qq+P&szA*KQS!Ys)^KIIc8W%dLW)v~8o6?T(h5a+LZY~W5x{!*t^_-tbQsk!RcQSBfD^DY@$Rn7ueu>SZay%My_p8haU7Pklk23Q7vL>iIl z$mzB8m##Zko!^}uxsgin5lD_6m*~^;k1vR;rvt&t6i&a5D&vCC2^q;6b2`wLQR+}A zldA1gv@j{fp&8ifuCb>l65>Dwr@f$TBfGP!fbsfk-psNAi99l=)9B{+i3_O(-l#g< zb=0F^#Xu^qhyVtvzGaIgX5IK)Q7M^&{quQL2CTQdp8%)>{W0k=@Z?+iK|NHu+vE_F zY~DSDm&vEi+s<9ybFWpekx$6a%6Hlqoh#l;-UHr~&+1Q%&)JW{H<_2LE4*vo6W$}d zd)}?iiOxyhv(3}Z{mtXei_L@1k^5G_+=SZSC_zRKf8R92o*9-vGO}(!R%z)yfIqt0ZF40z!(#byn z*l&i8#{KG6kvX}_5p6Y4siF5Qyst@{HzV5|uz1sGv{@GfxhB&~u>bm1DT2JBq7&7L?W z>fsi4Trr!e=xz{Qu|!lOfS+$ycvIkwU(UDNTdi!Zcr4usYmi5H-(0sBrrf3=;K+K_ zO&9JU!nOqOya0%iK5`yt_bI=-8n^k5z+SL>4+*ohq7lEhPE>HVlHcV|Nzb2_Y(hst z+1z;IgD>;~HJ3TJ(!yJi${jCtaHam&KbsE_J<`lv*52{#_3YPdl$$x@CcMezK;707 zFqyseWaX;3$FwVyHiI@$9Y2yb5Nz0tbh;6h>o!kt8zL#^L5**BoTZOj#cdMxP@CmU z(I+AEh}z$@^FxukT*mf*xV<9t)j9l0^u5U$dSgvrPTVPw&5)B53RW+sPsVy6k+yVq zsLfC|=v+j95=8b~qz{oCeD?VXzGy$&zOYTsVLN{XV+oLR{!3hMF)6w)=x^M-((`ho}FlM~-Cb8|&PJTIamUh~^u zvce$mb7xp@5^L}*jSy$J0N-dDwt&HatRED7!Q1ocfrr^6j%CSga!Cnn9n+DaOA&c{ z!Z)ARiV@#Shj*D~KhNgzUck(JOz=?)oWuXZQw8-ULlRwQxYo?LEK`!1%IVq1JJTxg zr86^&F@uBG*MoyIJET+ccOD`XKM3H$I+w&f6p$ESuZ&4jpWPD?vDJ|m6X7TH-4quu z6fYpzB$CrlGwn!8&PmP3n?aevsmqNHUa6N$=VM)$$lFR2HkD0C(5f}pKquIuOKstr z(D%#BV600k)V%(pFpWGsOPLjq)9kNpmKO+YpCiVUU|?X*C$q;ip)aB`8Z_ikaAI)md(ToHk;;Z}O|0Xtz%ZTRUmJtyzWv1!IpWWw=HD_x|<&o-W)E6z^B!a@^W?Q6It!X%QEjbgFZ{63T| zhFM!swP)3|r(MQUUcfi}=E06iS)7*)mQ%%9NMh6bY6Pu+hY+b5+~=u9Y3%+c{`xqMkSD~8 zE7H5x51TSboO3Tul=D;??(aJ))^A>b#h{dKn-&qaE68-}7VlO|# zz4W)d+-G?=XqkQiwch*~ap#9HPXD^i!hU?e*omAH>-N4Zg-C{Wa;Eq>*Y`J5KO(}< zc%qN~3&#IcGhD zq3Lc+wvgZ@mN1%*daS{u zqQ+R$`pEa*^`0(`%};J09j;CMHIK*jRqOYQ&$HFnjMprJkV4xfQn`JGT9WauLj^R-oRIVXSwvSv>T|bBf^1N_f^qJYcnDN_wgd zC~UI7`h1&wvTt8c)ki%9+KJkj}JMET5Re=ziXdGaYn_WYeLq>9S_#BG#+RqQ~wGg|3bl^;1+c z3&Al^r02;)571LG$gZBxbh$tANkpNouYbD=lu)Kx2QD+SMtZ)!v};b@k4t6J+O!x0 z-gy=eB3DQJkDaXAQU-F&EBsp#j2Z=y=6dyIvW4=?xy%{zanF;b3uLmu`bFwj%5t}+ ziJA2O*moq#W@=9)B%KzvCuXX=r+Q*4W|ZW_nCz2>^GgqsqYeC4rUDYIYN_6#=||_m zN3fj?gA}cBjb~`dvs+24?3YypnlVb8Uua5vahwiN$s8u8r)MZ|So{^XWXTJ*G2S5-T42ygQ^5-o7oP(ZqZ=FJKWM zz-0kAAP>&{B&yE(m`boSB0ooZ3vP{Cn8j7Kx$CnfDiJdy|BF!RYt&=khG2Sy8V!3) z2bb}CxkPvvwvA%G*N@|h037Ar|QH@XfY zuV1deYeUPtU`SqATw=aF!Fg;QbALRUhE79$;7_aiT!akJ0Cwx~*@zb0^tM)29aC%mO&!Xc5taz|}To@SBwHk-R1`lT0(^}#s%&QtD4 z2MdNL1)o!>czf?t#rB6MhwoGKLiW$Zc7qOgy|h*3<((OYyzEh$Lu<%TsAz?oCY2QT zcGSsv(!?>=CPY_jAJGzjp_#MEGJ7NzYh!Qjk-T|M6X~^`(AG*7ZA zjjvOICY4RsF)kXkKnU76YiTLgxic5bXDM!!Zk5!EJ5&J9*#Q$<#727AtLT^;&7xL$ z|7asKxQ+&u=}3E0766dCJIr%A4yA~?I8>(g(zZHV4iLUGN6nEnM$P`Xw-!UU+Edz} z`?{ajQ)5Z`rBx@{s7P`S&9zy)vp<(6o>25vIgKe+D~RdqJK|*CC=xkx#LQ*i$Sa0| z3s2vJ^qPdZ19t<_&N8AE<)fW?3v&ahxS5y|`}na!4CZ;5Qf&r}Ax@y-lN|m>USHUO z0|15p2Ud`X3;!)RnPFBmU09!qBs`g!oF1YLt^dv-W#fD45i@JbMpo?cJGo0`rZ&iZ zUBpH>tVg)qWUr!Ye!6&NyuxvU{mI6;c}@XWy?bfiB;@hCgcam73ThVZ6vac{qpT|o zV~xa~I50~RUWe?O=RD8JZ1@q~c+{ki(@+jyyL2?ab&AMIB4;DfKMB7(v-y@6Vg2jz zNP5Kk%h!zpmMS9x>Zbx-+32P#VQ@m=9gc~3;5BOtME zD%(sFzuj zltevJ`-p6K>rR408W$NSHaNUyQ9vS;sm4W)k;&nU*Y(W|d|Bw!E??3Of zFZbF!E#!gia6C+^c%!|jvwaTX^t`*0vN`|x;%9U5xeRzjWMto9u5#%oOagk=U65Kl zYPY_CyVgRt4{J?+iJX;95PXbz^K`x|{n<2#-Lb63Xg`s@9grT1T@AQcR_}HMKHRwsD;%2G zMM^pEItd8zL4OEAqvb-p zbl*Qb^DD2F3E-WJ&9z}8i5ouvx#crZx3;&}PM!9j%v)oMGvC|gg-MOd{L56@TS!hF zHPNU;b_icOyG*Ke9KszI~6Ie)ob747n=Q47=EKa4MPgQ?`#aZkf;! zARUHyg6s4B_yb#6fD>}N)E8C1;WVDIYtPK0juoZ_IBW^Uy51X)p3Oh29k|W62|yN$ z%DdDu-7)7;aJ`E|u9TZOlw22=pW#(>)esYxkByDbBO)dj`;X>F_iWI#*zZHJ0nw3v zL>%zN>gE44Vl}gEE6*w{FF{lm5EvLf#*o@E5<$=*&P!?_8ZZQNWh<)owyY9oieFLelr3<*XES zjU)`!VXm@{)MR+qp@F&j(sllquo`X2|u`WS~8Q!%uV#Q!`*Mhs#5wWuNo z8FAnq47+Q^(^M-?gjX_h(1ha29EZP$v&gbDX6iZ+%oKzlqFY6p+vvTBJIMdy4Y>D6 zm}X%~Vmg>BVmX#`K(+8nokpYQ5H+)kA6qH9-pzTk(|hg&C-^0R|BDY?{x%z}MfV#^ z*Y5)*I{!BHJcz$pdU*D(G3p55stRx($%3Xr8|FvdEqux+1178u8~#g^>L>Kf`o+l2 z>s1)+Fm`>`*oANnbmE3yyQVOa?J?skL38FL5y38C4a>eBy|=+g%`n{oiqd(C@XwME zc#%_4Rzm5ELAO)%ExP4vK-@&vXbB6}oNzy+jFsrk(YvEpK^J9ujbK^7ed)4nO}yGZ zL7aR$mZ8*8%ftxP)&4s;4QIv&9NqMYrIAT0Qi9H)>w{j+_z?BNqLCNYU7*vwIiBQ5MfveIxidM}Bd}zTXzYy~m$e+ZP{uhZ0&O^HPtYFVGGcx}IrpFu zeJZd_gq1nj36T=@z!*ZjtU|vWxTNl^CKKcGfohB=mX$q(8K9xC0dYV+7dxlWnu7PF z*6Qg(eY>2gK6!9#vJm|O9L{wZHNwMc%_{#s?;Jcot(_qmd9@5G~yH^ zuuZ^KWmE+`BfOWt-&;Pu^2jL+Ke{8giLdly8B&=MPh%}_#O6RJu(YLa+nJ8?pf>X^ zi{$@k)7DP8p6=z$Q)#&Q76xDvzaIh8=sJb5ERQG#@f55d1SgQXI`U{>;N`y8;H6__ zkX-t&iNeMZh_Z%NI7HS{K{(bb-Q!28n=&{2SY+R)r_K0veY3aDiAxPZhzcWdt2Pl2 z6TZC@FJ{0LG>BLz+~xvzljjKSCdJD6`Legfd$FDcqzP!hiJK&8v8Rs7U_^J!jb6~W z@wIlLA&0L_TI9|;=K7t5vCYYcaQiTS!x8kZdQK-u~M!QdGF~`3EVz9-Q#BP)X8R?!l8bav{oIE(bmXAli|v+tG~^$+%qYZ z-1KJyR77Sm;D&Xym+3U!Kj&(E5XFNS9cZZnUWTzi70 z87bwh;q2oxS&LCJ1?NU&RmIL_NG4i8=dGZtjUK5IlxHhwU-LCcybv(>Ki&)KwAhvk zXI;f6PLqxcX5lvW85<8eW&v<|3qjhK%af>Qafp4g^f(Tiv=(&3DvD|ijudvPe?7lT z`dx*v8u0&0`a*c4dvvtkxB`X!Wm4>3{bg$Gu!IKVL)szK%Ayxa6c%3JOe!vsl^uTP zy#KzPxwmvMLlYylxeNJl;r{L3!OYKHs`Ud-RXw!Oh;n!8kqRl-lyX5cJfCB40pA3( zL6vGz#(=UuK0_d4$r_4tH;-N&iMFdIslN#VQSFQQR`m{w9rjQj1Y{B6j%-M-w=^=C z6tQOHIo$`=iBQ`o>ZZ&9RDZ=EXn42hrG08XOU4sf33Q-O+vX?&mc#Xi4-AS?25sUk zO6|^?Ex9OoGdg{yVF>J5hGLZ&v8H2=lk3Uk7%Am0e!4g4w)R_om>1L%or4w#fGtS0 z%rQb8je*xx$a9)!h3#Xu2rG6NOYW*GF=8<>m<^n(giWHxr$_QaTC6TXRU^7B&`Y5) zp3aZ5VzX$rhyV_@6MEBo#q&e45QSB z#AeLqYQ+)dDCOfxi!}+y^ezkeW5}m!rRD|KJHbIrbe9Qv2yTT;gFR$odCx~H!lOSQ z%&!$5f|6Fz3Z`5^Rin#xmTy1Rq$Qc8ZD~cIKtSs zU;6FiuWB>S4@I8jKIA^^#)6)Lo-Zjb<3?WhOsdLnc%B>Gvf_C*6*kB}**D4a=M^?6 z6CTC)+vQy<)3L`BoJK<~6ZKBXE|W%H^KU$#qaHlP9uJ;43!*ZRw{IxVGHTs=I87h@ z8zmny$@8Fu_~YnAk^`0^%01BEkF+ud%FHe4yE3ino4%E1%3_oN8z31djgE@x1TipaR;U|23sX^~iXRSkC}^9&h)<;+4=~ z>4dk#?)rqRY-W`B7b@a^D7yZwBL26E_`ek<{!g9%)_ML<75b<6zsvPc<@ldY{#~yB zsY3r0|NpBZX8ng0_&FEDU zF3dvD%*^nAGohirs>Q#S&Z?g%Q>uo^SMM8vVooiX&bNfsJC?#ITWW>oD;JkXKYLxKRo!1!t`>HB zeRfWoOk@Bi+Yi44$<2=$ZX4}!h`~s5KN(UQq|%OQN89#7g$Wvdtt~_*SZR$U65=7x zTYkTsjl8#*&xXlY2{~x|$zGwoR&TgJ^4EeyP76)W-F7$>E=-0a?DDs|i$B@^Nq*Q0 z>W6iJ=TDD!cs5sZbb*3`OMV@fqC;w}=7*USk^Dzluh1gb&CrR+1{>)Q*} zWuRHoE%l(~5GlWoRw~6hYkrQPfICad_@$O+P_Ww z$f;a=Ze9a88zHEWMJWD(8q%yD(lg8JL@iqJvX&T-{cY3D=E%Ue!~Wi)T&IHDC1aOh z)j@Gr(gWnL^5h?|amT47i_bT}pim*PpKhnNt$d+8E4yUi_mWxG;CKZ3if`W&wqrb7?m%ZjyUL0kDPH8;C&?G#m}+8_5!^&c zQ9}f$Tw580#^PtFQK(2cu6}Qbh&Xdw6?lP8T?}{$e{Mo8WXHeq&aLdE0_x*;T59WjYUbP1G-6AHh!|x=`#o5S(9OY5y4We+>U` znoo~DZ)DUTGOJ%n-)z8uuU;#@|2zAH_nXJahZ~3Z!{_^D$(~;PHLro(|C#Rt{)%r5 z<1GwSB{%RVOpN4?4V_^$7&gp=ZLb*xb>4j4Y)+|N$>wYN)8l8JCkpS)#_^n8&(l*t zlvAhIhR$cdFJl*#!vO-0sQld|WP0v5WTSm5;gQWug{{(Mv*YQg=rt?2V1{;KZcth)9=_k#}~#n9u}(5IHfwg{2bA=kmbxN~v^J ziW7A#bSo2jbvTr=0e~ZH{k)>Wr&e> zHJOf1CAiXVky@sCVq=OC=LjwWW)a*({(VWe`aDFg-TREJfCYEUsaSC3>#vg|Tp%s6~*xMg`q_t4Bq064@WOC2>+YGEVOTq{?mu31R; z2}d2!uTGtC*`!1^gFRfYn6d1D?u3CJYbEC){w}EE6d>zXN^6(hP<7se>emR~k52w& zX=7uk4eWC%2%S(kRj**zIN8aDIAl;#6v(zvG&sCVtj))bf%H4-jc$u5&lZMt$4RU* zD+sO58}CN-vl{R&Ne)U@Z~%tYL3EpGRbbkwmp3rgwV@!8a2ig9!)4k68$5s8C)Z%j zO_iaJ8z{Ec>1udL%U}i=TON(i%$EU(^NG15tTf1aD5p=Kne5G!cKry8eg ztB_F5kaXj~)(Zp>Q)3=5DI10j$QKz<&3)qwR36~xiZT+`)Up_ogX$2dWBpYrpdgTi zoY@Jyb2_wNfnZ0i+y(p;+9ocOEu(4GZv7J-rgt+jXwh)>g0SkYT8!34-?B z&owTy(x{q=>VI_Z+g+b2RN$l#e!NRG)yfB|Bs+A{nu?b5&v=Q)@@R;*$cRa^+RSea zzK)e=S})zmc*Wvi2w)~EV^Zzf1fvPmJLYWUxk!IuKOhcdgH626 zFHpPX&wc_JM*L9zLO&O<1gZ;IdBj`*r5sJO!P){E{aY~AWw<{&hPtU~a<5x{lT^nm zB_^8kf03Wh@Gmmv^^YoWjZp{Yte`Mw-TB5%AI)&fjgTOYi}M60%N97|iAv6=m+EKT z9DwIzF4U0N&a|4GrNmV9#TE4|OL35DqaY~R8++oul*u_cq0r3qXZclzjQ3iQ4ms8e z6lt)v8`FbBd&|<-=#F<{a+!o2vK{Qvk&lidS=b3jg>^<(mU7xoimkS?s}LaqqVPXA zFb$z|r~F3BP`N$BwTq)>2PNizDhpQiY+?IfunD*CsxbrZ|4w3%v_?5ThR{5O9{ij*w1H-jLF=U`A%HfUW`G)<=>EK_4<}MyJ2bd(UPm{z-X)b z|LVgunlH_-?BO1}XNjeV3B=V0223FavkJ18-4wz2@k=0Y;AdWWmG(`@|FoMt5Je(72+Wf^^Ni1(Huss^$yw4mip$0i<{h`;2MQF*w|+eoS@=eg z0kV>rAJz`_)N?D4l_n*Enr;Ki zq)Bpkb$ex{yXUBSn%~CGY?+h!`pxQvTXx6h)~SeYrKHi;dAS;s6FppqZ#XGNtP>#>?uGj*$Y&#<*?=yaCfw$ z@gkU)^X?bdjtR>~VD!bFMNjWqWU5|tY1g;t+&Y~6bJdpf9Zdi9>(VD^KpyTC!&HJ? z=za^=+4Pu+gNu!^^0GA5@xJQIXtjNk!9EQsMovVb1BGuiVXnJB!JXu69;V0w7W$dR+WbCX$mB3@xVFf2 zxn&P>;>b6T)G zI6sJJ!l|_yj5Hf`U#b2%_yl^Tv)o*4$o5Yg$_4Wn@q1Z5(In9A{XHy(R8QuZ# zdlXd|LsA=hf14h%*r;J(M>Kp;6+Fl0*okL_G>-kX<)?J|!U-B`gRLm_U6mZAQZmD+ zn3)}K7s%ZTxfu5Q$!~ngGZa{)whdkg-rMzb{*L7}Yx6w@)z*v-5G{tsJ@nLo4>^6? z1hKa#d;}}?$@rtT61Em`bO5OgRtSRj4W;fWd#QG4-H)MrQ*T62Y$zYFhYe`r)nvC< zA6M+F2Jgc86WMVY^yaC+slH-y1Gg6>^-;(7o5sSuxl#V!%5|xU#RSv6RomD1*q}x;#dj=F*Y5 z)xdk)FzL8D*mTYe1d{e1DOw!#j;#^fKOA@Ly%>hN1$&6!AB6;zhORm1ruhr?C^7#A z+b)6nP1>vEhOS(Milmf2YHOQM6?3t3hMxM#I4xh z_IDFOMT`9IQuuXM?h|)^#s5QV&az>(ns`5NFYPyLfP}KQC7fG;&uH(L_9gXKgZ~Xt_9~yYm@0#jZC}Wd3;2=0>29EHh^Z1S z#F2rcp4E3zpQ;z1>SXanPkh=Of(#E9AURt=KmAMG}1QK6I-N)v>__w8rEotR~3D`c4E9~FIsrpH7oyH8oh{8lE>>mnz`gqF_Salqz*5cgR}&7PhfM0sEM z;U8=&jLS^<`oZ<1a|6UvC3MLsCl&M3brjvGbAve7$0m`zdng6aBZEn>3;poq%Ia1lkOAz&NqG?#;vL$MoWt^p< z#Az7zg2ztlC{vgKVi=YEG8HFLOjsp*e|^9*(HXA651ZIj;{^u7`jAxPc}xR$DUXFA zSc9_4;VNdGshQp-IKDa9WA(LhW&q)3=W?BoaztCnuYE)Cy4Zp+HUr`g{EdRV~M7>j@Q5ihzN#S z?2x}}hLVUnL^#pPVi|Dvka;wGzSNLQMl&UW7`~GB zW=LP`_(Ux7@EMf|*}ZeSEcrEbLMFX7*`4!X@(#C2Un;A)badMRn>H%bpx#-yw4Ng5 z1YHr~^55N8r=FY@FaDJKhW6$v0r!l>5@ssU2270wTF21R%$3@!@$Sp#8;w=YMCj1b ziL{j*SA%Tj%7;2f_kbpW;MKYp+!NE}`I*^l+7g7uV=Fjy4UekFOesgH!|?m@S%Z12 zm(U58kcpE%)kh|efF`lvOC$s4km}U0^P|UP1LpA}BdKv}Zk7_b1ugXac6olT1|iCe zpn8nRit7Vhj6*x^Z4NTz4IQYCzcEGgn83e?2@CNHKag085s5=+Eg^*_C)oBrCQRl-n$3*1o0Gu(0c zQ!Rwo{zqd=OSVZjX|34Nl@o^3X?V8IY{M*I7C1bwUfkh+(wED zQiD0#sT4Ko)Z&eXsfGoVzf%oURLx}0q|W5_;sF^*60@iosAzwak&jy-D3;B)xKgj{ zw9dDnZy#;xmO2isA8qTs1b4Xfb){wL{_J{9+NaPL6AHj{pm3m;&C193z8`kL?~|mql*B1Guta=d zmEfRa=8W{p+{^BV5Bv?H;)X@f%&m{P71+nxG(5sUD`ZkVy8N=tgbyS0GQG~qhYyXm zf&K-iiqGweiK^ZBvvy7Bh6$Al1Q`;yuZVa;}R=W_~l(Ahp&}zXxw?Tvc$)bR1n}!~b7|%Y}91l7hQOfm(3^1l% zmANbAQKahAaUF?>=Y3!6hlodH+PYUoHBx^@jzd3r4IRvAbDs*X2 zwK2xupIw#GK2&t1aAb@w{CtpJ4w_e4&+Ekai$9Wsb7q?|_C|ao;v>!9NBA4r;c{=^P9?)F(rG(w2su8x+DFuer4?< zLG*5S=^L5-rSU`7y{SNiYEC(%^>aY_cwULepSo_H{dafA8MH@6aif=71XfqT(@3#{ z67T%heB}Iw7xNBPu0l7Xz1!}AKRq#FL;nPs0bqH~TO)X<5pGpsFr|_8l2@Z!c6}tV zHPEUvYvrFN&uHz@#;fuNxO;P_xQ}ppQ4^(Sl?`YrTql}EgpLhf2Tfh2pOiUTwEs6v z2)i!adwZPPf>?WkkTdAV5!rfppcg)`ko*Gu8SNV&2Z#~TS}$Zyz5jx(5hu>p=($mR z4fWFEiH@5tAt_RYB08m_n5$e-i^xW7oeq$o7tgoL*$JxHgmWhM1>_5`18Bxjm`I=| z(~ftgm{kWahcCNqIFZNX(C}gLygmWJ8zbs4*x&aSg7!pDhFkl6>QNQ%)jeQqxZ`-) zW6pd38-zTS^oY@8wfRhvl<^; zTUk@Rv~=NpZ%MZu+H|SMuY-)kGlq=!8QcEd^Bccjo|L10aBoVlT;NU`JC0^Z_SiLlr?(wF{eY)JJq|$ zJLx;CyVMA63xyOaSE^V|ofO5CwUnb2ZCX!Sd<{7b+GW$Mes(S2-_fg`VQTyXozJ=V z#I`+0qAg;QiS)_aeckqVbVt~1IMk-`rnl%H5MNFvjNHSjPY|%TCLjBwTb+t;0j>?4 z^Taf%9m!JNX*GpV8$XYzH`%9}oLOTLqGrAqv8TfM;h)wDkfhWj=U1vDP~2VpVyQF7 zWqRJe+I@9VADQIw>`TCr+!?9T(ZD>C2V}<^_8A6?hoBajO+JQu(j6)7K>N2q8`=f0 zUV94qz5b}{{JT!#SD4koR2cS5p)gHwBy1BTyCRse82 z7`H)(ieK8YpZOgVH8J^CfZO+4?*Ne@buFd#u9@pCN`@eC20gEI@+!^^aq}#DSrkG) zWNopZGqp{Wb7OGWyD~CAX@79i2MzEX6Kac1|2vWJxG0T|pJI=|hcAR;Pq?>`z7ds+ z8bA8DkYo0y-{@k*O9!|G;gt9lLi<>QzI%E}y$q2ipcPf`i%d7jb=vb6e`bZj4o|x@ zo&ORQ(LGgDtC0cG+3|P4EluL7<0=o{d#7ej*r=zIF{f!O+)Wv!8#$ls#E-uNkh2vv zsv1w*MBu1?D5TS8Cgwu?RTCRz!J=CTR?Hb8j~D#woy8OPrcl40Hf#g+41SQ9-f3Q3 zfOmCU32Rs8YVL8k z9hNz?Fh2?-vK?xXsw#MSR`PqC?&TW8y&lc4OEjtPV^^>2a<}%5e^mGTls@f0v*16| z+TXDRpp>X5wB&M(beq2;?e{5$r$n-DJ~=j``qzx$Y;DmwdZGq6Pk6EnEgh~c1}zL> zrZpGhOo^t30n}lc&%qq@QzK*Mz}I!K4lvpQnJY|1kq+Y*gKg$r?(gr|)57YzBFoVo z(<=@_?GThf8<+5{&pT0xbF>`%SA&3C+pOj55z10b_DDW10scPSQ^ou37cg6F{sHJ~ zEDsE``jb=eO@3cF`h)9Rh))=^#=mEPtQv#^uP2;@!EgAI!!Ue?eY(H>tCv=1@vFk~ z^7e?0Qn5jj@$W^smj`He=)s>+4b~V($fKnDRbl(9LzhI3Z@43sa%$N(FIAT3V^kGl zYYrf5VSbgNhkO^6UDRQkf}Uy&j&I&R`UWDiiTjebL`IxU*$VF8(7O5b4h%P#J!W1c zjzPTTIx^uJpOwL?h?38W7(=3OkF9e?;_)>rQ4QgCE%PDnVnb%W@lD1oXG2GY*Ts;G zrF?v6f*r{lkA%<^sTVEgn7Ej|%u+A*h=o}+cs5z`Hd?JgdZ))S|vGkOg zaYs}B?cZIVQz~a=bWn6Q& z@aW0I-OY^6%t{7plYBGU5|lK?P1UDeX6`1k_;zkz$z#P+4eSAOYO0YVM@E&$h(45E z>&>|d&Q=*3!SQP|so|`<;AYkSCzs&y4|7=at9#uMgy^7GMoi<<(o~J&PSHm;qvI7d zRk(~DM!V`&{~A!b95=%Pa3J(B**|e^qqz6#p;_drf^&r1N&PPzJWSlP^mMxkVy?nA zaL9*j)Bnv`iM!c>Z=&bgaj%E6Ev|zK6`twk~%n_6@wpaOwEgJi(bpTpf|?*c#hsru82N z!oR`=r0pJJ`Gc7G_-SWJ5ilpdmq9fhg&O|7W(4Bnoi%+ z&vdd}NS>hjt7p}MZM$~kOGvqN?DMo$Y$RWe0j^!pJse5@P8`qS+Ny_$-?!?5+i_xJMMXuN=+6g6^?95 zbUE=Kr+F57x_7+rJ2N#Cs0I2Y<|hcoFJq`;I^KBBPaZmIVIplcIsETtyuU=!4Q`Qc zIy{zL)G!Cu{nB3PCQIGt=Sho`FvzYNQd*|Nqw!}sckw1hVyUH3RHHL1mAV{2%hX%%CWdjx8o`VHXaX{(crgRZdQb}waW z-(v2CCZOwk=xZTIuKbsQiRJav#-qT|?ZT%Rb+X zxkVL49tdIx%0h>A+X}^U%JfQ@Bee?j%C55rk9-%v7l}jAuPub&;jHBYA&aGmw4-HX zSZqz((WcOjlI?Al*C=XA`^V6>QvXOQysg7?GPX13vg_FcJD6KcB(U%?S+xgi8_^K( zNlyb&$7%lzT(F6{#@e0FC03psd{O}6oSa(9aFRCm-@eYFUOGi2Ap5t&d$@GVx1hV- z+lW%V8XE_z)s9Cbqa;(jp@vb{7QGq)Lv1!iRAcOM|8l;PCw3Le`aAQs*NyHLpZu_v z^bdwks6_q}44I8~E-js_fu_+5jZL7YxtE)Xl$ID&FSp$Mh;o3`iM`05@UyDM^KL4% z=jANKVyuFB!_17bcq|7_-J-v@elMj0!B=_!d^iF&g(c_t2vxogTG{vCR`?o1^~J>B z>x{U>f@+V9F0~z1Mw>I`nNF&G#_i$xKredq2KMQ@_kKfNj)tM^^q*r6m~{5-nh~q*FnTnFx-!?|Eao}n3Ga!)DyceX4H#ak0a#CLOMQDsDrcc-JOLhI18l41dI zEY*392Fk$n6ir;HZOIk6&jSZBTyjqX@YE2lemAsxu`wgL51e?eJU+{0vm&mq<{Mal zq3y_>cbj^Z7V4E{PB7WNOmfQ#|IP8$gNp145;}E6MnYtN(l+|usq=q-c)hg!!s)JY ztw_kwAxkE`NXYs4vsQuG2tG8a%QC4Mm#M@;bC07X=&zN?UzL}$j~byouL7Bvz2!ht z^TTXM3B-luG&B7GfnA`TWZKl7jG!c)xpJwj(%veOD&kTRzEVdlk671oo*^xfp4M;1 zzQrwVSrS*P4iP5`!PoV6_K67FXRw+jo$BrKK%WW?4Q9^L3?qA2<2ZmteYY0&pg#^) zV_sEzpKKKJcrYjElzE9)6#n4)UT-4SHZZf)L3bE6d2yv zT-oTtx~#zX{FmBUV5`IP+qcKF=cJFA`NqPIURmPTYUN6AzH@qNuq;93(Fy6mD!ZIW zgM1br@C04vR13Fv|8@!A^ZWtc197P_jU=&DFa= zHbuW}uC$nvCLa4Z^Yd{(7_zD^Kx6Ip&asdRWLX08NpMDPZSotC&If?d-Ks=NnVN0>Sg!jQT$lR5L`)W%@unfj-x20<`6!hBv?u z;wK$sw77jcCsE{CMo>>VVnZ^m3!S(4vHl|iXNu>Ad}ZMH6jy|cEuysx%wXoc3g zYp!=)K=tBR?Dr6-YuXgSowW6Lv%UX(+t+YUjm?FanhHNd)Z@#7#v@Wm|GJh#+!JH& zHyDAHS->^b&CD>sOj~8Ml$fhaYxkLiLZs%tY4LI6hRr2#fmQ##4L*Ko!>3+ z=+uzUdD=oHt6s=KFh|T^OW9}BwS$%?yeAe

    jd+!Pkf)I5b4{kT&0821hLg-+d6 zgI4U#sD;5_c(Kro8T23KRm=({IN{)H;Bx^V85i1HB^UAtvKA@}G%WG3(ui63w;33lP zA>88-vV#!#Ffvf`#~F780Uxqv)ZfrMAP_e&Fz_D|{wc#H1p;|1%P)M~C`71Xqrh7O zTa_f@m35lIk^1IpBZ)LSpjKPPAqOix@*TD7-HNV~LQ#g1t@ZI`Kx2!*dV^=c#~2<} z5&Z*oUebESfpuQ~u>!sKmGG(y>lE?GDtI)OUa&10kAt!@J^wd-^FH(kA{yRq037qK z6K$5g*-4AdK;c=^NqWYd?uF?($11l*8>9p7`FhZxo0gW_aL|5bcv20>j$hsKWQ)xj z8^<;gLzr{r)gn(EoRbrxW3z)*X1|M#Rj4{BdH=<>h*(GZ%L@n7fn)}M=7{s1sUHs8 zU%o3%=zKmpwy1W{8o}$B622F4Bn>vU7D2*2+VrtKJkwL+C0%D5SiHw*w$tz8IhU{O z;jj-EW@Pr}lI6t=E#-F{n-~81@ywqRy)}+ZO!}ssrEGOM>wlW9{!@8U&p5j;dD7q5 z{_mDAUlwMY1Ji4B^Y@=C|DT|r4%fe31{kUUHtZ$u2hc3%b`gTVMm7}@`&lMKTJRUX zha&Kr%DK{hH~mP-^FM0>Wf|$)@nW&qR_lgwiO-4yT#lD#j5V-09O@Q;jTTJAk!~ zn3ERJHwa`Pg1Kg!8o?@9uS?AZvUSApGtnwsG`@HpXFx4sE0)1x_H}U}B|wRxSQw_n zS)vcFkTnT`GHsp^T$!uLKq?gNhq4|}ZG)?uOR(A><|{p_jTAgGZjS4tU#1!d2)H7! z69fwY0B!Pw1sjMLKFUdm!MLzt+l4};5YH1_xVFz2kshxAqLg8 zA%7o>HC06oS3fjV4MIgl#{YtZg^WX*=quXI3ZR@Lr)$65_juK{v?bWQ+%BJ%41 z+9d?iBkiRe83e)r)c`+Ugy0JD_e6me-0>;82{w`$421HgmqYMN1ga9?7}Th-wK1EW z04}s|0s2?QI7%Xt%e_Q^&^;6jcNWmgw%iDxWMkP7Kk{K;LJ5?4ATayR)-;b+xb zyVk!W6v#!T6G#bg?7gvzC+19sxN7NRiWg&rC?5c(J*9kHrQCc>Td0TglYHsHCB!%_ zrIh-r6&XwQQLrm^JA@84s0KL&T~~z2&>>f5co`FDMFUDjyDaFGigpIB7rHPmc+>(s z8k6*Z-NLd?^%42Yw&~xxQ8)p=$uUq6l2*d~ULx9f6nP_!tHmVrR=Tr-XIrWzL;3@< zmr68~LNrZco-JkONj44+BO)Gboc9#*N8k*f8FHV3v8H3G}R(+K?8*IE>x(9oG~J!_N+>Qyc~B( z87~6YJBfX{3&mXkd0h9Oc0$zW!^J8k-k0tcwz&T``_kx5^Qfa?;Et~>2=62PtEJr` zDDbH#&id(PlHF*eB^sybsPC>>H5!F>ST`l*k!Jyfo~US-l50^>fkB$DN;?f$8^Ah@ z4F*vM+G#8Il_I$wooiyzXhl3sr__XXJd&Yu?2m_OJ~gg)upiSQ;n_K}fN-rT(L@*$ z&D?8W>ROcp30Phg!jW}oy8stI{xkUuZ)u?$tu=mxqfH+qkXA7W;N~XbtjF^x^Wos&BC>KI>z$ zgq<+i__LIVsOhP6G!NJ@?YI!OUv+oCl8zanUQxT0szF_`16{uL=(46xU;)WYZy;X{ z&fC2HN`*skX%R~e3%qx`9%`^e?CW<4;Bg5^51Pt3BOcpQ_Mc}kCur4kO}L;QJp0s9L788AR;y@WUt^B@)^hm;sE$2xr0!knw&t@HfIMXRhR z6N#U@6b9Ztkdo<{aq+U?r}4RIUNnL4Sl*H}dZcq)P;2>$J}yTo=rrM%2m`eUIuZP3 zlz4(E!PTuZSKvHZp727W8cVzNkS^b^djG;p>}fl2?7Z z5$?PW_POG6m@qG41A3OpxizJLBTLCTz?}%OIzkl1?1y3n>`p(_warb5Z6TJW@FOda zcAxWPy(MQ9`aL(}x}fxLX<7g%>qQt(gDH)UZQ&_IoQyL6 zK~pY5l#JxQNI@8HIcV7i0~2O0QKS{mBR_yLeqW4Dgsy;0aW4uZAuVFQL=?`VUo=gc z)L?fZ$-i2|h~UrCK_Fj52BLIm*o@M!L8e@>EHJ-ElOQtDXW7KTODt;M8?%UAi-A6l zz9y0(1K~y<5Dr%@5l>DFB2#uGU?oGOOt%bzoFHl$u98p65l^TCN-CtBr*t&tf5=oU zG(qG+1smq2h^z?YoEN+vG7zLD8MdSpuQpCX;usC1;U^h}h9Xp)5~#_j0fHRK5+qeI zoodw#q^pKJ-=vqT#Q;26unfv1;SW7CiU;AMVp&`yP-TKL8{4Z#wpmC{ppF#G>F5xH zY!>WSrb9SQ9Vbw_;8d$}h>i?=$CjiUodOEyJ4|~7p^#}=E>;QQ0V-BT4)hntzF8a_ zDh`xN%Yv_|K?|WwDk(UEr&wZM!IMZzwfEDHLrMS!7q*FNcNm2d4Yg)0{sR#vB$OeT6cD4c$BOEN^#MZld@=n(2FID`b^m8#7~jm0o(`8?`1 z2~vkdDN5N>A-rrFYx%cPKA6hNZ|O2tZ*9_bL{l3pArt z3abEuDjE|6hE*^_@7-PM70gZrf?gA_k47`L^8;SjDlM*UkOJo+kOYsGTL=s9$2IxN z9fcam6Q~B7lt2avM=3HMoDeA2sC2FK;D?x|k1y=C5^rmzkml5|RACf&3M34C@fR$q zct+bwA`=HI8c$#g(}|DIvy{*SMJZN8kO2!wg?Zpt28#Mif)^j3LU4&ky^H(-N2D8< zG8TI>g!)yFm3K2k(taN-X|eUQ>5ec=7X6829wlsbF-HW`$C4*;_fZ1#9}`m;3vi#j zr2O%H?=OBQjq>dGf{1hC<>OauPknuB7 zGDn3w=7BJPwMq_ZJW&wgfj#PXeY4_nQ(%U|q@~ee1X7`k(4gS8JMNj?WQf#yXZ&C! zk&1vH6tWG(v4udMiti|B6qZClBmGG0c4!0DXQX-P*|2uU{W7C58+%z}QMUN|Jh8yr z<;VIX?5*tCnUEgv3%DsiJHIU2gFK|0O3)1{5sC-CyBfPsaw%*>XpfxL&+^k|PRV zQQ#L#r_aj-2wOLiMyqD>b#E8n_FJ4lUr#M0^6}My*{o=|@IIY}ORq3w$m&JYMkwKy z7IcXc7#8UDmWmjyqThxHeC&m41Rop)z&@K8evQPU(>55I=WJU|ng*ImYuZ+uQEH0k zY$$Nid3ziq3D%~TD8|C2%}jj~@#Ug%l+(S^0~Q>GM1hx5OwnRGm~EIHh5!X=;c&I^ zBq&%X7VDx?WTp^e&kf?g`lcTb#^;&2^o=_?r=D5zR+@_EL?qH!?_)}D^61Xka)q2h zKp3vpln+>o=|C94-!5^>5Vj7ez3PO9iQCb?&jl`0`Wy(ZevfSS6?8}>5~~|qCBwu3 zEI=Wra3{f(B)gRe_gWKc><9b%%D)8v&Se6}ke>mcoFULX-v2B2wGUBCswJ8~FqC}8 zSk7uOCc&D9MvR1lzX5MY7SnAoKH%?9N4Eezp#_}QTR7nQ&ZnNYQSTp8y{K^U1&aS; zQrd{W?F=)p_0rL>m(Z~$8A*L80dxGU5Wre&^lm_VW>RCY4VaU5(1wfBo|SUI-FQ0p zd71d6=hEB4QY_5CC$@5WUwfZ%MWo|DdDx0%*NxOmz1DoWUd>53_hHw}*eyf_#O_dk z8%*%?8a0@i9d9-7(A)Hw?!JEkGx4W3K)qMO28!Y3dD?hTaBjaohZ4`|sN0+wE_ZaC zEy+a2H`+yWe~YJs=^v|F)tg-83CAzsee-nf9PTYRmZ0JD;A}>%sM^zbtKaUs;;}b* z4{w)FfG7=WEniXnjlb+tY;aKqt<_Nwox=0@XZtk&74s(&5AMG5(dRSq#p#_kl#7-| zvdY2JfvkUjoOem-Y^tl_UTQC_X7fTFwZvz110!X{%jkE{GV3Kgs&;eQA?M)F;P$T8 zYAT5&HSeJjSh%1Hhl<^p^N>;J;ma1MLiQ%@vm9-dzDwuA-;a5=#=HJ-Y?SUA8(1yO&bO`3aX)OK3kHlAlpKuo;j@ER^CPv4rJ(hL<3*u0z>d{QRP81Yo#{b_ExA{D zb!BT9n(%2SQ->B>Z*Ba7-!Kp}7c~~yO`@p_y8La4u>a#Rha15fGd5$A+#$Cx0XT!f zz{2*32~>QcPHN2q-(5`j(Ul2HvfH7>I-inOd;<3O^#-4O2uZiScKD37A0{#IOGaCr zN_5iVerO2T&4;mkp)uV#{~i|TzOUAnJORtrJKdKn`+Gfap^zHKO&_n@@gsUS*51;t z-OX=(8)o-0x^0oJ%WKbEXwBx+t7)3t;w(3}?v689%fuKDe>YHRGMSzY$L!eKe?wPo z4qgZo)7EYu-~8=hb2{{iZHsMq{!S~K?(Z1COQhEDZ#!x(m8liee!;KOdCznWty`-< z-)wasD9HBIZ}EKM-2aHoqX9irCw^;5Z9}4RxgQW-O0gzBZe6WjmsLU4k+F~XBet0R zj=5}y1FqD(QnypWvCZp}{2BjVcC-HCW7*P+YkNH@sdP`qaGl;b^7kIV8;MoDjBV*> zku7sf!gnC&qfl+|YYte6-92CB2u;^>vAv9HPsyD0Go!jpa#-_alsV`lKN-$`X=_zY zyfm(q@OE<)+0KWuf)0yatzXx(ReH_zDdLpWbhXl*X8ki-ttE$${hs=~PZVq$5lcf{ z-fp%819!+58|(>)EruaVWdX5cN_ zWDb9~?U^C6KDdr5Bu2OKNacxCK_} zbfmGKFZzv&=Qch+b82@PEiHp0G)e+zwV3(oG?By~I#fwYS2Qsw&Ci2pDI~ylkRb?e zA|)K!2M!_|o2#X%py6VtqhsTa!-qq~Kv_({r-%eO7!%R4)2NWy#(^ZFCA^=Jok;mw zBI8{*bNUX=fviv3mG;(}QWQ%CHW1ij?vC_E`hyC8Um+s)8M`rH`77m(Qh>V<_YFlT z!W@1|gS^qakdrhOp&M@kkMJ{_lPptYofWg-GXHsMUHA6&Xm(vMs1c@H>a66gzv$n_ zywNsWHddKHm8DYwcsiaeWNkCQZ-|3kvhHziW@xjxlv*z>0b(t-I{%8fBZg1uzh8qd zTMcL3){JCM@$jy&=IFF7zW$>R@7e(i{&C6{i@*4*to+dvzmn6TYu3hk@~T#UM9VcH zMYVnF*iLMVjx_bYmXlvA{iWIG{c%s`;$f=4056AHxizTGs^&_M@Yo2SHKaWaz~ZHD z=kA&H)Y*dQ7&y4e7CpY^+LIEWBKuqa3FyZ723uvM<0kut!_jub!Hm>% z_4zUCNdu?FLtMkc&CGPHh5L}hW}qajlh^QZlfHW^$I^{|n^{Ba(+GZ+k`S92f<(un zyXWBHOw|R>8-4f$FVo>-2%t?_>^NHS`@#HdBzQ$zH|m3gGXdYm=er{wXZcd+W1>#E zktr4K%Av~La9MN4ESF2gfo7+nkW_jg8Fb#LWmsOevM#Ic{TNT> zd~m~4li8B(qdsTSmnp7if3K=<FLY4ac9mty+RE~#xpcHE1!3bj|8BNoQFMk6xKnNRWD!PXsc6+2%p+IZ%3;Nv!yv`d?P){DbQJB9%dk%^Us-ufFU znce&RzC@rLYz(!vMu!YDvPp@kMIf_KWujS>p)GOGm;$SRFC;iFo}kT%vkXV*$HjDw z@}__E9GvWqW2+~df%l?IS9x@$>w1lswXnqPJvDYgSI*ZWKSRTx*eNEB@)SEo2W7@} zYu0ql;(c|=SF}^BaeXu3!i!~Q`o0{(`2N~@fHxxKH9YD2%C(XFYOxwvZySqOL|3zU zlI`F;54l}#TKZni-PMh1H1}@e&Tp&_)0z@j-+lS;=?9kbecsSy3sULnd_3Z>T$&KU zSnH8+&+p}1@3nA~bF|aLeerMH%SxvIkDG|O7&C*?~XO5U%lVs65I=>?HRj4 z1ISS{>9R-13FXFPMTX*;OU0mErf;b`&wpOf+%|}eOlLf$sfMIQzFR$0*3qjSYA$u^ zon;$JMy!}2Q<7v#BS3P&{*)2b5Vg=8*Xm>9lq~rX$sCmtKt;m{p`;58*cyM=t4J=oCmeYwx*uOyFbFWJS>SQqTNuf|o&-sH6&XIp+fjwCxa zv$>GtPLbj$nrY)}I>^4}UVcow@YsN-|9Lx(PC%FDHjU(NukjA`7kMbnXP;ontt_a? z_Bb5#xrjF}kpB5P)Pa4Rv`LQVH-*H% zw7jRNl#jZ9Z2s z{V~3K<&Sv!IAmg}oN5%kUk}Q_Xc^~1Im)?FeA~QZa2hFZm3`jf$LfB)PC#F;vnhv! zbZ39Yv0f8oa8RfX;uy)!WUH1RtI=CMb8?6`y9FUvdh#qi{?t;X|98g&cxE`=i&>Ez zNk5@?icI_jN%VSq_DFiQUW?|uk8M%Drn+6pSmy^^wwdXj@%iqhz=IYJt0G{0R+Twx zw49Ue1GI z$=;f~ze>tw&agpxKDTAfx8L1CJ_YMu@Z;Q)fcWu^+3Gs4#C5)kT2r_`c;%QCj~InL}7X!vB}ZyfVjE zVWX{KSx4S$mxznV3@pqn~(cNU;d z3~lJ^aRT?5T0>MzFU?&?>uJ6@qQdAhP@S$cdaYf5EO++F{x?w#HD(!1Vm;abQ*ZOH zEr!3d!*gKrO(?gZ_=63x%2k~M?K%hf@$z6RPtOI9G95TFq{5EX?r-wWjiapWW>dU+ zhz+jV@|)B{NVvBzekxnV(u9=DjHmJjWG(!egT0kA;CYkGV=*N9qD0)w*TskNUe@xM zWrkq~G#+LwEK1*}Nq1r1bFqG+1WX$zWy>%gE*Waq;cR6?)Zilb@j9)y4Rv zrL=p4!MnQh`7XJEoG8}+FX+qtdu-Ri#&ecgs=46O@iimg!--kQld1l{?#gqk4c2`7 z1@6nI>7}OmFZE|GoAsqPufKGNMASC;9`~;8){);au68@XkF(n6kbLaVB$J#k);(6w zmBi${l6#30>ayLhMbG_za%*Z+x7O74n5vEqWm6$P*d_oVDYW=Gx*r=aRfM1H4dS}z zUq-pS!N9=umUoC?GQZ`{e&w{>Je|Hcs7@sy=ICROEKhq?y0HhH_Bo$&8ys(*HpMCS z)ZlOI4+ku+G%nxBl#OP3KP?Z{qrx{gLM%>)>QnkY4&7HilhVTD;99^@yTa0db_qlb z7~(81(ML4g0%EyZ0nyB?wjG6%=U3trh)&aPv9P3`ibL>xg0hto<)=!+-`a@Y0-FJ4 z;C+^@lxOlG4=0X_=@(`y$6&@>>6R+TT%XNM&*U%7#$!UGJbe_DGncMjsBs2{|oo>eW;1? z_^S=(fxV?|R=&5z9cll*9N(YzW#X&N<1JUJIWU8vDZ52} zHDf5&!=1;M$lqY=I(dU3zHuX|)Ao}5QQ;P=zB+%`J+G)7DlZ{%$H99k ze*vuT?6JAcwQx$q=J*q1$>Z#G$~Ksp=!Pc=H#`=bY4JUI;Gcm^zy#YF1y0i6f#Zu_RY55tS`4LJWjF)f1TC4ZCYkLg~$hAaAN`~tZT zaJXYR7_#zpW6Q9Ce7A<<88e|sk!rVucWQ3f4u=RAMi=cM5wCf@m2`Lfl!RO(Rl3)C z6nNtbmqf=ms~)H7(kr{!(s_AYTl-%o=Bx|f_rdwQ1^M>~qo32w?+!9e7Wrpb3-I80 zF&&}>Q!}*y%c)gw=BGN@-US?`r^Gvcs`ttEDBUWV)unsY*LhRjgv(iH=s07}p!gx%~ga1P%;%Sw6u^lj?J5OsY!uI5e5= z`E^^nzc}i?wj@L)(Pj9!$Zf?=G_ZQyfOQt1X*k)6ZmUqwbbI3afXlB&SpU#3ob*W0 z4@%869WTVv+52coOGUM4I50{67B#qC>6Q@weuR+PqJQkwC!(r&pniHaHHM8;8Mkhh zNLChMshEmV!bN==YhQBm^8Esv;ML6x9piJpZrEQT_nDl7$xThkEz#GEaJaFR)$=m^ z3w=MzNgw%)`FSh1)aR~tu}|MjPx~kG?5q3ea-nY^cY5mvO|_}UzL$}`GB-A5eDe$G zx@(K>VF2N=h8^_=Ql8&w;Bs&=Tc{RP+;y-j*0arKD1gt0m$cEed$zH7nerFLB6R?{dZPWOX(=~Emg$K5ftsat5P#ZO4b-tI;nj`b}7` z#`^O^tE99S`oH%5T7M4*8AamZI&th}h0V??*r%_q5(8%BHw$xf;LYt@#}cf9WYtyG&id3DfI#P8fs9bJh)|l@s(_u8yMlG$$KmYS?;71YS)BVZsF^O6bEYbq zcHfHhH2SctMaU1(k8NN_H%!m1Y)?$gjjo?y#sUJmKCmnM|HcshH!A9XFogeuA^cy6X8*gD{{hAQ z?`G=1g}{(}ts zp%ij5|F6Kn>=aiOl@*N8nJ!n4{3!_-%S z1%f~=IcQ2mb}JmHE82+$giCn~8}l6ip0xyWTdcFdy!@{%ToR-mPdeAu)@mZp)4@@R z6U5(vAThcBu<@+s%mPbh8yg7Y=0lTde|=t5w1w?&a|>Gw1LJpr!uOwhJE_eLQ4g$# zHZ!E^8^jI$*Wwl6-Za!D(`Wpa7Z@O}7GMJ38^p|ILLd@RZ!7$leLj}kP7-J^ESHiJ zPEJlT9fS!Ho!Om7e!y2qw_9%bOY6>ruMO(Z~>fMt2Q=M&J%YA;h_e6{nEfT3ua)D@8U?or$ zzmH8w1vDZ7Lxc#Iyq)*sP((=o0#+d#M~7>E*tcipJ;Ph#$jlecX;zM;X_UK0%;&*e zQUOqqI53qwAQgYIShsD2^iFc3-s%Q!Y;C`|!4bF4#z zSHV67G&D$3Asz{+>d+RUU}c&({SG>LB<7g(0mFJ24dE(KHlT??n7Y>=z!2jl=cVi=*b{9`nDT(;E|2{j2Ob@! zdWcnj_R!X#?EdkslABE@fDdS9xV8`T;Nn*I1^5HZCx<|GmXrfY2zo4tHpo#3b`NC_ zc#kw*Vv%4SB`{29-_(%vmg5%2A?hWDM3{-7Ex}MiXr68!dER|qcV3z)y-L`HNIVhz zQ1{2mCwfPGrwttu6dv>!OxrL~Bw3_mP&WJ|!A;Ue(ripM!HRT(L|zI(Vp?La*ttlj zI86zsxS~i-GFoCvQn_fV7_?}iD6%NCs8&jT%)rFic++H+$(Gb&csMdJML`_O{0xvPQl(0D$i=7r#b(%{6n~W!Y zDbWedNc<1?hR9Xbjf_ltxR&(*qqEf z#nQ!U+Opi@)v9{Ma=E=Udd1Y7+~Q{Cdda7-uo5-DQMXjsOiEpEMccL7w(%O2w;`uc zuS73<+r~SJPnciy+wTh=bhUS!U@ULkpcjd)iR};@j{%oO2xkrZHtIY|EJ|{CdU$Pk zYS@U31(iQhClMj>q(rM^uEbNuQm9{ss1dbYm8}_UXF1%>xk$mZ$g>^HO6pa-T?Fg{1c8QS7y9M-1X9H z3%HPS&}K}1g!v@DspbeB?Dm}#jFdFz;Z~Bh$Gqb&lXVh5$Vdr}B*uj-MJ%nb>1gS$ z(Bwl>`!6KbW%aZ9(tfAK=Q3tkq_)vJrQA%|jRrKRnf`$(E66S9%g?dTw5RdZbWwfU z$oiL+SXr!oul8KcsL|*&b*L5FtY0f!ZS;S&clEJVR%bl>L$_dXiE}#Rw%*i{kdgMj z=e*~A&pEX%!&V%!s^LSHq3ET(z_lN@+}_%P3NcYk6mYt!+1Ox-Cb+36pdg?)onMmy zL!*u_nZwBtD^A3!sO$={efZq+A0Z@zQ#?T4;ve)^SV)ptC$an|nb)vKdD zW8XM%;DS}#^AB#le%q5fw>;7D=S?^NcFB;xo%HIEjYBpJ8F~8ho0nae{cPe#lTKN8 z+SLcooP1{4js;scZm)UlxtW`{oVNG&M~3ab=F{F)cfC0Flnbxuxn*b9BY#2_~*Gj z`~R?gc*uQX{?W7ecZ)w8yZ)|amwoW)waZ^!)4Su_H;q{O z;I_+aIv31*VE5XC2S2F2Z~dyW`{&HqxB8uY*+Xaj>#@u=cQ?21{rlEM3vGHwVO{4( zt9pC()or-xfzt$0L7nc;)+>U*3Fh@!Z~9UP@oL^0t-VN`II>V@}2F-@p6b^CLD)+Sze^$E{PA zKE8PF_;)XTy=P0;{I19MpYz(qoAzA$$2r3f-+OrZzF+KL`t?(Ccy98w-Wv`a`jX~@ z8Gtw^%xcf38?wbrQ>K_nkMEpXOb9=1_{kB_87emjbXJe-ZqGC}XN#$++3C5qn)3bY zo+wY{nrg}?MGZkidtG)$?#HtW+3~Y4n$S4AxzRV3kF2fkuIg@WZ^bsL?$(yJj;ijO z@=Q~HYPJfW6LPvd)il#;A9HTFx~-dSkrleeicoo&gsX4{G#;7;{%cbv<^ zDE;dXlDs?9jl3i8**~A}AC4Wn|b)<7mMzFifOoLB&*9mnUlLn4y@ConwKUCM}$3CEa zEs)TW+MxDmZINvQ2I)fO@FgWoG@yj3&vmr7WM%<|O~@5nvZ-RBGn=%@u}0q&Yj+_# zZRn67Wo(T9^#7#dC<>!g@~1C;luh-0O11UVfaHk=L`O6i;ERKjpQCe4=wm_C##^}u zzFa7jb9JNxTnh|ZPe;Z$qD29|i%5)%lkX=IG_NGjIt~m9!NKF=z%osTObY|zC5{Zf zTu-d$oa80cDw4by>|t-Jo^CUy`-s-c!9S#$+I_>e9asDlj}uFOaJqc=JgPR zQU^YY$qzi_;5|Iq&Br>VePd%t2Qdmq$+Lwg5Y1A~@zycTDasMv>Eu<)p!oGJWI3FP zq`!E$ILYhckZBefSMK3h_xPeTo(oCjTpv(Q^hkANBdS_;~bp<@OsJzpgAF%f;MG-0ZnP4zl0{^2sAD8GiafVRnUyg2cShVCnhu} zd>1sFvxDsh8Zr^loIF!74vC1yd8ua=s2~)+0h*FNl+c{WL!jx1=Z1#%RYr>(i@8z2 z>qV?n6-T_D4S78$a|!mK^9VFA&oUJNGLRfvDdJCKL8()Xrv*eqtBPnw;tlL;WZnQR zV*Tk@k?-o*kslx|MIOg`uEaRcz7__oQ*_%%-cWgxE!3>jFq9Yso>sySLL>7F#zpds z0xgcn=AjKp2O&;nsr%5y%(G{CVIq>(AmHSBMlmk{PNaLIJ+BwCJq!RZ?LlX}3QXil zHed_#Q=HutGsXqXpW~P|KBl?A*`#Ma_Z8Bb#4n&}&S6o=x{tuL)Ik(Ue2VpAiR%)Y z#2cXDkf-&WAzK3ek-RZZ201q_aaP2Nd5JaW&RBE20X~yG;u7%@Mp35|Kw>x*H~?+Qvn!E19n~b5TOxNl!@dT{Pxb(OCY`#N zbFs6mKS#AVcySW%f(Dc>WyAOLQfvW=5-(n{uX)YquMZjL_|Q_GOo|ucC1St#2w)l) z%YFoakL8>LfX{OwuvibEi?AM|gRofwLgac07?85z(9=>j90Fu>&?t8%Nm1GZ!B3b5 zv=Y2nvN@!nd;n!pJ^*xNy?_~#S1GcQQq(I@pb;j-)R^=Fj7jnWW0H+jB>PC%BWB$z zOYy6eCG3;HVzQg^j`wn)S!y`aZK>uHV;r9;JYjqC+MeTHfhz;-&%6)-00N?XDV zN?Tb=CMKe~0#%gkmtY)jMfpmFRPSRPHm3Ec@0fU+A=yFz7@8YVod;JV zETuv#dk@%yYcS9#Un#UUiD#Hio^Q&ac_aBVisRg9j&l=ooC9K#zZk=DZt&&mv~SFM zHdfZ>N*OdlXs)L^PZ=asIW7uV&oB}3f;JrK5B(;2PAgzc;w3Vy7qnlP7l2IS4?v7) zmUD3gAVK4(r=<|(R3oZ5kbQKdrhsh(6A>>l*B>fIz)4;DX z%3dUBj&m$9Ch5I3w>haO6dtpV6~qo=fBn zXG`$nI6phOcfr2Y&sIRxoHtO?5ifX4MDlvg{>*($?14gF>dGTw5iMppyybJoTaHUK zg2^Y*RF!gQ6hYFypwT%4xIsM%yc{Epgw_}71vJWk8dqM-3->5A`j}Ez8bzm!RgL0L z<}e*_jsT6~4VENK11LrK6f}8{1IWca3Y`EVVM`4clJ>=Q8QC(qLL=D}$A?BTCjBAV z$@)zvNrHI6WdhL{d*j-Q@TrCpXkTnX@@m{_$~}NFi9a1uO{{T0NH#|wlh=z0A7ERS zSEG<8UL4_Ztv%&G9ilTY=Y}YTh^APlxT_@HhuDPXhHP`Ry=5-exDugQ4Y|*+OY}CO zX6onY68%ZgINktrh-U+1N;yo(x+;MawJ}t)qpV<^0y~oKO-%h*w7pBrBD%{$X7Y5e0UGC1 zT!K>!;@W`pf_qc)1N0}!chR3DABwpL1!O_zAZS!$ID#lDT{-Vdpceb>_a4U~-`^-xeE zQvBkCqIiQj2(Ll)BnM7uigRRV@;^j0+1y5ka=VSuOcT1d=pjqJfJU+9(V~$4j8_1J z`9YI41mFgoWAMI!5y+HGlXw?J6ur+u(!h%gF&Etzi3!o*9`uHwSjgmBvW1~Ts;krE zbF;I_E2{Lke7=~1L#D>1$KZi?Dp@%BTtB(mx$}cjb$9~rM}>e}K6&{*@Zo#y{~mF9 b>hu4}8SlzJf4T*paOW{}$gpAOUp)FhKaE%N literal 0 HcmV?d00001 diff --git a/export_data/inspection_reports/80556_south gloucestershire/children's services inspection - 23 july 2024.pdf b/export_data/inspection_reports/80556_south gloucestershire/children's services inspection - 23 july 2024.pdf new file mode 100644 index 0000000000000000000000000000000000000000..91701edc4b83d411deccf99e07799de03ea76051 GIT binary patch literal 212453 zcma(12Ut^G(?1G_-mCN$Iw~d7J3)~qB1-Q_2}tj~L_nH!5fD(2CLlsUsuhpmlf7rPnOQUQn^}C%AFBzAibzwC^3`E43Q|$d2b}IU zP86gH3LyPJ4+u!b+Q-_(-2wF6+5zItDTaNm3wmnp=5QC{c8?RJ=i}vT>!a@lf#|xs z`*2GAZLSN_w)S$?bhCHI_VM>$h#e=E45Fk2(((22@b%Gj^MSbec$@uqi2wN%qz6*h z*R#S->!Ij>$W`3k>>Pa@-Q6_pu+1Fp9U)$Ky>-Lycm+PQc7@!1<>TWa z2Lk!~`-|ARySRIaxO+KZY5q>+u8J4L+Q;2Xj#J|~=if`)+RfMA+SbR{3*sfGsjBkN zGj}_Pi`;*Dehl&U`FCE=z1-~`T_Bv|GLnB6r=(=T3DSo6SleM4gMBFV&x#ElA^s4r z=Uxzdh!@1o7RxDd8R>t?DM%r1cK@*SFZ2HYc>51eK`QRPZa$o%VjwL?J8v^i@xRSD zMgM8dDK7EPFY$jy!S?yjFNp{L-u@8=r^LS`691A&{7WMFFNx$oBo>@XO8;jTfBXMm zv%rcMJ8z%=$X6HQ?e6P^T?JM`#yU1m5L+MYf10jX6_Dio4;MhH0Y2(_KGr@E>??IW zDb9Zxp{^&(Df@SNSZS-dyZvpaCd&EGVnAwQoTC5C3#2BFUGIOWu>7^vgZP+%urdef zLjrvM9q7@&HHnt#`TWxJiD^&|HHGi=iboRYEKR>X#rSE0!=I!x!t+s(66+O^nh@Yb^1glKg-v8C*e;MJ;`QU%@ z>~D|%<(ZnJix0#Lq~?NM`eTSKR%t*_A#M&nuQgPM7jI=>0R9r>zm1b@F2RAYo zm$-EWnUjrQ9-GZnko3xR)t2F1q zOmBJRKnqIy69b&>%L}vfzpx6eUtVds_B$E&RT(@nZpRy>{9xr_qKENV(lKttD@f_f8UtK$o>WeNXD#J zjefT{ufi33+-)81s#-btXrV?SPZ2pcC zVTmV_IeeFgH+`38s;h1GJ?Oi&k7cOWCl)_#U0ZxtmK<(n7Bp1+(Hr1f*)6!8PmeEW z31=W$t)H*D{w5gb;rsBsmw@GTCSS#w2zAMXXD@$Aw}0qjQ*z4Su4>^j%2Rf{3=7*I_9F=~f31Eg z-i}+Ju*P$jPC~2U7OB?gJUO-TlO#lonBB;|$B@06n&ZN!8~^9P@1zf*N}r1Y#oz?I zn>*F6tTWVh-raEAM=C@Tu&L*FBBK3|t;=7r@l~U*TlQ3>T2o^c5X#=Y?Hvl?F!n8oRL`7R_n zNb2t@nBddWBCY+a&Rkfu>&b8GH7|AbgS^sdI<%krhp$xJPG#8)V^qTG&Kg$acgWgb z;jxQ~O@PxB*R2VTF1=_xMcYMLI~6~fsz)SgMbRtAI!g?`v}d##CQzfZ_Z4b%CDAF_ z(D@Sg!|?N2@5c<QxR3fVys6gsb zZB^2uQP|>`wmZH2+i-K2w^5y~<3`bv(!XhNr&C$cBJp?AUZ*-rjcT$Zp7HWkb3MUx z^SB6=x z>eMx@4=IY>Sc)cDCojB-W}S?fJKyuX+|6Y6kxbQ0a|C?%^rrD;Q0e^xIRBBF4{cg{ zX!)!e$jN7@+Kx05(wb*-%X&}OJ^tzAq3CO2h7VD_GAg~feC==Nth$!E@vi|VpM9ck z*lG8TpD~K@1onA($WB9L0} zBb?=rxm#64sY|UgJkeb1i1f6d8o_cT<{XJVUS!JQYheWNTE&V32s&Qx$-E{OE&4RRK_d26@`Ihp zb?}J}MS$F9Q|#gM&z1D`eIC2aN^Ycfx`wtpe`vKpy6xoeTG+$*x(C(G_h=1eIX*w; z`Sv8yfI?a1cLNunny~^nIlT#YSM^)86u*axA%!!qkLa_YD@WcCO( zG?ZBM(scQ`u=j}=I~>E^I_F7Bc4<+I)X;G|hpM5I;3MS4!#{j3T^^%n%o@+U>toBF z=R9qfvxvK-^<$4Ej-YWHu^lZZe{5v&L1K=XoQ0{MmptfB4@)E=omJ$+ohWUesYYk2 z$UQE04>k&21xu37UbQLX^1LTFgnWjq9tPqf27b7a^Ed(zN^>@a2;=%YKB~?MJezvS zW^*^^QuI^$HCGq8&vrSTEU6C0)!e(FrZ5OB zv~98F?Oaae`n0Y6X?C4(^i|vI5i&Wt0j8eD7$-gD2MIUXHs_Cg2O7z;Zr`lMY_Vh% z3qJo@idx_@uyN=TljJ9;#2+r`fA8kc_ZIPZ-KF?7ea_%Hg_A|_(^(dRyQN4cN8>rE z&ELz!wqFwa&OIb!e4erA*IOROl;cX6 zSPrnW6PcM__YvHa3=Rfxyb%;z7V@IbCq%IX`%#QEav}I9mbu`u%KPmWz*SJ;Rhe|eyI(#n1S_h;AfT#qUS|Ur;ibgHQWys`_2tk!xZ*9yea7Z>*4zg zON@@}z(eZ#{w7{OSI&=rAVt-)oZ0dWjlE?0fDkQ}dL*lfbDVFDy%o3V9&nY-2P=ec-ZQ+I#vzzwScoTvsB6=l#gIK=G!j zk=`x^r`T>`(#Ono&b$>q0x4b#m*&WaSJAqeVdpA+kpq{yQSBG}0zbwfVog^GtTkd?Zqikk{!S zAHOl&p(rRoP7p}u2D-d%rNn>WReE89Zd6&hH?>2E2@R1YT)R3Wolrcr!40hNC=oW=b-7c~*tUY=6v z?Ue((ehiK(PK;XLoO<|WedWOjzy8ShUX-t9z@4D&1) z1|{Qy3l8mq%hJ_6Ap+ke3Zur4HLG8L>G86fN_}ZALIDq0C&X!MmzaFF7BWx4KFC~X z8!)v*9i5zl1BW{mzgeJ>n!UIa;D{SFZdkt`#j&aJry`C!Qh(y`dYs?F{V5}k`PcVU z#!?g@?#_%#u21enCV+B9SBVD4Kd(G1%Nxl;$KO?uJ1AAMK7Xu09p3a|{|@{5iWs}> z55Vvm)9yXc=bS*Cz{SZ=&wW56gZ@+l8eH^6r7!E8E+z{LK@z|1IHo)@Tb0>{q)3W4 znx%{m2$qb$Xk2_7+AS`mW>QgL{56f@G*MJJr4smD=h_BEI{us-{r0-em2_t;)wIo3a1a}KOrNe5w zQBU+oN{-|KyXe9xD-Yfaij8NX_0mNXT6Nlezc@JZsLGBO6vL)`(!WtfTmP(1-TBZR zy-UqTx%=Ljr{}^(^piwV`x?^#g{oWftMBlUwwEcIBs8u0*ViAv2VLS0`J$&H$#-M( zctSd*&EJnxWV|7MvZGsu^MNomd%o8=(oV1Jw76zGY`{kD^}XU2sOX}s(fi%@o(f56 zw>=SczJ#66VTxA_k8B{|2TvENzTIWxQW|&lRBVhM{c=M8+WQpFY4tq> zQOta#E=kteokpp8`Ile&L@6(XGO0vAKY3E@CrA~{2hAjmi);w8a9LvgV|^7PusBL< z`zP$d)4mhLg<2&jnJ6v}{77B1SGQ_>`Gu9Mqw(7?g@YWLAwCSjDjh!BU%dHiXzVDr48&Hep443Q zjVI;MT(gzpctfPbDz&NpnRyZ%=$rKOmEu76aqsS;#A6Mgp@Br?&sBfmnl9Z(0oBf1 z;P*YxcmE^-{)_tXQOh`gOMnOSAMovyiO-DmXb%%!NtQTAS5CtAtl2S)KLR)asC;S zfB+vKOC5@R55T7(pyd*MNOJEC{F$Ax;jaLK-DFY)DGYcQT zz}RUYiK^v(>E|QGBz=_wS(9@ymEB%_VM-e4+sp3d=nKN6C3yT zUE2HfjLZ*N*#(6~#a~KF%f5cEsjaJTX#COC+11_C+t-hEoD-8%(=)Sk^K0uHn_IuP zcXs!Xe@;%%&M#1xSGV&3;=k(w1Fo;$-YxiFpHfNrqVE%KAUi|5hNxnQWzk*U@Jpk$ z?LOe!FmV(NiF@4BCNeGJ=Ek3uJH0aG&fh6EXPj>t`}Kj$<_7OOO>jOKp?(X9R}w_t z0=j^-0eU?_>AhtFZv^TXj2d(qa}F-ZL}s&+g{a$SdDEit3c{^kj;YeU_`iKrs2O=z zDT_vn==)`f^8daz&<>l|8X`R(W^aS^)TVyf2+z{7`msGL_!g0L%)bk}d&_N_Wl$@51(T#UD;%VrX#W&^Mj1gXP z`&&QFD1{K0GckQ%Rfpu zj2A_Ft(EeTb&0{+n{lcjrTi|(ukHD^FDP~7#2T=B>oLM8St3#G_p=P)dlAPN^b-c1 zJ~zS9@}ai7Apn#llCj$vh8kQuPb+hZWQ9FI42Z}DCbELEUIQ*q+WVdyp~VY!IoL;C zeYEkO)=o$)Frk~B|+4Q`6J%4l2+p(K_c9GY43t-x@qE_PART4)`4VpWePJLZ8lNXr=AYR1C zKwkdrQlRHvotu#vy>kO9!@0Pa|V zuf@ZrR>;C+0(!4Iml-W=y7X(KD!C&K>NVQtXj7Qi?;cT#6_s08dEo#y7Qg1g%N>I_ z5T#QPw8&?A0UYcfuLa-)eVPRt8;K*y z)xYMb$ooGX6sf;N;?Iy+HMYO!4(VR7oy zNBYM}T6iJ0?>I5K%Y(ij3A{RIGvsp#0Cwi`BQshV;?}f@o=?}2#FDt$x{SjGn7Pz{ zw)}YpIC4HWI~PTHmxT!2WTAyuU7hsP^d=5BGfsJ;jelo5WNqMkJYpu@^zhqm4T}0d zCP!CLuyX5V`vqYmaK5B-9-aty0I~$=DaY|oNoq3$xU4&n@};>Mhy@VDwhJWWYOu|8 zSs}EjB7k&g`D<Hn&ubpS^FI5q71kx#X56;raUK1zSWgc{JFc=g<1j-|NFi^5vRa z4Y>>yY}K+xYV5>3Db7n6>aaO0U^E*E21~AlWxQK}s~11hDXr~aD}c3G z1Z)Vyk}cB^b%bB>=iyny*6~G4Glym|_V1kMRu3j`0gUj~LQ9r9VImt05|&<=5GKN)@tu=sAji<#w^S`A9v zTFws@KD?QnF%tg~=#cy9k49gay+YcN^XUSHcxG*cWe19Twm(8+x-_@bR9~9O!pnHK z-<=ExI2$#L55jWYhwmKpuEVV z`VlcFdi>s|(NrEW^rd@*678#_7LDw@1b03BTfnQ4%>_dCX{PGbgM;<9G(>WAi~O24 zyF?!OD>=7BTi{aN#3Ajn=y4r@x#G$Hajr0yo3<83BvB9W`$}vrG&<2|ezKGM{QR9u z?%u2h`IwrQtY9wAAVA-)o@z_|4cZ%-vzi=RR5k7krwfp~V*EAlv#z0E58W!REwqKU zzn>Wg6Jb45A&^=knSWwkAj$_$yHH7gEM#^d?J)HLFeZ9VnrC`C5^IIf1rwOPLgwKI z;F(YQlHA#5X&EzB!Lyx~N-gR*{IfmXW{YaQb_@wcu4NFT4Hd+#1%QzM3i^-z$XNS% zWip1Odi6L_uJ2IxGwS$B%}l{q$a$vu49M_>bD(SOabi&zzkNS|qMNp&of-Ifh4B{P z0FGF>qc9g@u*xo?HTTTy`S*l*3x+dCoB5Gbmt?0)>GRiEyA<%MNhzijmDUcYP1CNf ziqOhBL_dohh?XSCO8oVNv=nd_`_cal#i2^ZbHAxkR~a(Qy6BKMoMYu5Hk^mh`NY%1 z!8qPxwtfqULs~gz7dKfvB*H?RK~_L}d{zv*hkAO7_fV)eBKX`HC4d@Ly(4YbSj>%#mVJG6wUdcuK9d;$Jz0-ddTeU|*04B0+bP2o%=BEJ>X$)Shh zo;!q^t9Pv8Zvm`rT&U#rlI}yJK8|}oPTbFAz-*PcWOi5c|nPih2!*sv0BkQbP@Y$(koYm)B074Ty|6s9$vHh6Y3Uf|x zk7%7d9{kMgET;3BpzwULHN|N8^nV6NhM>e2t~D!WM}enE_vq6KuV1%-K?=2D`8Pz9 zL_|c3UV?v|F{HvpAqHRu}n^m$*Y0JVyJeNBObs9_bvJmE8JSlSc%?b2@1HnaC|C%Pal=L z$FLrlnO=+Ut1shl3veOWu*LfWKWIk8TcKuxr6ul!G{T$Rq=( zVood6&1YOrEx3oxhE$$6Y6Y9UGV&hcsWLF&C`u7L7d+=dQ52&oP~r?x5*`)-k%nZR z>tt1UBoM)H(vRMBFVpdU2rasCx8eNt(qY3D2#59ONP*~YKT(3+H8m#qK#@Ek*@z8fIMe$bR%+iqNP(PQmq@iv%f?T*zS!lpxr2rdE*$^JsoJ&pI{r zyu2tr8AU@+n7R%l+iSq30Ci`po|Y8(&5ZT;Aq@HJcCbx;>ntRnw~w|FEkir`)|TXe z)BywQw3_ZhQLa8)*6HHumsznLG-X6Ye3?A{-OJoJKfsQ{Ixn1a+*wU`UsTJxe)BO? zVF|_)a@$7Q8ijza1H;CGp8mX8<{X!-GY>m{K9+CbUiMlIYI?1XA=$Wo5>Rp;*?{B? z<3ZGC6~kk6XMC6QBy!D{Feo3UPx7lrgi=&b&F9uS%hrVA)5t{pES zOSLa$9B$l3z1Ij=zxc?Z%!vsO>$(Nt`dTIDG4oV6T|Wx&e(Kwdq{nPD4+^K!HlWYm zM-Y8pTs-W!9>I`OT#N4J-DxA6(^(DWC)1%t-S7K3=2|g&f61ia7SNZ%(QdDB>XL+4 z4U4=5Sm!0pXSRbA27^OHfL%d_!X>dT%JLC}>kysGT^io-MFvZ0yRbeU!OuR}_?0s< zMKz%B@EWOQj8eT8-^WH~d(iIX-x{a;%s)3xHAQ)bd43p>8!5Ogq^PNe$?cvueSyQe zAPyA6`DJ@Xf^087i)njHB)%r{v$s9tojDLV;6YIKt*Uo29f%Z0yVLFCh)7=dV_f=i z7I38lHprFF_;OHH5@1)I@Ftx;_s9k%;Cof~%H6diAJz*X^4K%Eu@9EXkK3?1%cmM9 zjmlAff0t<&~8(zgWxhMs+Q`$uTF;NEJf9n zy5rhg9g2~1y)l!r?E8N#;i~Y}G;mGwxl|@q?=kbN?Q?i+GWqy!vLMb#OoI*o>h@-ArYf%_a6V}ml;8PE%{IG z?eZRvywBS0us?V}0{ocA3U>x2f$xCqub~N*r`l4F{2YVm5*={MFbohSyU3e!_s$l> zKuE5Awj+lo+t#Pq4BI`;{iiTZEC{>>Y%q3dm0ERLDoqO?uC+5Tis$4!Dnx~3`E#E3 z1FmTPx}9pP!-_RnylE6Hvc=okc`c7o`%S%1N<6#vEufjk>!}yVShXyMf%gzrUivkR zd-C&G3pliV30gXFX!j!%xTGosRdz-s_vP|TDOhi~n)S#nb(uTK^&B*0iir+e%vR%# zlCM&><5)d|cF4jZ6pS0u$zM?uy;n*3u4^}PCkImX^_10vfikN8LI)*I_nRmQjjOl( zPR?9s4oI#Q203O=SE!XeFE*yx@?gJ+Zv-dc_Q2P^O(d&f)fDaC-loOMuHVd)48{oup+Eec8=hMcP0_r$+u%o~I39$69RlxL z09_0H8Z0&!Z&HDM{ZLYpf=4fb7g2rRix>j2{`tKMpQfMFC>b*XuAb=xMq-q10dEE$ zTR0d_JfM}9TF2R-KP8}FU8&7Hh(}~@=p@YafvjJO4K!pW6@vncV7Y@1m}L%^YK&u04U zR#EDR&_N*YHO^}QyCMWN(UlF1ZxMv9!Dt;*oJ^mUkVG7fd%jPna+4*J;Y^@b=8O>h zeG4GRv|Hgw0~%Fbs8*k`zwsJS0<+j?<1C2^;sARP~iT#2#&)4$Hvwkt^uf ztC5??l3T!-t5w9L(V@{{D)L>|s(<^TO0T#&dv6I3nIg;32qU8#<rZ%_R1{8$fMR&B5Bjs zuPejb&F&wh#-VfVr?_?K7YMS|%vhh9>M13<0M$azM1&*t!q38+EE@w~G%+j=>XtX_ z2gFA?U9VGhGPX303(=HJo(jf@YdcbJ6^CO^3X)9BgaE=nV(`{w?B3nWF#c5dPKrFK zgg|5G;eqp6JccCmT6r=#j(CxW|se~}Gr zWCSHb-;Houp=gQQO!i^P^^-M6Pq(H20Uk_*2HgT`{ku+s2cr#J53E*_~HwP!jH1;$9UX*TJCC1<_vW{8qX0 z#-8AutJV28FglEJQo$8@M+Fg<9v)b^_rSRQmsshzjCS9wgTO4yO*hJVjp9x_n92uA zi1M2?+szg(Ff%Lh0&LA**xQ&Sdv#w_?A>EG7%eP?SVs`|bHkaz?x1L?TL1~%@t7vS zS^Kq0k$Kae+>^VV#VuVPsvNNxJKMSYI1p*Hhk>ItunD$!$i=%%o7||^~W62JWAXA@O zy`#lr*8lZwP6GokcK>OIfo67L=sQH~eb~$wN!UP;ef)Y}Y#aTU@7*)OzFFrMbqgSs*TKkIG(`JW0J}}u+v+|$Wdwc62`H{O7Ai5x z&w9xD-k0}5KTqWRXJm357O@J`YTNd(9OV@3B0VllqsAXnE9HC)&vX0IV$=<+haF&@ zU0rj?qiegj9-V_vn$w{~G_K%qNl*;f1sjGo7-w-NuPYe7`_XQ8D0M^tG z-;R+)KobtMx8H>574E0p9n}1?qVB=CU-dCevOyxXhgDPXD|bSTXgl8G%(f1i0d6%~ z_bGVofJLpYWRG^Pt1R@3yjD^A=f&v-|0v!{zk2Z*qVYD3n>^6BT6l6U(d3z6sjJXI zi*|{Qx2O1M>n`DoVe-^)zJ*H-LIBm$B~@ZXGuTI{Zuj(T58eZ=f{SYIT$UI!GD0NB)(&~~Bq@!REb;D8ir1zKIG!s^ zPtmhaBIf4@yuBqnx=0x_OqlK$gum;~1ps^{*TNKTzC#_XNcVIdFTm6#PIZvcudbAJoJT!qwL- zTd`Ik6LA`}eVA3Wti{r_Bj@_NFnTu+)USt$w~M zd)dU&@kB~?fvk_4YB&&Vih9P(fi+UI<%NWX><`%~!m2O}hL$`iY}}52Q}Y9n5g%OP zWXV}KE_wG*$Xe{l-tT+HQEVxA_HbEW_qmIWu*_ofy`bbyIKAoIT<6K+h)5Q9(Tjo% z2OD(&KvQYz_tatlM)?A)Z~3lR0hMM z>u5LB1vbQu!R|KH{WP@T99HhRaQrqAl-7AC!ap`d8?n)y{Vd)7BJWje^Te`D!4kwH z{zq*4pjdJl{go!tp^t+N<&L<}N0!8c!Ul>RA6(YRF#F4P_Qs>1{d!b-qyg)9pPx8S zK_2&6(P{Bl1d8OW^+N=njS3fYFVhokIfA#pwN);W$UjOF%ti?!bk;L_%J?_{2-kBM zMe{-S0bTSwf4ltC@$X*_sQtEO6a^bl;n(b#(Kf14{^>d@9L+!nmuSs}r!CP(8k6K{ zTfIH~?1+-$z=jT3oTUWHXhTEc#cHV6#?!XgWXTtC(YrVUNw2OnVn%P&hza4=U^{3+ z6Sxl)>1Qc6QJ`fuW$RjQOtk27^d9#om2MIB&){9(0sN zxt(wU=<4UZI{rFjOs{kpJ)*wQ(_vLn&X(>$=N7nbPUq^f`XVLuy-GWPR@&z>qmCc3 z5?e5#mM;?il`n@pKDs7FO}+BKrj>P7`j880w5F6NmHc^sB>3}UCt|Q*PxVV3>1u>6 zGa>)x$9zC;ev{F=FMbDL z!Yu6;@cHeHI2PWo15v`8q${LoDj)SBjyi>x*AlYeD*$Zh>IQc6wvuK0Tpi`f^D!OK z^Bx+}{S~ZQF)}ZY(cbRMI~R1ay3*ncV=>wXp=nhxPvKaFsVcs}BuSnQg@|Jjdi&JT zXB2c*n1DU1?!3g`|9)ggfK4JJII3%A8y0o=?Knic#AJ^V=up$x{8lh7t}mTchJ58U zFNXfQXYCW~6U1?hOD#KPCmDtGvvAi#;g{OgT`URr!%xd6Us&a0S7r{oBny$e1yr(> zV4@tYIKzIy|9AnZ;0G=f;M2@Lzkfj-CF~R6CvulL( z6$c?U)>{LU?T$HKJxg<|GF|AF!n12HrA8dU^tgb zb#o;REGZ6!VEfWU#d~Ap`g83m&WVy&zEt$){Bd|?m+xfhvu#m5Y;n0gJz;7yyCrDa z{c~r;N=zG*Ba|V;qR4DdiEpNmG3a?yg4}LK1*RfZhr<>&0xvauE_&i{@D&Rl=ULA~ zQPLYDWKQ$Ru`M`7Qib$I6a4uOjB_F_J&z2sjq7Vxlad>QjW#IgZH;S#DNOfzl~v}4 zkq>x2mQzF1LxZsugev=l)ro3O59QBQ_1H2Lryam`-B>#WXvl=XW z98d;dLmu7aa?YHRsW(ryu=>r6;5+}=thHNE8e6R7fnM0UmC#@6Seamc!5cEWfiZFv zdC?)ZMO_>0EWLcu^Clt`t*10exR;IA+~K2QM~BVyXYkIvg~C-}f?f2&i)mQPy})~< z+%v*{s?C^YHA_h=e?gSdn5k58iPM$2Ty7fF84B^rS^ZI$1$k?5W~8e^<>53HhUHC% z7kpC~F@tGz%DbX34hg>&y9EsNhhVW^b*liYGN{jO#o;Nmo!fN!CNfMgKxK8L4~lx$0x5CIoUWg@=w?XWt?J_~SBRoxlmCq8 z@IgFxBU$HrC499AOp*z1>I9%Nar4Gm6x|1r(q~XY8;$rs>T+bb2{9 zxi@&8QgxGm1|(mc3wRU?K!pi@SR4uyp=f{Kt&YR!wjy-3?eF3}64q||KHKOp9dW+L z4{?-Cujl2M;CZCJ#RV$?uQoPy=R&($aey>Y@Rsz@XD=UvV~)XcD3E4N=8GxUS`^W- z+ZPSnk&CR?z%tl!E1q`USgoKicQ4=D8J+s1dE&{J+}u&miK=ibrvDdKXa%0PAtu{s zZc1AMKmW{OU=RCkY{Yc)tI{5up6BXMUxs#wpr7Y5-_$CI)C_Jd>}z@!|D4;ii%YOw z5i3$b!e*MV5sNg|b2V`Azdczmi9qwP9)P2%&gcw=C#KRRb5 z8GK+k2|vwvf|h_yTcLPk&{<(v8*8m~e8c9vn=QDxG7mkc!Pbsh^_!5u2>0Yj$-xXU zZ91uSZKbt=0b63u-o7bH`2zt-B&;WSw&DCWLVoamz~g{-y&{=mzz-H~9HS{U(2Wll zFoG!|cb}z4&e$Tr`taV;Pi=Qknk0=`KZpx;Xkrlbpai?A`+&G;N6Ny_R$AT#BVwP7 z9%npqJ?80OR94_^1PVo_uJCYT`cYKfK}HD*^hKz0mAsJ&-}1XKS6&|cK5jybt{Q-c zx(zWb61w`s>JJ0T`4(UM|K0zzl!zCd@eATL=pj2`WM0$uY9=o=o% z!h#u!bM)EBJnv8t_&^XrI(Qy|JgQk+Sh+Lwxib9=*;EGWL)rJ2UvoT6Jd|91x8>ae zVqWclPYvsUXj*|=07oH)y%3wR8Z(`QA~f>QLCGk;By6%()%gW>GjT(ad%H?l4AcRx zb;k+OM_eRYqjEw+1!B%*K+{vFZ&W|@uGMGIeso|OrU-@tnqb`+whnM5T#hh(d+mTB zdx#je5Ll0nLq6$Uyov8N?9!R!ebKqpsr0CCYONg)^FcDidCkHGdjO_QU?SvUvG(T5 zu5_xUsaC>4hBRd&O6=`TJBkcRrHU#;WU3;kqqtc^O{Xl4Rid3uUU#Q7Tx+bt+QdiS z?(clHF zsM+R^}%7@>r3vwH0=G!uCPZ*QX=9)%jJ`YP=?SAB!A-vauR zzuf|6<)AkVQz&88uuaV93i&B8euel9iW?B_*HPM&6P#||`f>l4w?I?9%#m10gflX2 zBc{uW9xZ@M3|$>zGM213%dwZGyF;<~_*2c}mF~nOsu%s7)XE1?yOnwAzC0X-heFHj z?}Swzx1}f*7FeWhnp2Cm8hf*S*znj7Z+rkSTD%2NL09wP1ZVNsV;XB%JycmMAA+~4 z*D-qF?RnY$E5~*{^L(gjBqF3VVQXwqHVjjLb=<(l2KOn zw93@f?8|og$V;%U4gmKV05%JrwOUopYllX9?o51eQ&2A#TXLRB^@2$~sLJ27O`s(z z6PjhMwwy3`IK;A%|72t2n!XNn!}ktOA$XRFA>qP4v?{{#R`>cApw4n--!gJuf?8P1 zdyT=ZL0Y{P@+I4MUV0*r-!Re194{uHfiw3Ipcb4|(6WL}sx&|kw#pw@1g={csbUXn zWdubh%G30DllFs67k}K;K7xFd*# zwcbymlre$#rOLiqaVBZisZ&;~GVy+OGqCxk!e;x5d8DrmI9|u@ZBaAk6EEv7N%3e+ z_|P@qV&pH1(hqv43|ly!TWBvsOsqnq(4>{`l;Xbh5p>60*nLbKuR0eKPd$UBV7=$O z;;%L!$`{thc%@i8o$ny=Vdqapb1(QV1f3W{vZiRc--Wq9A$iUDW&25M^dG>Ibnn`X z(%cKHuS(Q6tx$(0y)MIxtKqt`9sgr$@!g4C?_Xm|vM+cw`nzO1`ujULedvAM7iQKd zTan_A5dJZ>Fd7S~hOZAx64ln1<%0vBe#fWu+Uh5WF`(ZDB8;(2$jttdSAup#+!Q{Y zHzzCEM|Njf6Ruk~%Iwj9N=-Hw^V3Tn2^G0Ic{(LrC#T~!3ucY8jLabIQ_H}_nxQdsJ`e4GAza# z7*Z68tBYO4LQg~T{9T{MspR!Pr8mw$F?`UDCwz7pRDcjkeVLo7-#;)W z4!K)^(@LxrJ^0l=HZvBYHg(9~Fm?KacU;)Df|mGj`^~Z4Q;MMvEuH@2z@@iW-si(8 z%Pyx@8gE+qI!s}z-v}Qv0x%eRCTDUr$eCRr>&Oy3x+=u-YWO$ z0+yaJo9J*x5Obcw3g9+W^9$WpIQcnULAf86IT4AIz20_wG$W9E*CTi-4=KXmyO97Q zimKhe)={DE9(VMg-U7r1JC&qzx811+ot;^ZPDKRV6tOwYH7hpoYQ7Z>+Mr~~QHcaG zow;VlS~}04YkwU&r~AO;S2@e(oxY6O5z8~=68-g!In^N^!g=i$&LRkM5s z?N6t?>i#x;Vfm`t=7m27^fsI)T^oI2HO zxzr91Zw}hNE@%N+-DE3)UtJKg!rz45Pkq0dqo`OpgSm?F0DpQ|95xK)@MX;>fOk?c z^N0di6Ios{Vy;s4sfJr4*Ffky*!q)0TxCI8PepNnR8N&%aCubokNMzl&#QGqv&P#H zHyPMqekFPZ_jG)jr8@Y~E8yH>KNA&P_HZvQJT{HzsB|08(?;B~L)ANvsn&Ug2F-)i ziK*>TYn`feqhQ5MF25k0sCB!-@07m3YIIIriu zxdqg?<*lwTn=LHt)nCl$X|lKMi$w*Jfqu34z?@+@;MIbanwi8l@GB*@T0~}SZK9$N zvxxn>i5DjZZbd0-bjPYLuEgyj@ZLaJ6x!nYPT1HyU2;u(S^1;9KPyis54R{zAMFcZ zq1o3tj;>wI%E zwHgpS`Wx7R5y|b>?~zKdfHq!aQfFD%m`g*IArqt_Ve^PH#m-G*m4G1p>Pe&fy!e_! zOqf`Rz+?y+_Lx9NV4QGe!E?Lsjh41q;)}Eo*{8CCSkTSbVkZ+i2%*#<*;?{O0IBw| zQnjrxe|`07Yh28Y6Pqn(rTA!W-LC-e^OrZD>jtBu2iHJx1r9sz6-vGE_-D_lx@TI^ zG}tX481l4v(&fyZEucmlk==3sY1J&W#FFP8xh#Q=UTPOn2uB}$mwl_a^(ap`5lv%Z zw)og4_g*0dTYne%w~`2AUh04jSUA)v4<*nu)LY@Z4vsK7A0R)lgHr6#UWUEcj}IJv zX!SUa33Ithl@X$fE%%Jd@oktchwvg5Dr4|x=UBVZ9PE2R=aRvl(C_|-H0!KUZwJ>b z>)g`@_mnK&m7ekY=}aJCP!u*w!(T%xo~A6JwUKohY3?Z_)&==L8X-qtj7U=(8chg7 z;}KNnJ}7lWfV$`E3aN6_w^s&r@f+vyzx%sv)NTPrDISllAD+VWVac}uH>`{KzOeq~ zhxZ0H<8>hwr1RE|@bFRRs!QDz8`W8O%+-%rwvVpf5q=-5QQqC~@3(+Mf_x`!NFXAo zyGEmg^*~r@j`>QH#P`Oz6a~4a4;#&W(43&PdWJa6`6&6j*(+mBshVOuuS4(vG}m`d zfO1{U;+(>8SpZp`#!}Yjjaw?@_)q_MJ%uC0Yi|J_MuXXX2kh662Foq9-1A?xX$>E8 zNXEXNH{M8EG;l|~gw2C6uT4Q1N^5MP;Rf13&QBc5dwyCr^tWZ(rZ2>nZ47)XbhO7#2YiLCp4U~?L~^(eO%Bq%*nBN5Pfe(a zm%FJ~+q^HVr4xM%c-GR;QrD=ASTy^|o205ZmC2dxY5311TJ+W%y09n7W)AgMkC_9^ z*5w>6@y4wUrhULl2G@E-UaQ^Z->pPV=)_a>+>}SGoC{ja&J$3f$h;mXQwtF+L>`sW z#*R3O_XAo^JRMg*uRWpvaG)xv^qg*v3&8PkGxZP~nqm)j(r-XXFpBCM?(>noD?~<} zLpIA4uYdZgK!20Lb0z!Iw-WRA!7WRQ`*Z)ys|^%`(bJT^iC4J=Xk@gF{w;42V|M@+ zybL6vPB4vF0I=)Z>K@i<^~V8DiB0w65S_tH3f^9-U`VTxM159NXvWoG7;eD36V>Ln zne2Pn%ewJ$v43cvdKoFI`oi%s)FD9=VIs4rTfjQBFV45LP_u1nEmUf3eZsiq*;~eK z11>T`{GPO0yY1{A0N3-kRno~_eclny$A_KK)Qf{f`CYqCQ<@Om5w4JAT9JJ(j-v`k%a7T=|1PYd%y4b z?tSm~-Fu(sULW%i66RWSt})kKbB;O2|0jBsdh_nIY-fDt{=1IY_Y`WuGx$%As;GRR zo0IZk?yOG$AwG$X$)_=5?_PRk-?pUAUkQ;p_*9w=KF+oQw$1T@MVnw?#idgk%9VFY3nxcIXIvdsa@Z`RS zOU#Rd%dbpPx1^|e_3g$7SyUyAD8@c|=Uu$%zP|;g!himQfG|XoE~3C>MsAG(ld2M9 zJB@H|S{?Bh`&6HX)AGp#uj|yq`fZ}aw?N6jnEoxf4hWEnN=l3g+>G$8>}Yy2a?IHF z#`!_!QnvB>wZ2ra$0R~`^wS>%UO?R|`#$*CUmCZbeJpL|E=bs}h|Wi59Z4dI z(UJ4;9!Yd!CrT%QeldUJRK-hRR&0EED0S{fL3XB1{G*R#BR({ny^R-7_SVC8M}^Ki-He;@qkq)-nWPhk36U z4D+gYVsP!c# z%$=CiMsLmr+*gG0L&?^Ks*dRwqy|?OZE%|l0XCC_Ndy9=nRrs%HPrFLKEKISUX~`z z;wCMZ&2$68;F!?{QM-K4<--Ht5Gz6*YhHR}DmHD9mmD>jj3-)&P+r>%#n)_>`vE@?O z4a3n%m|Uzq4uT|4fJy*6gKCvtoR8DKtl3_`56hT3ui5IXT?3gt3Lv9(#ee3dy?EZ| zo3i9B5ULlhC7?Y-DKWYqNxLmd_Wbss^tfeSf+v(Frh9yks zw1ci;>>$r)m@BVcGXv2Zdp|0L-O3nUtbVi-rVd5)!?+zOJmTF*;1&4x;H6MWegV_+ zn6Q6KD3#8R(>0v8^;%jQtx&Z}TGAeY9TVG}MDH0ntjIf*#fARqNl zf;9J~-8>tORE^xAbZW!TG^1!Am-?h#T;s{`m(>?_RsTp$im*$MbIhv1-TsVcg!NyG zR@;iX#9lG$8?EBu@3bqiooQ2P{UBZCh|Z3O(uAJu4KU8b2=FpEEsRSUPJb3yJ@oNd z@2?6qrJ32qsBh}DwAq*|kM5-8aS?nkv(OwHADma_JquX9 z*F4Z9e^{pBMI}j{o16YDss!Ey0VbvW?%-`*OfcZq76rEJA&`hcn>OU`gHU6JRRMT! zu8aKk`_hOCJ%`w{fkI3<+7E)zMOV(qgCB;kaY^7vH~Nk^#C_ye=qAFW%YaeBB++4= zEX-X{k-$YBPmD1(MH=H+;&%tn+tcNS}OMCO~g;JNp?n_0%78Egbh`Gy}Xg z(|5Ar?-+;WhrO%)weiygHUNC+dIwXY+x{TvsG|U~FH>HU8$YqebR11xb5FvpV`^8- zN606CfkSiXZq5zWAi~^q8mi@sgkBY#CaNz>)d88cxsy?d8SJlkD(SOjZdYNW`bM!9 zSCk;bFh=0!m%yQ#d{_WnQXS079|Vr#e-M;6)GhV-`KKu-_h&86SfVmBNM!FFiCNlu z7KiKP-db24?46~18zQ8k%83G6w?+zN5@bE(C7+J=-a1Bj44vQZ+^Mh{ul)K*%uze& zWhl+Q1+lMFo;8wA$Iun%LEOHpGX|JSFQK6VN%DtV8P$(>cKB{lE4~>qo~wrrLcTxp zM-b!tfVK6llFmkq=q~Q*@cc#6Vc*G>SM+!)eU{IqNW-<{MnA6cq%EEM&tSn=bqfw) z->=zfu9V16TmnylQQkEkU35pDruAoi;|dWyckZ?M>!hd^d~Y%ZNXhDUz&d)tTH5=M zFWF&C8d6vG5nThE#)Yz?ck`TCToz-Wh#keh4fz4WhTg7xt@{*K z4<09W_QjuqC?Nav!EUt&9BUpOq!KP5N5G+jL`sn6h+{Yu#sQ_obPYq=&ITvbI(SmLp7B0%T(50=YR;xb<$hMF?=r}ZUrUTePmO3Hu&A1-b zAy?RA0)ITysQh*(>@7G8!U2_!@E!qHzm82Ct1Rn9dC zMx?qQ!io#QC{|#s`sZyedQLO@Sj$B31$W#@8^752V|I=FBL=GnJc zy{U}$)V@xS-~hWp z7$aJ?bceBAV?M4e3=uAaXakmKAI?mkdsQxSDLD+s=kdwJbETdiqxE#M&{mjxue$8; z3>T7sZ`?84>Ur<_gXg48Z-og;8=_lk46)G*^@YAY)dR)GAKt&JW_y+aD)$Z3EUg8N zbb=SM(9!dFmU|^asNEssOIn-sJecXVS$fCE}kR?UP zZ^y%ql*o~ca=TGC(8CgHgjPP@e*$!Tq-^WM~TXMdjuW{>y?}h zS<#0dSx7WUh)N_1!Z+YQcL8*T>kePedOf6E=2_#*s6c zX&a5np^e1$n5d!FsIZnAJvXeF_VzW}UUxDhmZ_#s+=LE_{l<%fo5#TV*JnXp3UfSK zXq6_Adn<=}sh<(v;Z?{JcZtMUOsAV5oF?uWT^{(z2`RAothCiV3w5?`fqtxN;NdAQ zPpfDelM+PK>J$eSCFb&V6Vh9#G>QrW^Wce~bEVu+PIzOM>izX4HoLKEICA&_EzgVW z4i2FXifMlWWOUX&rJk9+E zE{qE55F^o=iz1vr4TgMO@&S&c!N6OhtZYvT;hbsl0T%7vg)%u;hS*D=2X%4NVWvKmRDuf*7Ll4-23hux* z+N+NAOZE??fm$VpbeTGLXS?ZuygCpQoaw9svhfx{Dp@Ybf_QaN3<$0ADVlmcLu)Vq zvwL%Fn#f2Co|PVq(<(Geg!QiZ#WhpUDkVZfn2nsW9R^{LEXGzMyP7K%{GD( zArk;t(A>4e_+PQ9R;kfpDB&ZeG7Q2WV+o?`zPy=57fIoSwXE`Oj9!l3Xdg>SKN$sr zCABsS2GM-D;VvF39Z7o`#)Ht?c0zk zF#DX&S$I+6)jPpX-RgXWlzOKxYEgUf2XVIJB(=(o27Vvs=gqq+##Q%c{&hT*G2(2~ zYJ@%+QIOz-u|m$^nJ7YwH8H8NO+F%b#X%l_TlC;pN>c2ud2xU^erwTry+9_{Gy#XPX{FrRkiKM@}1( zL_ii@_N*#xon762FCXg<#lRVcs&AwuOxFxc(XTyn$ zQiwtyp}7vS{SLu6^uY@hcl5&R=yLo>n;ZRFZZ-$7XLDaT_(r>?K;3 zf3$GKf#}k>nhR8J`ndNxreGuaut#{vA3;8-P)PqUf8W3}MD3be?orUC)!Uu}`UGON zHYqNxqTGQAyUO5U|D}W>JP(8;B7A)`zCq6J^C&xViDkO@_zjd|!l|@(xSQu>`?yL$c}}=k_APq;zR7-lMU#pBPM(F-&^qc}L>D^c;-xw(PVMt)Y3eTr+K=tGj`NmN zk|b?mlN|&S<@yzFT8|Wu9m^96&jrw4sNu7r#yE8j)Lf;9zeo5h>$H@HqjB~v-w#q< zDc84p!sSsw#?sH*yF+VO=5=5V zTbvHx_sELAS&h+sdp?>9w_0?0v0xYz6#Q}Q(Hr75>d~G^;lp{x0zI0 zg$Xvyc;&}$2bPX&d3Z>tm1EGF#zzqPGjOhZv>(h1Y%rv=vhhk{)R5%^VNiM|ecn>Z z6hFujXVM5?o~WG5%l@|rE`dly;6AMBc(kThVz?3GKdjE}PlMU*KjUArpEmfWq3?D{ z+gK=EfJi3r`*$s(=;l#$Hs%x+zDfU34D4Z?+{@98oJ{&QQGu9$SQYKiAxsnJmgRYu zl8Tt2%YbDi^$fN+Xpfn!|JwNoGr8WtHW-!I`ZeFM0+O=XeS^|tspmt)b?!DJV`A>} zUk>VM2;hEw@+-DvWAY-s0f@pH4u>Hvvwq3|A-w|%;ByoB!CH$Xt_U`GjAcHVybw(7 z1(r7P>cw+^5U?x}cnpmNDANg5OE%Iz(jX0*3`6$#NfE6vGbPa)AZm z$v*Z*uK-ZgOS@C|CVv2mni?o~c<};!CC4_Ij~N3 zh4Nc_rCyph`82+w3tCzJWOMt2#y8h@lUUuk`g^QEd}al(+^<82zr$w%6UsD1ur>~Q z=%^q=URU(6TVl?bV0Y;DTxsS;hr9rqCqV{5M$m6c|YW*0Q3?NxoujE^1ddK1#=7zc8G%Q3h!W&Te?*O8Ejwm8i4^c zJ`vakD8Oj|N3sUOkfwmewDIvzS#WY6njCa4eXvls1xo~de>$1chrS9_yaM5%i`9j_ zclZ^Sw9o}iNAJn|?T z7ZhHmI?5gx>u|@8E*F-f%`k?j@mm+o-FHw~n|>J^D_7{5JSTjE{mUJHW=FnVB0(fR zeZ#;inEOt>Ik7b1YWX5SjzaOKkYt3x*K&#-}j=-MX0YN)*#<-Uy)8% zK%g*p>nt(a7zT9H+ZeM=ZxG$Rd0X+!gq@ZB02@7Y+i@rED91#h?B`6p?kX>Q9N4_L zGAoW(h$b!7ZcY7RmS+3rK9^U;BKJ&M8ZoCVj6yut_^x+3YV;_3Ym&~|-jlQ7aBWKz z#N{h(XUpIx=4gLc*^txS{39I$Llha0HxL{Ve=nK~r8@{C@LrX~#4!PD4_=7)=|y+P z5AiM2!!$l_N{-6Bg|Ox4-zn|l3B_ljT;ko#xrn3^Pa?=mGo?_u&OU% zAB^6!j8G_y0hO!W{1(x68+L=R3SvHERR)qr$*Q6XpYIxTm7D01 zWDk7pYlEenl+q2CV`hM$;Rn6)@t2wB@(W$4y=!7ecHFsU?OqY7%l7-htFa`2=l%r7 z-0gwYz**0Ln^pCyO{;GQgOtXM;Vk;Zm}YEOyMb zf$zt|CB$=OpIbjS#Z|p=^{{xPlS(Nlm1Lx%eGiNg1}CbTfpNm69KC#=iiL_PP(JTh z2QD#ws0l9*MimBf!uW4tcOJSO!rDA0;k z@2m7eb=`VUOUYbI7HTCmD)LB_U_FU_VBEE^&@-Lo#PPO&Q^$>G&8p90LqXBzR!3m&M!%T*85X|B|;Swbu~iw&BlY2kW=% z<&UV{8tkmMW!X*KNL{kHf0cFGgZ2F0W1EKy6ORL9gTI$*-N8YT?J38=_*2tI6>Z=G zwCUjH>rbj(Jw{v{ymKq<5M1*uHs{jf>w+;Gz&flniQ4S}Ax~IZ{ywm%{ zEE#XP^a<>A?$6JzwIvUvsLMhpmDl2Zc2apvH41FaTe$g`hn5~oAF})12ngUVnf>7p zY{MX`NBbyo#MRM~z{S-XDNsI37N0S0Ej5OVqsPj*_{RiD5~;eTo~g^O_9k5v;f12D zFj=o0?(vFZ)WC77;%K$GOZ(y2<8Rfg9kgV#o-Bso%mO zV&mP;nk|AZvE!5SKRk|Q5C!0Pdjh55~cNU=@Cq{4bUL zk0bwvA^fiCzo{L-67T>HDkG^6ur|D0H2pjP-h`B-X0XdI^+ahYDJei+@y}nxWuz1V zCP%
      Ltn%PevL5D*(p^s0zQn2GkqfWPnEhMm+r0LcgxU-x~ez%&MjN zceDOxK>V%LZ>#-NZt_3bRpxJY)%llQ|Jx>&{*y`aKe4HT(!Xq~_?sK?*XI2$`d@1L zKQZcGs`h`AJ>}%&{$fu#d6~c36Hv+gH}(Wd{MDXPQh(Z0`Z_=Y`7icV{C#Eq*5Lnw zDEYf-069>pzu80g-`L|%OiM_lxZXc{t*aBzg@A4p%qRUDZX#*!Z{g?li<|)+(^Iw=J!RnEE!E-C+frssQvHu{H^wX zl~Xkia&-#=MjerVp5`ye8WBwZ3gZTRU=|t>;N#}|>rVe0bL96~{=1#;FRlOoZs+?i z-{Qr|Y^RHp(e}zpW$0zf=?!Z0!7(MlL}W*Z+8(W$M)M#@;b) zfV^p`>MG}RHOf!P&*_`B^&beCUcQROtd%~s3DQrs7tSc~B23=&br0YDKH(O5QT1|q zBFLht6xs)CdTQ5f55$ntc3u3; zbm+TacUW!Ldq>;_@wkNKXB%?7mDTxVJzW9Y z{4w3QFTXQ7_#^(sneuY~A1_2G)|J5M2=3Qo3FIpui~PX@Eqzq1fuk-U#R9hYF$z{? zRkSLrlKL4jno;k%5A|8^1q0JA-TnKKD6f$(K%@I0jyNJ9PbTCKwJZsyZ|uoVViD_b z?o8PcXe9lNpLNGlckTCt$Rp^)k6Vq!@S4O*8Zw{0B5X_jGszc=(l!%497t(;k41Yu z_Njr=oq!nGtiH(AjN6oo>v1X{KPN|OJTRV(zU-kg@nK0#Cfrsicw;hl@2=&BJZA4> z>ZRj_N>Ybtp03qL4pt9dQn(!Ax38}@Dqg~)R=7Yg(tS{t#Cn;4KkLL*a3^ELVKNen zcAts_*gc<%m1+D*9Nw52?<;;j?j2S+#r80OdKnpcbrq@EN|`f*xt1TYXC)Nfe7-t; zQRAPei)shet-Vb+{6v)GaQfJdDc;lr2eU{#*x@d_#y143Y z*eTso6lbD+l8e^;;;ZPy?N{S(sW5lFW^r#WH`w?~_wDzNICp(i!k%uK@{8^Y1dt0v zh|AA!@k^O-eVm6h)ZLv2WscKa3}L&%!LqyOS#E7^ErNF4J;ks(VTKY-6Ro|#@Ue}x zF1KMBhFTI;&G@$P3}?$`rBp$KsRdr-2Sy|2p8`+zw)4I#xK5F-MteDAy&rkw_#9Br$vJs7_j z(|{Az8py%v8*?u%TkMsSWSTiFRIwE4MkqV>v)hnbi>e7;{~S|TCeN2^5bk^~RQg30W;OA2w@&@-tsp+HNvKJ zuZn#5Qn5)_g2;NTeQ!}z)=ZIJAMKDyKlL;`{ZmZp6y=bp!I0*C%MugkOx<)=DuUZ0 zCUE;5k;f<7=dGhmUEFT|zE5KmX(G7`7uE=@7_6HtT%@Ul&an^3ka|^hd=AZGCo+#z z(|sGuH1~HNn}P^jL1`UTIp=qx%=9m=H+A(~%5Nol3UwE0=Q<59&j{#WFPx@Xk`Z_A zFfM#zcUb_gkgo@^L)AAo*gKvO3H)?1HKF2L`KE`;o6-Ek%!Npf5lXD? z&rZG#8sPFQTn}$cNwjCLeCZt^Hj@}Tc73GB&2~Btv!b1@qe~p~Oc(Af;(0^8to{>q zN5qZWcU@yNQZl`lT-np>6)Uq7KaKt@(FuFJYOWLZYyspdzL6 zfq0*(eoG;)jeSi!)iu|LnVek=SB$J0W*5aR_AgD{qKr-apnRGA)bT}3)|u*(<%$MU zL~7z4ozC5-j@#MinKLciGZC*hW5Z~M)JyZPw_{t+zv#n79y2_~3~~-gUsYhIylP`I z(EfserczLnPL7268MC0mq@z6Sa@wTKvUHX+lXt#v^+7xz6_fOM+f1p#(=VeRBalR* zZ@h7r3^Y)GkW;6Fr;6d5B2-Cz znM)w@`VWDRJ(*Wb>>Yt&N zlZkSST`k3-WkFB8q^JDivmy~03Xaw&iTYP4l{^8t6}m8XwE4#J{&47VX11?f-N zYSTEZUpuf?_;{yJjdwv@RBZt}K@8${g=Xe< z8GHI`sjVBsU&*$3rcY)W#)8sgd>S8$Hf@Z)J+>~|vf*YjVjqoQlnVc7A)Falo#LYN z&WL4{{b7s?ckr6F(5*WPUS^LyVxyY48%6b*t3=Xz4cR+`O-LU}%J{$~)Xbi(=x0yY zsU+51K~omBj$RsOa~7<8g5A;%X4SSvs+P7ii$AI1O<<{VG9PAn^GAzy+wJ+`9V3f; z@iYWlm0^D|VQO(kyFN7LX_d^owrg6?+#d^8J(6e$tFOV;%D*Tm$$Y{&M|!|~K~cX< zWiZ@2)Z9KaR(K?1A?wBPcxR#Vj-VYj}1qY(;XjMpQIH8tJKHa|~DoX${}v$sC4wNYI1`suFrdJ)Q= z+Q&E4rge34@OD*PmZ9VNa(YJ@g3if^alT67=G~+aDpxAM6{&T8xxgX?c^=Cv6Pvt` zzwgskf$oGiskmq#d+LQ=wASZr1v+-Qaq_1QHuZBqmVTlqXb%c^PEXZ_sEe8}Za&S6 z`e^6X&uhd6|phugr_QePpRbW=ZP8YiIS5YVZ@PRKl$5DSJ7HCtO5Y zecA5yOXhQ&AN1YtTvz3MG0rL(?>2sE;zQ^5^;e9^-ilYZm8FvqTg!%zn1d46%TgT0 zFH?$hiw7pWR;jaBpp9)XohePYrug{|?6cio`HnS5tGX1Ov+Ri~WTLvg<8znJ}ip&5H6v*gmW=y(JF z6Y`J;DOEdiaR=95c9J=trO5c&Exi`0YGB{eZV=`X3U_8|qO&wr53RY=gl4~m6tSC? zjJ-XL`ubB9gLuP{W?N2KZb`Y%P#ip)V!I=E=Rjn!=7lA3(;s2fwzVMl#%vp5A~lJ$ zYbxHp%U2d_ncgY%FIeifcJ3MUu-(ydC>azp5`RpBEbKmw9OuWpX@23UTlqsQBqiFZ zkSI6G*;kDqs(dObH{6m;9LYv0k<3|=P@IeQ0n99g(0*3ZbPaIFO5ukm9fA*N%Wvh(qI5Luc zZQ^AWBon29Lf9J(d;5vvs}KtJ-+@} zrXId>%W8zr9eX1|P-n_*x9*pd-PV(CjX}%OJ1cY_QcTgN4;Et82|mLG;!Uc@!+Rl$ zThf&WMXruBHnmkLLW{d*wiP|sZo0gAwXQwGcVkcV7H|G7rsFf_B}mhknsTZ&-gQbP zhwI`zDWoqn?_&*!=P1eH-HUDe>F=6JS*7W#V{FDs2%7XsfY2Bc4yAGjse{rdLMC|zN@Nt96k~RhRuHog5gnkHOhvYJ` zZ)jz@uqC4K`;QCl%L!cC3+r;5NxclxaA+B7x@1b9K3wgkIunmAv&Sck2{OZ}ny==m zh#uOcp{VS7^XZzUJ4)}me+JRGg%Vw+s@ZRQ>Tu(ksp%hHRzC`blp`F3z17=SyOUIv z2Zr{o78ISf3>bBYg@vHU?>yIWDKyLMi|=TbuQwURFwzda3;NN3 zeM|h4S08Fx4zyQl#h^OWhDxGikf>rLMdX(oD>2p!ka#3Gv zze9r`cQ5bxdUvUxa5V;DRdXblyc9+RE#J zFTUrKUw-8M+;7F{!4pdE>e=Cug9=a7ar3+#$~3WKb=dNywpsDT)e|0{>a)?Ktk0mG z($mW)fx<#hUN7#ND<~XL+xb;_>edWvX`>eWG;S1&D?s%`m~=dY#r$tvedXp&{#NG4 zn+rP5J^pjK*EspFGb3m9x4*Xd4J*8uyvuo_bSv!Ii5DL_oGG^crCcSNfGyNctFVFU zkYMI~PT5oZmhT1po~?9E|LdzFkMsP{pCzE!4=1}%LzcK-Li)}vNA+t&Vd~uZl;U4}CRAa3M)h zzFu$KR{eIV3u=kQZ?ZA8#W90ElqD=D@_~kjYjQhh+&!KMpWepj)(SiF>#yXdf{niJ z#uOHFY91||=I!4?E``B6t782U8E)u;6@2e=UrgCuUnu84GdE=m@!0V_N|pQglxscN zfh<^|ZGt2_y6fii!A09+9ScXx80lCX72)9d4BO{Dv<@YY1Fv|iXiZ(+;cJG_q77-A z$_L;Xi{ty+FQf$;GM}Zo=N+HDo7Mh7_DPj}V5r)m6R~HsmUB;_ad}PY5=|5)@-8uX z&ut*-T8-P{q6#aY9Y#uT^#kf?r1d;kxq#VrOE*zg+|%1J#vbj6bn5Mwc|IPlHMA_$RCRqLwt;S%vRYHQ+_n0KGMRI@xl_aIuFYm+L0W*HeY-v!xYJHY#`%y|yc)i#EMRcfTExT8gz6^pPO4%EB;q2a9 z)ci!7jHn=?jGIP(r}A+@ZH{~#!E9^Pv$IEzqwL=_#O_t&7OK3kYw_k`G7Zz)A6B`) zq;<@+o1ZD|@u>9Vyra&bWi}7%y{_n4E~NDx7WSF#?!Vnu`0eodr%U7i99{%C@c-cf zmzMrF@FD;M{J+O8Qj$~re+gX#@Q(<8L61mDsmREvSm|l#S^qEp1NcXb6a;<*%fy8I z1VoI4#EgXhzoj4nbSFXr;@@ni|KL0QC%O|OKzAY{At5Fq|3!BqBnk&!#Ec}Qm!-)r zY2G1s3S{D!iKAe?kzLl*Pbna4iezyPnxbMAl-m$O{Q^Aw<~#lO@J{jnOMIt);hp|U zccLLC1dK<_Nbo1&={ZrV$p67>1Lk?0y2=d%S5}3bqIjnly_I@1fd~xx*_MgZ* zrfzE1I4_Ct>G_rCnd@`hrJK80cGG8HPe|X6^v5xk zqP2nGxW3e&=$n`{`Haem%8E9GUy)akaL_bugIH#t2w@OWyuNsDdJrLchuIR6)@`sc zNwp_l8&L|Gk+Wkt2!6S$>(2mW+$a&n%8S&Ol47a{)g`Br8aIp?_M&zYq%}jUR&@he zH)g{x^D&kbd)vlRiM;r)FHzZHJpZTYs~ZOy;X{at%hw)zjgMizsgboEx zKWUJ(pHsL<9oh6zEh@T~JHjAKMCdG|Ni2`B8UVG2AGV-eHepABE}KBCkM-iRr)@fG zp#7TueQwy|h-BV)xl|ZCSJK->K#IAu@l`{8{dQM(N9yV-i@0FRb!`omd{sgXN?5p; z%e{HUc9W$W9V=qfBzH>4^fxPYtTev%=Ot;9^QB_g@KkAZEvPnHI{$>uqsGkEEE>v@ zHx-zmQ%U!h;`fKe8xQkCue~aZRS8&8$#J27@dcsUcANE%Yg3SO@$3<-eu4H_rUGmVXZUyXXN%tfse%wG7QXg1fLEeiM9XM0c{%fmG|$RHb7)C+>!YHfdtk!xwK& zl)ikqjN8I_64zj~fSZyFsa^v>i*6#Jl^Z`l5<7amk`!-Qc}lm)aG&5yCpZm+G|5VE zbvi*2UpOPs)!9Pw{FaSX;$LRt*=$PZ0F7e_U=z!6qoXSJ#q5!TkD9xmRr4XvVW zB6rjI`A#gj2~TQX5&(Gve}DCc1L@4Zpack2_szhKcYdMtj0cu}E}ifxXZ=fyqvknQ zZW@DSRMrXo1oO{;7#pN1C^6WcuODq(h|9g3?SRy|3PPq_bO?jq1_=42vJLf z3nv{}t@4}Rh{=tCK7f7%gVecj0r1a)NY?U5RfOKdwWXDXchpNMiazfITs&MZ=F~)o z`_^9qDJ)(Xk98O1)_~%Ys?DZ~3;OAXf9dTOpPB$&eZhWa3Cf9|Errtrc+aT>)n-Te&5q_uT))_^_uD!3mb=)}i}KgxsLce!I9X zKG1C_5P;MyzxEcw0*M$MQWsCQoNGLpxhpPq*%jWdlP&1d^LmU9t_h=fhADZ^7wKQVpjWhC^Ks`DC8raXXi*({Z%krDlaD9^H;#ny%%zDEf=Pc6 zShm@8YlS3}iCSUX-p9BSi{nSgRX!4^U%sdUZB*kVV%$Lw!W1ogncE89wRoph6&;aA zc$xHl5O6uux)eYtEKHo)qSty6MmiUQO}QK&q8OH#E~C$@=}Mz1a%-D7A$^yuw-9(N zyW&53Y_1JSVhmL+obCF1xjIZyV|`bu!=%Q^)$T-ips)1}>78X^MA;74RW-{DQ04tm zFr1-W2LXzuf^uTEnTGlixm7v=*DL|Je~cWC9|O_!c>u{a=aQLtmIz6G&rk}Irh9DJ z7qw^(a=Hw`%0fj;5-C$MU2f-|xjvD;bs%!ORcLe|EAJ z*JRM>=rp8_eCTH{J#LW0j2{dE`vP7jk(86i3_=YC*5Tg|Agw8XwY zt#p|ByoL8I=P}HuFBZsgeJlC!)7OG|+8WREbRu6-3q~KiM+BEHb6j>{|1SHf27e9v z15a6mRcaiNOokz!L{tq)rsMR9T5I@m2)CL+@s5+=L2!o!o~G3Pq6Sa@70d-?Si{KL zQqvC7gAMu?^P4(N!t~U1g{;FZ1rp*3z^dT&Cu_jXWsD-nGr(BZe31Sr63iSz{<*ii zu3Hq9JX{t%ce2A6!7R+<-;nd2@b{5Jg(7qvk)TYtF-1hlaQ&$-|Hkt-iJh(?Zs4JM z3O6+hzO%;ZHH={CNQ}p(;((fNKUBa=B9xvu4S3oF=XbO|*5kKQTU4#GKXWMV7bHHg z6&+Vsflh%bd+9JaGdD1Cn^#+x4h}TKNdoug*$7{(zUvC{d>cKs%p37a0MAu`z6WHj ze*t0*Ny7VZ_hQu_7V2&MOEY@HYF2>9X)9~qncYmZz*esEZ~W3Q24 zo`}}RisAU?p^DLWn~+9n!iz6L6*=>;S9Y4=rix>_!8x_%T{7u$IRtVzFRW2C6m@fH zvL@ORCCD{--lKqA&{2!;e{HFrhg#ZlEDC8sMBAd8m7i^#VhhYpEraMcMNdc9A#dpu z!IZ7n#k#L8M#7-SR~iRiuUu<(&qi+PftjJ4 zw)*}XUy5Dk=aX%TG%mU^Ev&(`FHxI@zKtLLH|YFVIUOQk8{nOb!u_(b}}t4`~!?c>(VxV0VRi-hwguUuD4xY48G?diamM+<+wF1$1Wce6_4LBPzlz z-{9+%qx7W?i}wT+7hAl=2StDejLT$lA1hwP7IzCp)=+n2$;rX^c5GuVl%GIEOy_IA z2}|24aYl9F`IS_H)PXs~$OxCHO2pAo!>lvJk8?8ZdH%hDchw@#tzTuOI3nC*+4{`cyXxsB>%yyd9C&Uu zzaG0A6|a(tgkY|);hs#!^)2@Tc|zFKv-bo)t&A_?@k}<+0coT8=lQ>~mN9+FgXJEJ zIVRWv@{wZ^DUh&zAfTdb!E8bfMw#_H0!kr(3Oo{$T92Qt*hfZMF(x4fNn|?P-7PKd z-e(Zqg~S0Uvq4ZYj0xz|;SKw%0=_bV>P2oaZUY(_;>VE+S*tS77|(Qc0=)NYe@}sk zf$R(K#zo_|5MDU7n!j03&!lccptU;H|oqik%uE$fn;}9U~^aqe$iV096 zjKr=MvcMXuiOVnKm{F0 zSgbUgAF)9D<5Moa^JXwgP|o-u^OguDj7JTovJue15^52$gM=8lH+zqrZL0H08}FT5<<9>qeV_W6b+U$U36Emk$PY2fHu~*hQ4yNzpiD-PZu;5kQ|r%VG{-fNu8{qij^9kHDNf54m3a zN4v-`BEmVMmCa&@gi3tmXE^W8NyL5hJ4_s^apPz-ULHml5o|E^O@hBTqas*-I*_uAQC=)sT8l*D0~qoS1jrP zWXIE297MU5R93G*ZnYpB?dm_hC+)5v(;>BXB_2D1)UP2c@pM2IkT4RAXUZ?d`NdxM zUo78h#0kQhCQ3&dQ_gJNA3bajx_9Y+koVR>b#2?aFYYjL2yO|%-Q8V-JHdmydvKRv zL4v!xy9Br3?#{%WyqRoSYn{E%zPIY!Cspq+s98h$=wvD^S&&}5z=p48IR|N(h0gADNf}m2KvQU8oR45l3=X5>Tm}HGhwWGR2w-E6 z0G6-CyXj|3Tf(!ixrfY0MhbCN$u$&l;zb({D(?BA=XH>=lHXvoURQ|g+SK(N?_b{} zb1_NfXq@t|2m_AwmY?Wf*NCxr)h|BuW6I*IH%oD8kKft7?A(y*<3yhGv$d8F|>I@;mpK&f{ z7ojUZ4bDs&k5(!ENREKJ8Kda2Uk>Iq|D^A;qIKRQ5cPQ88-=s^n&tg2;@18p+r6mc z9rJQO$78-wBasdN!#K-;y?(|zMw^oRwr}XtU8FOj8{OH>i?p|}n|1f)w!5*JiB7y7 zB7t#&ej^dZy%BJ}k9&4$pc8o2(^8S^*f`PFF-5nZrdxvL%9CvrqzIz`y8A}y*PBE| zCqKzO3(Yu<@Obj@C}4gQisB-j{QWF^P4shxsq)i3RdOg;Q78!RD?v1`Pxo<~ z#6bdpvuC4iIXSDkV;yQg4jD(P@r4|PZI|w@Yp8fI3Lkeb(3ev{@Uzl9n^g9_YyM#e z)(lo?faZqw$UIS*K2wFqDV+VwwoV9W{B6DL_xUbyC<0gWmx%%Q^y)KKn`#e4yYlq! z$Xjus!Cy~|X6I{tyQzFlD-n-hkp*zQd~>yrK;MMTZcd1ZL!XllsvG8;oOpR~kV@cs zPAKDrz=#0(ugjfv^%)zP3ZZCg^bUqiQ&tTejU(uB_h|YmK7#^{K_M}`a%LNy;b|sG zL8babRSQRRvLhz;RGb<+5)^%-c91sIQiCG{J`EtBFfaKQ1IqVrmK|@VossD!N3G55 zO=GZEjDpBxK5`M3Uaa4)+-q6`9dBdjy@>Nu1!_dzo+TQ8)U@8!9nQ;?A6QA{%}6~L zB(D3iL)-v+inz((rw1RQJV$OVqc!VFpOD*2qDe1(<7(p~-u%Xj=o^@vI;j7ApCwxE zv!1B$E&K5DyR%elqpnw_)j(g1ekUk{t=#T5-V5`)`={9#{O4Qir#M>-SW*tthZn1C zNzq?xsu%nEjh1+9b|;?XXTcBjxL#U2&AlDf)kb;pS{zaeB7FBxk|clp1NnrEE9s zkRQV5F+YxVE&x=t_4gqLLC!7Zf#<>X-V%ycKUk}MvX=0XsxWBdPH6o_00~@6-1C8o z&=Y72Qu%HmE2r!i>F*}a6exg?kt#pIs9!)&$^i8vv~{08BJ?l~oa(gKH3g&F@9BW2 z-MLO~U)xS-xebM-?SU3;VWY;5*({Y>&Yn7Tfew7{FBu6(!M_(3qr3+}A47a-?wxtJ zPqp;EwUn1xxx1N)Mcu}Txh3;o#%O^(h5yQtcOv@m>%S|!m>Eb*l*QwjK>vhMOxU|J z)cY`hN<4Uuzxd2?&#uaFxIt?%g}w3#?=Xbw#7^_vEAXTTIZq+f)w-TLAjW z0pv|RzK4D7+y%XgSyMJ9Op{yBr zsXonTk^sv`*0eP%*IWH(X{SieeuB|j!Fs0<#OWu!!dys1_~74PuImHWvfZ;Smt;rL z#dK>#d#Q&GdZC<=%HVhdXzo1PdbdMPu7H7CGkg<~&-iBiIV1ihS_#%}JV+x%h}%`( zy-R-l?DwENAvEa)U83R=NIQf{WhD^puQ7JkCWCj83e6fXZ=k)MpSXRdK^aCL)*;$9 z%1XA5>Z(={iTUH&IhgSmoiDNA^G57ETOC^W7ocyzUF;UQIS@9#|BmBBPvphH<5Iz4 z_4sU);5QC~H;is0DD}Y17~fLRa0I=GW;i+)9JS~U#lOilB51fGw-Y+TMH3`$zqyZl zGW7jE?*@pm)aq zj+Bg(z&pcrG(M^s_84yodgTnrYOG)H)el@F0%9ivE5^6@V7lo#e!OcKxea+k_pTc- z(i}lxyv--)V`B~S|hy%q=fP=JV%uoXJb)IhPDvAf_hist65-rE`} z+I2G_avsbPcHkmqyrUp7J!tt1X)l|_Cx%`Hz~JHDx-5ujPX~HRt9e<>ff#9$jTcGn zxfU(DKN`LgWs+8{S5HyI^%9=QpRdIo`qA8UzG6~#oj;OiLV!3GpJqTr<|z;f24lnZ z1#JS{cazNmgsMJ(+?lw4`x7kG#wlh&Ve7}NGIK)&eYP+B#ER|7j*S3rkdNp5X=5KC zL=SVa6J&fRbaU(`!kDVVy@`T&<)XXJ02NuKNz^+*C$WLYkQmQz$$|OozfQD>;=y)h z!I(D;Vbc%;Gf}-#i8hWOw z`UV(1zo$!nPNxj=JyF+xq0a1JuB`RlXwbj3%fteSMA!Ga#N&S0Pe4gvqtq9Sq2sL^ z%={Md=Q6G1J|ArV_@g<@(d0QUT4DbYUMtOj=m6>P9%@F;1 z&G>|6X@xKDkaoZ!*pFcQ)d&(K>StnJl~1a#y&#idZpo_K*BQH6J*j za2Hkd_UqTpcL4wvm7bm#mOXcH5gBRDkL!}&0YdFz&oq}4x1leY&xSxpwfMn4t%?v2 zqaD7_(+v_fL~Pv^7@Oyxof&YC?GHVSZ>#0Vp^+US60n4SrmExvRtA}s{ zln861(-mR&K=XdduL}BI0yjUw7+w=(^lMaslqXqFXwQluq_c>d(V)kE=rg%v;X$JU zEpSm+r*0gNQmBp>A#XQCndZC&Z0D8UO9sR+Kqi_{1%Xq`uVv_jftt%>+&nbHO6gP! zg^-_^zIWjs50$+Dwr#t|K7!MK1$`JdBJ^_Vx~woh7JJ3?si%VaTCmehAMJHg3n%21 zl>tZNV10pEN7~w!PItRCUeI4-sF13T9MH7xHNS5=5VKf12wDyK4eiaCcJDmho1H}+ zSy1wM-JTB2=j*fSOHl`c7dLQhF5h*#9bcn8{2lwFUW_N<>R9jguB^DEY}S?+xPEln z?&*4Ho4R|^OM3lUxhKV%EVaCG+=#W(?BxPPYv<=q$Y=EnKp&I&BYk$R_5{mkwYD@> zLGR&#!RyLNz{2q@F>t;o3r)*yVqmFEkMe>p0iHG|96gC09VPy~ZJIivYRY>;;T;$- zqN^vSd*S0Q{o3_FFH)aYTc-@{HJW}{9<%p&f_#CsfSyirU+d*Jb>~axTWoCyN?Co$ zj(+0&n#Rmj&mw{M^QR_Wf1A*a|FGqfYkwir{aBuqT&cYTUaGwof~ucq85GM+gBAN8 zaWWX(=Zskp^!5Zbcz+J8m3{eg?F-|UFo^fgzs$|YvS>e0y)$}dOp2Z&m54poZySAM zV+V_ikma18_$9jo(Q+NN?i}(!0QK5iTjz)F^z^!dOOpgOXok25$!J$3vXRn1K|cnM z!OuBLp+5^4qrI|FKA*aK?oJ?)zFnm3EB)knEAsM-Ef7QGX1gU3_DW)LJ8i)cd&EAc z#n(D&w$$CgTl0AdZis~3PJtZsVbuTR?M2;wuka*&ykxtm#Ye2stqHm6FUt~h=-8ba1*MfjB6)6*Ynbay&|nJu3^+;vD2?0VpuLyo``dP(CI;v!H1U zvj`tV9q*j|z9ss~{86d;G$vYgq~=%7;V&PqUA_UP9zeuYhQ&)7hI)?vO5~J_^tazZ zH|!2Dx<~coXV9}hz~2i6cr#gNl-)>GP8Lp2V_u1PP_3S#>GftADs0jx%P4rz) zWW*j|kEOQ;_xXkwg&WZc+s88C25b!6JQ0u_>DGDC;^M-~;%Ary8^(-Vour+gIzu?J z5PSsOlDl0|SzT^jC*Gy^+0*5Pc+moUWBt5w8Bg^=SssKoNYLassOT`F=M{Fc{MwtE zk{QuWhW(BN;%rog2Q`gf#K4r(Gbgp^e!h}??fL>Iupvuxg}BWDB91+?U7W08%$;AC zejUnZO10XJ%cY#B4fmCPguJzQ31}1AexaZ5%cQ#K_*!7@m>ya;l-JZ6>#Dy-P2sDb zbtp(=1QM9*G(SHG$nY$cZLZ#;8l7B#2p4oxG(8SgBh~(e8RNy2@lA_!C1T|i!;r{q7m%wn=emHel}^uIW{|KX|pH#Sq|zgd3&WHV*|?c@8iQSF=}r<4C{j=>FP_-wxP+xYz${7yKVGoc=%WUjJ?G{Fkf#12FI}Zf7Zw z7C`_3vtJ|uM>=H_GiNJ9hd+$y|4EU5vkd=9ksSZ3$Y0z1ZVpJ1zr3)@e^KP0-LZdG z8E@YiPiMVJ4+BmT2GIk~w0 ziB@1{WcxE&frIG}vH~X;;~!3ZCKfiX-zWY%S>fM1@j3st&ELohj37%f8_506#zn%x z!Sq+E0>^J@{CQmewi^GV|Nc1||Ip=M!58d*G2}~wBr4=!VQ3|%@`o`07tjlq|3pXt zQ7L`{B|v-%j=$Th|8V2~-t%8t`p50-FY)Ca93&rxDxQ;6=zT}adTpj zvIZd!g#Y$OJD_MpK68l!*X z75ope0nC5t%U_55htB^4Hh`U-{nu`P!Uhmn#w@d6dip)Xde;G3wUlhZ`yr$}zSo;i zwaWPUm_Kz}j<7S->>O;C|9lxkdK=!*H`XAt7e2C7llKN?|7BzKYs>EPj~3^Sr?WG; z<%+o{ukB}-yJGHF`@2K0(eu~#r3;52mnCga3w(8Mhx!kn66Wvj#+T36xm=0)2gWPh zUyeqO)eVPNXdU7yTyp!Qm^nhzNgQW}im&D?eO^L7bojij@Bn7r?_Q?fY~GZ%5~Gyr zjx+B+4L<qufBp8bQ?!GdjT?$kMiyJ9;D6M>U2FXE&1YU7Fk#Iz)K^Fq{%dmcZ%5yVRU$g)9o@{rei)MlFu2F*IKylt_F&Te&I zB@Va2%=zo>kxAsjgGX8+p%jrjo(aVDbyy(fUE;($@a<>)aq^>VA9Fxn^+I_S3RP zo7fBWFMNP!V%WK#$hR(t&)ye_hD2~=O$lRHUF)me3@?^jqfuZwm`zNQmbl{dkWqWV zQc3wvPq)O^9}|XYfbT}&k{U_N-fBOGo-FwrFm23hXH`7h=QbK=-eYc2e!Onbf^mZF zmD$wy2(jRj!{CtIOS)xNC8+MY@rJDvgi2GJoKP^Ipl83*yhFxYzN?rzCk8->nzV4u z)3{Nw3OH$&`LpNG`-*?qT=C|ukgmfJ=zQAr9Bh5EP(4c*11(46*81$3Wbm=8X7ok~ zJD$Wv#5X|iCbXc-xeM+&e7Ny7ot!2|4_a?Ujp1V%JUuNmMG8u?^E~Q=x&hqqE*-FS zCSY$JLtOrq@|A0kt?>Nq0wgo6znj5v*w0GxaWwD% z!LVHWepbNuGY>V?dmR{D?Y_>E z3-E`8ri6KUDa(5d+wNoenZ3bamxqM5)03UIYl5sNpGXM#D9k(1U9gFC`B;mbJ#skB z&0(C4?LcoHuKvGPBd7K1g%kNT?DZ5V*Vo6GdOTwRJ@Q^|i`3T}hf!xNtZ zpl|KFV{$yCVMqifo8j6Z#8_^wrNLmg2z`TeA<6OG8zSEwr`_qgTVmld_~0X6j4o~fTQ9r- zCX^oBxcX_5wd*KPL8rGhkX(uZyt{~Ae4XX1-07EHc9<10m-WxtIYn{wXrX+$kw0xo3-zPzqnKgFdS zz3lZKjF^)u`naU|5~aLhU0{cPkmuFnW>3PAv>R|}#6jmh|FvC*LpFkn=kc157HM3I zOU$OsnD+ghmByjJ<(TqVjrIF>5(f;zFJI$Yv0OM#HIaCbk2t;-WWd3$pmcleqO2~o z8>Si>hO49uc2&i6lYE4&Edal*A}b(zxKOm-(0|lxG7mHRh_gZ}#@k4^x*D8f`N?>2L@7B z;HTemqH2aUdd^%VXSL|%^93S@HSLT^aA&|=;<)(9%v6eA83Vzq z5m2*&+DS_B&>2(+55wbmnN*@*A!Z=H$6^gB1ynLaxNt@V*|0iW6hzw0)f?Cm<7ILk zVDlov1P~r#)41&RS!Bc<=!MgGH$c~Mo&+*l;E!U`=n*o^ix%1>*y=o=%FUGiq?t&H z=R9bwL0rdb&L@FZgcDG1TH?39rFG= z@=3@roALsTY^IguLq91wPOZSGp^gZ+jiwUqILcxZX`kd|%WrPBK{m8Z!aL1qp3$(` zS_t)tq)}urLC>|3r~Lz0HTVI1{bOPlr6_%TPR>~|Tqy}&kR8C2vM`*O_aAg8nBz|y za$&mjs3p_7c1+H;Srg(P=x1Vw#mS&;V!T)9G`0dsToy4G!bVozPD<4PMM*8#FYu3& zdV#fX7h%zRFFFl; z#9r?;^<;?@aZ(qTWiyTX)S{mj{0BYSYp4Z-Z7bgjX)M1gG4xZ{`lSsLmz*Zuv7(+o zc~=`>Y=!*nLGUHbdG6?QwRNjK10L=vOD!-U^}k=N-KkQ>ktPk8Qq(W=xK31G&@ml( z^$a_HdsSTZiSnkV1|J}DgxdVfgmbi>-M89x>Fm>k&v|-BZu8U7saR!MpPH1r+U0 zdO=m?>CQrQ&SZ!Fdu0PFT|=|pma&@zdPp&59*Ne@QQrdN7zuTHu`u9!l$UdkKs76vY`8Q1LOCxJ&&`nzO{ zH6~V-gwBo6Uz%x4mDkAAY>}UMll-Dv!ga}I6=q?7l8q@AtL`4!802&=@8keh5bB>X zqx!sTr4U;)XKpJeb_#Bqq@vA}-niW1+SDMeBp#w3ha;bcF+4dqS0f-sbY4f+(DL2z?_wGV44FyhD->%r;S z6Dt~}5kCgxfFcN~O)ART5Ac}i>u?xRfE3%_XdSxXiBMDFh$-1vXq#tIzBDGDsZm-T z?WstZ1)YfroskJ}-SYyv@o^uv7S0{hk~bU{_r{)iC#SGxVZ>iYGAkAprOIoBkP+pWWJ^d*w%p7LPmFDnH!U%9I5i8lX5CTAC*wfHZ#*! zhrRm1x1nn3x2|J@UP(Bk=MARk{Vm8>QM#-~VxP40K$uMb^m_;4?zZad8v0ECjtRe} z-1cs8)_uWoe_i6IHh_Ln#=~kPC*P03TsR5EixQ_PQT4E7Rr~TBd_!;)yGA9utV98(eIA>+osrVNs(GiLC)=^wli5RNCSgei0)eAQ3w%NOySoPBy zg#4JX!)>!i(VZd_wP_J!?;|S=rVh@1WE>cdgGsV-uH}5#7wO~Mrl;aVk&teTxl+!% zzV%KJ@eP*rWd_U47yR%Ow1$~fcHD=m;ym#$Nd5B;>%=YgCu4T?v~bKENKU1!8SPyy zf_ad);-5Lbt`rAN`W@zq^Ti?X?pcP`b!A?f4$*5LSzcoVo1u=q+X2A(Ouc31_Kb3( zvfR8Y-(BNS$H=C6fH`EKCWlmiQL4#kL^X5%CR!Q@)tjezt}l&2u`K>VJ?UR?L zUX5@|Xt2p%{%(r?9CRr5@l{L8eQHj7mMIxZ@S8QjP~{BCBa$PYHfx~|s!?bWN1;EV zBRArF64wu~uMu4Z0~neCI7XINK^Lu%`-7)y;lMnZvU3jh6|A@x zSqYRGm&7=nV(@nai=|vJ@^P0HO6b~2xIK6K<0)==*-LzdZE+s-Q=Q;hXW6JQmy}zG zN4U@V_*Q1!gZ3Wb%D%&}V=V7jD(=m+e|X0w->|?JTrntp{((C7XDt) zWELWh5u2xvW;ieGvh<*P<>sM|39aq8Xk*g${>=i&Y;&6A5}Z(Pwdj-tt?`;lfm9mb z7-)L`4tbt73aByb?qwAjT|ni6{Ao^r{d|)1d-OP3D?Q-5Y)QeOzj#)|v@sR`);oq! zrt#V3pIF=G_Gcaj0Tj+NhxfHM!;U9v@9GB>dR4v#YV}k}!1f%PaU;nQkM*bEvk+D> zWN?1VxBZkrwaLUDyKed}(4I9w4lsh>?oGz_;p5XS;|(iws$oyCMety?`5bkL zs)Wo5c8KF36RMIt*4q_X%SS)M!bq5^9Y_3B80Cv3L1SOU4_1?$P#d&xP^@-W^4v&W{jxt55=iiGr#M*|4U>1WuDpHhQE@7vvqCMD% zVB*pvocWPhD2&JeJF<_V$pV^OX2@TS+XQRR%=&V}`rQ&A7H8E}x2GoMc|nR%<1GQd zwbUf|;B8s5P}A<#RzTUCicN@*Mx!Urn03HIz?W9?)r0cych4eYDqT-N z8gyVi=2)E%v{qjKWF}&j5boS1PQA=4_NChH3=TeyUj?zO_YLE9ugBY`m?xN6J>sxf zVZJBTmQ0-NTtipNTq=YyEpv(q_3>N07XsymEkWJK-L0yY>Q0l~zR&9TKu*jDnNL3+*2gyZZ10m7!~=4VH-zmGvf&^r=PI3ZXW>umh`~#&&d%G()0fl8NGkx@&0cHfwKIb31avk zX7pJ8lF|F~RMLOQ=y9-c{xzf5ud5leEdCn=IvJyEVDHAt(1qJ2aUvIMfZ^uHOW{7L zm?)Y;R*%Vr@$yt2Xr)ZH%+v6-mdW7wo5qjTAFBG^s$(l{#Ya}H@}DjqZ^pj1=utj7 zk-xSz)5Q3$uVlm=j@cgTs+Ap=(c18{-Ld&xS30#zl`d;v+`jPGUtN44aVbn@c)hv| ziX@=96~l!|A`WM4;MI4l#(Kz+*6+CAhE;0w>dsmMhIBSR%Q?6`Z0!~HdL(mKyXl9o zA9ggDZ2Kx6S+1CBa;X}7{0;sMe zJ=i==x7&p&td0GHpfl@)?yhg0?I$z%e17tZTB)3$!iwg}H^k*pBk@Eo#KI7GMVP73 zY-%*oO@@70@_s*}Ri07(iv}wG>1W+FPQOKSIQAf`<}ma@H4;w$^o4;ajjvMA-LlE^ z*j0t#4Q*INR9TG(RrB>}d)CJ+o7r4O}H+*oCT?FpuKmx&Js z-en}4#RPBCsiO~|Gx&%*S{oQ~8C23F^E+P1cpff1OK;IIU$^LZI0Xd~f3Iu_IrPR0 zO2UyxK7G=uK6gtxMgT(ayJ=+#aOAPIYK&6q&bwR9cc^u~H1B6q&y(XS%-u;l=I=t` zS!_Q%wga%X_GavL4bty#Ru#^Jyst)D7Q)1|%J@5UeY7cXp{qC>bQTb^aWtk0i(NU~Yt*f2g)D@yN=dseoG8#XCLuY^wnD9%g9iJUE5%Z5kMYsNBiP0T45{ zG3h4$K!w>nwvwsg4m|VmMyKMsf)b##D8f5IXu{Do^v?1mmWy=i(mdGP1w@Me*vDim zvg_M|^HtTEA0%(1rO_Zxf9GHAm9@*7bx%sA zfjc+pywReVODeTu^P}b+t2Ur%>zZGn7LlbCt;ze)lC>v{N)9oSq>B^J-|8M#tF#O? z#+cDl$Txw{Z-Ce-{M)=L7M1A=E%o{XhEFJo$P<0kj} z8d%o!oN>58V=nJOKN>uW)G3sL}i=d@cDkMb6y7%=gwK4#zhrXq%Vt0E# zk{fqfQ<`6aE zg}=tyvxfH3VX-C#?yGcPH{^YdPPhDf#OpSx;&0^(Q}o?=j__@49n+U#45Q z2bw!DTf6#);40OI)AcL)@x6f!L%EE=Yc7C=PnO7*U%u7YW0CbHBF;l%omH#AK6TzLF}oK-6(3SFEVtjBt6=ud?~C8dAe@gZ|Tck zt~Q#;mt^&5Eqv|}LqeWr`|3OkQpz^`vcyfEKf$K%bEm1; z46<#P>;~AxAgv*xBW|B2MX;mn{8iOKktn^b&Rm`nCY#VW;<#_E`0s75AU^D5g>>v7V@`WbF6&5eB zw;hiYKq7R77TRpWM!s&mB_D1XKC>^d?5MXuZ`Ji8e$5a(#>qQJ>vLo)ILHaq{K#P! z_j9V~63V78BM$#U1s5wfwNpL{7!NZM7oN^E}Q~d!3cN&!p1aS&HB4X#7c)+QW-+m}4iM23bhwP#Fnc}rD6m~bI?o*A-M6g7bg)n)|?N_66z=6&_y-fXJS3q$kRFF~AnY(0tf4C>u5*O#&AqgS% z62dVleZv^Ii9#%y`)aI+)yP%m%V?E;5b23+I_?~Yokg@jK)-TB$1o>nY-_Iq?{NZ? zfuYuEKE)JC@{uO;dgK_u6-?nTN6(<{gffy8t0K3<7$~i=s3OIU*mB3m>KX+D^#%4? zJYen2@8W23N=uU)acUC=Eu$=T?igM)goAvFR0L;4(<6sGJ>(z-B*3X`v|Ag9-ZIq? zaxTt_XgDNj?YP&#ro9yM2R&t@y%v!wTzptrUQMk<4#havg=DvT@e}Tb>n_)QehUqK zEPKW-BF-C8^0$Md_ZHX!({k|u8kTWU65KqMu}|(!CC@4rJx>SOmT72~_D7+XTUg<% zH0fexsch~UskW~-A{oO4+N#1pnriu!@DwxXT@QVU*zn>=6=E58RSvm$J$9rI_T$zO zj^4h77dE-$V0j$SDj}c(O~jj*yc4|RV=#!K!a(QT;eGn@Bzt_zTjQqD)9cz=%c_H( zYvx7Q2fqgrtIw;MF2p$IkB7L4hJ|PYr8L|bdU|BX?xx7h;dZ>1yA8I`iv{6|yJLFT z*72^AAA%~7UAdd({j5sF+gIOaxIfC)eT?S)m@qS&Sq)yNeK%g{e@I4?udosF#Zl?K z*;2k24*Nt6urx3#*YBr=Au_*eaT< zNWJ|9!yoa;Ke~HF%zcZ-)O4_A*w7Gl-rV1VmBBJIpL3I6(PPwn5OJP-T^O!L%u-!` zHE0nk()C~{DCxnG|A8c8>HOvL{kF~3Rw5&xl{r_=Qa`uQ5uTZC^l%1#$bwnnn{j7E z8nUP*C-rPm1dUw3!vRVFV{IV@yBI$*9*`5$Tdn=`QHha<=6(uQEScunC)u+c_YFa> zg|3~Yqf48GsL6Ot3?uf5c22dOgV|0NIwXh>MHmgl(~2rF**;di5~#d_yd5rGcsf}Z zhY7qim=s*jH)+@nDi*LoUrSN|)t<4vK}Mn_@gbXU$_)|E;3){YR_^QY`aTQqyfuBV zLdlz0n08Y2J~{BfCoAjl0PihRdc5q3@K8+xc$Hhf93y-@+87(sKy#YKN3YN}qsbZJ z*()4H<8{PYGIBO}?<|zPPldtqlMSLU;=|HipdIHB|U2k$Vl2kqS`3X zY{4?7h8CA7@K=$U!HhF)-Mihmd<2iu^4dvnkBA0J2c~EAHHDt3pdSP21qOtsWp@{& zt(+$XzGOhTgmvT28|%dwE0|$>Rl~v0MM!=wp~1B=sf{z3866g<+p`#;I}2XO1(s9V zWNf}UyQMuej5R4fd=Bq(iVZUn>luT$@w{{l4geGKQ{+HXFqqhhJV`Z!#qGO3(PRa9 zvQxRz-^!AoKxTx4)-$DFppUZkrZA0=tg85Q0#(3cK{j%mW#O~ZMGD74S4O!(NZ@16 zO&Ch6PP2SXR7V)_I@2>=%pJB8_>JJ%{hSmQ*2u%5Z0t#NzGnJTOf+EnA*kc38~6q# z%#UF*YVcY}AFL%#E#>0O62}58sw(qqYJ#MTPzXHd*owbK1fOV@*H97+d5u$wn!dfb zBcTrx#Q;v!S;3oKk{aVOi~(IUG2MJV`je-drnHclBsh<7VWk1F5*Ia@xel}!%|z=T z5F2^`X%I-i4#e^!X$>wF4$pJqVo7A^JR=N0VpIz2Z zodYtVn?}jC$K6N?%lJR+Tvws(#P)OP8bZPz70ix?>>(#E2NqXFr-tqDE1b#|$-SfL zbq=o_Q{G8#&^Xr{ORlAum>dHP-&7m$XITU}&Q`kW`4lFM_u2;@m^jOjh8fzK;E1 zdZkEB&%yN};H>zHW>v&eerw?eC0DDs@7979OfPx+c0xcUru^oQwU3LI&fvNZAAMbi zX-!8FbrrTCAv#n_WjHF6UT?nlDT!3Wlr$o_OxhPm&XG1UltKo-ZS(D^P0SWy^*Lg@ zb~a+o)EA~jaqfXZL}8Nn!Ib)wF=B-z6;3CEXw+RLSS+~11a^XTf;lo));(ZzTm{Y{ z1K0kZwb`UeZOf1Lel<_>$lwlQ3pO&VSU5?PW173APi&(dC@NzveCea~0)l1ZGLCKO_LdPjf)rcNycs`QJD{)9If!Ee# zpYUmO$pnk`$?OMBQ)YZhBw%qgp0#;F6VaqVQJG}&Rh4MP{??TpTT4m-R2x_X5}x6T zmxKi(Hvin++YGd`Bk8A(){@a`340Wg3$WBDE#!Sm$6MjBn4}b;!95CnsYm%k4xyeg9`DlVHfQdiA%Ca z+{KpoX`re`8#IRFg zq>OerW#DfBbY#Lx$bHX1mXJd{wpY1xTS@pP=eS;UX0+X~L57j76k4+Ckh5gX$t?-U zlF3%;ae5z5O4L0KhtIzOm!5oB@C_{NVxNhPqv0aE2+uHZ^e5BX+X=?f;1{Pg$8xIM znFlRHsKM{Sq(pN0__OKAG;24=xCJo43)m&TO8BT+H$t8ik2=jPyEPC@uQ`Gp^nl9TjEXaZM<}8vhTLNk*?*rI{ByPO|F1HGe=EWMA7%zw z|B@N}bG`L{$PBWu{od_QwSGE(%?wJie;w?>C28Q$gT>zg(q0?cB^X6Y|a61yvOgFu`Ve`D(moyD1gW@4OTq42MF5SVsp(B#S^C zAg94B8`tZ6eBn_8mHJIA0Xy3qUS%EJUXG4tNY_l{`}kE()IBP#7w`3PANhGH$tJ?R zuswj^c-*gA@!f7=LxPe{tG}KetE0r(YZz$9?N?7?Cjl3cW2+WHg?{&3WaHMi7dNF0 zG!3tTtIzk3KRP%0e1p#P_oqyvOSc$92}bV3QGP^L`~HObl@@eWT~-671z!|ZPpe!8 z3b2!=v#MV#=+sPV*FKjTC6%>f0YOmx-K9;&oG1-dJMY%$*V{JBR0o~)OI@}PS@Zm8 z{PoAk`lqm_{MbV)RNv>KHNa zUg7SvHW>6@FAgAxmYzLkvd}l{0|&|c*3T+myZ>~N@!n&*TO;R3%=-#T zMOxS$=j~ss1T9$(CP@$x#eHl1kv2n!l6m<$%_Dnkfvdr*h%p#A5y z|DyWOs1ZVKlij`T)|>S!C>B_3u_VM6RJ--dl{cOy!STu2{c?1ST_-SBr~H&GBbUrn z@>KA;fv#2945k~58V&um+8*2%-JkaF+yeCa0W@y=N!F!M<5SMQUzqPhDhA%S zI$ywj?z&ptX5iM(5x7))>j@TA^yz*-nluU_YXxI$>z>)DGUFYNP1cw);tJ|T+P#R2 zE1P|c`i`WLTBcoS$a0zKj-Y1EL_}S|1I;4cic}1RE2kbo>LQvQ3fZx_xPe;(=L)Qb zlAMh643&@@WG^jpLbMLej`Xw@r0w3f!0*XlOx*f5dZ&_kEnQSwPH`u#t41;h;2%gj zy`mLt6>o2ks}iP=t}l<7N~J=1LIMymE5LO92RM-8RCNlR?$FLEN(n<9R*xM)Y^Yp^ z0H;bccPyZ7xJt06bW+0QJEpeA@z;JJGM2RPqc8^>aXaN_EOUvU%J(HXuyJvgX_?~2 zD{ohX7#M`i-PfdF< z=BLek`c4>PBMpsQ^Sg~+py!DJ94Yd5C9de_XLQ1p2H?x38>+~t^HbnwZmziCs#RL+ z!R^p-);f-YFlb}eAAKkk3a$pNR}N+=b_d$>-^i`pxH3>>o%6_pkKxE%5IqF9tvzI= zOO*V{z!XIUTsh|!ef%2U?&81GxI@kserVw79fs@}uzw{@-2eeV=h0fDzB0)gu$l=| zlfDEN`8+#!Wtl9ujjBw5rx0tAJ%@ZAMAVVt!AFpJAv=1GZ?XHVC$z2{FnC}dgb{G~ zVdksbx+!VkNRY_{`OGtku3Fk4=c3U!Ra3rcS$y$%ZnKm!Lbw@e1lB9o((fM=n&JzK z<)?{l6x>{ucwOZCU=vTGm~49wpbNLr0{L~e{8`(NZ{w^WB?VcdKH{X|&o_J?5KU%c zZVNQ89Z)#{gY4p(vM1$x#V*Gs4PlkZ%O19fzkh?rxg}ZJTm6*|X8YLG9Vel#ma}~V z!=vzFVYpVO;>`&QNpT|uMSs&dyyy}AXGtt$9LPLrEdf=&NiugyNeP7bWO(5*s&Ra$ z*cC&)ccu?c%|;Kxy=L~(SLj>|QE6+D%|)=0%An;^_zp+f`vy4)s7{sTI^ru5-vo7A zKyIU!LOi!AjF0g$-$D>aWqL^VmL(9aV=pov(}QIMO0?&7RHEn(PtX!=6E&$I%grpr zgmAXveFSj5!?-gG(B{ak1G~;QUMEf1C{XujY7217CtxUuvIrdNF8k~s?W>xnVJ0zJ zHA|jbU6yEwoXr#4CXkk7jAn30AfWdG{m!~9kt(FoxFP{^7RI+M zRqe~YoFn=L_D?HtZY~sqXiPZ^+6c`E+72LH)ud%?W@ ziTCj0WQ^T1B8t4#4N0xjQEQOnE9McmW`?z>7%5njK54*;rJji_S0O z%4cw<1Ij9}Z%f)(Y(GyigbA+vrtGp{+N3Ag2Id_6Q2GYC`~C+|I2)m=)X z%fRgDV!)MlY18JI@l_Fxpld{hwxW|=xZ>r&DNoK#i36FZLl!93_IK{cW2 zbMVn{9JLS1F~*VyRLFd#s*|qjl%zq$;6Nv!SgEphR!wqJ(S_&_yG0EU6&CF!Zc5@R zYJ+6fkdNlp;G4_6O%x>F?Hov746R2`R1h@u=7GxiIu6~&XPOdB^D+H<4S`5S&>j_> zYUrIm=Gj!w)XT~lWj$yA$N227=O(M@ZdUS9Yk!RdQ`30A*voKT9f!6?Z#3cYp5iwS znbRH{D(Oetu_@V>y4;SRFg`BBmlozU!{`2dkkLA}0tqh@bH2k4YoBe)Mgn3O8^D7QETgF&JqI&Q3~m zelj2CwTmJk+@;gpgEY5&P`x0~PceU#=%6-jnm@FoO7BeX-g;p-d4ANr^z9yaFC3cH8xCf`axAy!lsIWZkN zz458dewDSYKc$;26HB;U*DXfk{lCaN$LG$%22IBuJDsFs+qTuQZQHh;bZpzUZR;1? zwv+Amotdqf-Knju+O4gvnt$MYc)mR6T<5;;%Qb!Jz@X!8u9052#E7E$-gsn7dP$og z!YpO1ohob&PBA5GpnQT6^^r5dNEY~!G2zhdrz+S9bV{^!F{5BgjH-h+K@M~;Q3c#_ z8o|R41d{aEvZ67jRgKvdOj90WdMsp~7?E}|`SMC-Dg8l0#lP#{^r4Za0P1Qkh&OoR zah=6fs{mcp=0j*4)0C=KS&3_GBkO5HW-Fa+QfMZqlTu|&;g2{yK=6mB5K2+U zVtNn=ncfvsF^l%TwP1A((Z?`7gFeyL0wPmZKML+LCG%kIc@~ghx-3XKDtOn~#J(Ak z{LI*QeMjfT69EocYxhb*I<;Wi1iVnF)w&$@EzkOK$7kxw`JHb@Tu9=mF&H$rDgE<4 z<$D8}rVn2ul4NCE=GoTX1bjf$gTUlxpLe(LSI&AjNstY;k!ox%PA|BqA$Su(jv37v zDqP}0Qy$=pe1D-4&(T^fg&WmYb>tjtH72|+=m8F@;rA}H)hT6| zGw;>Bn-CN*m;?Cy~_i=xbwwGEcoa$d?SK3-=rs)WA6` z>%v@}VdqW6tg6^Wr!>IsT9Ch^Vlk*?Nw7<<^_Vylv^~5teVV=hMUZ8cq@qSm58A1~ zTQn7o8pFhXrEa5y62u^lUQ)ufj9ya6>b6;S#L<2?X%YS8&52vUq7v7dDJWc#Stt(2 zU1_k3afzhmHA?KDosB#~pI#R3# zM|6^L$2hXZz9_8?nXgPG(lf_-AL?lO@G3dHI;&B|_-18Fnn|(MIre&kj5RB%oRi~R zNg28H{V7}JeQFGlmkmdr4QZ4s+KV0;b7L{STiO!*Nd@N2RHuZe?r2g6Q)E17 zM_+{u+m_Xv_j^y2@jT3s3q7^u%oE}=I>f<7f3DG@yX3;+@o?#aXLvj$g7t;h9IW>r z%zG^OPJXdPCyE7lhNl(8_2t*r4r&_Qj%sj*%j;A~^R1(27}6V^Dw8r`ghN5jE;99>7z7yK!J24n!8C1%y-mk;8LZBI8bervXm*TSQ>eo;46dPdkffNv3V~ z?k3DxuoJ8MV0K%;8ES}-cEvy}y*(>Ky3uX-ooO_rsP=~UZap119d-P;&%kJUq8 zmS^taw=v+A5&{4#egOYwE#`@q5=}x5X2Ibm^$6ccgX8680Xi9MMSc}WuJfuLzLviShUVFP0& zpJLMe4yL8t^4Zyg=@A^t+phQ{pwx5d1ETHEeoHU2A#0Z@aiNY9979>GP;20j5}L)* z*%@Iye$bJji+10n(>Nfyl6>)xw1Aby_zv=BX=Pn!*avH6aH)hWdpOu z#GSjoHDqrwP;}eQDpI`8vH+>gNYX{a8-(p{edcam8la@Wf^j-n>jhw+iYJV`?I3xP zmj8|RoU_A>jcS+jL|Lw`jZeOl+5E$z*hCn!Wi@+P*UI<;LVle%+HI9_i>w`|ZUY{i zE~=7$#0}lWX3)LP6sfG<+nAe4C8lJEcuCd&sXqKce0wU9CCpX@N$I^0C~RBRJzj#~ z%JItcqco1%Q%~@#KG^xLSi;e{0Xr%R`!0PP4a?OuEBY)$_vRk`%P$8;1+HHl?ws=D z*0*pJE9O5XQ_TOUYW`bu^1l+9V*Zyx`TrrAV)^%E>YtDNx3m0TkSP|{|4Cl09=p$q z?1Pv44T^WESGg>L)0^u**#?DtLA)S<8_!*8y?PWw%~8LU_4TZ&oJg*L%;hMTptsRn zP5CoYSr=#V@%d5Rs^KxM%gz4t^EI>T`8DLz-dhvryS>|+`)K95A&b1Bp>+HlVQLc- z;gf8J)!o~1K&RVhsCwHw3~=T2cyV1}s=voUVQP=f!EIuH29^n4mSCrHtUBZK9h0Ow zb0ClYm10VJt&Ufnt^I8`>e7}{zk>E2oPEwo`;|g05B7Y^>@*)nLa=dSDeL3@S5N(@ zw%1C~v8lsz9~L!Yup%+=hlJMEZP3O)Xu`$rvIBv_{;J+pb>>U0_E7iYX{5r`c84QJ z==t9LA?;Y!9-|~1C7364A*zmzFAxBS@?6iEQxWKXwWYG8K9$8X*RLc>)aHx;qEJjaouztZ>ApRgq;fCu5PZK#aVzrh!PuW-(+Sv4$ViHH z^{9SlY`<0bz}>7Qd`0~%X-Bmg+U8E`@ek!M0Ed0Qqn+SHv}>KuSoWvO>g!n_5iT3> z$41D6RI$Wx7y*qu3bIcpb$b0vrfQ}4(OL`i!6uX;4JFX|^4nQ!Yq@7vl4M7`xKC+$ zRDED>u_)f!{`OCULqq##JVGv=(+6b`W#KN*r5K(;MxHU%fZ>x>#%E&9r)f#=6ROXt zo3G(lZEX=ijEva>%$NgeijG2K&@oG+4<9A3DFKh6hAR0vFRx1oHEEuoiYiwCLORuJ z9on8r6bu|SM25_*DNY%XYBnOKt8d!@oXs7L=kwd?Uz>eU~^)lWF*!GPw&$X z4h9a17&Z@$W2|f?v_@Iim(e~r==H8<9hLjdc4urNS<5I=jao-X!}=cmEW`nx_QEJ4 z+pD0k+L_NO$Ve<)%9eA#5Bje30#Sc5v%xm^b9{?SEe_@eCajqM1_M2;%ARBdrUk4R z4KDH%_*Wn&Rje?}&G1Y?T2v%b84w_wk>(*yuH|)P@SeT}Tri$-y$hiR}q2F^we&jE@&ewg!khfU;h!RiYE<;F8V%8E> zjO6?f4~=a#kY`s|JC;GS6gYq1AESNuNo40`tFu*C@qt|#A~j%^a9+B2N*;p%O8@K? zehSs~zw)I~gza6ypjgAj)k4Q8x#@Og(VM?Sj`<)vuuzu|Jkg9`_W51t&=x;nL%wk? zJ*UDsIpy8-(7#+)jc3ZpVZRq-=;f*~T%YWSU~jRphTTYorhz@SisZ}I6a%&WIK6o1wf&@Uufor6>tM0aE>0RC)sNH zpo<%`cc?$pP$HDOg&VdGd6x96@&JrzWPlKL#;=g)fPAm>qoI4Ly+mm3qpT9JjXxBU zC3%rzE@JE;PTfNkLGmVPFZ5X;@9oeoz0;KLbmE8|n4_}BU_bP;*$h+BU(5D+(T>6cf0%u$xf>!=AEiG zksMcCUs{$q=$u}{mbas$&<9_UHgjNKBo3x-!>&L@BzcA0@ldON9wp3t;xsia7sw|! zu>*U<{bGu0ELx#~#%wn-ebA9!9dUReKWwB8pqIB9>;f>O=A++>hYf5)y{H^PH~25` zCx`Qt*#;el{0Wm(RwSSuiv?*yF;DYr&E)nVXg=5}5+dC_8KuxL8!bd1>FZ-Yw3x=SjWqe=SnO~#DagbNQ@GzMK3#gNL4S*K^1I@7p46Z?UAGrN+UwfUZ}dH^)R z&br_ayO*FfaVq(Y^A>0zQTl^N+i!Gb2tu*I7?ba~$FxTUC8JK5`Z46yV-~fS$QO@f z=kY!Rj{}96lBa!D*lvSzyzYw#a%1R(5Yrma-ls4lXS-BgrnAzMl&dB;(F zaSA@Y9niQMWrsX0{mU)k>gWCDLmY@Y6f8JDYKJ7Q@Iu$usBjwG_+GJMRDA)(=QOzq z3PCz?1~#)?o7Hd6+G=eghV^i)n{Rsq!Y81o4urOH!C{P!O#Pg>y3w_b>T!2t=avn% zC;p$MThyU(YAMn|ENhGB-m&*cj~0+MrOWCB8C)jvBo`(aEBwZ7uzUS6*B(k#2^^Qd zM&?IPP&OPHqinJ`q0KFc+*gqH)+*OIAT#vzgb4H`^3&Aq?>3h$yv) z^QFnSo!af<`pka!T9B=x>;!vYik*ichVCQ3!_jn{Cwh%Ae-}>1XEaISJtUoj;-DXL zBt$Cd;amJpUJZ8D$4J=BGV*|MLk~%;er1#9ohr~I$c5saF5#JzxHCeBdMY=#kyAx4 z%dX=|7*6SYYO{2kedBw3(e?Nnk057!JBiTN*sQaq!*IgFUb6w2biHj8Or)2Qn;^UO zm#TzP^MgfmRh)R4aN&=~r_4SwO!gZbF!I;mAWJGxIpu?v&||0wzbYAXu-=L#B%=@S z_dr57xB!SxdZ0l03ZA6P_e|bHOR1&Yya+l+JHv=854}6D)#ObRIE@M-v(GdJ}ejitoJ! z&)VivusoH>9P&ocB~L3>iKd3`Lt`Y#FEUQ_9t`5du~|mV;f7plE19Btx~|$AO3vkz z%KTH-W|lqfK~{l37&RiNa@|yp*{*U~B6aTSjlCYSYzu7vJ3|UPi0U(Oo2NWr6Fh%N zfG;Z2VcbcA)Mc=L+5vIjY~ta{>QEKbXAZYy-%7h7co#YmQwC%XxKO#!+9j)&D7vGpo$@(vFzOPb30{ zxj(64R)2E$Jm3pT=~RDsyZ3;skUs!Z5nrIcE@?FrPe$5B*KX zDwkKx2rYhsAxdQp2n^$042?gW<)^oqK%=JmIGlk`GErp&B6ABFiAEwHae%)Zfl?gE z=6bumpirZ)=%|O=O8csMz9QaMneN}&jBwco zmcZ_p>PUe+0ayjyuTcF=*zPgkQLsFCqoPu$q1@|^PA!;p@7G+Oa^)NjQ;RA2zbXV; zpaUe@O?^Xgispl<<*F)L6N>{#w}Tf$NMPK8;j)wrBi58Jfmk;Uyb1?22P?+5Aor1G zxI)mvO~O6&{9o1KW~n}e;E9p>mwnR&*%xcoVBwS*2axBjZPQDJ!rGrt6WF>KzodY>Hi?TbB3G0X$BS?z6VE*Xu07^=aNM z+)Gtln<{3s88y`yFAU3%p@ORihw7z1Tod9Dp2hat-^}Lc&b-@DQTrb^bekj|L{u`1 z#^DHLaxfh4I!s;QxbRdK)>juxFI2$6t&6eJa~RLa2V>G1iD#z?!|v`sgnEys{YQF3G@cLeS`h?-Aq8 zk_<=P+zj`lWwKNuhOw1JqKU(ZNr_a`{MDQ>IN7XT9^CKq{Zs+OetJAJGxM^Tj;`N? z3Dj{Bb-n2)UPnMU^_@*ETVw@(t1QTzNve=x2MxTd_wC|f+2K7ve>+m4j_1XbS7V4f>MA!X7dDs$)MZjed(ZzwhgxWY7n~}En*r(+C4b*;_yiCOLJgT# zVCb8D;ue3UHCN{kC}D*(^4Rtj;lif($8v(&psiF&uk!lc(bGI7ZcsPYLoODkvE`{m zDkE6s-SfQztk{`|QuD~e&`=EYNpBw?9#d`4y327}kKTK$69O}mz}hX;Qs5urumYr# z#6eLj8Li>pnrn%jcL?T;*xy)EJePWIk~rtZ;&U95Jvwu82)bUrW#;~-enbd4CmW;C zdpRvP5r(S!Yd^zmZOeBz6w()NkdwZ|8jBFGwvW7&RGX-_Y~(_ANp45+r~FATpSBuV z$vq)1A#^Z6+7tf0V^9#+z;?F<$z#-9vD6=+m!U?mrfT)~ivia<=bLr^QY9|M;16FK zFsJL;ow!7fN{Uia9YWS%c-fMSrw<5@+rwCwK&EpW-1^m)C7T1t41GJtlTL@;??AF5 z2{UaEhKMxM3864`*+yAP45c6e8@mO7=VU%Atr#dXb_n%vS0oo*nN`?~HbA%SYydDn z@t63QoR!g3q*r9QwWaybaI8`w9YeWN@Nz~slDyAC=9+7zUNrL+T(?HHC4A`9bLb!% zN@X51vGb0=<5WUA=PaX6XO(6mE61fnYJZiKan&mF^vPJva1XUVs@@QcKzWl?*JqkV_TP3jYZL zSh`_ZD9`2nu9wF0I;}6_XMREW72W&0JdurocD}nc+-Bt5Q!GpO`p8!#SOB>Qz*w)6 zN{=V*XUQ|m?`D|w%b-l6cGlYv<)+P|oud%-7uv({XPQx)>{#zd0#%lftEOl;JIz|J zh04d_jb^Rb%a#LM*WbWRD<@4^{2&eVDH*3fYEso)B~lDs$PhWm2U!)Rw*qfW_p(%a z2qW4pWh`{NJ~th>8IW2k16%#4n2;BGiKI<(k6K#BY~`(>pF71HFQLiKeicSe-+=w5 zGDT8H_VbAnDRy+}&s3qGHdhZZLn@YlyLiYDmS9dtf>Uk`s*r3p`aZjJwl22T`%wT_4l^g>4Zt*V~_rDEHfgpFP_>@3>p{rYB$SxZb<3hS)lLPARsdVw`S*DI0pu9)7m6@KvQD#Wf zl&#&_CBE)k|4Q4~6?Ko0ka(N#Md;UECcU-@97m{gJa=JJV@zmt0&Bi1Id*W?^YbEY z4OMj-&OI3@`!PDUTdO~uuzGW5d*E(02YrdPdt+_vI%fHT$Eree1~9sPJGEhPVTE2! zWB7(!aJAd^$vW6dU3~|+I-Vym@VXz7KQcFHy}affH)H3jQudBdT##-xLv%YdcjZ5D zi$8GOAR!w4^mB6RsX+xGT|M?0Z&X!pTp!cPodxmHA!NYTD2-3t^yaWJOUwmZYQ6>N zn$0^wo-Hu?ya@EEPcOE~tHtD~5e}Sp7i@WToQ|_6a)^Bh1#Bza`CZ*!5NbPabm%#J)8FZ2tqywTXD_)h_J|zwJq9)9 zeP@5k*1{w@g_=ruKEzXtS!8BZh1&dclAmWXxm5+47v-$6ABuXu-PIuLh^I>vXiqqo z+gLMTPH_sGhQ*6=2>F|tyn&+=2se+*;wJhA5xJTZS$((>!7WrRVuZw}z%&xuws&1N zKfrgzmg#Ny^lta5VwKQ`@*x%6zHva{wE;N<-xMyIDUgpL79b@1)a z*cW`+dgZTAa+ixApjnX0IRh{B-gc^|sY4i^qc z!r}XAtr(zz=)bO{^LBsbw`ZdeqiaDms@xbt$VhZsGv-US?+_7g^RK+US$1KQxx|u& zChJtrQU1x#|B91g1)t==Abd;mb*Gm5W^^gFe5kT|QsbzIr;+U*KDYF^<+ol1_+#;M zl)muA8yhONj$yrIc(zd_>9Ui%iX<*!{fjHlLP1VLxz;NKvo8fns@`R!TsXc z@x=57d3D^R;8Uz6wTq~ou`seF1Za3Q(pyaD-Q~c%;~-4f<$P*EE)i6A76#WIfe;#m zjkW-@t5C;8#PiLMZNYkk<*VaJgd7l>KWR)R00scPt#Xcb2#G=0m5F?0YB#JvAtG9V zibhFTCxz&@%r|x)A}H;Ld~8FTAwzAXhtTv9anZ)HJFE#RGRe}XK`Awc8%C_Gq*{aw zzcCk@S#=&kGKOlq~FS12D1OQ9a{*@^~V?6poZ@U;(?*inTm;? z(Q6#bnsraZIv%M8I%ZVfag<&)Ur?JZA)Z$J^A7I{+n?_cLGOxzM?X0;Y}$?{F{fIQ z*)-NGmMwcLag|Zp`GxbQFQ-F$*@LRc`MX~~ zC;;`d%qKD<^wX>8hjA=(isj-=dYHz)`P1~gU}4qS+`9KkNDa0bo+!*xb9GDSL!tB| za-x7N>mdHL#U=6o%$WX#KRqT($<{yg90=b-iq} z4`xy8SX(k^b7XD3fawv?6>r> zx~zDcsjMS7bclzf?7JEPLuX&zuda$Zp=0qY|*6;l{Uq?}RghM4B;E zt5KRc zQp7sM*bl%+aDI9r5qDQj)9W==7Bsuwd#4sl8-2Pl( z7KVvUQtQEhGfqI83Lp6H+&3LAs_vAuzJvg?bPA|5_MSKFUfjq)BI7j*jZouy7<4C> z;rOudTa%Hh!$Hv+ft_nZ-{7;ToHKu^mO zQ4cUl4eUwMhik;L}1zxut9%)Sg^*Gt7qFxuJhSfg>4g)cX@2M&0tyHc)) zEG9r5t>qBStn+h5mlLg5Fu#Ax$w7xTQ}4rvvj{VB4H5AqxE3YM&0XK8T#Eic)9#l&1^Wk`HHN1Y%iQ(X&CBMjlsTP(dN-uPl`##ayV#i2(CT{^A9gmHG(+|S`|Dcjd2}YqSwTbO`yRp;!Xuo9WCwI&T8Pyd=2TG!iBNa(Evrm%oxSMqKHoSc20sh#tf z<~`w(ktacMqXf!wKs8<}2+cS~5nG3%W;-DV!hSQZJO1I3b+YivhX2hs9m zoW1hW#CGdwpL7{n!awCBr>m_>fjWYM&D^x?EXyC^VuVLRzuHvRo{=@_`i)^Do8Kd$ zKs+gs%1uY1SZ0=Kz;Zz{b?w_Py3RErA4yl%Vx3uNd~@>3uqFh`aDH2S-0KKoFc9+B zjGP-<6bsS5UYZto9l9;Hfn&L zg7%(WU?erfacDYiJ8|?S8*HQ~_npte0+xP~d_B?W;EF`7DJ5ga-QSlrI5j$Z`-BsY z=8!JL9n6q(<{=X%I=480>Z?CPC@!-;CL0F`t=#;VEjS7T5Y)b7gRa*WgZ~0HMLwe zbblkYNDga;j!gowT9$G}}(U!21)OEtR zQMyO?pfS>Wa|btRetx=FOt4{&y+L2p#s zV)$*}GBX;WZII_>(s|I;R_&TY^-QZAr`xi1pBSqKaLoW+FpId>U-@n-HcEu{!&lPc zZ|w6)pC+=urdtWqmkC!mrrPl0D(lbaw0;yNHedc_w?rtvL~;*K?ds1Tasi??Qaz-O z&G{{@_SB9IuSjvB^yAC<%x0n&T*z0uzld_{2ae4E@~0JUC$qbjwslu0;SdSyjnyid zo~P+STG%W5@7RzCT06C&>cW6KIr3iv;y^p+m^yoRkC6sL-RV39OxWUC4|Bgp`d!9* zo%aTrrL;7vS{5L4bKdp|O00#?!DaOFMKy+FyyL^91%>soEztM=XkFkXpKYX=$;leG zaR8qu#?KD^x!hMnRK^VVW|zdJS{FMC^w1gx%|#)(SfgPfR?${3HqNBm1l&eVn7ra+ zp0>@5j)HOcV5WtkZ7|o!lI4rOmsV_LRnGs$3QC2~?6~?qrhP_x^f%}J@>&?Hh3@+! zj=v!Vti*#s#8(1e3n_+Bi+{SYt8C*D89LhU5G@B85H`WW%ar_?trJ4t%X41=$DX+f zE!iH6sq#zFdEIPSW&%#bfg>Qw^T4o+jeMAVn%+17vEWDUZ#cW&)9cv%)T>FJPx^P)Qt!MLbfmzC-CLn-q2OO2BQ$cNt{rFmB&lE z4p3L1kirJv`9tYP)?FN|)`wTSwp;(6DT~;7814%vmRZkWFkzHs&le!!_z6ShkVo7x z=11JWcXjzQJz@uzlMQ@b?I-0eJ;QA-c=nlOM?~X&v7Fw;o>?(MJ4_1)ZhNydVw~jq z%Ja?@J^q$9goG7-WILZQ$UrDaUKIECQmL~^w0n`z1N}?7Q5W|Mm%}mwsNB+@^^t1t z*}DWzu8RGb$Q(R-9T;zDfZgzqlHXR5Q!cK^m`6oVo@bg2EIiLwXr!X<4i^^XH;7dp zDZVFv?{6+zk9cGbm-*O$OYkG`h%>V*YtXHgkte`|z@s`FI)`uw34*k1wiFx5aYAof z4~=bB-HlFm4MFr7Dk4S@K9=sg$WuCxEKw zDgmY=AeGE6>d~t80Wuzax2a`{alTmR&xPG7ACNa8jKf9!tqyy15U zK1CJ;arAr^G%;pav@?zAh$vguRjvO|qk)AfX6$O$W|WL5{+;aRE-pk2tQrqAswI0j z=$f#i(hgA8>Anz$W0B*>*J6Zwy>e+{9yS{zZZEl{Wao|@$@kUvQ8s%&B)|zUj?oW! zL#sl!7O?^*Ko>3W*A;6kj z+mOfz2to9S14=M1mE%lNdTey$W!|g3ewW0BgHOhwG?m!55PyqbS95hjOmk!7btvO? z%F9qFyb0qD?gV-Cpr?Hh=Mz83^pQ<3F3RdAPZUdRJ1T@a&TKlMb|g%9_coXlzyrAvfIK4-u{(&M8bSe(I z(5~8iZmi7XSY8j-N{d80o_5&=3li?_0MT3=35nzkQ5JrstPS(Svus=#)wmjkW+r5n zXy@^J;qc4+KSziE-FUO-v6d4f{E#WYL9BxtPdmkuf~mX*3#%d5uXwR=bMeX^|M)E}Kn zbbjt;xp{pPpq8AUtA4wGj>qCqK?$PNlzQ0Q32!F}@`CWLtmK^;ZxlbST9x&JvFE_}$aq>&n=N>mUqJ?|tj# z^*K(!7!zhib?c3^?vECa#)Wn||Gp;IJ_Zy?H9(4G0l#wQNDyB2`Ur*WEj4XI|&* zgCNDR(ddNG-IR75LUNy*9kR`+=F6@=7j8u=E`IN_e&^$HzmeVH1%IJA@bzl^HKGEkB$U|qXD(` zHV6W$y7AQD)tDz@CEr;UvDvc^+d(S%fs&J7k41?a{ONnlv~26N z-+kWhTxJH!Hfr#3t9CTY+PV*em==dW-b!51_HGA^Rr7LQ-aB%95uf(AU6v%Q>d$sR z*DrJK!H9k&6DPxX65I(+xQZ=U_Pw!jE#^f?nfq4*Wd@q<+S2qAFANE(?u~XFm(HrblRR(oNw^ZV&ioguYxBDRNN31U5lfUnpthsF|pC_UD}ZrSTvyDUz#I()a< z5%DEp)TG$)Qh(vl)!UM9WYZ>M_*)ZuZgCcRzLQ+u>PHbe8U;)Y@zA!bh&y5~P$h50 zD7lmt6{c)^+Pq>=jbnrc^Im-th;iK#T6jKcVMeGd_?1h0f8ZbR_Y3jjX8nW6_<62( z(%)6k8u{iuL%%3?f2tn<^%%VLpuPaVx>AHQd-^2-(1()wo??zZ+MypE<@aRtH0P*q zgH_M`TtJgB4d~|Y$a~5s@#%U%+Ois@R)LSfhq$QEi?3ujD23#Urk?zFbJwZ}e2Lsy z*QS@X6HKUAaO6tiOQT(XwvxkqIH0ud$54&&fjKe9c^Wz_YttWgn-(LRxf#N2M?&otdJ*({%`7ll|eSs60g?r-H zUN6Gb7jq};04P)ah!D%WEIc=MF93e`;Rhz1kjNRA6kY#2L)N0u|Kva%L^+)TaeEEP zBhiqxy*N#&P&{CQ#kNdY>3}kU+i*5%Y2!-5bq`BAzF_VMV?SPVb38o~6cWj>5qZa2 z%TJGk5f}i|ua8NSRuG6f6{m66MC9bhHp@$5wiq8ONXs}e9(jU;baVu96@nfPd)LHb1jBK&l4`a`#}jEUuG7nyNJ7Gj%K62xc|HRD`XC6vmcEEQ zp*RDgN>X{F)YiW(ThaWPYxF_c3B9uoWoCE+NhO^ANJVPMW2Y2fRtp0j` zhqQkn#pzghVBO%H9@Tasj3QiLAD82WMka>b?NONd58q2`EK0r2IaU!(3`HXhKAl8%E?S277m<4ElWqxgp*tn`B)F9#j=+9Z~Y zCAw2c?aq1u?v&rN$Eol_CzK>@5y>Jk#-0mTd1~y=hwOESQi`YuH%4^ChQ>5F(XGG+ zm1#*nz~j!U!fn8V#{T!1iRYDp4u8Xp!49TjpO}dgx9*PlA3t_ltwFk7T#rHD7G>6j z_$~u(g+}}iU~Xg-GjA+Cjgh$p+rvR{U`rA`X6&^!oIStX^$v$W-jh@izx3CH_tz|c zh%YhyIfIkOxZf9kjjbF8+b)_UXJ7}nau~nynonDNi#ka`;RC1lr(*h>d}yOQY=zI! z0utKSs&G2OnUXq2h|LGO4(-uq{6PG@Jwy6};t-NBO<^M8Jp>E7YMg8SL(qAKvqLLC zQo2aI)W-|ExV8{Rw(g93_VScQ4*yJN0UQu#EM|xr3hReYKY_Mxq<@fbw4asgC^c5Y zpu7@I!h^V`NV#X73Actf_Po(RG-P?s8WPDGT-1gqsX6_QFRuuft2XMEFuigxQBNSeu<$5h(h?ra;i%q>Iu4 zhZ8VOppy9WiSk4yppAm|vLAarBA>%R!T%@e>1y(~uV&7%=Jdr|jLBoN-2Sb2htNAl zR~%$Iyq?lp$Dv^{>;1gmdZgfngzj)v8T*_jgUkakkVsA>%I4qCdWrUmv|Don+rdXE z)=p}XrL5;QgIcVvB^))|W;-D@hpt>?Z{~aq8~@zytZE8K)~vT3InIZG^W_xkOPHHQ zRl)GV^5iW;5(xI%&|%<7bco75KvER+Gc5O;6LJ!!k+dR_L6~hrIYL5Y^W^ko$g9)y`#$9b*#5jhhE)ffppwJUsh#$%>|uFbnc z7eJdHY~hb4g^PUuG^{ArJp!m@Ocn*4P9m!0j|}fL_0nm)Qc~CHFTasdE{Jnc5MxfX zCU~;GEiprOwiB`oZL_q;Rp_oa9_Wq&@k5f8=|swScWWd5D^CN_u^(A1{bIlPK;n1z z!l=28f?VFSM>;H4GU7b}?=jJi-r7)R9s*`v0*3bNeCXYr?X{|rT&x1@ zvqlu&w6u`Fr#6>H0$}!$frx<~OqbcBxQfJ`92dLfJDWArkSeJrt+$H6R4Yu}>AA5z zo6Y%DkU~MT!t|gvz>esO4J)n}iHr&m$s!hFt;mloHy9b$wudkIt#pLdbH_N*tH!PC zQroKR&`jFm4r9_-E_6Sd?dGwRB|0H1h!+ZbN(xXXRE#^pGGa`U+nu0BpDXo}0ovCo zXOiot24dsF3Mo8TYpZA7aDu-St|KbK=@XNdwg%0P6E8Uqa(t>2%ku7Yw|!(HXn^52 z-Q+9)d}e59PFhhaWa`HK_CQ-vquMBOR0UXP?GIh5dC8bg5Cqv9H-$@=G#EhEVsEq& zKdGkWX)}dx4G;{w(uT^VgqM=p=JL|GFEl3cc}5|4{6A;=jud`UU=}$W`A6S6o>=T$ zqeYB231KPgc);Uz6i+qnsEt6ynWt*#8}Mvk*VdxZ2N{G&xhOfN9paM8zxGoTR1Fd% z8grY>2d4|nSEZTF#(b0i+Ve}xreW`i2HaMQIpvqq;|S1J7G_5(SG9pJw+FiH{(J;F zKV&k(OC}X1voQ_BeA?xew^?4eipy^1tT>4D7=qD1GaUT#>bdS^$h0gHY2V+MtB8;g z>zZ6EGD1O9t$xSo;{i^QT)_k74=O*eQ)Nt ze{#}q!3%KD$r!GMpg#d4p}|V6q-aWbN`~(DCcMw}dlpDRhYx`vbN|Cf;BU8YCJ)Dj zw#?qSOBQoDIc~&474QQ(&@JYoU!`z`Ydbr@Jp>ICFHYm-12o8DcY|B!&I4RIR(nF` zNc`zC%JcUTk_P@G+2A-2_HiX6hy<*oJPDwW&g-HV^aO8e+S&X%e0KX)&_Ge$+jpq4 z`6iv<`5}7sYltwI`!pF*03K3u-_S={qNHvFoxsYOog0b?Rs`lP1}P4&j)#V1K%;LE zPwv7Dr?z7E4$5R2^xZ7`Q?6Q4LBud-|0*ALl#XoLD%qG6c=|kRh{-)_e_y$z5@^{)C}W;haG-)t`Be-1CXpZ`!<|8 zFKUAu`2@hgiV8NT<(1ek0oA$0tWuwIsoxai@da)8xKl-5)_-$i$aDqf&u1Ll9hzfq@w=m=+&2aaSqCmlsCTR2TB^7C zhll5nIaj(n4MyXv!6aOG>ZJc{VwYVwtAK$S5p^*OUeNlCe#aQwxF}<_qHF^YC|tn| zqu_Wxa|UWNXWHRBu%#==Do4yK+8VLRz(hq7Bh$e5x{L@I;)(YF5}_k`$U%t|GDQ_d?hOe7O1hP`4_-C>e6(uurd= zxmIHAbR0IiGikL7`q^x6(1{I8NCanUnsKh997}<| zULVu=bkjxgw)YXv&%!YX{z(((xuKl~2XF@wYYlv-o!`G9y zWHoPei0(Od>UQOQB*oDFTd_UG*&|un`@77Ob6@P6cD~aL4|nkWnm6n{Hb=0Iugm*> zeVxtcLQMicpS&?ZTsZs?ykD}C9nt#sY3lon;H<^=MG@=k(6;(|th~kc%C~ghdzW~x zL-a#xriljYJN!Q|C<|GiZ^&n#>whw+R?qk0|Hz<_!~q5fD?T5Ih{w$@FHci+e;JfA z_t)`dhHsza7wjhAOaT?PYs>(-edR13N2aON$GI3{hyMN++p(i!+Vj2A;^UUOeDul4obRNZLv7sLxdG{fWEtv0_yZ=v_O!}>1e(8g%oUWm%+IPI+wF5J#_ zYs)<&(BQ~0e9~FH&N%>%9>-?-1*g-Q?GmbneKfh-3#a2NQF|qP7V!x1Io$ktjmQ0h z(ux4w4f7f+tGgq)?%9gP3%&Q_hwcxgPTz04l1&V-o4Fr8m^|zcQ$M;DdGdUpJUbP5 zwqtLOevl2X+zw<#x^gyu@_N}Jd*SeI1b?7@R{f(c`Yh0Y?f*meZ(a0X8Ps37K@F&{ z^AF#1JQPwDpaYN@=spc^zFO=Xvt&FH38|FpF98Idd3X0GBh0O*>Ch(PjPKlb7d0HRJ|}@JLc*> zHo|`+WNEt2n>&9YRPyJS%Z!kUjp`pMl^YF(bzK@%% z+UxI(WzRZ_vyRy77GD}<4A4|`jc(6@?B1rqJ%)GV{rBaHMDos}zlG6uh<0D?XxK<8 zzJKVWBU86p-eFiUq3bA^EIuPu^6=)xyw`0 z>W;?o?3WyaZn;aXJMvrw0HubfET$1VNL|7T+JKGz!5jxh2~)}537nzc)?V*zC{H3b z3Y3i^BLsPK{j7E!s{P(uG!C_dx;-Ac9zChEGCQR>!6=9B?R9Ofj!-_zOm?cHmIOvN zH7*EEB(D-dKXwPs_Ziqz0E=jBlHwgebT<1vfABMHLf*E6M@J!#{J)X+ma&mF+p?gU z*==TKmzmvWW@ct)W@c_PGc!Y*q0P+9*k;D@cOK~8H)lrgO7F)=^P`l?U8Pdws?@H% zR>q3J^_!nHol&IKUWC+%P+iSnaHuvO^U)xjAAA8PojeL?wV>25k2JY3|Xv31c$0Z{ehP8Cer**Ea(xMJ6Q?CcFt} z$(3=i>XTScSh@Ax6C`}mN7!4|NiLCn zCf304eH0v?Ys|pw6>xW;61?OwC>HL?ep6!oVG{Z4K^>LMHYRt(5HPotS^_!&9*q}e z>V*+tN6$aPQ*4wsKBb@AfSx<^%I!R`bwm=`Zq2nti}q~S3uaPU*U#vE!QWGn3|ToZdC)B zEiBd!T#tXUkE_fh_ChnyBWG#Id(pHM@Z7!@(t*z1=t4(b`u zv$L&&in^4is{<SnU~8AXX_no#VVV;i!9>A)wZ=jN_NtJ8Ox0MK0q<8$;fe!8 z*h}m$s<+>_Wt(Nt8Ubid?jX+)exw&fAV-hbIvXHJp8SjY*Ga~x&mRHvy@ky>xVat* z!O$@V0eZ-?8)yR(NDwK1eTZ^`&j*t z5YuU`gmBiIP>`!;hD5agbe(}4WVuUM7XJZJ#NS$bs9s%Q9KB)4WvnNqr3f^$MOhef z2L%wXTQw(CRh^9RMgp{KBsgO_86Q}O1}h|wa{N7>P%yYjW;!9PtL{y=mm!sE=gVrf z6muJ5w)ntYG#6t!@vzm zg*Vb>XM)<<>>sRSvmf%O*cQiX}5hXV93k9AU7CTLlDeX`85SgXEwGbk3Dq6 zbisv=9!5A}GLjnERB>q)CuCCjM1(tOLf7v8yN+Zq0>m!I$pJF%Q4l6*X)ccwB0+>a z;sbHQNJGywO!ZgVAG{jrk12TtqwP>S&+0^%1iJ3?73fIRrL;|%pyd>+cDCg{LVb`( zzXip13)FjZ&{!DTYHB2Jjsod$b0JfAE%U*Lxj7Sf&Z5rMeek5CK^+c4zDsKZ=Om3Cbew5?nzJ+UgUO0ZGm@}P5M#0 zH!>$WA@V$8fgP=Tb8PhcU~?c~30Isny+%u|{^C%@+9L@@86{sY!|WUYKtXM(tKr_Ok zJ&Iz9#n70L+$&+>oD+yI(&6j?Ha@`W%Shl$WWgUblB$VfgpB4-hXG%v6j77zxxk&9 zAn`>t;63=d}C5!_2SQ_1J5t*6(2VoHIB$~MH0vaA;zV~UqoE_OYa(D zY`%tI-a*zJ?+O$K7iCX2;Upi;=5?18Xo@wk?9cHeN9%-%TV&2ng4Y0Cu4L}~D%?Zg z{74(!gNoc)8mKcfrQ45+%$4pcQar@#S7ojNage`MTCz&1P$c)mYc9?q_U$aDZoDJ6 zc&JIo!299eC*}hUqkaDzEq3*QCs z`!^D~0?UPybtrnrjPAyh0lVZDheSpCO`>y^DJk6X?EbopBjk$Gf@1a7{a$_|JIvRF zG}2dU{R;n7T?p>PLk8CXBUtV#Q^?ja9&JV}-Gt+ytY2>pvxCg#4|1vraD)fuk@YoZ zcph*P)jGvdKh2`#gc?z+7!9p1Al24nb6{C1M~|S9&~A+#m7?6SOx!IW6( zVh#PYQxtH$F#sh zqaa})0i{ftl4KZvX|WB(DLhCIV)8^6dRCr*YU9fapyhW#Eb>1Z1x*VrJ!-hsda4we zL#Exiu#O4&_4c1bHr}__;WRDE=iip)4I!i1t!6`ck26aco$4SO;(9S4Wu_Ap<$ZL( zYy?O28Z5qPsq#=}!nUxIiSBxvOX*GiE`M!G*|A)Fk;OSRW66zOmHJjWBLi;8*M#2` z%%Hxh0=86`?b)$_&9W_i?kIh!m^Z_QqLYeEJ%<`}s5Xy$bU!hwt%&z=3AwEmqYEW~ zITOd1D=0(TyY$R`Kg5L~no&6_lIiRpBeB_Cra*89iuMQ10~?kb@+8A#k1!J`KEfVh zf)d#F#qsin)L9euLb zo#~A)D8O}EdtKNXieUC@I@rl@DBOI5zX=t$!u$z zroQ!K`5a**^SqkKi+j!n9O7;4w4X%$=jsJds?#c@{6!MzG6JL14Jc%(2@vg$r&uJr zMWmg$Qun370Fi>e+b2-f`MQ(Aeu8|xC9h=vYTuD~;AEXQNk%qh7`+ILJ>4-747Vf7 z!3sF}o(y^4A{Y*YPnp@@y!_o4jy;a zp9FL%i7~LQ?7Tj8QkC7YKsP-cz=dB$9Bq(!zzojVc)H`UporJf8{Q%%IJAX=jp;R3 z6e%BJg&BNuzPh`-4V(j3ZHB6sy*hn=IWc%?;+99p%uZ{-qu~de9^d=-g2r1sH+q{vrulti>ca@@E_$0b zKD~QqpzW~e%*`sH-r_vG=s3|gWKo_x0~5q5NK{Fb%eQQPR~C*~<^FIs#A)_&Z9ggp zNLsJ$+cUkpz6Z(9-BY}GvwYQCEA>KGQ!>z*-?)aw{6+(W|keGz2_K8}3hdcW}JaBU`%_Ox-wY+DtwM6V@{inrM zZAi}R;20*JE-kKPtk;4(gFIO1m7~I(`7NS|MQpnMF%i050HdaOz;N>3XYmAojytv?teYSo#UT9S|bZgt-=_-~d z+Vg%&#)f97y{4C>!H~DoECvC(lfmBfw2YH`y(BEerzi!Mpyq(X-R! ziO)~pjesxY!rkZXXu8$zJ&jwUw}8?)FkB>p1cV%g0zp0dyF}LGXLPvEep>xEKi9I+=XR-Cfn=jKW(s%SE)? zwnrJzIN*x7YFvTOA~enw2p*5MzZ#K)wzzDFv)g{JH$4BUoBnctJHl|Ee){v_i^n_s zn+(1%m^+`(ysZlJ?a=MSb+UI;O-3pE!RX0Kh4o_v>s%9a%)aE&?p$9*cRADDWpu8& z2ZVQNwnEzpm~IWM62_OWDv99Ity*ydHhV@(^=zJtw9lq-D}1qB?Z_x#tl6UFs1N2B zf*SlMgx+rzpCN8p4;j90SslNcnh}yLD5sj_dK@t7e4cfAGpm3L>mY6=Xj6R!G{A~9*nbH7m_@iJ$;uyK#(w?D1ukd zV7G6;obdQ06Vq(@-eYvF=RBa@mf-5Qo@Y{w9}roV(aF&vy*AyQCkF^NS=|mP2>256 z*%viu@NfYy+YboycPz2E$aJiKU1~V&dBqs)K>{F?#v=^kyTU^+Olf-#*$!)Y-731g zHK7*vRef3lGI{YEr%wrJE~heXCEIhZuI&}B6?;Cc)R|T`OUG*lANHOQdp;&MI=@zv z#ahP3CP&^L;;NwSbYyWsM zo>Bp>b-cPF=u@L}08h1d_l?~*Lc3sV-4YUI)=dU|mh!zTiRl}}1D|=mKH4JRrRBqxNS>r5kN9?zVyNW5OQpdiBkQ~v=xVN5K%--*= z`a7&^>KntK*Ey&bMPI_={dL*kvB#&HG@Jd&Ro%nQe;G%HOPkK%e+H2UXT)^fk=tY- z$ezMX?a%C$7PyzZ!GJ{tnR&RIp4*x-4)!d*z~NKkYU6K;^c2?KsJ&GwkjUo>(8$+J z*iW+kjo|Wv+Mkg);uVH@Z+%L%h|)Za+c7e6yAZG%?6((+#81v@x6n)Qw@i>7@T>L2 zdyYXti-p!cXc&<*O}-_bc0kSk&XWy(ih^Ss40TVzO)CQ5k^R69Krbn`2mWJ@-uvue&^rvzDQOHog)#y z#68x~r#7xz(t3c_p$X>8a5o!ubSxEP@KJd2q}7Sl{wNeu!HAhcwqaI!9tag?wdO+7 zV~70ez(=m7u>@SFHzUAz#;%Eo_6VzXHQL|#Abuv*I=Y+p#?+P%W*)=KC7AeD75a>< z_D9K=$X(Vhe|t*Wz;D$P_t3WEz=ZEWBw;{l1kOYQ3r&wU-+l&2`P}3K3J6%3&fSa z*Zu+`Dw*IEY+Qlj6j7vwKwmEox7hNbc*HHGYE6n^FyqXvY|a&3PYT|__GmM195{1Ra2X2hk1=xKgKolmQ3DFp zo6oD})olC&E-1Tr@kKDS<(xOGXpsoz5t$KYC2!et> zjlY&d+4V}k!g}_C?7Ji-oXQVa7$FD`Jo@o#2(}Hu6c(4_rB3aHD*gyi5nivjVEVE0b@`qd;Jsm*mjOYaQM8}iHFG)FGbRMU`c z6(veIT(t@1myLmUv&SMuAiWjJtgZSV7!d_|od;vrD?;FoL)&QQ30F0hkM4$6j4;f% z*!}!PVQZs%WNHE9j=uehW&z7^&sB}|;4kURt4BPT_id=B!rjbtu<;$TDW`;L1-dbH zrAj$D;jO2JsuJ*9U^e-ZuSlk>U1e`S16gBSJ)BHRi8yK$fI&tFyie~Z83H-#E_&Lo zH<%hfa8J{%ur%WgSo4{quTEuqYf=Q``GXPk>dY@r&KS2Vq0Hf`t7eRO0^WjU2?i*! zUMvAK(DO6K7MpAy9zy=bbF#CL{e<|;p^yB!cEU+{&|qAs>IefkUHJ_xdpoLu9-?x? zdz<5}fuE1%cm3_S;#1dNg@Z+&O*taIDB{&ig+$1KOdACuG;jm zR+a~TRO*$m-zLVC6hi0^^{|uy-nOp0BYT3wSJQ#cN~&mr@ph-iiTI6s2tb zJ|KWZKGHiLFIx>6glCXkg5t(CR)kCduO=10UlSL%IMAaW3ObPaOoKPiK5;UZ1VX_h zElMwZE^qXx(UefuYd8x`AWL8Rp`%AOeNL0(R=5<@KgSUS(CiJbTl?{&t0DyAyal<% zxt&6DwP?6!AmoX~>63o6RACnP=k3fR?S0u(q+kF;2u*6BkxVN#xdgGK4&W&mJ`rp+ z!Nh@t&#Reb3txZX#a-_$?TR1I&-%?=vmYt%Q}9m*Pq)_g>w4F? zis=CZz#{@~+<{VWtJPxoEQ{rfspuEA%pv2DanBC*MU2|6g8NsI;49!Fpu!AWIqz;0 z{EWI%f|gDfQ|zwGrc4-SylUud)fw6%yy>;UorbjtdhRUaNU~IlGq0}J1o( z!EU{1%A_Uo>8$gn-vEueq+1k+{WGq99Ifp#3$=>gC7ERkhq~%4F^vrygc~X?%^W2; zyKAp7G5o4Xy(=eoR~z1ea10`nLrV^z|vkM{0J z{Vp`Sin-rPSmFrspT5?)mod7fwR~ z)BxE;y^$XNNWti#;ef4_Rkmwv5lN9<)*x(-a7vy_<0A|&1D5bw*JMbBa-{#BJkX8TZ;DSt^m` zj>&TV@|L>^pOM%RQ#nEmsUb|&W7OW9?V0Q%^GB(MWxd&w{BH&Dpk&=!lraWB6XNl) zmeDzpAP&>*A8t(J0p4WHRqI<0cs5onxyScHI{VXe;5#TGPVOT)y_z7IRv{R(H@J=M zw579*Mn6ja^j}G(xVEGO#oUuO)#(`SnIAXj`k`R}yw_IiHY9P@KM6A=6HPqON8OR- zO=3+MREUC3H>rtIdMu4I5O9rR?~6rOgi?}{m?veOdY$rR%PinV!4<`@4GQaw5s2NY zw#p|`@hFgC#3uFurS<`ESM z^p}A(7BzRFgygsmQfm!LQ5Xbp^Pn|RoNzJ(tE+WqFN_T`+pPv6vPFqGT~9-2@(BU* zoXS3)E@gO_N~L&Je`+1`N>|%6;cIpB?bI5SjaCT)dEipWEH;QbrXZ@EldtPJME&4; z>k!=(2bc$umg3#4=-9_daySqhX-_SSJ|j^@5z02^cLm+{=!|5oBwU zyAd<)5O-LM#d-I*jFBs{ds8$WyUT?e#qb7(&t)XNF|^pkJoDN_yXF(p;v7_a0LhV7 zZte*~Ueb-EbCu_EI8UpHpLv2oJ@80ZwdmzJ?gbAT2AFI?g2?fV4g1eepSY3E(Z;=Z z`5ZQilPr#B+LqlDRh~@x@D^XU23&l+(%7nj{ezQoy&DNn$<0%EwXWS{2e&i4D^ihx zbk|L*8*6TF){hOm*eBo42vNEG?g2*kGdP|_{PKGr%I3Qcw%w0wF2zYasse1ngM2Ta z%=-M<6sHG{?$>UsHtXFsx-#Id{$a3P=&GpAg86+H&Y+=rUBMdEM|iAXy@n7W1KX=LPYw_wE2DX|W6j9|vrt|D z0~wXVO@rnv>QKZH4VZq6&*;eZzV)lLJu3Xlz4}Uud=u1&KT=xJG9D8We;b*z!Bz0; ztAZ~(vTlFzQwBjl~Tn<|j`tl=8ET-Kew2Zi$G~ zK~Pb0!I~tXe`s1@{oLy_BuRzpg-|AfsJ0}VdRAAire?;&11_=5KmrRZw6ES@GH`|_ zf|pj5^C2n!E9ZXo9&JNVKau!~7khceEvHx_WI0ak7pf5vvU$;Z&l1}alP!R~E2Pc7 z>rjg)M-P#+@r>^mt57FepSVX1+j-YT%8yig9ybsloIKAo1e#Lel-opi_&H#JKVQd- z;cnhw0ir&GZW&V%dJ3W^{Cx-+437Y3lnTJRs&x=^HAU3paj(qf-83InPCUT#&94p$ zi4Ks9cJ)thCY!?Jn=L2TkrF)^lF1mVL&-mG(=HV@;i^9t$=`?2bO?fF++6K1&PKuR zOC+I=`^%*;Bv3dZt)-`eZpN{A?sdXHZz5>_<|u_Ev$sig=sqd=09LZYif3-NM2-x6 zeE5Du|M#h-_tr-_i38vyp-@PZlF83Ctu@z+AOC$WKz>RTQGxG?cpZWVq--#XFlz-i zJJrt9Tu$&civ_b!?W4m9WRhs(EEipBKG|uO%R5J`gcO{aO~G0hw-BuGvw^<;!E7I& z+z}*SNfn|1?=U%a(k0J=%sELty2V7c0tLNqd6@=ajR$g0dKoo>N`JXpwEqGz6qAb< z!z_OCODi($iy#>Jh3?SDn9f5gRr@n0;n|3Oas*LVI8rMmw&bu|{I|COAk zWw$?!=BuawHNc}elyP(|>uk{LnrIUVVSWz&igYhfLK(pzLjA*J`K$Yw2^T>mwth5m z6oheTJ)P63W}9;$v$KS*<-7_lmv4Kc`7hV{G0x5TJ$oo<5xsF2hdO?jX z{b9?4femku=)ueTn*lolKClSqIr%|{gW&pbr4huCTrLU9jQ9Pp zuXhn;0={bvjL)0oUFOx@{jkhj#B&{br5ho-PmzB~t4SqN1|Ijb*ndl_0rQ+-*>!)x zOn;J!?6n0vcYHhxpkPsbOREL(liHpHCp^QDYS#yO_3)IiII4NSJnt^k)W6m~zdpqg z_y#|{<9GD41xfpqwX)%baBX2T?DMT{80^<3H2#y}1r$?{$sc+;GYf%27a=WY4Kxt%>hGXC_Y zLFJLPt>yJr?6~xCrcvUFwXG%bje1eqhKbv|VmRDpfY{Ch2Yq}lPdDjB+?D10HraFr z_fx8kP^18J%)b)Os}3OG$N^|mgwM0&uebW;V@z9gdAqT|`?=utYR^^n6t?9E)RX=> zZx%b|={l(?8W#ip$7SfAi zK_|cG`Ed7`AlU0J&ZQYu&BNv6(Dz}4CvY+0B>~kv)w{2qL9M^{h29{N{xpzOBq!vO z0E1$jbbjH6n5MpV=j@TQ0{a>Enz4W*f)!u6psWGnK2o+;p;&e&Cel)^f0RAJ?q(qc ze^T>WVF=cexW`y)z^d^s;=Va_gxaCM@))gcnS`qu;=Us!bH|5ydRb0TEVSjt78V!s zRlJCgW*3Nrjb`_}J)&6FvQPybZ7ObguTF7X4fyU%K%@)3Ji(7I92Ng1^)_dcExqoZpaG2362uDjMZzdRuA@)2XYJAx$3 zd?vRm9?sga4SRQ^kcJEaxW~KmFN*GMMsv2#1EL6IG7{RB8gQnY)?h}gbZvVzbg z_5w?X^cN~-$7K{s9DA7&&+8R-r5~rNT&OIP=J0EJV6}!v5Rn;n&p3|5SOOkAfNpT8 zo~tLvEuBXks@R2c5dxz`zY!9G34cWlX%Pc`A7sK{y> zLtYV?N6(zGQKrctgCs8n-t^UB^e-u82u%D?P10aF6M8134wrqGM zK?_z?z%Bf;wUB!MgrIlq44y69&MqoWO7l8qQ#LDnv9L4#fvz4rI0g<+*wrIt9)-cV>b>6fCA12vb;$RK*B&-{}K z`VhwxEZB3Uy$79ctKQ5_Ka^kN_*JD#_ee**)SXcErw4q8w5TTMQ2M~dj0?&(n;P-u z1m0>;R_L6lBaB;@IPqbigz=B(D~g0&CW!;m&EiCH*m`c5iRo2e-GVvDikz5}3Fu@n z>U@{b%=eJMoQ9vS7O)xW5GW>Z2^r?rh_vJ~EOJsm)r#yTcAC$J5M~khbIS z04>POzt_p_!m)lwX0e069H>dpB_vOSNYRD9A|X!ODAb<-NQO~x|Ck?yc@}OScHE64 zX>fDAaMQg z(LAGCYzf2Ah)p({8f7T>%$)#|Ks?j-rmf6aI+vuJm#Fz}7=(q$93+%VKk352<;9>_ z9B`2J_De0qN6QnE`L5i{=MgRxrTExC(pA|inEDU@k=xoJ^84%!MF5xq%qLWVfJP*& zgm&t!O7*Ck3Dxq5RBM2Prrxj=^p-15rDXC~dM?ye8`IIl)q4WLg{9f%<`Z&q$MpwM zPn5;r+2+}j|G70wwEs5Uq7LGnAm`76Tc+mgDX^9t`@ZR4)LPQDM7CAFKa`RdOq#C6 z7UG$u22Q6H($%?Yz7Rak_IR`W>$DpgIS#Vn{V{hn^g}h8yo@D8<8#aeJ%8Ins;xid zQ%30$j5>Zi_rzB91EF@ChmwYJvTZIBcR`cDZT*Gb&TsvVMSWYszf3J_jE6XalGr2X zE{J0ls*Q>0aY`Xq_842WfJLO|5XiR-^UX*mVlEIRCyxwELSiW7SVu5cJs+9Hidtam z3X~U)^-xh(cFG6mzDJqdDlLOSr>_j`>rOOn&Xk8&B+*5~WCNJM5qG1PtBC ztNoCh4VMR@>L$W9E8PcYvbFS#SBWg0I%}pO$s#T?l0RdLF4q7e-VH?pz6=(IkweVs z7q7;8!Dz_;0`Bb0>w%gBqY1t8*Jn##snQZ`go{6?vl~^(Ls*YLzLk+DNYZzXu*lLp zlw6)Pg}RJHxiYoW?9cG$wt2#|Uv|uVMKKNinO!1X$<&YgrHs!6=O{*?WT7izXNaSQw)VSjd;V(F9^#XbKoKG1}&*`?Cnlc1quL z6}s*ow}2(du;VpPBY6iAu?2b}W|{MYs~YX`R4TBc1ysSlf${0)Z5E{z(=mOnpx( zHaw>x&)y-C-YkB>21XcdEJPyrVE%0JK1u_>pST6=VAG@!zJ__UI_ysRT`eOTP}%t{ zhur^={9GtK&LJX@!JDOQsoKwV(=`0oup~= z?btFpx2S@^6qv^OyYshB>C~_8_y0ry#7vgB3r)_llblm4+%&_>+46`~g(0dos>*tz z?tWO$DU{a$^9yzX-tvT9Y8az;_3~hMR>MNVFe2}6W`RNf+r*{n|72=Jb2yk{IuWwB(PNYYk6Wpv7wV^80I{=Tb23JS!`EG_}X+e}?L zMLCp7!uDPp=$hEV7QW%I;3s_6Zuzwai8s>(aAkJmd8QXPwalE^SR>RCKA;w3Jh0+sx2!+gx|b|Jf)L|THCT+W+7a9N3osgqYd(o@4)csji33;zZ6#t!^4*wf1Coh3Ik zM);4+)JvS}y_uU4V2f3^7l#M^cvXGE;q$M8-F_wDu+EAd9b4_T{0hX!a&Xh!wNOpF zOHcD0LAI(-Cw9JixIKYqw8k9i7WimVN32g_dM+g|y&;C%&4eg@B@b+ft`$sp2i!-A z0$JFO=okzN#R%GQxsKIJ22dRmQ`@OB&SYKmM?I0nBbj2GI87o~P*?}>1?&E+Zo~qb zldiF?1<5h{g45_XeBD2|?Agf|$Xv#>>$Znsl6t=-#~;zW`Mm_ z8y;1Z-5Xg)waT}YE+}d3w|Go_|BWfbc&`pWif|MHDo=kiT?K8_-KgqF*=I0=khHpE zNEX(Aa&Kq3Ty_kijIuZ;IwUor(8Cy7P&24~-Iln^=VycflW90}6o zxGUj^S*Z1VhX$4mOE;Ic!~fa`6)fRr5q~Bxfev`hhU%DGGxT$ z>=tQJDH*nG&-b%SMeO+>do4@CruDr|ml-S$t=4Uf^L>}b*{yK>apUgYPiGkKbPp&* zz-BQZ3=>}Y3LjfH4-6Q_39aS1kCj8!2z zKWEr=)PkSd!DxGv+eb&~-phvLH(9(M_2Y3(ejJvLk!J>Sj11GYv?WKsuev@qAU=n# z45yT*oqx%;OxFJU^5FmHycd`W8UMkg`12<~-qFrT$;4R;ATKNmP&RRQ21wW#n3)Lv zw?XK?4H7zp-yapQwY770(jsL2M-Wbtko8~kXoRf)H0FNK{?(>R$odaO@q6|!!k!Kx zK*q$_!a&f@UF-WY!}nztdQLV%4i-jwPNwg7h3ssdO>CW=2wDG+xHK^S%WvU-783vW zY#NxE*#9Nb=H%>XVqgOg9(Us85Q#(8iiV*DcAW^HH{B z{$3!#INeB6S)AI&ckXk1h;v584yK5}+*?e<<=xxo(&Kq&`(#;fM;Jc^-W3zDMt}M1#@C@Wchz6wOgQS;C}N zDX(XCLQ%PmPQI*Ok?g$-T>5eGc~uX;F*r!(BXW*d5i?a0^FnI(4{-Zk&c;@%RU-32R*83@*#RgYDC`0R_2J@TSZ zh<;l*HZ8csC7{?sn^KR)w=%RvA+%-J`DV7M>=LrgG}nU$U%;A5oOZ4Y zdhQ=zLB@RETaNOsjIb}JTya{I*WI8h=l%lN7uOk*Qe7N`bn4*!u8bfLYOmD^)wNg zPa!rzrvpSF=!8_e8TMJxljR2mvMI(*aXd@BSn#HibnRRs87att8I&hJ14%;R3RWeD z`DOU+VUT5tDYduaXs-@qP!7(6d4St0F~v;ZfEie4cc{BXeP*Sx5kxC^bj=(C>mzu3 zKRJU-7Ok>uK1l6kqack#mn(koLK2>pU&QR2lPQaRW*Gg021cvXWNN3$BbNIi^-)C^ zQhO$H(n?8Yho+t}F1>1XdZE*zH*E9;t({i5j6PxIFZ&f>obsx&{0o zge3C2V=(FLvPvNZCs`}_=nlG{pU5a3RVc;_`3gV6p(d}Us0xjD`9fRbFwl(rx-boB z_~Y6c`9NU}jl~aV+F^vV4kD9+C?C#IrLwLe&Fdi8IIqBt2CGNg061B(Ka^%V&Tu^! zGld07r(Eu3Xcz{123G3?EHge2>V^$vHd!ylOWgvP+9Yu1anInOa8l@)*r4N;&ZUEC zXdSXF*9!{Q&Evh{LxrMc=eBP#WEPImebU~ zsupP)OK8t5?ajs2*@B=z6L7w&=&=dFtL8fv3Xo^}PJqHvTE?<_Z6^m?b?8tw90{8{ zhcHb18&=4`EfRrGNaJ6ftD{rET{w!tL)U(>B+fZ#X3E&8%zw+#IpT_f#fzw;R>4W9 zEg6DKUWpH<0iQ0$+n^s)F@Xx$13djpEpFNd)q@WH#CV{2ruYg%;+P$F$2;F+Of72WiBDtQoCubF=h|qCztgUPvr=8EDz6)Z3_$jdf`7wF`q2 z%leCBPo2TyOXR5Im#Ko5eD%eXu+7L;jvA@$=s{nxG&c%%JDYK*Q76D^|JuJJC%uQz zmsvOdU@RU4arpH-)A!*&U3OB?DAzZ3sp>z{1|4LV4 z*yP2ma-)PdUJxvGzv)}PStiSS(}Li;pG7-|{j}Wtn({m)RuoY%?tpOv+ElC3A-PK( zCXar))a*Cppd23(o7Zo|t1gT3H&6` z>n2ciP_?Uc+lIhE$gQv#XarT;g@!OX7^f8-RLKn&AJ%!br z8wb7edLkdur!Z~wGp4`h^c8CDaw;84MSUt3>WywQfmL)BifZk`Ew9-oh*F?fAVxK- zt|rQG!0bl?n5k>LZs-|-Xl4`toG@Ozr5(afYdD$|Y7vW0F*RU8fN5sC;sATR-3t?) zU;!#YOH{fk)TVn3FBY#NFxlmIut=AdQTX1{>MV#*PxM7;2wfKFtBUR~)V~r4k=tz! zO6Z#L;OuEqel;J1rkh=~%ZOcmofrj|sjF1&Vm*@jKXj_Z#9*D6HK;P_*d(Wo^CU9W zYxA2A$VE3iwD0SUq_`)eA?**0;(Sr{NoX?poSo{VR3Uvk`tzH$hoXHoAS<3^9E0!7 z5hs7of<4e?%guPs*`#wI;8!t^1=#^ydEN){;k~4*#^1tR<%c+gP{}}fY@VK+ghFl` zMg}8h7kX@{QxN#V#Z3qmQp@%D)u+WYHV#CvADS%GLGc&+c7_nBms)WkyOJC^#bS%^ z-FkLX%oP9L!TgQ9%$Gu&q~_2)zkc^6c=-D3E(V$sGNpzUXs4sW*&7IZTRW^nT&Er1 zYQKUJs$L|+6%gDN2SpfGimx5S{QtK|-m_ zoj!alW!Rc0_X+w^*s_^u@;kSDtcpVR@+x`Q_@7%bY)`}C)#%zUQ08}lIiGlVJ}q-< zrXz$qDLjL%CVrd+F{2CSg)5=EPE{Fw*<`>Ij5NyAwOi@Jj(~7zrg?O<(Wd*=Tu{r7 zadB|j8&V}hqsb`9p<_1B&N0%XORj8el1zY!wS6}~XF5`o{n1nI+bJr?$iL-h3@K4z zJ=J;uW<4t!Iip(y3mIGUnI%i8rR;TM)}) z3a=&f^$4W+^3U60|7{S$y4bEMt6N$|aQEsgf$q1^-hwbJuHuIG?j8WdzEH0`QNjyl zb&XTZ#3scsyr%q#wx6qw0fm!9`J`1Jt7&p*(bCk=tT#%-umrZ(A?$=JgpcQ5!H(dt zkB6WGQT=ehTS#VG9tnAUF!~Yl7*L84Yo4#9bg+8a5X`kGdJFc0Q#3VG=NuGhTerNJ z3oooFBwZwOyNh9^C4)v8`*Tp{hdfnhQ+eF|-<+D`ZpMUjp|s8Y2W@O8F6mhYvKmAT z+CAX_ahHsHQ$UFx0=_jA;?Dpk)a5WMSHv$T1Gv$vNEo^+n7@XS{&+k*KdwJ4A<=wR zjGl17rivxjw-?=iyFry7hKBL=3}Gc3Ut80PpUs=QY<8Y17;u zrXuWJ29Fqs!T@TVAIH8p3en?<+h2%uX$fWQ7hpYl=ztf?1d z))JyGUvDM1?jSCdHICD8vBZXfXicOqpgF@%-vf0WeK& z#F3>q(t?}a#*_IxCaayAl_kt%@2lYqNT2PS+xVQ6r;x7}@9<*uMt`dgkwpO;Cx42cSmy&Da2l60!gUzGwe(6BICVwy?7WC;?Oy zCH{F)+89_^JKJ%Y*gCjaI9ixE@!Od?Ihz>Mo7uV2yI4{ElTRu+JGvM-%Nsa;r-0uH z>3{6b`d4oGKS&_|1|lO9D?KA8Au}t}H$-MmW_or;LS{DB{~APdXJ>mZ0Km=7jo#Ma zANU5=298GN7Oo~v{~ad4*v<%GXK!Ll_YK>`(bnc0DV?>2k%_I5$-h|w^M6{xe-y0x zH%s8;pl9b~B4lRz4lE%P3p4$9TFuPN`CnVYe~+@glLi0(eF;t$|Ig9>m%RA@%#{D5 z9@M{q%E-Y)&-oo^hJQ8$Gvhb#?`Z#n`@gaw{)x8Jceou*?Cl(#o#_A5egOQNXtMsN zX#U66$A1fvnV#u8j_luifRO2XL$DDtad7)B1-0|OqofBA|ZPB*?XTjI*0D(^S-}--rsXS z_wAg$_qo>hy4E$Vb*;5F0MN|L!PUv;h>5)|ua$<=2|GN{a9#%q&ULJ#tHS(8&?pfE z64SQ`q!9lRL16?^;D5u0(N)NTcp>@W0f%$oyx{7kY0|(9hl{-v$MSC?B_b;#6Cx)f zdm?AxUvnZCqD&$Lkv8zziO3ZAWDb5p;CT)~geDRs5;zRZ-eAZ9W^=;G#f;;`Q4}AF zpHB#dLZXoG&I<)!#rRtIssQj2z6!ip zf*+dPL;~>-JBf*-Ppf06vXQNs^BK(CC>Uo!jzL|)@~(ma^-m3mi+_4$l@iL>nA!4T z^b49o6@r=;g636)po>TV2`D!tmNiH|fQ>=d|1gJT5|#$EXBvUT%3T;Dixh!>Cj#{X z5{N+<`Y2dlD8P$?-_cO}C^XbQ5TT&!@O&>y5WWthMhQW=t zfZvf&yMU8`ze9AagYlyIVY>YA^ROJy;38cB z542_#lR7~3usR6OYNO$4Z8Xd$8lKojL+${`GC-VbIvs;yRi}e20G$pQ2fiMMgd+&? zA_R#Bh^iO~!KNSt$_3+eEC2%mZs2Gc=J%@_1Z4m;sP1572PI^Xn*%ir$jw}hY%o5D zzFQ zZ0v!E1!S~N&X!hAX0Rxc1VjmT@c+=3jlGGH4Z;X$(B8?)#S;M}r#7ZQx(sz3rhm=Qu zu~8A6+rVR6NJ60xj8J$8;SH}?N6D**z%4+7a$H5_kEl-I>t!e$65tHHxr)@fhJYj# z7(fkLMFsRJ1hoN941sz*5VQ&5!Zip;MG0yHFo&=XDO|IFS|_9pI7tH`Y`D4)H4YFY zs11ao9+;Y}i0u!d4YdJhk_D9GDk`80#fS>OHh^xQ5NEi04)qWrQ6UKhMbMF~0NTJe zh(Mkn$+vDF;<|pwRbhC<>-v#=V0K7=N$BnhJ_rCoE^!k^f;4es0gM13N>C{XWdles zGhKnVLTW>`z?q8s10-j$p`uf!2PY? zp}77YYJ_lRfP_Yn1X;y30vH29R&fUo1c~BiLokH(^n*~8M}i}i6%nqG+DJc8INKp1 znXaaTOkiA?Q=VIUPJ`_C3E#PAai2_qZ;1QTKcD53|%CF*MceUM|24b1B3-}*k>eblH$;!?Gn1Z%5 z!6w-Qv(7@ZP$Uz#o z9yHj+;Dd%cNciI%@LM(PWAM>gt>(bgIyMl3R)q#l2e0m;VZ(=KvVlSzWcd8B;lnfA zNa%gf2qaWvAS{~Iri0hoPMDck*&5m47#s*+K)8QE7eE-q8Y6*tT(5s%r;AUn zYb*r45j1cHg)p==Mgoa_J!tS`89r!hEMy~Skgp~P4ZOX&6F^N^4;q{yUu#5R=M`i1}|2CK-yZ}M6X8{yCcma$fd;W|I4wuRUE!R0O_ zT;4*$Wi4O<0^|hYGAa_Pe*@)0P#1u|tK<&(RvdSRbL7oGJ3*YYT`-#T$NunV9Z-!9 zQcQdx*4PZh>v}eWo$v#h#AWD@%>XGQTpL8fwLm0X14Kdu@Tv zQe}eVzS3_Sv%D(N!pHKOL<{QH^;pIZ;qb7$CWdU-8>yc%ZGZhmE8L zsV`w@e@p@_4Z$vAJ!shRAs%R$OaH+PAd4alZH*Z~UTZyQ*fA#_X#dd+utpA6Nb!(c zV+N2TT@MFJeGKB`=)uJ}76bfG|c32G@011)CzwD(3boa!@y}$12vz z<6(8JrECNZBtaM&=Jsl6pk}QH4eR9bKwE1m8$ko_6NZMly&4)AuGWKwb@F(itqB+# zbtq01`)_h<>e#UTtp^S3H5tJIJ)vKiTr>0GC<_7EJ@jzP}FgEB= ztR;b-6c4#IX7Fc{nIJT*lgC2~*9>qyDO@PVS0RSV&am`Ac5pl+_)Dzx{@F8vM6tgD z+{K^DHv!KGEtnzzJIJR`hN>+dCla5%v()`Dw;D7XfPf@*}o zl0xV?6t5ceiRQh%%%SVZS@cX54k^v10~CU z>bL}@&IcWAKP5t15odxadVoa=Qc){o+WhHEGr=^E?`2t&h-7_hyp2MwDn zz55(U+fRu3s4x&9Xx!3aZ`MO@>6yKOxd;h2k$#kH0JYSlW@2h%aa&~S|d)}-~I z!EqcPw6&J85j5~VVQ9F3h_V# zZS+6r8dhB~?g<|`+!z77fc2okp%5P}+yH^=o}h9$UiSnS`%!QO9R<}d5h%FGkAmhe zVd;WN8jf26DPtw_&u$596#FZ{Ey0z3f^G>aMH2?G#xNkB){`UFE#YD4k6{3A30_`+ zf>%JG;1v)ksNMkx3HIgKEkIDe0GqEsx;SnMl<$9Gc~uq#k;9ey8Y9`bB93)af3v)% zBEDg7tgeXTfwrb14r|nUy@7R8c%We}{RgQ*9Yau2z}u_HK}x`3A7l7IU8<2=Ml5a-i9*Cw4gH$D{ab3f=IAKnyMX$rjd2 zfYIS^@q@QlLEE^{4X6D0psg1jpmkb!yAodMfr9r4qTs!OD7fy2f~sn;biu?5$4h~f zu`K*^7q6*&!y78sk>l#L2@eQdYd~#W`Nl>EJhc9p1P~qIb!{l9dW1m16=W2=Q4$3e zMRB6Qno9S^tgVg$c;Kvw0#G-tr@h!H@HZ`-LNySRR~9ee*ItNQf?dC+f(>iVdeE>@ z01q^babVTxU!Z|QEyB=njR98X^`K#+03K+VOaBELm@yEBwk8T}T(!nV0X)!f^&Z!K zLxp<0HV-d&K*61 z3V`IG?pjZav9^zg)wLD@K7yfzzZbAuyTQnXhuj*YfHY`5Xjt3FLu;)?Yy=IwPgrW0 z+pF|##VQCb(Zbq39%z4p0d9VzL1>FA3O-^0h264_V?f}|)zGk+4Z&@yD5$cHyH6Fm zxS9@jXpes{BMPby6O`DR>NMOY(3$x68mzGd!enu)b1({kEZ!s)>*fCLgp~?4*a;iZ z!6v(S=&UgTXz>DuO#+HRm@{1MU(qm3+6*l)!0UIRayntMs}13w{VPaxl`=rJdyFaK zw`_Rf!yo@ez{1z;s7C$Sn|sRG1`l(DnOZ#t0G!wg9RgCvZaRl@FC6;;*J`Y=iYs@h z?u-W-a4HHs_XrhPf$yMlU`|ECj2wWYQlMoGC}^4-W(B;5(>zY;`k(s;YUN(bfDm!&nS48F$z9}1_kfA1`d?M2n{FhfpYyX zEUr$G@W5Ja2Y|{z-G-4EA(g?#Jv_89UHxC6fi9V_^l<|MtV!!Z!^S;4&@h+&3$)dV z5gu}D5+g{t*Mo+Qdw)($|@g@)%i zZV6{k_CLENu+df8w^G_BAjegPfe*wQ!`QeS4Z9_Lv@oItp#g3QURZ&Kmk|I5GQz?E zheN=bN}w;taYvvW|D83MG$Hvyw^x$`?QlKqh27ELtU+D7nij|fLG6XPB@7MM7+}p= z4;t)_@IhN^2^&EJ?-PcGxxKSOz|nAE*arT>&%w12G&F4qoEHaX2Ebn^y+XqW)S=<2MKnB%_P-xL2D)6}*fAJC zJW~JbII@+sRnUoRD_XdI_h8NT@9qIB{QpV@YhrlFV1WNC8LTQi-!!Z z!LKhHIO;*O!Z@l67WDrW4Lr4uj|{Gjua5?v2FFJR*S6Ou1FurSN9MnnHN2t(ADKUq z40rwjuXn&6!Gn(uZf>_eS4hHoyrxpVJ{>fCI3@PXNZ3!n9{+EBT2nd)PQ}Hz6Tqz! zI^_Xk6mwP(&Vk2Jdn+2XLWt1GBxv}cMl|Hn2qRpr@!%T9(^3j*yr+%N!!Pmy0|p+> z*2JW>PXmO!z%z*96QJ=*0B>78?G_H$4vfH z$Ko7Z44pW-f_jAz;f@7!Edb%F8Xq3}0IT;{!fQGf3|a&_c1>LzJ`(kxIKw&j7?LO! zfC_N7Di{L)i4e{aIM7L~_y`dc5xi0Xj?x4>5vMS|Mnn);OtSR1?t{U96`(%_^^H{) z=R9C2dss#2KZr;KC*XifF;)m|p!?Wl1wO(8PF4tuX^pN!>puRaBXQ5FfzHugL5coD zh;T>3y1u%ejjuyi$AUE-3EDXUU0+iNhY$MwC(dwAG=?OIkFyOm0)^}6*Ob3E=*U0W zB{=Q?vP_U!f*lDyz6vE&GXE!baeX#Ug&Q#KKZFQ&BwSL5^I*aVS7$tHIuguu33ViH ziUS|h{7;`kI>e`W=ZPoCAUbgq1$qfDYj#5FDrdGabTN;F=2e z26zakfuI%tD;_lAQ6jkP;GgLbP6NT3^FPxeJf6XMHN~n^Nbsh&Xu<;;uq6D?cnFVZ za0=8L;(@E+@Y&|Tuo4V@1kH6#9UDFj`(MlsjcYA9FG&C#3S6iMW-u}D9RVG|suQb$ zQ+Uzv!36NYmmtEGayBs9SmRK@*h0XetSMW=0{JJ-aI>H_1?v^gHgqUx+$;zzC;ziT z5H?`2iv7=Y2pceH`B*x#z}sAa7Zb?Z0PlJLj<>M~UJP)`%+3Nh2^*M6!elDWe_o$? zLG7Jg03S{9BA3r8>K$RnX%7ZA*UR?R2PrIWI>+0rhP>lQ_3Oe{fka!*H?*=jqW!v) zM>!q`DQuSx&=${Tr1%;*z?eLpxTl`p>%hqfl_U3bX(ntecac3Qj6bwln(f8S0TIe> z8z+=ka*Ve`zJuH)hFVGTj;2~U-7{wmBNi@gdX#YB@b;R791?MXv7$YG+c-XHbq-yQ zD$x2~;c=g?ez)U5un}v}NdXEMR&Ru-rMBev9R01Esvyz$mUi^<|20|80Y%y(IfIiCMe`VgzTR zq<>Y7_E4%D)*q1mS{=z8r26Ai+iZ1+^FHDimbQyw=&H&WcgV@U@n=P|;U9zsd z+u`lISTa{oHhhqalr@kd9GRMO!LhJ!b~dg65lE7dmohol{c~ui;t*?dJM}EXLcZO! zgzMC&V4CMoNZ6+y_dU)s5HFtE5g1)V)99gPn0Fy^er|sOYwngI1~C!g`cJ>7c?wEM zoKH)pGY4*C`tW>jEA?@4K9AWuw$=Ni##MZ&4$MzH7Mz(i4sj(ze8C4CDvrX8uZ&vy> zOMFR8$je*h8YlOks8eSZOUxCM&Y_S-mdP~T+L>yx=lx-pox{98ymtJG?JqnlEG-^3 z?Owe5P|4+|Ui%kOMTecHM_E z_9k{xOv^(bEmUtSgcj6CQpm<09kw2^Q=;iwy4+uDdF1=Vo1=!oPQP!8^6@^{o);U+ zsk=!Ny)*TeAd6_ZF4@KSS;)2-}c8f6X|^IDPB-@TaaY`zCT$a_=aT9+vD3%;r6R3s)#idw7H7I#~G4ZZOwL8HEo-DxZpb*1vb@dNVL0Q z>=;M=fo)5>YorFY-jMT5rEN*zhz=P_m`~lT@9)*XxJ&L+gXGx>x?ro1a& zTsgM8TUtK8rJ?m`N>VhP32QANXvU&Ct>3L5f|0iTNiim9T{0~8Kjkk@Lte2h%Tzitd9M62O zVO+>_C(r(%COOqM=7#G^%gLLbc~*wXK9~8@)D~I@iM_pxfx!0XdteBu>8Q z_Y1GwEZz8ByGLTC4sxqh(hjK@3*NX_(*G!kIkc$NTUrJ$ zZKkgJ^%TKPf94aZw&P_*MKyPYoe#<^csiVIc||O2GTc3S{JdJ1#`ZKPJd^ae*Ig!b z-b1)`GHiD4hfuPXy~5jl=lze~aZ6{|(kS4b6w|o*L6EAqSM&>?!^Qie0<2q)(<^hsfOgaVM3fZu6empYQe6TP~|>ZsFc~BS|xBvxZ+?r^_Y{ z*?n;myfo)eTHGZWX+Akc^-`V9=-|1|(Wy$S>>Z4hr^=4UC-aYe-!aiCbmU>A%E|H4 zCuq&N#K?HngF(_$%;JwMjMJ-1182tL$BOt$s;FOxrJv{XzEoE>g^b?Y+I~)-Saex- z?s)n!Bipe@;u_l9AByppzowD*l76*^xR{ThBFv%rKHp_po8iEegm>1cfNhAZg7zM- zjz(pBo1erCkMtUa*nEhdOib?Es~k*gw7_d;t1l+w@ah?&anY~ug?8rFWdGBX7ZWe~ zR3x8xr+dFj$mYkH;=Iq9yR>6M7w%U*C_J7KMO!FYLa*h@IL$$gN)uwN4KhNfbR+t|1s59D=&~={opnig(JVnI^c5W%67}b*J zzus5&fbRU!;7}>!TRVmM)0?#SZ+m3QuM;6_Q@RVqelLB{@vQKe+hfYhCSKxJq@j7a zse`ElnxdB;#*gzGyFc3TP$cB)QMzg-9u9fdqN2m5r*>7NJWY=7JAA?91Gie^L*BPUNOtb=@_@tSk|*?_u!WM>n^AwK_$3h;tXP;6vU~D51vS(dO4{v^WM4J&Ao$eb*c~8dt;3oZcWXVF~``zP;HL8*tawzpc zV_7EiM>jpctG#Wf(>Jy8(5O#;Jt()e;5z9;Cv`^ELpx0MbQuqGD6@L{^Y_I^o8>&d zYRgX}&pN*qkc&lz;0IJM=~IU-?Lx%wxsA}T+5ArV;c=P z_B<*3Sl^tj-RMJg_EBm1ktaTPh-27Zd^qpgV)5+E(F+P(Q4$hUNVfae?|UumqP$}| zu6{d%QK9Hd8BhM$vEnaxx-*;r!BzB?mBe^>H+T^3jt*d<PMvMf>*OFPC30-yd&#E9X#al#{!y5gi_XWyVDQ*rge1`P2G#cjCpy zZ!&NGHC4uxWe5h%j#$tS%MN=>>y^&p0 z%JZp$__Ztr@*7W|Wo9nCmgTnJ^`wQQ@0zfy@#Z^1M99!gZ8?$F+c{a!T{VsAc(Ukk zwDd5(ymm3~aq0b$8v*U!a(z^sUQ7m#=SGMIOU(M{YhEZD$R$WVxkyj-gQ8Koq|hd+ z*v7JB!tDKweKZ^D_ig*JbIUn8%oVIt4rDRwBRz^ z<65prUDJ0`?=tAw?K*5l&L{8)-Zi}vXycKPQAJm-i& zoJ`3wi_(iuf0OEVAh^mXFEEKN&yAn`$?lprA*`X-RjdBucdU&ySLvyW9~GOh}+e7gEr$;I^OVL2x$FqIiCy{@A$5 z2#*VKoa8WHaBX|YlCRLm5+?E3%FupCg@?v0A5UK(U!vfu_ZB)YrQ{GzofLgQ6V|rJ+sa2IU4$ZR9mMAVF!#?&-#7x=xiZh5l-GWjLIy1#m zOiSG#mP#6bxm)i3gOd*e=@ds!&TKn+P1$Js_x3BppJUSIn?;`V=5_K}n=k*0YH95i zaVU5^WiED=q(S%6Y?%4)}6lh%SdE1N0;p6gWvD3&u~bMzk6F7 zm5OfW46i)kBKpha0I8b_^>gMWriHEbzfF9Y>C#+^8DyUX+~0X>e@@);9%h-x^@Eml z5mohSK3rqcLKRCx{oG^2Z?9CQ_B@mx(JYRQzigLMU@~>=_#qp=?>>~~CH|H5n}!B` zhbU1~zGUyMqit#r&(J(4Yn+?f`M!TVt6_gbz=)=cfET@Lny*C7rZ3VrS(!wxONQ5k z-=LQ|Q@F@rzf64j02lA~s0%{~(}CY67oW$-49j05+C=^9$lGuJpWbpBi3BBDM#r4< z%%Y+DxRo(FY6s&p_SSceHie=n-5pf!4@X8VZ3~Mjnj{!2o@-pZ`Rz7Kv0=ycppLtB zCFNTrC<9)Wk4ewejpW5D>6e^5@<^D<>gh>Raz`De2}>#VE0WYfqZ}odx{p&ga4Vsy zt*`d8+_UEYTt6ybxacA@zWZ7rtEpVsf^?Rx$1|g?2R{gk$krYrb2}6Mi|0G>;tnU4 zW6`V@o>XnRL%R6^$VWawj|+DfL_QR0n3R4k$h74GrIe(J%67FPiG3Za_Gt~}pK$pR<_7mVI)8n~IgKq@L=<>=FD@)-8C&(Gvbmgm_mGi9yFzy#bm<;i^%~&Elc+VGqK#?i-XbI>j1S9$Ydb6^)8! zLyO(*FwJki^5O++iZ$2siXGp?Zqqf$@BT2s$~*ZuJ@txu8&PGab16;R;bS3P8X8(} z{7Qq*UCF;l{Na@uior}X5$k*Vm>UG+ zefCSGG4^|WyC~9gE?ts7pvts*I#B$vc$*hLeejQyBy?9Cw2t1GXFhyHHJx{$Ir==e zqj1sPxs&vqTwHbc4h^bCEHo!Ga_(huDQIrJ#SpZ8O2^hcLZjxLRD#|8tn}#4#PnM# z`A;PNAN5_O=N49uyE{k&(gy0W7q@~rosBV1fw*|%=Va9^)H zB!c9w@USH}z1VZ>=-FYiyB$7e@q1iv_`UQ|Cw+4Rd05tJs}xy-25X@74yo&Q!8t$p z#STp!`$^Bq)_m&1c=bm;DS8Bj*5v8-roE0d2B&tUA&&J-3i&2`k#&%679|}Vr@Dmf zzsqC!dsc{fd2*}2jQx?v%-aX)S|TIAhP<7vjoD7F7@Tzcv_Wn1Sl=L(m4vzdN9TjB zt!|6?>HgV`UOoe3at|AlpA*@o+vIrV3<(N+5RBUMew4d)=y{{wZJFWxC>F21v$glM zXqU&b6H;<0eJ-ZKFn~+Q_jlz%r7YXD71-mp+dMO7tM9=z&5|u zdKaCYE!<5{ntV=Hu!Ja|cD}(tmj2Lghl@aOJ7Y-i<1vwr@zl?a8Wb`tDYeQEc5jy> z`+VF#%G%oAH0AO={p9<8E{oR!?@0#BAS@(&42qncSY5?ShvuspBAKR9gER*I`&{bg zv-+L4lUr=tlXU6S{q%7rBa>k* zHlKf%h`WkRZ1RJ%Fn3*HS~1!FV}4J45Aue2p9pt-DRrsIQavwLIBD>yx*4xx2%60@ zq3JkfqWP*7fnPBRo=@Ex<_oT*;C@0rx3R&c43?1AW@n5=bM>+_)^`sf#XgLAZVtog;0TZV*RDDD)pEqE=?e&?)$pQ6=} zfEA8N!@jo(%7(fh=-kS zcAE7r^f$=E`(3u!?N?S$6lF6>X`-bc*j>gDrSz7>U1;$;@AlhWuW86wdEeRTr~Mi~ zG8mpsy#JN;{e^Sd@fHtk7QP01O~mN#ujmxbKOf_C>0`m8r<6VZ1%7hNz2kdo3ch|9 z@3x{uGgZ2C3@-;KIuMDHDP?YXSjsdY6>QqU&bK3!ew1{`^Q&5eY)-QpZTma+LX^@M zSJ?|u2CY@IH@wE`qqa8R)`v zN4*P?SuTUWN?oZAJ@&c3Aae1^+#+Rdc7tDv?xRt$v32Gbea0v@E?xDBtTj1_&xsBSl{y$k5{2t`~MMiKpRC1Nxqx z;}xysPf>10nW+qt0sVr;smyGoqL;4@#F|S|UqDss3Iw$V4Q`_`a$_>xRjqR~aqCS- zv=MvF+f&p#E%+%OHf-l_ow}5I`A}ZMrhoc} z7tS;CaSqbGX56YPcxw z&e`*W|4x4-m)4#eLwo3&&Ya5k^R5h@E50#0W>rINp2gpOs^QW{_OOl^@g=#r;-p_9 zOQOa@`n@WYoOhi?&dM}h721C5__KHXg6BKzP$zoLjN~7vagGcOoK&ehEUBzZgJ#wq z;+vH6qOjmPq#k=em}c@oY?$-@6tnW{A9DjwlD*pLl*zig@8*vk(GrsT%nTSVvZ090 zc7?YedE2+?ypZ$pcAi_AJ71})@=nFJDs}8BIL8p2=EH8dvv2c9DgAw#)y?EPp2eLv z9U>1gK9qOGFrzE9Ae$tW7u`e0Oylgg6jp=w3ko#uo4cx~U~zfpH{v?WCwt#b>r`xW zxSH{L)`p_a#4~=|vK+CT$sM^Oz96R4%gP_vZ||t^3=bhsAZqhtIm>ju@AVlY+V&woqetBm1h|GilV6vVr93ed;&<=rur*4=Y~N1Ai3TYFnzuJ^o;%gD zmA6^3llcfUDo!NhsCBx0Q1dA|b3tCV!j{peUlQk)8vI@h?8s3d9ZR_2tJCN>n9g;y zdtPnsw)UNm7F)h~kIi*ooV?4lxOsWIqLrPu>LacKGhhy`?Ba;K^OY5mDO!c+UP@koCe7xBwo4qL4!0>)kvi-YjXLNm$VrV6l=(qR8 zr|-@Qd`qmo)@3Qp*Y+@kq<4qXZH8{%qjaT@41-aI#W$#9c#FuLOPqYW=}P-#@^;!6 z2-JEM7C4)50im>~>!x>C{mV)#ZG+o9F*br?JA(_#vK=OFo!fNr%UNd42SSG?yr--; z2@80}eY#ijfclbU-Z=Fb*KAIzoB5rKj_1&M6(3$yKMSDLCvhzsHt+~8-;u`uv_Q4pZ5JbVEhWL|XiA#)CGuuSgmeri_5nD~9Xm(|sws5j50n(~3RnP?+pVsTW3_wZai*+0%D6HozWIw zN^2ZqDw&ta`u*$V2SHDpi9~I~K<$rYa`Svk;+iEk{iYtmBep!#n(nfuhyyyEfM{wPn@igh&Pte z3Me1hnj87i{42{>&aYZLDM?J!9>(C++m5+%@FBBwu2Q%glYP!FVK6(OaQO zQgtq>dV7J;r&xt1l}%y|lu4s|C!y2+2V~N)$^e!SnG#@h>EJ}g{u7O z-d$}K;=dU(Eq?FGEck75HYz;Em(`)vuuRO^ObFP=kfSM zFId%lE}!|PHpn-&XYU)g@mJ^wi-@^}xn1;&PS>~F>6LhKlp$zH1M@2m&v7ojM?Q!o z8+`E2Opz|L#;USbMDfOjO8xOn?(R)gRri#aoF+DlFwpSGePX1%@zTq@fjA3Y;d(Gb zy?>}}INEOqrv@s$vg6hQV+K=Z66c%4oO%v5cTtbsjYALb7jJu(b6LfCxm-Xll*^s^ z3Ay`Sb0MWqCAXuKd=kat4O1hYR$DVN9OmWNFEN$Z*;#%6%j?NUBGKKIPqult%-vId z`trq2i57nqR4sk|CMnKt0djL1*OZ3CB8THDd7ikRrEz(cefvO*n9|9jBO;EHHPoz| zZ+hBNc0S^=eU|+5K*onrTao;HD}hhe)s$xyf6Z@B8Zt(IZL};7J-M^V{cVG(^8&~9 z*aC_9GhVc*`oR;CU9zI-;p55Ik9t2!EHZvs+FDXkVzm%(OPNJE-q6DTrLsllboJ8` zv}vlT%7<+|;bGtAw?7nlFS!kEMIv32yF(UvL-6{RtTwADjaz~-y{TzWo}`S1ADSp` z@uW!MK{GuJ0^B#Af0H3ldPy3*ctl-j&|--_5Ioy z=N4Ygz^4-C=PPwpMW&N>w&=nTxzz4w0msgI{(9S8^58MAI&;E}D;>2R@3@QdUhKOz z%(1jbOwn`UMs`|h(n{_RZbu}jDc%*qog}7D8*z_UB&?&#N4m(jL*Kge`>u%{?~{|S^d2WQEXv7P zYR^h-I~1n>OrmE$sl3Y%jR+so59J9#RIGyYKXzUsOVqxTSao}H6ZN&!Nb|!C!p|}^ z6x>|WqXt5J?xl=4=$T73)U%o2WMeT_jCu2_c z8z~%Gwn)|FK4Fk-j|yJc{KV#9k41Tj3y0%wtK0U+INO_l{<8JlTyDu*ou~6)kJf;0 z2Fa&(+Hni=pNwL08U2rQYYQXes)VfXswv)M>!bVVs&NecHnWvN)p3aN;)|y;oe8sJ zZ`t_mNb_#`c}fOzFgn~B98TCRN5=B`N$`oyygGs^XRli#&b(d{klw@)7*kI2+qLrv zlC!^N*}^w{Ts!{N^!{Ir+Ty?Uom9tunmUeU|8DATsLa>YpIm&pv{&@nF}0MFO_fSb zJ}n_})X~X?j?wH&^3f3ol@vL49r|FQf5{eevYGLS!A^>yHuPY)(Oh|EbWb~rx2#DC3p;%1NNT(@(bxZzxy_H2X?-K2u z9P>2Np~p7aRt`TkG>5YcxFeX&utGV%0lAWv!J{eg6AB1sf(M*L-A?Dw7ON!0t=?==JWL z;z}z!eX4Y(>clQV?VLs-Uw6p`J!9E1c`+WLw;|UolH#-tWFH&&&rYd6O~1S}d(ymg zVWQ)eRI7ERPTuDMzKlw)-Tjm0hhH;?Gpi1GCoR(Hs=psQ|K_1xMEXF6O>ndEnAY=_ z!=t&ezB$B0Z;s#O*?r7hJuN-eQ+Q81C*3OpTQi~55}SgfHCI}6>9r=$RYew#z2;}D z(6NuZY=Wj*SkQeD$J$F2QE~7S-JW|)KE^z`3)6$y(G;Rrk524b8m07gc_{AuIIzx6 zaGJ)YX~t`&hWr}(n0#Q;e1V~6)$hY6k7>Th+A?Tye4MrByVJ2A-)(WXs;+!emN7nd zCm6v!qVzDNo4;>p=l7H?XN3v}mtXf7_y(5ASL*MGtUxX&N=Ys!JkH`7+wB2$6+_~=(2n~0q$Q^oUrisJ4qcbxXcHiM9=GzUl_LV+h;1*zAMJ$P`m#4-SX+tx67YDR|F|{7r9pX6j!=?7iMRD z%KS>!clSEK)=)<0=f_WGzN%0~3Xoji8`@&FB*Yx{rjq@IoA1QToyw6X@6f_5F$G^4 zH>DQZy6BINjCM3MbTrkN${0xMU$~(8=HU0T{N^#kqh*0HyUTheh06wXobrjsbflVp z9ynTEHyPUFut3pgHuF=#js*%Wv*zGFiF{L+7zcUyGK zX6nAdfaEL5R}@~;@`OxH1}RZeDt$v3WJMTX{xyH_Yvdu~+K`Y)HECz(fEh7CcB=l_ z&5th9AP0>Kw>*gOC`wEFd|D;El2Hb9--9eMS8CO#9c! zq2tcth|!+r^EBw!o!il-=*Of-TV~6j(+*|RXA%g5LV%^kmq(8^mC5veWc?kr8QwzR%Arf`W)Sx1h?cJ|9R zB}R$kB&zC-`TA7+Puh}-lVe9cE58xn6$mcoVv9F3ws8C!8Zc?ryOba%yNh zIiIYg_k5(Y@ptR14%$#JN0~EOvHqx}y6Etqq20w>T}U5LeQBj5A=kZZex8drr)ArL zt12YF&5mgkD|7j8+u1{6(T4bx+%<4vwBvR4sfPU@N`vcmo#8zBi|vAXU7hotGslNS z&uJT8bSnP(L-bURE%|#F(+JNqUY~?S#B3MIy<3heeq!eu?=PB-%Lv!}6n%$r>8?!s z_lFw(rz{Q&pK0ML)`)e>{ivd9D;)Wmfid9}5lN0dO8nGeW!^ou^{+zw&W`9jl!%|? ze8Q7q-E;P=DX&AMCN)KvU}SEdM&zBniA}nvE#`78CSrrfs*2)UTN@j@pMQNZR^~AG zIVk?9T4_>hdq_;yxf%Zi>9C2BkB7(GTXgd~Cbvj;FF0|y)QKn8aXbwp+|f?{cRsJlJwFtop$G@HP*15;L*QN4V~` zD7fzJrFhbL*kkM5Z=&Hl0cK1ucSdWzP<(N2Ux9>qiDk*Xw%bB6bJ4aXJa#Y6y*Srn zdhEX8?fundIu7dPa+l|p7+&>9^*U6bh4S{Z#%}Xm#3T|5 zNiXTNQr;4i#9x=|WzW}}ChMe__1` ze=MKB^0J)j0|QxsWXZcIn!=jm5AI|I4`VZ3iAg%nQoSO7(Ea%%8-U1pD{0lS-2=2U zR0FIdU6!ZYjQj({^_Kz}62vk+{R6}@k*~BRFWmg1NUW`U`HOR)_tj-Gf7T^;Qr-g# zhGct3i%PBQ%Q6eLQZ2id$o|y(HhJ}BLs@6op!}rP*3g;BouNGj`7hpW0d9ZSNta$M zEFj%G-k*8E2R%KyQ+Uepb_RdIk^tua2GNqdFZ{dh9uzSBGHzQ!y_d3yu6<_WFqeH% zusm6ZBGZv0rQl6RVnkiyxSH(JL6so%*z>E>VkKH455+RXQhpI<9y9JCNtdNRM`^=# zZn2$$DadiSo!EyxA?2(Wc-FVW=ZzL}Yg`6m-a>l_fjUPv$Y zgKyg_ewG@ah}@V{x7|FqD5-kxkZnz?x;7^^Z+6A>aotC>erT7U%(qL zN0VZnmljQLJql63(RJ#_)U8J;ZznrXPn(X9HtPt<(N~a?-RzY3w!5)5c=zm0-$eco zVxCcR`xwr$pAb1wJbco<8KrF7Zhd2*zU1DXV~!00a?UoowWew$J+3mZ#Ud-}E%w$( z?09z%`LnQeKsbu=eR$RB@VH7VH;bGOvV>8J+C|b@hxp(-pO_a|!YfT$|1^eA6b(<0AE zJseh|qNg!E&VMNLELSLRQo|LPK!`I|T z+zvP840Oe-#@i8_SRSR>jn2INanoHYFi3`*yRJAYCxM;S{#1R9zscUDUq>b5DJA#m zSzSkw+kYpImqTTHX51@JyYVbMH~L6zl`e0V^M!AB%%(<~JU!ajS-t4T3bSV3Mm>lW zXKBsT2sE^=ZDDmDbk&~gULK&(;~VgpaA&66X)G2W@bJ}diAGWO))N=vqLNeZ)0VdO zM^&{I>&X2ib$%I{<=n-B@@7=q^5$iEy~8J-Km2Nb;sbTCh$vNO*tMctA45Kq z3g>usHjkh(#|>WwHM;Nboz@Eod6oO|MB}$wr+r!FVcAm@vrTC^79xhScbaVPcQ9pC zeot4m*Uy|0=V&{S$1*B0quPD{p(^|BK{DyUbIX0qdPH_-HGCpr%C1t zjmmz!FQHFbL72@n-f)9G|`H`U{)EzJX z()}JrJ<4uZD@V52NuLmrFP@XM-QOv?b>EK>zv#^>vOc_K(h>&8X8I1rGCz}WIvJGE z9n;LGpU%vvde>%u#5RB50!v$xZt>UDgH_WnNGDI%bg&(?J;ZdtVxVIa?W`)9HTBC2 z$Lc8?etvy~zMFsFW#p1ursAQKeynZe`Xc*2TAavz5T;Tp;TNIx)il8F7Q0y)RpBH_ z_08V~miv+;jfuP_4k!h^^@@9Co@%>4QcchCv}?GarDkq9^UJw%3;Ra50GGjR3dX{u zPZNl|l+?nDU;92v-eGz`J10vLd8JyreQamx-h<*OIdS=$?I$(9KAKiRNj>NADw^?f z`G(v^acgS2zCc!YCiRDbNvOjSuf5Csgx*(rDXHMI z9Syq9@uT&d1DhWeOeV#BAkJWStVxZk^E@JXMWm*igzB!JV2Nv>S5lj+y7E!w(;=u& zKZ3slQpqDi>A!m}N;#(PkEg0V%iC2(RK#!2LSPrl>W#tR<|^z~ z6kc^#V;4^cGhQ8~Q`ntANPa5UKRxSh>Nv23;GC>M~Dx}BC%b}$<+L)+6h_sN5D667E2cwhoii_?(XhK+|ftu zoh*2fA|fKZd?;QNiU)Xt$Jx`)#mIxl&Y2ZU;e?s9iIbIsi*hpwIT5fIoB6MI`;4!CP{JK%u{gn~b(`kX=V0q+Ln;{&#ABhZ+`>VQ4Yz)R=OAOwM9C)WH6 z+(7|%fYYil5A&Zv2nYf@;Sv0(GYBDm;CLkjKX8p7c(J1ZNRD3!ctQx+dkq{-gQ15; z2qM96!k89Oz@ArxAn;K@1lYBT5CUKb0LOO;0tcZ80H>p&fx|p8p9O(KAAmFDFi!x_ z3IYcTVosD30rr1m?g#?!@By9z?g|S4O#>%=2mr6H;s@T$gt;pKoUAAe90Vx{ys%F| z2m=)<3}6M$x7A0iK5h@a@=9D#0>Gg^>;1DvDxj2Bo`=rzg1!UtSwjhs6L1BV5%39+ z56%;?l)!5k8R6W7iGqg%t|KepHw5Ga+*wCPI3mG0QJL@#Rp4M++#RXGn2BoBmR8ddmIAj&;61Xza&k8=V*O0*D*b%Zq(%u1PHZ{4dZsd?#GLw{whI&X^0> zmp4dq8X2_)4<7g4oy6jJ>hi!u=+uC^h5W#quSZ4iF$!3!?c(>Es|6OBGG|K7O&w3v z=6b0h&{$#7<<)tl(x+lejjC+Tt?j#u8=Nf+o|9PyW}C437(SmJ5%9ec)wEoyva3VNNtILSDsv+i%xJT{f}fkkxIrjk~R<@r_()*94_l-+R?(c^7K z`|rht-)ZrW+xB&5;xF3kboAe?IkpYW-+03*r(t`9ESPuBsQjXLIsFVXwc(T5>R$VE z2hZ$QD_=H}jZw<`x<98UG#0-Z;=BbJn~WjQpiZdqt|N7RegXbJ`+|XO!9r{I1z#ZZ zP_N3Hdf)l@aZ9Ulb&SoI>()#r9dGZLb!1cC(tdfcym#xnUW7@^ZsSX2%2M)boott{ zMkI4teZ2esF!l{WnlM1JZB1+1*4MUe_q1)>wr$(CZQHhO+xx$F-OEPgp-xrTtjwsa zxz`0N>kP|G#7)AzmM-RL1;Lh<_eEAh$#YAyhlXal@Z#Sot?@Lkuj|j9*Pq_sPhMQ} zo2>PjEDpz$ET&a25d9!IN^UpihLY`T_xAipSV1=^i^1>BPf?fi&fajjL7*hlk6K(* z+xP3%e4GcOA@i0ft@>|O&C6VoGI`;#B*)>qXH5&62wB{B52lB2$*6Tz+!5(Yu(R9^dcdOJCu$cGe&?p89Uv*RX4$ z#oIh@k|*?5gqRm;FWVM${c7Ne&f1Gj-Z$YD|4_sadgT13Q&E>Itmxo5bi|dp_o4Vo zNU;`~-U87w+&B4e@cCxJ^JCK)H&)C`USSuwg1f`@bexRdCfl-mvB{`oR8Y=j-cA8f|Km@B!K zQTiGACpd=AqmQ*g{O#^@q|71vvNSWdLJMZ=OCxdGE50s(Y8sLSBSdg3Th{Zc4YQY` z4v@Z7&Mu)6NzY)HG@{PA5wf-8bzOqyY0eY=i~Ri))efOO@k@@T2tGI6B%>YN zpuYKPfUjd^4ZTMt2geun;&@nw_Mov7YB63-p1QwU@cjnfl)5x}v(Ib%Ry}~SA$$35 zb5we0#^(Sr;)}cTPS7B*iSdN0bX&lE11Ktd+s*j>HI>s1?)aJK{xSuctXHQl?CD*N zwGHsrj&b^d%giJT2(neo>RZ8UH>)sO$6G# zk3AvyU!Cd@-x|qP-_VMD1=}f^j)u$b@uwC4|Ew=iAVADFzd!K(*=XD;;4eKMji96) zjfGIQ84pbU<-EQVp9f;9V=i*DflB{kE>t~6L9eY`&_6k#YQydi+OuTnZaHc+&u^yO zpEXQzS6`1eSuWl0QZ}Diw>Qr|K+*>Ur@x8fu9P>`GeWuPUl{lu?vBfgYyely2Cvs~ zOSO=y73Nmg`NK{$wuj($HtzN1N=tQnm8Z9=>F7kq29~dLa_xfVJ_Vg49Sw~=DjkJ} zmRcMgjYC9C*A|Yai;9V8$8?4XLuOPt1w^+@rTibt8~{eL9!F!nC%5Ev16THpoOxH4 zx4!xbjMOcMu~B$bfL#pv&>K^AS?a+s9z!(HCAZ^RxLg-szl>|EK0a%5JTjxPsPS7KoW^Xd4(C_ zB~N#H>PqNz04Qm^!YJ198Uyj-k;E;+1MxlOYilMF%o6eU%as7Yw0>H1HMXequnGLy zaf+r;0|j@GCI5>OsK$yjg1JCf1}un0{!PaJgYhvPFsJ$37)Q>yQBMmKIHlNV7(75b$lD31^=yFB)*`($R+xhEs}S1>}i=dEUamQ_=Y@$g^D4j#4M0aSq5zp2$3Lob(p3i%|8wMv~0j^-bb;< z3(ve-e?h^`S_8L{jAu9pD7)+JedIRG=Gjh!02^FGCbh^z+=T`Wud+#f7o^nJZq{zK z6I$u~QE3z(om5L;ljzJ&a&4FF*nv(?ppL-q%wJ^Jh)0eP7Jd`2JNc=xIhM$@lYp0l z@gE@m*l-kF2q*v!Vf3U=7ebi+vSK4P>BKTA6eniL-twJa_w&TG&69mGzKZ>fE1H@` zA0dmjih2^48K*d12tV}VXJ8>4A_pRCWs)Jbs33|5z9{Mw0oPB&D6rs0OjvEx`nQ>QGSkHph8PjjTI(-z3u$ccHchU6MEwx zY+)%Tq;N}D@wynb&~XF)f#7WT=-l`Ie%KGy@AZ2Qx{$>ImQt#TlsOE{v9{uEXhx0% zKOYBDOr-)JC`v2F7@q<<8X&MD5eV0yW0Cg^tbs3g0j^P-g4O32h>BKz8Wu!yN7~Sl zhrP~FrsfY_MIDDyYQSKpIlDF+oVCZzCJ6Fd;~Xq(S5rM_3ofl+rbGB&+JHQ7U+;YV zMS$`*p*oZ7fAJ;>&HMt`r9eCyYZzgGvpk=VuZ+>AP{xcx>ys9Jve_cJr)=80V6^YaSKqp9XbI;Uo|DCqV7#h zzBtZK1*WzXyd{AYrx!Os!Q=tV69uPwCkoU+>cK}bKVr{?oVb2Y^2;z+-xjGl0uCxI zqOli{IAn&3yv|-Hf?Bb*ui$u9w%}#aw%rWHVpIZF#xV*MaUT}>;j>juKeP2@~oAgx!9|>`F=9g}88{!#!|B z7c<2pMHrZyf#wv#_2i>=BPw{R{^JQ~*i%P=@vu0+p-Gq42vUyLOP zsQKeDLu&(e;t)c?VatA!wS62xTATC4Km~kf5bFt#4T740DmuYrZ241z)MZ3Rn{(_W z0+0gd{5T@-2>?DH{TN=j_}=-Mzoq{Se-9%37G*}i>k!E^+yL#u`%sSnYYX_A@k0L6 z)ihGpfk2r_16aTR{H7HC_h0C;=MX{|YI-s1zw`LOhns(V0_m=9VFD8idc=)1w@pKl zp!88`g8kwa_m^>=Y;iyK4ajaMPtY375oi6gFpHVs5sm=}f* zov&sFs8Pf+RsG!p^ORjUvAn#+xLcG)Y72y}!{HP|1fB&M4#j;4 z5qqr~Xt(vfU~Tzt`HAQ~XN^=?v%5_fObp+H#)m|MNSiq|7?4bDgBrxJJ;4a=FXk zEf{x>nlyTj0H!u9lrl~?OopBtpX{;T{!rgQ+fO*37dE#SHjIde$G5x3x0ciU#@WO5 zQ}g?$T9BAjpX6%{&%eD;>4&OrN2+h*x+q*ZU%|Z}5>>th=g=Uk^M$o$(>*M+`uu@0 z;Usvu=7L#JGELG^Qc==4IdNn;*>28)Y+Uy@VD0XdFQ?-Ga4K)bdR4O6G~%&e94Vdx zmX8>tS|@H#R3B$DKw)<_<*ZB|7wV^k9G8Lr^ae1O=w?Ihf`%7hx4)lCZ*454o+h+) zO!F-iLKarRBw!en-eQ#P#V7Ep4K5aE$kVp_Qiah4qj1_f)0EAzzbBs8V1vM>%^H*~ zSS)Z+CDw4PV}Sv>e96KkN$n2~ZRM`Km9*nm&sjE+Lq(X0R{Zi&o1&EydzCwUTQ--l zW%gmsm2-^MCrl_$=S)1DlNCMfw8m|nS|hHBI6wubX@%`0&Mz9H#|Ed5>rUqjk=I{# z-_;KGG71Vi9vgfPz6qTtNG4D53>QU+GrMI%pI9^|i>R~>Biz1=aJcs18|U8e=yYR4 z$qi;Cu$dpxbkZE-;U(nWDb})?yRK&cq}Ge1Rp5seE~~x1ek%kqsI{`6Qy|C{F@VMc z+JxKz_zEldwnjePG9~yVpBL&g!)0EOlBVdNwBML$1a>hgwPt3hQRULn#<2zzKOknP zU!?a>MqFj)jm+X;-c<~#)s=%&JWF;ar^Iu(!DtNfTMaToHi7aYYv`xE*OgnyVg2EG z%wg<04%6Z#j#z0bJ6`$=dkKNG>Ibf(n`#~Dp8b-52AbN58lD{|7HE4+NFS#dPZ2>8 zfAQ#kIfk8*k_T?`4t!`U7_``z%x(;tElZZJ*{%)Cs$?8+$v}CyI0)_G5k5yYQP^=8N)THVl;t=j$)# zn0eP9e6Wd7IZ!V=U3vpPEFqt_FLa>MF-lr~kFmugw1z+>ie@8(Dw`C~m`-$UkX-dA zBu=0B{@l@D|6kDP0yY5~*#q17(fQc9?lY6UQ_H#we13DtjnJNmo=A9Kmoh~8^!HcV zvJ63l0=m{)J0??+$b=3h3y-Yjm|g%48q5KDs5 zu&H+FS=>QgQ18#QLwO8d!o6RlxIwfgtRs7b4g}^)Qr0(>xhiNU#HYXknYS(fpNJlD zJinjSJj=FQ`{OwmSQ??sdpI@F!tXQk9^`BRo;yt7Ll=l&*dheLyP+9W(>2C#1E=CQ z>qgLupa&4&0KRf}7;k8c5GS;3!B<|3U*CO2{PSP`yD-vMre5z5o{7mUlhSq|JPZ$S z?h?V=IUHa?U%)5aTzX=~qSX`2!*tC}Ui=}{UruE#loM?&wP7vkh;o>6DN2yyU0ex? zzZSq8jzfBSV^j#2&wgh4r-1S~dCP?aomA`@i`vWRb~d>^tza%W9TNl#)CGaOY|OEe zX5(YRDG99%C3SzifKyxdA?76050Nu7XHaj}(6XJ7n1n_(xNBMqL-=~{*p_Zz3n!9dd zBnv@H@8}3U?hnvq&sDP5JcXWCU4Q96M%Li?Y)iUYKx$o?bXpa4O64`IT#zu1&sf`m z{<0HJkE}1i*b}OzshDZ{tFF0Nx|U*4r?IJleCg;V|Cd9cbd@TAyUq5Z+78Qfchg}9 z{35|g+}{&kR{SrwcEYs$DPcG`IFgELf#&FD6yM`<;dYr?ce%rA9XGX4LtOi*+-#ge z`;o5Zm)m9Q6I9FXFglj)Qbr_|atnV5-;d{L?jPxSfWZ|}@|bMK{J({8K_j54*cil` zNY_d~8r*Txpf*o`I-`%i!;+|VvixkZ^pa5?n+c4Rg*(XkM%`5Vn=P3K<+S3^q{P4@ znzZ3*llcRPhSZvb5#B@yM^yVxa*;v*>?;Kf=74iBGwy?zT@%_8!*rlz{O zs&TJXIUg1lhqkCXH)@G}qi(`>0{B8-4{i4>3vxf7%r4WpdK^ujNi0{iT*lXHeQ(=e zBsW**7VRLSUXm_I5EmF)EY~Xv1M-fa5FIVIp!mSF`InnKkWyoK330u(I7?`|LncJ% z4C1jt;Q}&2Hd*)!1bD0uV3myIe*CU6MFPr|e42oBv@9al4`LL6b?plOi9BrUAtrliBd9>;b1j3E*w@?&~vqyw;N<(dEavBF8ZKb+MMoe z^!|Lr`uXE@dPBK5cBcfB?B2px7=>nGIYVd8w!cj@!YvNKip zW^A%ibK3X>9jCe1+v=MQ^x1H-wF{{T=_0awk@w-lewvrgv(yyPuB|G~NA2NiMY1BrDBM7jinf!<>4aWlN^U z>LsGZU-Thx`DFO0eN892SVGXT6!k%XHpK)7{E4$aaV1zYYKjTs(ngYblzWb%V;01{ zg^;&~0ThOukbxxzUN&0;LMo>4zQMK6Fia9eyK&K!> zbT_KA@1fpbYaXXCD{H-c~CxsiMN#PFc=tT5&f#p2*2j!DA}nKs#>CUH7R z9Z1`N);_c04ht`rD{8x;1^35tSxg=|)G-Ir=M#!~dS-ry58&+MlOSK=3BBa9csK(q zdiG-0VwqV(v(bYYcO|FFI)eu*ko-gj9TobWNk*oWX%>o8Vj@j-sZbkp1}LtuMtb%u znee8HSDd{PAwc6K6Xvb$nOd%jj37ck`-&2AIOrIqJb-DEf{3ANn7J%_sYJ;f_1mSr zEZAw*Gqo)skl=(nf@2(UxM1sCe{U@v;RBZY&q=zzzD{kq0+s(Hctqws<~DdR8<({m z{UOY3_ih*W-Pu`kDXqlx*~5yBj*9DZLcnkhNlhlLwx=tHDzB@ikL1m=YmJ3=pe|mH zg;mFt_FLC_vdN@fadH%d))mn4&n3Fv*vxx?rf~#d~dt*Z4YZbSp=~@+XZ7uXiUQ>x72U@M~pV=9xNOB&#k{ zy*o&M$<@~8+Tk-^*;GZ#T?MAc66@hsq08Pj1MN*kY`K2~AZ2Vt}m)M)F%EerI6YmG~SlJ3KAFtmLY)N5Dd-)HfQPvw@mZwr-@{%CmO9>0{qwaDjn!Z5%Se1H{55@=X}bCRoA(Jm$xrx?3) z3rN$mq%H43@8c$qZp{vWfucFQeivpFAk8I?VE$7i{3mXJMNo|2a-BqyAXhpHzoHaImhRO6K& zKd7HaLi6ZYDXZUlhtIOh(EXdWJ-5r~xBro466();8nS|=ZRQc3(`GxWhJYL=`b(9` z)XR#+$;Qf56l%aEbMlAexP^3M51_C!uhb*(cj7|-7mu-leAhYPh^0~O zv_20!1dc;m=Blf&jsqQo^%P|ABnq3=bfAs{Ib=G0&Bv5slOY0)E3)}9zI%nk0J{;l zWqQL+bD(1#X=R$#cH8PasV7>*oV5hF#r@KRiJ|gJ$84)FXIitBBXv|rNPpO$#7Z+{ zRL49E4+3~C_*|bdVE86|f7t4m#~#uooXX#z@dOU7trmpNo3YTOUVR)qKfRdJ2I^0{ zp0m3|>}^PG>O0J!a=)#LzD zgIIa0C;mV*lNX(5Xj9g?0L%>$Wxiywe4zp`nN8f2&^lRS^RD=PlAzw-0_*QiDcvBz zF?%h;+YlSMfx=IYBl7wGOc&ePZA}7eC>jBdmFD!0sWz%7H8_EJ%VrI@dt+VeLjux~ z@fXpBOtOiYmv&IYdc40Av>$$5Rb5YW7EDn!!E``6FeP>5mdI{?^{`p}Haa5}uvo0m z3w7bzjQY-a9qg(HGKjs1MI>rtEpDOy;WK(VT30o~z3!?NEfOa~#ZjD7Z^b}DO|#o7 zw~yNn<3`V|5#G*_wRjk{3v9gI`{}KPkhwk?yUp)hEG(I+J^qvE)*1@--^E<6%qM)- zuGv3tu-=Pr#cDZsNf)za|82r_OzzeT$k{2f^@Ap#Wsw)ax8VfdO6gw#_Nu9&< zx4W5K7i-!HCU6`7Mc%|dcwO5|YiJxBmX~J~i@d+j7>c|YN=o?fI+RaQI=a^{XQ*pe zt)3d=36aOSP7Q-hE>W__oR(p-HX@(pJbrFl4HJ;GB02MeYE_+K%b+8t3~A!yp14b2 z-|MH*H$T+xza@#x7!Ha^UXS(}Ee>9|42O1}bxXBZ8nP$M3}0ag(hJ6#lYm_jNFqB# zjKRvX53`!7!VnFd4E+s#q~UfRk2njd8p-x{&H8%1t--12x_lNibz=Mwep;RHe$(i3 zx;D}r4aA-2Dl~q3ZNrY;8+7EW>gh5tH9EU6UX2%mEN~nw{2A%}I+s-&o2B}EI*VY! zzK8i*KHE5BnlGHET3|xZkba~266pf{WznE_W%}#Tc!SUP#Sb?`fG-gBfHXvIQ8Wl} z3MF+%YK`R7K4_K)kq1@C9kHq-eOYzitkUp%gvJ@MJaADKC$QizF>kf^|8ZeDm-Vwgs4_=`XMV1& zrYt&ykz;^eykM^I=02&$*>B?1&&8_ThX_|z6SHE^L^&WS!fZY;S(wlce6fS**DU#S z!O!HJcBp6Ip=GV%h&qZH1rbW9w`TcPAz;j`cXV^j(sl^BSI`*Q~RHGl5y$hRwI<9;c*^~ zX2&e05`X9jrw5GC&$|usX(aSs2J-8dO(Jhxhlz&$bzHr&@*uNdyh(XIzJOY+V6Hwz z@}Hv)n>bItbaGto*o{@QRJl^LdP#66)wcHZo=3TsOgqOT-m3mDj={`|$zjAPQKF2c zL=i?54Gt4-i4F_gWOeDs=sBHgi9P;GZK ztE#Fhw|dm3EL9J0Xmoav{F%H-uyRjq1xhizYUy_aB&hV67zNTHLANRb)=GCNa)>wYc@tpDf zb)512(^6ecIPC^EZ-;tyb^u>ZinItGGvU5XSfs9J>mr~GbKL0moRaqPFHP?ZKpT8LAQee&pC1N3p#!Z?7io|_|ah|d*EmdJB&BsP^!x6xzx z0ni$w#nb#B*_q{b*7$AK)%pfdae4Nz9QG&|vc0_0gkxw=n!wsb)N))>D{-}82eVc2 zkX^BD9N-I^E)!><(Wu?6!0qzX>HUaHGBRMe(=8yu2H*2W6zZA{&dWYD8oDTR=?nBI z&SU3lGH~_yqYkk50oePZCH&3W8cXIxPms<8lL~I3qI-mxKj7!jJl7uto~*?&psD&r z&p1WR&P4u$_!;WH3{pEuw18wVK~er|5wgefj9@qGlx@9i*KjTWG4ceZz};EcW-qp1j2p$Y2*a%y z{LV48L}#R?B8X{anNElu54Yk2vLdVLgYByLH8&39)BuuQML!NM6S6;=-Tb=N z=#)>}bUcyBtVWnP3P_MAMKC0K{$uJhmZO#38&XRiRo9BjdUM!Ay@aBAL;e)^tIaIX z`n$(Ba<&pa6TB{c8$y0>SI`^5G)S}0>)YWRldHE`cG@-P{g4jF0G%^cIYy#EJQ*N%fG8s> zA+iB4ADjnx&lmit9V&P;2q3ix?JG;mTWA$Zk=Tg|+e~Z)Jb3n* zu&|A~ia~t9UVw0cEO14cBn^#Yo;P+z=f_S0+}wt>kF-Jjl=}P0$RePT@#+d)Iqb2d zPwb9TU?tCPbVlVZ?2ZzI@qMrNbJtbbt#^4}e!Q=!f<^b&2L`XS8eBNCOm@L7ONCeq z!r-Ov_96uq#~H@1uF@T9EPW2tC=m81R$m4*b%JlvI1pB&jTRQZp;ACNTYVZ(vJg1i zljnxL-4237uS9L!1r*l4g6+RT*LqsLnAE#Bkx|wKASUfwPlS=eQ7^=~P!)*C}{ zHyTe_e>_{aU(PKIIE)YIt`g%2*T(P^h@fS+Y-2 zG(H;AAE3KM1JJG#@xMAAJ-aO)jn|WP84pG8q0#ayUwigme-vu1&8<4jfLm{5$aZvr za_c#+C(;-rR4BC)8I{v(t(1Cdx~jtPl%fr+{#2-b%J(M7pXR$y)O8?LE4Jp-Q9(>P zSpF46(9<0Ir!fDS1gW+>=uWFp-^o5x)qoe<&GYe*SAHP%>)avxlT82;2;=1Gl<&7H z0Gvq(Z9~iNn3w~va1km87{+zVw)OgY5Tu-lJ)E5U(@s9l)vATqnzUeNe)SyqN&qd0 zV4C&yXE=NSd(!T%`h9l5`YO;8=JoK6E4sV4u3td*2H8s5e;wW%C}ogaJjC785ACX6 zAX=X|M<%Hh`8Y64CW*i3nnT=qZ!QO4gKFb(5Dz2~kcj|a5vm4X7AtB4XO!DzV90i=J)kXGvZ%t*@HkN;v2 z`BvR04C`-SvNOmj?!@~)^;?F}FL&Ho_sRXWOD7@Sg2n)G=oH>`J@p>>ej#3euVFkS zyT>b}YfcM5I&s{q_!e}NrehY2n`^o|7u_3RshiX8zYjHN#Kq9_;m8T>Ms1I0I8+dGcz&pCIJdJ$p+QA{|ESo- z!)!jPK)V;WDbW=d>zju=!F#4SVRniV9BpU|Dk^$wi|8K~#ZL$ZoT0iIUWsD-}({xzho z+vh@hRb_imOyD(H(X@)pWb%i}B7MFq zKjlLbKUd|MhVUHr+ctp!Yx19#qcog2j$)%&iMG8eoSnE)U8<~KsE{$^Sg5c1!-2-! znnPPMmfQSrwjj8HP^lnuQ4UR9%z>KfOIY)WE<+L&1SaY5gxh5D_8OVcwUMTSa6x}^ z&TtX2Nw{3IGleW$Sc^B*>ZWvjd+WVW7fzze)$)%Eo{AO^+tNnq-}#6>-flwUBBZor z8`*nNm}SKTZC#@E=d~Jhv+ZD7hB#nJGoWl%KN)QPBDl4~C<3LH|LV6xeOD%OI=26C zCWv*ZIdLgh!;_>lnH(X0#3hK|m4D&HJ46|M-gTfb-k!--10&qGJpuuT+v|8VCp>&jZ; zZ3e4c!{<5J9?ZgqkE7mZXLKLX+N1a-biZ0QTSI@xWUrJk$OCoI@RPJhp$zDcuORt2 zAK^S)_{Wh#y0ABlw9}t#wlPT2;Ja|}p)G$D$~=VcP@E_>K?Fu-lhY!INK24okcL$V zF-+W1D!$aEAeXAWdCR6ro|DnGzHn2dK)AK505pZQVk&@U&RTA373ZdG0-&c zxc^xBG~Y2WHDA(87aq$cIBOVoc=U~!XweGUJC)}Nxk^F>2;Nn3ZPF5cDGEmR zJqgXD{9vvcyMnLgNc;EP_^n}UTw>45b(MaLTa%^AS9uTXvedZ64(ModQ2yq;-{R+O z;_aw$@Lo)>#^!2OQPHW8FzWJvi;&>qiNjcZyb=Q>gOJY zpE-sZf8E$8n1Bou-rMtwxN|cnMVC^S{`{SS{`ZpHXHK{f$(YqB+aq~@kBi!y3ni-! znN$$FBo~Eb+_G)!I*%6jA>|J3OdU60uro!6%c4ckvcwJ_iIc05SWxua7^H9>38H@r zKbRjANDr!iy$C%!C}r{AqjUP!r&9t7knQOx^LWRmq|poe!L0Q zY}>3ZiIo}9Hkn2781zR(b>~+ z)gRlriGYyfyv$L_mieP3GMaOl`fawcXXOxP24Z;iU9@^~)Iv0EUF={Jsa1}7*dbc8 zmBK;Msw|R3xJ@Epu-!ZYaPjFU#_jS>eMmyj3W5W$PuslWu89>1$8D={wlXDE4Zu(p z5p)iW5~pLQbzr1NN^bZIqY*9)5vqzN@WOOe@|8FYs z=AY%adEH2zpHh)pxkf|Cy6;+pS^&L*d?nTd53Fnq3=-!)@E}Q)iz{&Rr20ht|o*zFyE2UYj0Ro8A!EEt$WF z6<+>uA=GjD+reVC40o4Jae#V|hUW#>=Zj+&}Rk50Hg_A4d==O4l13 zGGX|nmt9%7;{LSwZ}=_HhTNi;uAb(Fg@l2L)T&~jJ;D5KmlxfGkyYL%LW`@jGuv~_ zBt3MUZZmYqgNG zH0MLa1<)zblk^MWN%PD2n{bzKYQ1m$ZhK~H(M;(X&AVLKumhBnQ?(}x9TBiL#auv| zFOW4Gm8U*XM?Q%&gNb>t15z}Z60mx2V-o6pGiZZNAC)uL_+gO^K-Kt+5((}0;aDSp zgvdI&8rTSc3E=Whk%jPt*_~2bo=l zbOJ#I3Ur&GycyLsMiU%-P-rH~n8)=I1YvDx@rBXWkZ`;S=+ApXQ^+aL1nI1cEOb+t zTj!kglNMOV)i6P%-|xhs8yq4WGel5IvAw^;WZE8`cRBfh=1o7YgHnh1BN)=+zLy6oW-kIE#QrY` z+`7vS6UJFGXpWR^z2g(sgd?xT2vEs>Kj}J5gAB4!ZOb7eDpL_Z99hz>W<=NxASo|koMZY z!>x}EeB5lE4{ma9c&ujq=VGz3Ew9>MVQ<}wuzbH={JEWy!C#98DN}_7C#p=%X*b!| z_y5p-O_}5~Z!}l!2 z6OYd4;V7cAVF%aH@rLI#wYFhf_Q%FXcYmUzqV!k6tM@IkC8P<1x=SxxCkXz!DZI7a z_kgb7^HiO-_Wb(J*t=>r%&6PTTDhU5F{HYDf-yo~b92im0(I^P3^zfIL;VZ5hah5F zI#GX8{dFT;NHI0m5c_IY`N+5J2X+?PWdvQ6`u*{hLadtQId2Gg=zU1Fg*WdX zUxqPPf$dqT$MwL9^77_UA)h=7Wp6jV%FK8P`Qf5!`$b-aM$4tB#QdB*yL$Pd3LMma zb75r8c0X<+dI@{S#iCndy=VW@7hE;^yDnCddAI9II5hH*t` z0QZ0!k!M~J7FY`|Lp(wTSizzQk6>rn%uKMHqG2@r?R?-759e0_JZ;`$w&ZFimh475 zJ?&NK0Ct`O+sh7K!w-!#E0En{;`xRm78;r9vW^NxdKFHnJp6+ELB4={0tAnPGbkcB zkP%~@FFjsq$8(RPk%gin+;a@p1un}Hm&F0+Gkms3sLlgCZkJH#=fxf_r(0-Gd%cnp zx7Wjn;Vq93*+P9}(0NwCa-cgS6?b)))h+Xj$ziBoZTVzYTdUvTncX7{9vuJ}I745B6! zEH?a3q!>1)ni#C8YrkoK0Xi8-!$%}5=PVcjB4VzX7~*%_;{An0b7Cir*n!-L#+3$1 zQnXmn@#WTc1!~m(64LAWNK5m07}9AwJWh^&QD+3KAa+%)VPQDB*5;Ef`AIV0lBGYz zT&4ug^4q4JaAMn0g*GD`HY$;|W7ZsYtnfHdpr(g?_ifYFWKQT1R|zlrVoipI3KRMq z6r1N5SI!<51hHgvGU+*?m`pzsd&0&5f)E#W$ud&6fCAb*g)NDz)ChcZU4dm=+b&PN zK29I2+ixb?^Q&}RdCL{%7n5$*-mkB!ym%P787tu@+=($}eX<9^Jc`i<`{!*ThkQuvUMJ%=meXiw_7z-=eB z&MHx!$&SSy<|30C$@3Ff6?}C%1EG&}%Gw%naW`U< zG6)s^azJRC=e|d1KT4j{rVx8SUv`5{N;NGLgLG^l&E(SN<3XsfnpAyMrNMoOz!c;Iw3=!b!Gf~fQeQK1@m?$Hr5)_8-pBb=Cw zwG4hpddld==5kXP<@Nb@uf%b)>~%do{l3p4q^=asz1qvn=qm3hbb7yW z(0@Q?;zp-mpbOxHoKhVy+d7WSxJV2I>57S~il>~B7Z(cKxpc00<@~p-O;X}8x8sKx zA?l^`!KG83)L~Z8XuMt?St0^BUJCZ0(5DP4dvy(5OZ*coq$!jo>ljivPK~2YhmX&5 zkN{{ih7qHI+n6B*wM6(fZ}^gvt!ocIvqSA1o{-uI`?qW?iD}F#;(dH-7*@2*s6oGzWGkzf}YM zr=woVrgTb|ds`y$kA29S(IkkdbSC|K)^TJ+rq^`1muJF8^KH2#W@?cf`3zjFnm=X$!GbKkdkF5@qNh3{A04M#Zz9-dUir~! zl}~+@g|mFF7OGJ=1~qOfQP2rgsSd+GSSM?=m^=s>3q-ck2wxuf-+Fee+TS})S9G*ZoFdq6sgr|fd=P-vbIW{kFnV`OKMA@vcDC7F?EkE5dQQZoyYCz`Z-_k3% zK@FXXx%J;+nppCw|6%W)gL7-vcHcNNwr$(CZQHhOd&V|rGGk-Lwr$(a$@}iLK2_~q z``c%qzs{;uXLP#n(fy1oPi2fJef9ktT>~c3(p;P&e7sLMGMd1_n$z`8n7a5xVg2YF zI5<`~haeyg%_B8?7zlVSCy!MOj~b7348RZ&NSvoG1w~Q}>z71Gh~7N${Ns=|tYc8e z4FI|G8+o7d+E@ND8FFb;en+{5(t3eh8@rMJK*`{fI#{qj&-WIPV8ewpIn?%tVFooZ z1uVZuf62h}uF5fTFzdh=d~SUsUjlAsodNIm@ttJvn?5rm72ZK$0EP#njO@fAM-1gd zk7MtMW@no;%<^r*2Nx0)*1SC_r=u#fHFrq02whj2_ql{Zhn#!~^FnTSTKfyEwK7w6C@C7nA61VSgyCLCU%X*c*EK!Q?A&vB1O5Tf`b%_b=%mkS0lSu#$U zlTuma1;hptiu+GAh~-$WgN+sxD?>d|KY4ag5_y!&>D6g%XN=W~c!X#^{)(^rqF`yD zBV=;MiayG*I_$}>aASM2GSG;}Ner&`ey5VK2Y1%J5ll=&=JZ16Sf}GG)=>d@`x1UY z!Jg@swLigdzW_Ac00Ra5>ES1z+Mdk(sr_9%{UHiH6}S-G=% zrZDrH*y#6dMOGfg#pH{@p)gr{+t$iJ<8B4&(l+f_cq7rRYu{$k%!871Kp^p<9rJ=u z^J4K(OkWryn8SYI1xRgg^ngz3_IW_8-_`4zqlM-V0A)lA-%JS+2B48cCwqZ4^$?te z<~{>o2RtTiZU>m4TlMGdee5ca2d}MUYH#BGs=k>IE6yLhmX{&Y>r;!2wjOq9#fgK` zOuC4crE}>kN;SpC%xw}^b3IpSfa_+Wkv)6jDBW8#@aKo^m(}N*#R5&AV`>^7ISxna z<==#-izwWKS9FLk+EL35Z64gq#vuWIzVQ1n8EN|fXNR%CeTIGW@}xY!FGZqPDMQi} zbjeQ%Z3|8L4Bjudi&l}^$rt5z2w>QC#EMB}CDY|DwE696Lkj%i?|Ah1gJf2E*?@CM z&fR{3VD|ElTC?Y=O!lTa-G+MVh4TtNIU)hCeor>Ex}PD@`@%y5P~mD38-vu0^(bq7 z+#GrMTuV>zJj5BhGV^wVoJeJ|w=lLRs>AaJ`@F|qGh^tKI3^o97xW)`POil4HLeRV zm1>X!{H~|umc;JvFY$B^19o(OWIII;@*kwt36{M=FNw(zi02{PHQKP0^%Ul0(xhqx znWd>~FukmH`0RXMqiRR^w$QYtdYL#_nP1r^W`4~UCr@fq8>_2}1G??krxY?UPNuJ1 zi6NLr?Vxk9S36E?hkiTJFqKOUE>G*O2Kk|kPS`lP6XOF@W`{$cSLv;k4hs#9% zX-1}-d^cdZJvn)d2n|ygQ2EqkSQ;Tuj3@yM=RM8|F39=|$Oy5(m}bFTa*Sr+gJczUQ9v7dg&Rt1>@Wl z@62w22eV3A53n8vF)-Hi7jHtAEPx-|B)$s}-0n)(qLlm*5>QJDS8 z?YWIc%|*09t_o>>m~*972btt9HM#36uVZIdVe$zGU#5j|A3Ae*AQvS}P;sM;%K9P` z3&n;cjNCD!gA$xJBU=_F&l&Ztb~ky3gsjZQN(KFF)>T4Sbk$-sY2^ely{p zAE~DJzDAvD-gEBpqpV(N&vAH5AUn@)VY?|E{}5!W1-A@P)Gb{-#=FVh#?Lyj=@o)w zAud=77nl=_kTk>t(ilgg*1fmVh?fll<3(xNTvi)_$y6R!WJHKkR#lh`dJ6G6R3+ue z9l5neZ#BO9LXv#CTMT(MI?vDFV0NCfka;}Qe45;pW zX=mwZdY3$>4&~%BHQMWRz7RT-Mq1@_V(2HDqwM=mG`hMw%}q>>o{WI5hjX+$5>u%C zsLGAgc!YJGZol6M}JE~xB!~RSfmMw9QL(P}!o zqoB4_E-cW7(H5#f76R?>b6=KBhKg7bb{n|ckTu+XUV5IT{J>Q^=X{D&`P9+sZa*mJ zSg40VIB_tsIN_$}v9YTaX|-}aOn)lag#{Zut~EQq?BUJU{;T?SK<~=OH)R5MIrRlw zDF7(G*j_r1tNIuI*7R4uT%W-~Mz)pj^Kn^w` zOq67WL)CFyc9o>w*|64|xZ~$M1-mDHx*EPG@-R6v*98EA*9;iuz*+ceZk@=*5%@Yd zG=7TsBe+>9{lwTGB8zkMNG;Cs(QUJX3km@gyiJAb-S%|sw>q+Uh5Bt&Y$mKOuI7r0 zz;=oKP_Ve}iK9y$hTep)?u+pVKBuFbRL0J8e<(Am_IFbxy@C08>2!sGyAIAEg+yO? z%GdTEAp}XMKw_jxr-8Z73BEYWx9x2uj}9`Va4Npj#Oc#>EC#ov8__azza&<*NKL$S zrUV-Ao~3LUW|iNj-IUMi3-e>a%3G_|PHQr!V98SI#|lfyQk=8;s->!|xZ3v^U9EOA z`dM6d)ag+zU|GdVKubmX^@;147I3ADSLtMRa@)GHr5eQoxs_amU>xO=r4pA~i_Bli z0?y3>AAt)$-Ba(df6{`}T2o(TJpaCbq}{HgW|&3L57i-QIR+BJYSKU&@F$I2l2PVc zMP`#=tqgk|?FGq=0X;0!5U@25>=_BBO#H4{w82`Jkm76wgHNX9vStE-dWo`)OdW@J=QFx~cZM{@?bzVk}O`ScobV4d8Z^NJ<@>FneE0x24}x3f!Zi%_HWKI&XXkKG6$n32 zH0S!ArsmPM7hju3gF~+FSJeUzqjH2QvW62=2BoT-Mv(HaYBp~f4 z9*WQgzSp-P?U`Xh#m;gLSZrM4I8z3p-nOkQN?Xsy`i;kPTwjYX_R3O}C5G4yTQCL8 zo?;@A^o-$=28vYFss7F@{)%1vqkQ+_`9e(m=YCHST9ocbYOeJbZ|EfXCKcER6xf;= zu;roDPVPq{&lN1Qy7zf(?@lpQ=IQC~C>#u*hwMr}*7_T|pOJa9*1|CRVI)GJqCj;) zpc=npFbph2PPmUc?k)QwLLjo-=%H@uiuU^af@0?s2b6$Ddc~j&II$#W{5<=Dz{*sl zC&k&zLrpa5>*=yvtsx&iI~fOP%_SMA z4^BegDPM*UoT9@IxiSoI{dh}FcXa~o7foyvbo*uuuZqkI-(^rt`yAyto+%^lwSS{I8Vt{d+gs%#seIM7 zAF$?QIG@)``L>;gx~F~-s@9mI?{HYV(0O81U4m=)yp%5uNvWnDTQ1AFtuejSF1tc* zGk($1o{HaW*jWP@4;;d94G@J!J4Kj4>nSoQ$h(%EPi zMsoJk6lbNJPVZqO0zfuHGzhQlwnwVzYm{FAkHP-e+BZ{tG`{lhQ*Tjrmp(ug%|u&; z{X{M64!bCB4rU46{Y>2KxLbWW`2{GCNb?7ddx-<)ySi43m9N6>2Q&QD%U_mP8vc6~ z)$LdHUvZm~R2C07Zb}!C&J1qTCWT8hOj$;r-e2+iv~?cK6U!EC*q`Hm@;0R zntx+;?k;({y)J#8Hr#Umn5M)qF8tO{nNW=~XN~|_%`!&akbPw(G#-$Zbl!G~#Or`L z-T4x(Nllyto~D{HCDjsE_^n~nPnk|p$V$Z!p?@hFWQ|;QJvofpOs&P=P{Jho2j&AI zF+dAMlZLeLk2O;`W9{xTW%q)loxBeFXFX?Ntiw>E5Mxf_LiX6f_M_W#iT-o17njc- zkbIZdtr-w5cY3nx9qQ2Fv_U#z4ZTE>d5?thE7;)Eg4?bF&ogA`ys4eq= z+6nhC2HT%eMVbOXjV);lMlyh5>L;9+navWV=ec9RyyfKz-7rOA=C*mGOeDabNZH~w zH5Roq_k)9^g+eN2O%$qVD z2f(~+F55mfwOdU`h}_?Kl9glAubNk>*mr-7KkkL7gnruM&umsR^H-ZW+u6J8t zPS9~L4X%h%L;6Vm+}$9)j)dOb*eHIsvM-vBaG*7ZTT{cJ?Sd7Znm(<57U~^)mM)FYI^igZlgQx&>zgY)Rmrf8Nh5ZM|)W^~E((tl^#U z-GqqYVsfZdhUd=dJPORFd25>^>55-UbOBA1W$`F??cKKXb)V9`soGpImF9k~c1gaf z&PdIY7{GT=2I-N#rX1(z1_b))hGEWsm(|2>)Hb;56|^L=W1wz27Ch=k%I4R@(18^ww4$r85*^Q% zh$g#kgCsdD9k;FaOrD+6TTb9xN}`(l223<*GUVVoE*t_yGdq6pgq})H?cWHEn4P z$C#=edWN%(Yfest4l!-A#Bc}7trKPaUd&^!-MH!efgxN)~dM`d$dbW3LM#gOepU!;hM?Y50g&Mc)`q| zh<(=zPZN(8NEq6{=lLT9OGXf0%DDNZiNU=sK+A~)W+gd?aTLC4jy`hSK%E zD1ag(4ji>YOOB##E3S7;D0sy?L<&5wdZ!u7P4H0iy#~0f7)?2}SHj^tx^W`lt2`-* zwm;-x+E9+itsWuQ`z80v)#3xmBMFz<7qc^H8A+m*xqa1YZ)Bv7T`*KRz%2M)l=5`C zBs3u-vmj{Xip5SMCkDMmq>9Vqlea3nXhFXjsba3>A`qqsQRKghm|V%gD! zPG1i?BtwL5>L)Yct(4~qA9Gj+u)jZ9X=R}`1;cdXVT$8G81>mOVsuG55hoEsVCObTgNcRsh7)HX$J=8nUgW2~>D6nl8s$^A>9P zi{bCXz-x=ER=lomN4C$+^68hEF`)Bob^_L+HNGBHfpa=+ zql?EtZJ81_X1cg7XFyV&f8-ZtuqjEuw{oFLERL|v;n@;)!YaySxi83I>SSa}#{zHA z`L%n@n$bLfTP@~wdV5F>jgWuMobk6V7_Y3{ivQY7O7VHF0VA8uQOt-#Ptr0rFuz}+6lhwO`O{`&1v5c2gFrGf%|^sU zAv&To&z>q@IiFY{vTkfe)x}w}cGa;;C7^9!vvzWFy)Dzn+qdaGC4psAeRtbX8T?@rIgp6B`b%gVmb0&~URx8DNEf5*dsizDAtv%j!l> zR!tjH;d)=-7+%?}gJkw3G#8H#JpMO&ig$2wBLuI4$Uq&donY zAC0!{bIIK4<%lI+WYagw_UgoPC);)Ok=GhKXT6yP_+2zH;;H*kp@oBtO2rlv@8Jh` zDOZ{{*q`$$zpq^Sv%RuXopw3C%HGEx3@>-q+3qf<-fG`k-?!+Vg?C{6$3(gcu2A?i z-i=3Y68DN@PUIh7Zs$<+ZgVytbq~}keRV#3Cz4m~7J0Pste>g2o|?LMzOHcWzw3#`WEA2HW{z^jyNxaM9~Zf`Ovf1mpN1ri*OxzjF87)XtfuuLHB0K5$eFc5=& zC9)oTkM#fHySo*AoohmNwowQd+8yDbyjOo`O)8>vOVcwGd zJd6;lC0?#P>40^TBvh<7&VG5Xg>47c0 z-R0#jK`#{TcsJ^LwOgzMXfR_}X&(%cJA&slBWb)N>lU@dH*ZPEa<_|P6v*2pFalSEWz5l*KAny~_>#J82B?l3MwMzQ%NhU%_B$Km<1kAO1D zoKEf=gpyCB9lW6&hIwZYKOc~BJF^H`YS8x76zZM$qbmB4@tCt$N3gY9Ar;X9y-{b& zV9K?H6G$zAmDGufJpfxXWeZ*FK_~Q|(dVlUbNcI273iGAwe-iR=1$N9vzX*%vCnWt zIDT1nGzelSe|?x2N9V9K=w)yPw3;!Pq@R-t__G89{LImC@>lxyqTty0fpL^RHgu5` zR}OD6O6HvCW1dLn$>4~7b`B45o~ECWo%udz16J9-nzAr3`j1?z&N`6PSOtJNC$nHXxTsbX;@jd84$2j~aOLz9#C zWVx?NuvEq^f*9-)vqY&@6J8^dhm0fzE2M+6B-62m zx@LSTN6ti@WYi@mzq0X*&|iG`2&;oQUwpwo8}=8 zSY<$LhI(#unTFKQqCw1b-wUJZFw$c3TUisfA)ilVyZR*g*Nu)}MWT8QV5@cM8}pUS zx?0`-aHVmq{ChB*7%~QSNOE^*a^*PJX*i@KA!I|s@uX1X%PgYOkNcFEQE z3}kx*3q<9d_k~+}y_zMB_R?kq^L`94zXUDHb5ay|0vh_=<6NZYiZ^rVzc)h;s?`?v zvtZ6QW!p-z(W>~!O|{HFv7fMJC-!6FvG_3aRCEI2l+!wn^gAOdX-T9=&QnTn^n6|AQFItUylp zy`V*3n$wT5%dq7S`^$ruW0VbeC-`3Et)R{L1vUV+TCNPA4nO0cvHTrsd-T~AKI(;% z8hpW_dGDRvjZmYTVFwDY79T$0aOTdB4wCKiq7BBHrfl*JctXsN_*roLT?SR%P#&i9 zu=sF3@ssW+B9P`2fRj{XVh2p4N@cO+K5u}E+AjIfkAy4~FD`vA0P?b9TfpT+%SzC_ z$vnd+^pZ8HW6_T7ctRA_X(eq5Sd=Q1LAX6{JI!KA8}PUoG(v5&vnFmo=9F5|{dC@! zV-m6Y;parzLPh1(m=~s8ID);67d?N_)S@}L5DfKYgxu#pFrKQM8M{EAk{diIY@Avs z{95(OX6=vz<(?FA8fe)V+a!)(>IUj?_0rtfiN*K{0(7Z_(m;#!<4?uU*w{1z7f-3 z^dr{42uOdmGJa!~SpT;Q(>E>YyL^xG7qp3)jTxVV{+p~s|BWAF|Le$r&&tOB4Rd1n zCNO>1S-+V|Y%Jdx8m4cO65DqSJ3cc9J3iYtt>&*jHu~>a7KZQ9SiXT#tlwv_u>2ME zO=M#Ei?PJ=&1vHJo7lwq7t`r)?$Y0!Cq|a<$nP=#n&6UD zt@Zc!Z=L@!*FUd><^OxV|I3X3ocaIO@$X;b-;YuMcy{`Wo%PRWr~d^ViIMfcFsb5Y zEc@x9L!Nj;QsxG>$EO9+2;>#P>W<-Lya0w&8AC-`BkPARsM-x6QI_$$pCZgon!GND z$)>Nct>Yj>dIz1MXNabXqU03ub|y))MV6&7mu*1^mKWh&Q*d_j~=_ zB)e;c9-05_R9+NcEunWih)T+rmjH$pLVGgYER6qX(;u3QxSVrEKAgH~6$y4ak?S_F zwr>$ON`R3mJC&>mcqLpQCw`LKDmQ3Q>s$G7r@OrCE2g>p;Bk8KYL<63N#QmDClQa` zhOo1WBrv7S#Y2*^ll`AOY5w(w_@`R`0WS3y1@wOfmty5$_;+BgK4f1X#+7a02d4*KooOB5OK&K78dmTZy93K(rLPd#cD=6?$bE_i0u2d42UjO zZDLIJ@?b2Sw?3RcS>O>dEJU!iYxcfP-4sNuQyRAy(pX%_z~i9$>}SPk4n}}|orhg# zCT+!;+Cq)qSM})(@HbbAv_rb=H3QeoX2Qx&hA7yF-t!k3e#j={f^pBjn!a_jnVhiq zpO!|ROjn9$x|f>zMmQ2tJPd4A6NZ*wyMf*eQib?1*GiBB70Th@S@SAsV8 zfB0o>Es3Tz!9Gm7_>GMhK$T$c^+dwGHflVJDw?Ts`OWj824%sE65#1FN&q%No(=h9 z#lgGokjMmO9;RzxB>`XVjqEnVa$X zjai(Y)Zoy%-1Y(&uCzuN-E+9#d!Q}+9uJ*C1(`O=yHPFkGG%W@fPcv|&Be&C0tTD< zWxbv~N8d!xBy8nl!4r+-Q|}8;{Jz(ji-`{XjUGqDRF|R4)CsnZj81cVYse|BeX_Dj z6gljo%Uz>Ed5u&iTK1>5^F{+nu)%2NZL!f@N|Ga^g|PL@Ebf8E`FUbbYHdFgAx z=<`k+19WZc*LW7LiAOjY3~i{Tz=%KuZIsX~n+`_`tyjen-esiF_uiSOrMWj|TqH+= z#O$g(g1MLCqvo8a9Jrh%Q!@lkJE?or4$y;(s=%s1sm6Uv%>`vWH7%u!stRZ2Ds6?X zjw(IgJs?P}3`bIU|>00CLV;7zJ zI*hx5QXBL5xICyeiK41oy9%4-NPA-uLTRT4nhApt3k*hpBK z^tbgDKG6qTL@n|gSi9YMi7&nCjXJaqULy|8<}N4i8&*TH5cb-PRrA1N^732JV`c1q ze(go!5Nmt?gp(O1j#yn?dP$ry?R3C>v@w6|ltOp`(vKEa19U3VKmU%C_|gR9Csq1Z>WR zUd<16UE%8_VhLj!GiZCSBjc5W(x0-7^-JGbeXp8>xVnXbIrvOzqQ11^RpQrntRi*- z<a!+K`)E_b|a*t+ARIT)9#8j>HV4_(q)|s+cWoQ@~#6+-g zTm3%6G~e?7hNsize{#)V34DOfr{;J4c%Yv@%Et|SWu6zy=LLE&CZt zQ=2||5u1+>`GJvRxdj}Z)t57B(}?TAAnr>zNGaZW_=P<5oU&p=BggDGG`(W&3O1xBq*U7v7k3t+wzMAko|r=~#O-ls0VvLYLYEGq73+K4nKXVDXQ z|0ovVF6{$M08ExvsjktME7^XOEnys4$(KXfShS?#2!K0L(xA_Rsd#Uo!|=O#IYBYA z%yYM=bK`2p%Bvw{>%a><4SB`)PM5YHLWivg!UQ&l@?7%yUCN*8ZO8dQBfrGu ztixjIjjddVvO>%a{ncfhjSKo5ufE;UAx&+%Wo4Qs(3^?mo^9&qU+Cw&9XCg{ll@a>NA4fsSl+G%u$ z?gnD#Siks**0iSE!vT6w`V*2us}`?Py)PF$Ks#oq(X=h2=ajSNqI_Lq*j)h?6_kW`NK0*fajMJ*1pKYmbWK8UI<4cf=K2 zapooiTsmHu<6xbV`?4kAs_C;lwJ0H_$OFC#_<1di`(r`oG)==g+F}^1> zPf%gCA3sy4 z$K)sT_~1G6#!nODXQS5~$TlI0;jTil_yNLh#I*~^u9cqQeIblrIDRhOXuNB^i@oF0 z;5njJ`&WjKEloVwx3>^nj;#l+FSQ)?5XCvv*w;AO1x6pWJP8ak^M*|wq21wlll{bb zcX|KeN9LEtH}mSRDmM-HDNSdM5JjQfY~93cl~62eX^S570hpvb%& z_MY1N%lj_z*axHI&1)S7m5g%G><^ahAsRr6xM7?W+B*fLTeLmd{kG%p`I_l4Z^%=| zY|-}Tv-qv^!?|F$83Jt9jo92hu9>@I2?IFakgKE8XR?Xn6x9;BOM*`g1Lb41O)y!y zYq&HYK@?rP%{VxRGyDRU4j3Q*EwL{EF0q#6W9C=x)v%|Y044(;Tr>Wv?A?^@kHevt z!jd5Guou=2AZm3(-oC9EOnF{!tmMMt?K9J7S7N*%?3b9}EvT8PK0pIE8hGDO8NNQf zFuQUMxwPuBt^d+UO3O-R_B%e5=dm zoUtO?E)^>rJUk0oEDO?BuCfHmi**v{Sp|h56VBDYTT9yD_X4%cLW)hs9E@~qy8Hpj zhfD3A_X{_AX9q)H8Q&BQZ0kYo7`C2mKgHng0{kckmOmGwR#q$y()5gwN^Ml$UqMOc zQr5GeeO){c2S6uU%6W*KW(F5tKtr&Wip`W4lXs&^zBAY2>Ab_u$v;7DWm>`olo& z1e*(B&A>YIc&;b6TG{|#uC26GgmkxcnUk46W%7h;wV3~EwM(?(RNd_`V_N6e*P{(aGCCOW8AN6j^T?Kij4~8Lgba8Nqg-!P4;kYLd;j>Tmp& zV#gh8Q#Q+?vJ6e>A}cfFC%ts9XHbvytI%{f<5NF!JK!_Z#fv?gWkFqCx5?W>Lx{&b z%Uc~Pkc6-1cV0XhDS1EY>=Yd}H9YlWvHybby`63EG_Vo!w@3G*4^eti0I%diO3G@4 zi!Uy2&TX2tEtTGdNp9BdVr=qcGD{a$Kz#l&CxL!wuZa= zb+IUK@*zgTf~D##ch6!yp!TKf(0ZAnp%!|Okzwh3y*j$!vIOI6qE%K(X6}NDT4eL> zd(M1`f2%IH@GP9LMDbEYT|8g&daG{I5h`6;(z2}1_5HPIDJUW(xHi-@fARjj@y0g) zGqszw;UrGh9p4acDyNb6$Bbeur96tTEsrJ8*)IXOc1kJLDre=)EDmy>dSed}6&V{H zA59Abp}mU3#RXI-Su0BoBh)K$>P{lE(rJlZlUfp+g!+ta7S>;uwh~rl+O>5BE)SSd zL2_f#J967r+k_ftl3KogrVE5(MRknzJM7I!#q8xLd9r%!ViSXeK+i@@{gx{s5f1d4 zT@+k!E2#ycRkNXkq^8`4F{FrW9{ucNf2dzTTPWC?V~0YPwao_wEvkF&#+*F(aMNCP zu*}SS!@(_^*NHYfI(8OjP^=VDl|ebX?<)_7ysp%z4pRJnw^jeJ(`2}Vy{wyjM|?t^ z=ulVdJa9RhBi-tvo8*2S9Ov5;MfY{rbMXA!_K8#Fp~#R*t>IPZyegM|$5G%f&%>>)G= zwre=o5NDrdXZv2~YeT+d9E}3yN96fa$;RI7Q&{J)5oigwD5}1?C6K_oC#R=OMfjJz z23}joS!2%Zjp#*%aA9{D7mFquwPD*j6R5*qXmW;A6ij}jMw(7HMOglEC33Y$_0n|R zeOs?v%7(s5VKNfz zrax^z>tVIzn+B@-fL5&-d?OkQxW`gm*caZp&j+`em90Ef! zdKgA_Ped?06u^ zX<*b5XY^rAZ>t?j_(a=%covNXu;M&NsFQdY<`p_AgY5tZT`I{P;^KjaojhYAUKv(m z2#eG2X`&K;Q2rOI@3|L}WCv8fZw;Ys#d`p4L9~TH3;HOTH@3C*MeUxVjL1|>bztDfl z8YZqDQ`{ey|6G{o>$7J-vWv7q*}+d63R6MYkGKjd zMFE`Gn+M(xA;!Zy+Fe4=R9=y5u?b#7e}fZoP7M1R0qIOCWK4Xn&})$V<0vKKb=|TD zW{!7-iTE^;gn~3LP$4m05oi|w8pn)3rDrjkr|lPBFQ_!gCcHhcT(G*Z(#I)&V^=IG zI8Wr^P0$gjKxc;VO%K#ZU6{2Hw1q(@QgmE z;bj>%LE{{1(7FnLE&$FX^Gp0-o}MZGc{$c6$!HXOHtM7*F^wlmV^D*|O7pr&n)DxH zq94M`vi2K1i6z4c3Zz!}#2$qGf|q4mbYf`)#?uq=Ilq)+iZD)B+rv$NL_r(^nBMP> z7|5#vI|?gt6V~I*j7})%XDtgo#KF#b|DdpszYt9i3RX{^?s4^?KTT~wb+D3yl6hI` z6%}@aQCVPdXpqFAq0sDEhIC{p5Jwbg@aQAjXt3aS1=Qf3Op66OVV87 zu)e;OmWL1%BH&XX7br)3ndkpa^*Z=i$M3C8ACZd7mX$BAL+Z!Fe|R{+v)i zlqXDhUPL7Lf)a;K+@Mb=&0GKsOem8!jaUW3Wl!o}nDav&Ayzqr7)2$@4j>XUl>C~+ zft7k-E`{w+CuXoyk+ufGC?Fey1a`Lj1DUzPChGgl2B#V4?53PL< zypiSpbMQXaePyCs^&>ISLX<;h#mtX=dG?F&G>{>(Hz6k$$mZznvRGN@f@!9?(w2xq z<$Qd_gis)HLErfx!fCJsv`x&8Tmiy$pvrt^pav9*Vc{Fsp~fs2WUom*$UN4}(xk_S zUrQL1CBiAjqBu)=561HsuBPPUEk49o-DyT*bOn~`T;jzN+e%24=~*Vh7uSVZ3Y6T7 zY(N1aM?G61)2D;cK2i6Y1#3F{J6bJAj35?V{jT;HR0||C#c7i3Ri!MpxgI(Wb?&Ta z>n8qPIB$!2V2o@TtjW1j8MCp^p&OsaBTmEwq8{ue%2P3fKgYKg@EjN>>C~EQ)pn_# zSrr0k>44xOlb}@S=?wuAfg4WzJp65wexZnOGgodE5R)mi=B0eg zyiLs0pdWaag!&J0%5jEq+Ocu4<+{L=N|^|f!xbPlXiIJ-SKnpdPd>t=OhIWP73NG3 zik#Hb(czI;s(p2!gzSR0r>SK3G{x(g^So2|dNoEHi6yi>Yu+srhGO{%5AqVRX4y1T z3cbWnmh3tN8OjBRx~Vs3a_lKCMQzgEo6i=s@dab@SfrA425FsVxcLR+We`TG)Y&I%Wlt zFT@i3LZG=jntx%WxU*yFx|~g8o^+6iW3KVN)s>jaA2ZIxf=KATr5!l0ICTbh=1WSv z!~q+^)!`FH`)t|YENa)?Eh1=Qy!3?l_H2&*19yu zdu0;N{jx_ z)&X0XfF~Q|G((JM3_IB+v>w4H*-0~Gn5}~&8-{cnUY*wVHuef)M$$djsyFZNY*F=} zhhi{|_>Oa@`M(^-x>Zw$uiL@$lwqFg$I4Z71#Ld-LqwVqe@+ndgu%?NgkPd<7Fkow zotMpcR}Lf?KgBMSKy)|%gg8xM?r`R%b@e|G zWd6c@G5jei2C|KscM+UMP#n40dsJOLJEcIjK~~|#Gg3EMr0#n96l&bbb#xGt#Ym80 z2Ls1a27mchCVg%zXc)CInO5?Xf?eHfU%{z-QA2Rn73G5l81fOEco6Jbe z@7&WMC+R?AP~9NRT{2*`QONLMIjSgo&ib2fpVyRZX{ z@d=f*Jb+2xt6b%+-i@R$013e(y~g`=6|~{k5$2&(*en`MUn)>-z6mN&Z{W|A)co6gbLl=J`G z*Tw$NTfyJHE*5(FzkNxJTKH_tZ2#4W#PRR3jBMWqrvG4fVgJiV^Uqt#zZ*E%8NQqU zR|XCSc1HStcW`_gv)GycvxDQ@2g+S}q49e4EsM$N(8qMxi!_}n-Pm6mUv9X5WF$!p z1SmK@0t8Xe9pd%}`LkgaA!k=7>WrtzsY^?H|9zs=-S z{e?3?L`$_tXPP%7rL(c+#a#H(>V6n>5WGgls4F}<)zIP}9m9eF&vrA9? zp&U8@R)fvV?k20T*L~1KzCv%#(=jVARu>02NF9JFx4Ijh)yAeH`GvX-fG2M-`c{XJ zwoRD??Bxi@kdvCN<$7PaFK|DAG#A94EO6^;Pyat}TVooAmG70u$N_)gHgR(Mj?b2I z-{;WevNZ?-*wO02WO4x&eHMnT%aXREO1oMF0~sWssh{c*-+16bB&hPlQCa}`#Rq*c z?AK%VVd43aFOedD1DgGG{DK)P7eX$R7*Yazhe*Tb0MVjd6!o8Gtdt#W+CNVXQ4>2% zB=kW!QS%ojM9^l=wfCPuMs%qqn5kn>KEe8p{z(V0V|Lxsd~%E%q_ZV&H^o=z*M)}p zmEd{Lu>3i7%m?cbE`+@cAI9EK0PD~KKfF0S-R%kONB3j$i^C}9?=C+Q_;BcmaK!#S z(|?Qn4=4TS>ZeD~7kbK9<9nd0RJ|NHHK10{Y^SM0W7%L@JAZH8y!`>S^pI+BTM+l98D8GmU=IAk|tmYQ>m2 z+%vn!=_kK!P;;%4s!ulM)tziEZ^S{Tj{3BVtUxKHk;2{!XT^GX`N)wKWm)SxkPJyh zd9($hM0N0}M5|+vnrhs<*8#mn?po;kuZKX>e!J(^)JZgl}$aSaW+$|5CO zc`Q0D49nxHp~F|{K~6iJI0r@AdkmT3jCiG_&a*dhN0b@#jCJ` zUuHz|t>>ZDCYE>WO`)EpLr7^qD-+vnuM|-_8Y?Dh%K5VwV=5|@9yHl*DOs^vG%m+@ zklVgLyw1vYd!)N*EETXOpF#fSJ@-9t)|KhnH6C4|X1y%4T63tL9|^%!R2`wlg1m@d z06%KVrh53z4Bx~0n|8wX9Gb;&sW}fJ^Kfh#YXjF@X~gwh(Ui%cK60{VXst(*Q*Er` zkJgzEhUP|uR1&J9!KSL5pJqlKpCiyL=DxgC=2D?5S7$)ArMlh!gaE->>M~rBRjQ$`GbEL>a#mjzvL&w^`YWIZc!&RVeo0rXM3*i76&TC>WX#o2 zKFX_pznYW7Ttr`oYl>s6((+R#06@6nLo0K%JVP&~WlKwa1 zo~XQOzPD*^dz;)4>Wta8spY&}R9-qJi*f3>x;D;9V;psIniQRK(U>yJw3$^t8$UYD zsh5TIB6_7(LgYqO>YN@;14fVM@2nJ#oMyE&a<*D*m}jN$uyHT8dL}NGv~<=XN1?XQOKzOor;r=x zx3}$=@N~JcrLCV5TGv?{=*vP`+kP333ayl~QdY<^GRr^{LDTe8QPX$sR{(;Vl-CNh ze0P|DRwj;?5$F!nXqgo4$ftFr;JM!&=A#m2RGY^#FAxq&94SrEQXBrcI9Yq8?iUWghsnlyT7qF9KA{|W~uhkhTk_8ywU#g zl#X^9S`=zWfApy7tmD`?Fl%)Mv=(qAyR?xI?QrVGJHc|cmt+>?Fid)9_R-mXjS`K9 zW_lZzp$0=dbf@5AdE{jQrsZXuhB^Me91RmV7j4UW)YVRPO~5~<(#7T+!o6M2Hh8&Kc^bn`Ja(q3!R{^`BAz!hy1iI1 z6AR?FrBMsAgF3`+PTgHtjafO?lX|KDye2Uw5DZb+5Sxw~Y?eC%awoNVL0$Vnxs>gV?ysO8{f~(5>J!*Y6Mjl58^V?K#hC*KS zAsk|MBPwI_K2_(N!3ciV`@LN~>}I!|UF>?IR}LJmW*yd=v%%{LpbE{_Y>9@$jkc5} z-63{w?CA8PCF~(bNG=QEhVPKrpUvuS?ZmhyOLC*EEp?X@b7+JaEEm9rqKbxWrik^m zk566e@9WTKpDoco>-TXJp;|F zpjSCrZQMmIv121ze+H}S99^(zH7p5?9sua?ec9y3=5r(ABGu6}?_wt!c2Zx<_8JqH z%O08u>EP!4Tn9DR>GWjz>!#J ztC_^f7=rV(RK|22;!}tR5qVg`Wnj64={Ce5;!}tR5sx9_iyEd(DkH8#+>LmGNw{>* z)i1lHn(o=I%=$pvBN#Dewz1m+=R=8hd{CP3PogHJ6oiWCdR2Zhe=>L2odXx`W8a?U&mkCu+ z#AWtp7ohv4^jEHOhv~Zmvfuq+O+I}MR7CbR{~GrE8pw#vh@FV*5p~GDj@;`IM7#s> zK|~c1y$n+cQKl~Ct{)t-B_PzCwQn$!PH-^aYK+OrO{2 zOZ2B2{W;PMq%YFv`!n27V?sG#9SNy~G!Nwh{qaDS!yT!y(}QR`H>P=r)rfNtmmuDb zsG|pIX8$s`0~=B`m_G2Mtnu!WIhPQ* z#zrqkD_xFOx*V-^Iq>vy_Q2;n8{7B$b8^sP_bL8~Iqo3dZJr^)c_jD)66_(tYe?`~ z609V_#U$t_K^F;Tkf1_>2S_QJB1n|M^Ri`13JJbQf=`fOFA4fcFq;IkNKhsvN|<{3 zXB26qK_de-Y||nAP8CKU8}*oLX zaQi%m6`#Xpcn*#u^0+|Hp&LDijXZ}9*f6a|T!MHA@f2bNQHR=@IPlxG)P`vuVm0Ct z#BGSD5OvycP9aiQ7aQVJ+Q8VL^I`*^gUHk8@X5r-Lp@5mbwBZ!(xe{hhNh*m`pJB6m>BWJPw>_f zJXxWsrB*HVH-+_)d1{HjN!2%B+}20PZ2>G*>5cg6($W?t5mvO_$-ZLQ4}{pa-|A#^ z!uDGO0Z2)@tU9IIQDrY{tpA3jGnV?#Ldto3dab&%X?|P(l*b-RuMMb$8Xt)u-=zK< z`zmHX`3pJSP`{u2nUO%-ey)oArC}Z`=c?)hfu=BN)$~9ne?~oYoj+@OBA(Jr4`eYT zs&`*hFB|KlUKS&$XD~pvrk8CnXnH(hdVRfF4fTClS(;9=48598Z?b%@&WqWolbx;U zBn9C`P3Og=Ak$H+G!>T%RWe+f3P}T(rs5)Lno8?gmAshBO=BuIX+3e|td1+HV>vOZ zV>y93{=XM`YW;pPP!Z@}#J9m5kz@G~n&2 zSG&FSa$m)wZxAnH;tFqlA1rEUY3p00^wjrPC>0IfuKK{hwC3WH^ZL4JtgqtcZ)mKU zHCD{}npW}+;u0pF#`-E@eU-4jrYY03zCd&J=C(c&Y6EqPqI7_ojOezVc#p45lGayg zK3w5RxyCt!SC_qD@&{D2w^p?vGSQ@(Ni|G_TZ@UT?7PaCDCL?8k8_CZjfo^IwtH*A zziD&tW=LsRRUiHIB4E*`&CKA@)ZhEJ0A&rT(pBHP37|>Mnct*V5RM#*7EZ>(a#qN3V~VV-l9d?@F~zU1|K=F2W4jDwi@t* zFa)WHX~LtB%KIP%Ao4!q2aJxaihRK2jM6_~)C|WEU@tsDR>2c+5Pm{VW38uPKMVr9 zRn^1&a24DQJMg4z$C8_19zFt=-%U~@gOCS%@T}YeM^JYmTmwUpL{cIj!Zz5>y^6KA zg9S2iGR?3KZY38*Hp3z~&R+*5a1mSz>q#)u7P&2QSL8q7Vc5^T5IF-TNP}*Cjzm5Z zeiivG8ekE85AKEI!t)I&9^kh#EPJS}y2-m2e*nktt*v^$3e1vm!?z3H#WBt=$s=<}E1gK!(FeGVAYzXN_$-4} zXzyLv`djFX`>2^7 z-Oc}y|AoE_XT2EK!maQ)d`cXol*}a;la=HuvV+`7?j=XaG4cVep)K?hdWu`gZQ!2e zYw?-S_wv^XHwZWDJ{V~mIXv>;BcDbJBR9ZY^oMJ4^xuOAaAy1ADEu0q2M7 zk%@;aAXnmZ4Y`&4fb1ndB!k$?G4c-i5D&J$k}oM9+f+xLc$Z=~DlgrLm)5)K{q!h4 z$LOEv=Ug(Ei7&fTxJoX-t;136;O@ZZY3^-4jX%mq(9VUzPGPsOS9o0biEvtH)_)f- z3@?B6(3zYwZ;imnjUzip`bP#MZ$l!kA)Z0_4p)hz@4{y_uJ=y#xToM%Vn*AgksMM* zE<(#JA*;y-vIQ-9J-LrOtd0Fi@(fz(4RQ*{Y@se~%#-O9T1)5PvzYeK4S2V^iw@G) z=@*=yGjTR9k;~zxaUEO_w~5=z?c`MMW$t&}JKQJSSNKGDBk$%jc^~iRr}0bp&HMxW z`~3UDBH<ttY538(Khq;8xNErv z?rFG<7V)Y0R`d$`^AcFb&7$b3bT7G)UQGsRmas)vK`Y2?IL-Ue*3Z-3^b=aa%_2=? zKCGq%(bjYc{9{Ne`R8Dme+K9F3bwpOXC~LsQ#v#B6YX!5lb>?=yq|js-sFxGJ--Kj z!y8F58K#eN&FBTs@>N0`c)0uFNp1tV8lI*N0LCxHThNbZlgBVFw2(sb85hA9;@Rj$ zCEUAk9b7_x1;e~fI5{xrOs$5=PPyPgyfw(a}ui0{Jz@R=hCD;lv2GU*i^ zzIQ-Mb#>a2!o2)~z&OrcWaqdkMTzg194~(8C|Sc9NW;j1uRa~Q`^XWT!(wiLUarl- z1pmh7fM$$*HjtTJEQBMUDVe^B#U`B*mj_=01wm)}$RLUwM?o)E8f}K4fg13pqa<2v z#fG;C$5&FKSnS0l)x6=+6gG4}v#4~&-%+U7&^$644Qoy=ylP#m(G z)QPV23`(e7%CLc$Tq8wBzzk-hKr19i{(>_$#rRLK+(Hz^-J0x^4aBWjEOdcEmLyD# zHXEiXT1hzav0^rxbqfq>?sUm&GKGmU*eV$_1sW^8N*xsHsAMa&_iw`c@dZ`D zS5#h?nv#}6bta?PXfblS#H56zaY>xc$t8P;!-`3Y=<<*xquqm7JT!X_!nLHs*#}aX zD;it_B1uQ4e+{9y1paD2Ev@2D{&@Q} zfla-$uekHb_K`kPcIU$d4YTf9Gy92=mxZCk^oy2`96kK#$jA@73ZIx-(D30SzyCBR zgS{c|!q{%Z6_dDTwq65bjwxzGip+ktEPa%1ru`sBK2c1}SfbTprweE}^3fn;&_6#? zCNR$IU}C{$<_tinXfRnpG*F{S$EaWq!ZrrG9Wmcevu#%O;ah z&^iL$s55EJ0%3FcIPYW4X{swLqm$`~&gPs~2&b|Qs7*|uPLaRNe1rJ~G^Kfld4`Rf z$Y)z}t!>=J{AHFc)*TknLp#^|Opv>Ii_yv;;RLpW_KF`+IEBe4;vG2#{;-OiwGXWZsLY6aQ0ULsPMw*E*K zI)$LXVeH*IV6O=6cF3VPs3ntc4{S`}8C%om3Wko7%Xc12%M!jsU(6;(A$3c)b+Z z7gW@y?baggsgCYgl9W8Pgm~;;JH80mcj2w%;{2r4DR`e04ve%uHPR*wefgI=r#F9} z`|68E{-rOc@F%{MF^=xRIQj(c$`r_?+q5|9ahR;cG1b-XUM{Y6^9D(CS1r|RX%@zR zEtcVsKh_xYC}SFB9O1}21CF#}q^Acm#~0gKK7D+#6r;8nMftA=(tS}m>Ps=od4c3XnoZnN9W1_$2g(~^uj zhh4Img%pD!DLE}QBl*7~ht7%pczUs|lbj5mOm96*JB|E;7zJE;2@si>F&N zeAfGQ;m8MC7}1S}cOCnhFqKVQr(-74b;w!kvw~S%R%Qy-oO!S{W%Te!F`6yWGb80& z&x~js1f90kzv<}kR_u+Qx}%53tmx^{p&cKoCsShQ2Xke1f;h@BK;ZdYS(b;9f!LGF zc33C-g{viWYtnJvmjoC-8#*z`#QfNiQ*CEsDvKRFNlA$bIz65~$>Y4- zWQs?Q*N(;7`Q!EMp`pVsU-9CrvnDLKDDv@77F@b;lBelyvS<6w+4np&k}nL+d134Q zucv2c&E7n+ffQVSOQ}hJW;0h*vUS?Z8_?SuBOh?b(cA5iPRD89ewC5(mTXJ0rQRY; zNtohVNL!5a66U*B&}Bl8p*x||b;$ji@XK+(OMP$LdkLqK|Cst-`U!W$o#b}=(<+lH z)0)!OyYF!8C(|s;Tnmk@mKB!wbnhp9K|Z!hB$2b4BpWzgCcPbu zi7w8RfoeF0^x9#jH)~NQO*<)5Gm4wfaqW%`e*Y}y%xBJV(T)umxsl>^v+^YK^I<&n z5bf-uiE+Avuo&v>;}XMMo?=|XnTXX2Mw1h>gKJEBn|AT^R~I?Tw5yM2iq4zq^Gzvs zOf4!*O2(TsNk}Rx)SNF<$CdUR-uBDQt6#gWb7$Vb8TmgqU-t0cE4S>q;elJed}ue} zLUU`V^@~R8c=^R2KmX>-huN)XJ6=|w=c~X@^qRj_`E>bO)WmneiR|Y zF*t#*FKqEfuRV&LEjRF^;UsnkVyg|zCz5QovCD+0g_hZlX@}3=O0@;hZl))tj*mCu zn@x4~upKY-Wo6pM9;Bb|uxe*x$40zg{s@djXW(?EFgLY-jZV*YdSPMguqsNNisnt$ zGn?vliT3S3s9IHh@#3o5+KR;q8N6@LhUw*xj-OWDx$(?vXv4@5zJKl|ui_hC%CkV} zDZKLi5zTtKPat^`j${}^muHHH>>Y8Ck4W~Du{whD+v^C0Y^}xus=M+m@?JE7xzDklVQ|>!Rsqv0mW;V=uVmtjgT1tlUbj%~hPA zAW12%*)uQOxN+(7#@cJHm|A%0YDdz%R;nwnYQ-mWaeGEu`xUF(+gD$~EzdMsb0$yr zWiE%jw~mzM9XWP{T`%+U@}y%&q$B7G$Q@zqxv1%pyeO4kiRxdV{55^FK!P`u{WI|K zF*+_rlVfyLuD>9EA-zz3VLtnU_DB2UUdt~o&cB-_pB5Dq6=X4Pq@)nxiK2pnB07(y zXVO>!y>3kR%#-=Wg@u|jd4b7B7P0hGrhGT!xSg2fV{YV)qN0N1m?8Hd)5;pV5)<-l zVcwK8(~WIkZkeqEejJQeErNrC~w=mE8yj3?%3a3xbV({ zE55=5`;DT7HQDZlb-9y?b7Pj-B}YjegOX=!Yc;c_1%m8h0DIzJ zvS?QV*_uGw63C1MlHhP;^IQVYIrtr>drb5)6Io#*ttQfdZ#Wi9wxCN8bQU2bkgWnK zwN1Ct&HQ%$f3^1=U`=Fe!;?ZUq7+d<22lYCVL}m50Rsex0>Ol0*N_B=gd`?G#0sb= z_KJcH?5+(gt7}JK#opVxu8U<|3u|Ay{^y)YLQvPc_x{iR_xqkd9+RB%p0}4dGci)> zcCAe4W;DkxRBBsOvo4qgZb7x6Il$D~ZKnyHVr~hIR2LCY=MQD^2f{Q3fUtz7vBPSn zn)rZ=JIWCK&{;ob5$+zXJ-~SZyu%ZOQ`>;<;1CgD;>Yog6~pG#ZzUQ8eP!6`5ucgyTW{Y9($V?g4zpz`$Z?d#wKt5|0{^#59R#$4=N za2J}3i)ANg^DdYrZb`LtbZ~I?F*CEkeV`EADHc!!SWW=vtpk7*AL?2ooA`rQ>riyh z$Q@h`(mW8S(5t{jqN7t=iaS}G-RZ~fT z+EZgQHe)k3WBdEf%<3O$U5w4x{s*=QvjJvmV>32mGd5#0He)k3V>32mGd5%UJI#E8 zvHg#2#l~iA#`d2#3)32mGq(SK8irv#s0T6akIqutqi@jA z(63-vq7m#4x879`lm}3O>Pi@}RTG{Zv}btu|s`pgLzxn_rX!$4)W$hpuRomxA6%_eFp=0MieQT(xP{F;8OyiM}c=Sg0ulG z4vf;ltOUygGdzS{4(RIW!~^X40Cz6Hg9E$@fK!TzKwkv3zEojtgKC#W4M+9yZ4?TPkF z5QGHF0W_he#poT^a-@UB(YzYWK>aE87HpOSu4@1nQm|7Ew7^D?q(nL?gor2T0b)cE z@|=yN%lMDH=X1y&EvP~t$^`n5Av!qb1>mJf0)<|0-dHNqm0B-PFu)6apczvF;Ozgc zpIf4r(bxaC`1+TA&}^k>|_A;6+vdN`Cj7x1D)Qj+p!AbvH-eglw>aTJaDNT;L@G=W;|xiMS^BinLfH+OZJfRw4;<0F(x;!CmQy51lD7c&`p85sI;vu}K<9VHrz!5$G9GqipJo#RiYXb29$ln=u6wvghI(EA-n)gbejPi>!+)wwOUr8+$cpctkK#QUaRP;LN5V|!#EzV(|Wl3*s^fqS; zwO(U7ZvLG*^f&W9?(!LqcpVPhRqxFsz#M5Oo!3ZE&6H{DMYDH*tCs1!@~`U|v|N%t za?}P_2Bf`7FOXzXqid^q0 zLae!-f1c0&0bA%bBt)_+v^7VUKg4Jz7wCqJk>+b0991=$)@QtQJpQ$9F<8f1RCHi% zZv!2PQI(Ok$TMHc_ziq0`%2M19rV|;8{@O=rqliByP?*|d}=7Sj<4pct>&m{u0%Q; zGElx(ASxO9vBbbbVBR7vqz2fUD=f)%I^sp5tyH;sTN>sP(uRIoi>pzT$n-qu;<}|T z{e7((R(MiM!%EZAr<*mAhxC~9AKFn@4dB(FT&o$00S99A4rw;)Wdwi_8PpEVH}Wx= z`Nc>AUB&CsB8v+FMg__^U%$R4um5yarddC_O4h6+!<^D`mm1{?(pKqOxxZd>g@0jD zm0o%^@=`g%PDT+~c?~Q2f9e6c`WAAV>jRrHG z079T$_e7RTLv<()z@?xXN8;dv_e3xrfO1?6hNCeY^#$;W02kcL!TKW_9Dq%LAo&P) z0+@{lpByb5+z|z4QotDYV^J0)=_P_)E{W{!%Yc>ujVG$d^D*`L8fDH{$*TD;Q7ClHdsnxk8h#l;BYcl~SP+YNQG| z6KBh0IA5BXrBUO2iCUr>B@r`m8=E*ux=NCV^OO>KGTaj{%va=UaG4@gD#AqyWxfjT z!6AAg0PhMvf*CkpC{t$PaYDIBA<71`eH2-8JT6zPhLn=Cq-tDdh$lm#!Xu^WGO0)? z!?hFvi~t&##lfPxU$sDxrkj!>12D>D9CJG#jphy;8J)woik%8_a`09|@M(xy&l8n6IVuhMlg zAO!~eL^{{Aqf{xxxgre%hrR;#GTI+$-d=eB4Xw zP1?=?9ANksx1_0|K2;Jm)EhKYGXc0=kEenLdycQxJLR^4q9-#m-LDfh`Nn{}Ukh)vOGE`-YXtuFQg2quJ?+0=N z6-dCYOqCF5M$Eu7R3I{e_lUBDs!Sj=)G^Q%uqfD$E7Czk%Arz(D4Xc~?C(nf84{}1 z3J^KaKg0@AZVs@BkPLdM3~0s+Vr(HTF3_fv3*Lw$u>|G=(hgsR!}Fw?EI4i8ZVauv zLGE?SGAZy=k~YMpA`>d0fPx50$iQVKwE3I^i@{LfCnVWpwVg?F_D+0$oYnhFbr~4a=?rPArLD-+C{vKkcc!o z2W$3Y;QV4K3cMbqiwn~gqa+4Z0pvdzGKe1-WXfhw(Jra8gg~lvNsGu88VIU_Bn3xXFnSXAD5f#*^6mWNuVSJe!XvrSOw@ z0uCS_4bUcX6Jz**3MYY+n9KxJ!5q#>1p{0V$BvIjq}VBddp_bXikCEi&y9^s#^ZSL z(Ht-t$pM_PBjY(FDIio-Je!-qz@ym->{t%k#RFLQ2u#aeS{w&W0eWokH!7LSON3%X z@e-5yV8{Sc@{{#j)3^c-184KO0;rG}J`bRW>I6G@2npDi$RV*nRpTuz0zlw6MZjt1 zC7Q#I2e<@qvmr1OT-PYj83~?Ol77~e;yCEdC}d%h8)Gl`g1POGLJ zpdA9QA831Nn_D~y`lp^g8Sk|l@3kB6wg30;wUf_FjrZICciwL&t!KRFZoKDiyytGb z=l*#%H{N$|dEZ^99pk-swhTPPcQgw zZm~?BsqH(d$$mI^bz-Y>P32Jg&~5C}g7(Eu;k z<>1qSB&ISYs)dJR!T+gL%PQm9n>0Knpr3XA&SQTP8mg&00U*yy>Xm;k==5Sz3V zx~V-iMZmHrTEl_4y=9tEoh6lLY7}yo9bpS6&Fszi5^;_~E@pKkT;PnQy<_vObb}`i zEO){UuG8$Do7a=2ITBxiMwp|-lcLx}$F?@C?nEdN%nA+)31STd!w`cZQCR(taAr+d z!gVWq8k-lz>PmDbN3O|PLU@xkSs=hUg2WzC0g;3+5!0RR8^{8Gx)2_uJT70AM?gM2 zAc`oR4E0Mf!DvO4Rv4JKq!v*q*s_~p;lp{QRs}=-Lue zZk-O@dkULeLyHf3zAR+pQTv`j4MjDQo<5HoG8<-2+;ejGnhEpY3#$GYd2&+9#obKX z7gGu%?aCzQ7}%7zv9U?7gG^Vrw`*LHEa%4iKiWIH&b^2GCyi!&c<5TmkDaF0?#z!d zn|+VF>rU&2cbh)+W4>@-Y2ma+JZ`V}UPdG1%Dq)5oL;*>#srt5`YxDUTV4^pzU#52 zBgWfh#Sb{}Zse9b56_70Mh@=TIO~8#@ik6#!-<&<>uyKPD5o$ZGHO0WuEKV1F<)Af zS-1cFDyQ3JAM~t1aD$?r^(f z{?+#l!x^pHEoqZeStXx!diiGLL9QNjXTqt#!6WeXHGYiJvZ?pGQSWy6RMiIUXhkGL z05^I9(U;&>#8z;MqqNT(L@F6GM`tIdNRi{G%$CAgKkeflwV&RM(2B^2z$cjigy?T- z4#LvJ#Ee3r#}j>sINg|_7WdK;$ji(78Ucyw8<;hOJ><6w9eSV^CC&V^aHK&m@d`}N zu4?r$=lXtp>G9QVeNOakh_LB)dY6CpzU42DANyE7-mWPqWZ;#J)x-9@+_|D#+3r34 zx1PR!hQ79}DsHE@dHDxZ^PPuo9DR{G?B}yTC$F1m&+p;&cC%-%ArGP@0cy*JPq}wr z#QtuZ)@xSgsEPANYz>|}O6nTQ-BRy;Y4?B*gBmku4_0t*-G>(tj zb=m$-&E?nJl-Orf(3Za6vEj+VRrRy3HP*F~{xoTD;Jwrb@BZMar3D{ij*Z#$(esip z%6dWj!XcKdu;XSonkw3apG>FLv8yghj`xe7b^GwLRFy~6i_K?>2Jw;}&f?pxvdjrz zaK$?OiAxDlWJ&=^?7l$~tGi$FdQ4%`{ZA-~)fsBd3M8=!|46FvBD#`6?`F6zmf!+u zCVJQd3=5w}vrsMzCPG*&e*&~XGM6+Or*o~@obrNv$M;=_ zzgJCTynV5H@wC#I-K$RwEAi_Q!0b40^xJV8-HIr?#++!spLRUvVSU-FcXZchQ!GDq zl2<;<46FBazU$@olD?2FdUSiQK~F~>`Bj7Uoqqo3c@Hm-{y6LHmf_RF4*cM@HGT1+`pMOEw_e`n zb0PU%&`+mE&i}3Br$-~RPfRo)rTNvaU);r~SVLU=YO|ob18hEwTh{Q~z}r(^UM_Ft zHhbNj$!%*cA7AN8Ir<@Pz5V=v#qM$bua9(Ig>645I6g`4J*e<;h`iwWzDM>}4|Un7 z0BB?!nQpqkbfd4!@#YkLq|yx1)rrgLlg|tfeefys$l&u0`!?;awO>N;;c{y_$VF>n z2@cDKup%o9J%N|RX9W`eaA;!h;~zi}EPo$S2oabbBoX=shNcJl2Kont_=W^@_xBZp z;+G-x_YVrp5Vc5wadPq9B$Eq8-?a@6?zAgs!|`0|qQ6doU(HYor5a^H;4Z+AffoY@ zhWjMqEawZ zC%5ZqN0J&mc&qx2zS8vi!>I$84nKXA2mgt3`GjgPv^d)G(*>y22SZJzef(xR!)7Kc&$UYUGnD{2%Vz;g^&;#I)LR zW`nC}x7zylbdb~ zL1Nc?=I-&L56c!fCIswC9nQPb=ZBElpO`nQhpmaqJ~sMH^}g&mlVnp>-#u9SZsm>k zmqXu+kL84$-yJupddvRRd&izBOF3=azwcGYvU=qgE?yg~7@icdJ9;j! z!fM9B3H|>(nmJW?eZ`WxhM6Z6v5kkB3!AF{tRiwAjo@y$UplJcfO*}=o-enmgH5-m zo@sY+-^+!^r@A~V7(wBE-=R>w;8Gx zql&^G*Io6kq*G_dy?K0tdWN8ff@xu&Rc|J*ZyoDkQM7V$Q_AR%lycW3^C_4e5!1B$7mt{Ib-u|fw{;xN zX62n+db8)G1(ibTE?1lC_pg?2r=0H8H~G^WliDM=l`g+;0vcIQw9;oB6M_al4D$I` zuP$Nwc5Owc1OF=~>`X1RHNlYrXE36037MM<=Msgp3LI=V7Y*;7>bdxC7yI|!8Z8Bj z2HaUwDOw}^$KA8YE`N(tWuJ<*TjJIIUzpi5B}5Wg6u1PaLlsdK?Ba;Oe_gC!Rso7I zm7{`?Y)}y5h!`T;pdf_&JJ-ZejwllA-@G0My0%+9y>>7yy8Dg$JGbOrKb_w%fl|%X zj2x6>ZNKUC!Lf7pFfX=QH8UrDPa5?^B5t2lc4JKMTWR~Y^)Gj6bfpw;-Z%Q$jI)n= zQvSGgaE_%(!>qVlPXvxPc$?6sX+)Adc@FEg3wB($>>pX1WgVe|CekogiyocgIp{K^Q^&g|$ z4=pXK@l5`{dPG=B=DTgc zoIQ8k@9wHPF4{Rd+2kUdnY4Lf)!NaUc2tz+w!b!is(o%JKmQHp@`^z-yBw-`Jo&i$ z<%b=4$IAcU{`!g{QIuGXZ;&?pCV#Mg@oAR#C)@f#gRdrZsJ!~tZ$$(%#VPxk{pt@y zk=Yoc$Ru4?3T)?|C;z4X=f{A;Y5zzn_9qB3Aie)iKsKKUSfFf#_!B{)WYOr3hAaXO z|LZ4~BI=j5g9>X071Rz8bDN&LRoS^Pw_KHfS7etExcAxj{oPkacIcLUe_+ygdrU*x z)46*m)>?PG5uE*Fo2yn&LXMP~RyBlPqByW3FO=Bii>FRlIJ~oL+Y0Wo`&mQJ-&`u# zZpoOlJn77i=-orE)-h?ho3fst$a&sl zaHZ3Wn7zM-h&Ri{L8I4Ih+6qx=)K_e?O)7nE)C9K%k{ozbFjib@8H6)$M0_Y4777g zNcCDZM)hl(9=o|iuQoMB&6{*>?Dnz69j=8}&m8i532$=yXO(^f?#%7!yEUMH{qFFO z{ug%8!m77#n;$aa{PF_E%f!@q?m=B@L*?R$g1yUHZE5E*`NWI8wBlK>hCMmUKQwdU z)cuFuHC=`|dwqY>(<`LQlF&Zg&y1^{ztzQK{l<((Lbnl(Ufkuwrrqi?uD_h<7;O=+c6FrV| zr>0gl=2z9d&NmOml+`~z;*xfK(yT`bTw?vE**6~zTDk50jjD`WHH!eEr3>QGS|5 zujH>sxXA`KM_rFs9nv3UG z&n4~j8yu)~>yDO~06jm7!q_eA>K8@X@Wi9??LlSDjrzgCB(d?q`lGCK9wmXqK(e^O z8>qaBgo?h!+<)t)4~Sb3wIEpahmv7Lz%YM*ROW^nlsP_;L?jxNxyZj)=DvYnLlmxr z%;WUJ#YEvkqHvyGNlY41IEjeRk)u+a0{+!8ORNy7fn?Ggp(;P+CePyS@GH>zb5CmXI{9f$?UY$ zsG<>c)^lql!sfjQHL1c+W$z8&^MS`M@QmcP70!Jm-0g z&oA$Lo;?usSl(sp-EE#tXKy^W-B#wccu9h7nAJ1$lFM$j{?50a)cc+uv|=YW)bdBm zBR_80dUyM^>yFdt7f>aOslm14^>wiuJoSwY^PD*HOB8g%?HG zCuCS1-jVRKan3{+h2wb6`cZd#cayBH9l}p9u5}f4UtE0ir{}MqIaQW>HlA9$`0O7; zMC{vx%$7|JH_bCWXIh=>=5SCb-1X$=A3M+w-ee!O_4?x%iQl8ee^w4Iy^39~j5#pi z`Qo(}edFxP3f#_O-u2Z>*G6#iItKlCe$}d#W5#rP8@I@9)4N!Yf|n~^AIjd{ck!)< zxue@ZdJtTe@7(v(3xVGo+?++S0UqoSYHI_-cEb zF-fObMf577h`yOhp%8_O{@aD?>$d}&AB|KL*1_bXbz%z|%i8d{3*e%8WW};23|Acq zkLHbZ7D#Q=e|GEM*{R2y?|u;HmIs8MVytG|CBz0>tXZi?$jqqMYubW4eJgVc9(p65C5Is5jF^Spn)>v|7AWIN27 zH8X2w*37JXuRB6-swO*3mXXYIEsqb?>bs>GH-Kn7i0R)KH)=*YOU;GY%-!te@~sT- zqvm=&oY8f0a&{D5Ud3-7yj(&U&~U?z!ZV7vdr630$vpr24?#Zku4w4)`vjs{PIUAh zCPSJ#gP?rus-5T6if?<(jOmmmymQ0mO!7(>doD^9ie_W?J~~`D`e}T*Hbj8aDp_5x3K~i6o zg=sy8Sbkh6nxHHWWl4#1dHof)PD10Hzvur1`0~X_&rWhsOt;Q#7%6%1`;h|R0V=6x zKU0!bwIWM+R;5w!S%=dHS3c$z4R@Qikx6Li4yTHTO4^c%b!a$gf2$j133z&g<-F`O zmM^kxwg4{n@P-I$D)c_8<0QECcNK-5OK`f8+(bth=kKp$mwi&VZDDytwt|BHfI%NUK%i(p;uUD;_I}CW za#_#8AAY=UA8y|o-z#|eiQtG(wqAbf*LS=9cH_>!F5>z7ZnwYhcKg42G1gy_``<+V z``Wd?q`1G;_1Dz(zr5QGct7Po?_@iEwIpzx+aK?1`~7{Mz^k4Aa9`W;yC(mu``XZO z6pUNSz|zRh7z(__5(4?D{;ZIuh3HG=qcbKULn=@ zS?DQF5?y!|PxLubT#Lc$Lf6f^3B=aV(odCVSS}KdSZMYYE*1$mpU9{dF|g?CVLvJ? zTpa7M6q&col1Lsb)AVXR8eSijVmTqO@^NIua;$WCy`67+*tG+@J#0HR$wYAKF^TY{ zfNZkj%*WS1HB5Fe_7xTNJaQ1~Lpq-PAgfoN@9L@_;_hW}N`>$F;(WPd;AhXqf4wjLqdA4$cKtJ}#`Fq#l@q zD@1!ji~L=RgWbw*cgsCrq$HsE*#9w!XKh))se@!C&HVAMta-4T3*<;?9=d=Nb9Q#^ zxUX+NQcIpxCEZU)``mna_vLc-EJ4utPGWd9Z7ox-{fBFNk|q1&4?4!(9nS0LL)c8Kq(R-7#|8$VHNH)`^KoKtxwraHly{sM$Uf!H@owdO*#0O)`L9XG zKVIIEJx!5o$Yi+jI{rl5oOU%oyk7_Py2kW@Hfw`t`Wsr_(8Ye7u7LlWIRX3I1&8r@ z)rG~bCrjW)a7Z@)jXu9ds@7&NVdGWP4=2o?K^j6dR?*hVMS@Z?Td-{@Xky)*sz<0QML1aep5v#COU)KDXXLT5sxd$&k$>bL8SJapG92048dO~?+{ zvR|yX(p!GIu9G)T8LW25D(~SyDFZcqy!#fXIDsHcT0VK ziY=0KpS{IH%s`dhHcK=tg{#^(CaolZyrx+Rr!prL%pMcU&zIu-l}T*cSh5`c_$J#( zDt}?N`|UQh`K-lU##7Hv==CC|-dUfOfnplWTc|I3b5@v35%|-NylLtoT`yB4rTrmX zqwecb8=Kh_yV{>t+obup_M1YusEI`Cj2cozUT{fX=;9T!COzhqMBhf*FFkYlY+B4V z?&a*F541_@uoI&wdqchTv-%TqDm<_7#E<3{=caUO z?o`_Mzfl|V$e4Yt-d1O%V*gWt=f%Kw)y&nTi3KLj~yw z+l;iY9AdixY_?y`<7(G67kKOy#q}gzOWLJ-GXyR6kVfmnMlUVRWj?6VH47gYjYJ01 zs8})sI=S2-phtZCHf7^DI zmc+5yZjE}49y_HpPwto+)UH)Tf{tiZcb80xEVN`Ai*+eQCo=o9=cLpuT07JkL<*#; z3m8$YQf==?i_qc{EK#lZElXol-dML1TlPGx4rVjWtD^0=hpxYUgO@%FQyLX_Iag1n zBuCNlf@l&Qgm*csyAVfBKYju5S8Uv{CvcN_XAA!EL-eNC=1^{yK8&K<@T zx1bf>{;pwt{XZ{4W3G2ROhL<&{cJjVZFyx=;o9KN5OI%O0?tv%qWt?+I|(cQ=)9j0 zcg6Hlewxqj-m0)4E6p9wioUYQo}xG#WrxpXx89?DV5IyWrVxMrS@+1*VWI)DFvaxS zzUwD!*^=#`#V2_vs+oL~VqEN)qmmyHNGwlV2vPe|w%MAkwM%gquc%6xxV(>*@920n zlq8<{<3YDGzf$)Y!4E6y-l z@?~B$%Z{NjqZg4ogR&iX&s=@P; zle0D~xX%?Q0!fT`Syb+ix-*`JNK{^erjGEnKXwYo1mD{(iC?`wC|FHYHXSOuG@KO*yO=kRNno_M+PxNdv3lhJ{u>pCq;CeC?u* zazd8Ux|f*+BYldq;xt?ie6}W0pLCvDC(w|6UwUZg1dnCb&`bI;9`!s&IX(KQfak~f zoZ8~b>g%l>Uh*xSw*hTB#mHMjc9oGM{dt{Pc|jR6k6Xh9-bOYmHBDy1WNrsh7+BZP z-;$UV7LWc=PsAqk+}itDJH-_y-g`SICme~6UaVkia1{KKJES!NH})APD9;JV?jR9) zjrSN54{4tlkxrEqlP=IV(+@-}MwS|IB(}LfcX7!d;j1JR2ouo57~vL4I_NT$39E}q z%vP3s1dqh$#y;UL-Glfw=IcH)q6~Wau>pwE;Dt}J-W5=RvcXQGtXuL*jz{Nb!rgboAOjAK+6O(aI=4^(K>j&aoIQgMz z6?uwb!erl9(~d;veO3F4x*R@RqqSLNLbUFql`#*lpMnD1Y@|LOOQH_yIyx8NBCNC2 zIcTb%v%BZLvpBtTrWLDiWteP@6R~JBl%5%@Kd&^lo5V84)4v|$dBH7#($?toqnfj1 z{D(hkL=b-KJ*sD_zXaRbKEd&`?9lOeS1x?Y?m-DH-%9zda{Mpk& zvhg*;0rI<+hi*Hsncz-8RkIt@eB(rm-Im!Bg|M?n4M8_|`m6OGas);@m&7wTxhkxQkgK@+J_wH5hL1__-5jer63BNsnzy&`nw=ctDd-f~eIewsAD$W?wWbb|4a zwBxFe=)kx){QT)u{h-7Lo!XszB62>pCX$8k2U^*#MzKbie>$z6>ui{y+RD*-A*1e% z$ZEz4>>PFJv(iHiC{sCPD2}si;I^xlMAgXj=RzZi0f&!KVG3NS(aNeCstVY0x$N7i zcFHq~W$bVcIJ-PYTbM4h0*Y|(ZREhYKntYl)v|)zLQ&EknnsaQ5zcjFdRp7Hp+>5` zZnCNL8VjeK!n7_6r?A3_*>0b}#YywC%lzN@y<$%n=B|&&+3mRHD?IzC9oYWkK?}yZ zF_X;g3YU6HStYV+4kC5##;8o9yWaYX+8^Fl!kk2oy$@$UW8l7f4H3v;%6ki0*Nm=a zjrhGTmWk7i=A0aUVMU+EQF6JkB~5dwXGWsSn>2W#LbyZUY`=RI6hBGKu)TIRgZ0&UFuE07yB5Ed)_8T5L?mMNt=8F5Bk z8I>8el0dIqCbNo#3Uel-(p9yLy4OV0-fP)w9MjQjMK(&#Lc4xziEG|#6*g+lO1rUZ z1#7R@-mPg)6HUKfOI?eHy}zzV#^L)q)u!C$ZmGyX&Vsz9T-j^GWAE&tkVh};rF}ME7cl&;4`K3?cxEtL#DAk@{o8zP-sCq_tXOG zw&9voZoV7=Y=VD><+^v2&UW3YRXTqy<}B)-f!d$8*Lr2ES?%0EFApD3wS+w(e&owz z|8qW-`ex@NpHbnx^HwT-3s-^H0Huk~k^90`mc07<^`uJPE$8na(LVNkyc{o}RDD*( z$farH(%RqzS?0q6=Szovkm9xO57)K?PtUixjI~WM#aAtERGfEqOo&_d;{Gt3KqPwi zUdAQut(xu+R}7-8V)>njm+A|*s!_wTDGyG|T-3!)lBj=Kj=O$HQZ}(}W%_NZj;EyT zWcj%01YZC-LHWjRfBBcQo2j)ZV~M#amD4%QM>!|EOspc8C!oM-R`JS(jZ>aMlk3ab z8ZW7&>>dq!SSv3C>lMHC(D@m$@pdCT^*&siU~977gStxeYs~ko9M28&vsBuTPn@M% z5x8Jk?Yd#RQrchLf9lK0^|pZ(g3awTNtOTFTI&1ErxTUpiAbO8siMxNoQ81?Te-oGkRP4g=AhbY_m zM}d~?mk$yd27{Mmb%HKqMeb7vS9%OvYQ=opCbe*x_7%!G{p7*)lYQRCqcpXG5I-%b znZxR<`f0Dc>&itDi|u8|{K|r|vW@gen(mkD%aSwOLxRcC51T#v7INy}JbkFfbEYC; zfh6t0nq;u#(angPY>J5UY>DR-y}AurgNw{-c4M>fLCI#zjwQX&Gq~6AKFy6Vf=s zF~?S+)X-~mM5S9Z`7x@Qm<(P?s%9Omvx!5mz8EF%XCjJA3CYpTO-An(%CX%M5q^io z@t&V_Cs|25tK8Z@k9APB2%Qx8la@8>FF@rmy?q+g9Rp`jq@56U(IB6 zw3K-Jq9z67&Zx*(#=Ehdf9qQn&NXcyJyjqzRc3RurBc9P(u*XYJMQ3syzZ9IAxqx) zJ~YikXS;B$^a6~wGz5KpxKPTC)G-6TRW|i$`4VBPH@7c4thH4qHsX!p6P9WVo3Rm{ zW}R$1<;eM^AcWXi%wjjK_2Y;I{aswJ86AdF?UUvw;`NdV=iwDzOQ%uJtAw!IbDuv< zG1Y$KuA>!RFUh4MzH{YV{0RT8(`yBdiO={QYUvYJB`XY<&2^e|&%K^L8-2pM>6`Ad zc|Hfvtp`e6*riY(kKJtnqm`stp5(oya@^SL$4#`a<lK-wy_*M3?%U#{Ja+{1 z>q%p8eRN*sBZ^%f3vHLJe34Q``f(^T#J@9^?21W*WLvv-^Q+c)YImEWAGg=zHsk75 zKFd&6I4v1mpnOBDr4esl%1~(Wvth_ldOu)Sg}HntDy*E2s?1>d@y`evoh9jx;anwR zspvQ-T#IHOcZrol!kUN&ixrbSocJ-Gm#=lkrObB0Zki_tqRTYlVzWpW}9_q+UWFW4l_5=Unq9uWuc zGPd}KUwKr*AW?s%-lnhFzff-c+uE578>1|)OLTp_3{?R%ZI2mQNvCJtdFL~JgxIGc z8}l+hd{O&w+kz-R(b6kDpNiY)Nvdwd(YMfud)Wyp?1>zZu-8}4acw+!!EsBu?n37< zQ9FYD_!HN(Ob;f~8?N3qGYH@MYr>=~-uqDlTVtmt0YQWh27 zU%yYcrQC;<-Z!c4V)Tj+Avf*eWz zv><`KZh5|M9=+Yw)|R%IN8_z^M(q{eQmt`EHi3-*stxms}%mdteI^v0%z42=q{~ZFI&p+-prV(@#EdPlj9b*-JoT}GoJERXt5D` zwC2_7>0;WoZ?9ed;%uN?_I3w!jCdN0IglvNb^ z;$eX95Uw)h>uRP}^*&OJ%7Vz-!!wci%Sg!r)Nak%6YvJ!hr#)>GKGv2#NF`jn zmE{#8eO(4_^+58SCoY8R@_fNL8*gsrrnd~TDw*AeuW?;-m#HqHz89RidXD>t9gPM@ z<@@d}yQTuElx{!nlcB;Iec^@C#uQyanMmO%zauf>lnb65omUgLFU7o&m?i4?QDEpV zYF1=?{7X_C7RgDIHIUf(&tE1)G4h?^6`83rDYfh|IO#m*!1=k-H^%Ch1Y){l^@Mp! zVqx6pIRE)0(vSp_t2KNdAe`H)~*(%>2RgUF8GD>cggduHFn-l^S$J`>%T1tIFKXF>en9!>qpK}S>7u+xRdw*~m2(ngwXhYv zho2oQjP{tJa_M5>^mBZd+0l8CC=eHv=vaRuX6>R^4FfD8Rt)=;!@2>3~;YF6>x-oNCH#!fO zSOo05*-D~29OlEfI(NUPgkBIR>~`;H+@L^`PtVHwmA7(>7?YPMw#!jlH%Wm7URjL=v zY0aQELhZ{bv|?#`m7KGzuu}w&)On;N@n*hRwEW`5%hlN`dX$i0w)q%B)ghAm#~-fsN*2C z^FU`?j+b3v$MPFbUo-|=D~`K7=wbHoOHxkq^u!7GG0D#}HxAmLf27!uE5LPbW9b^z zG)RBoI0uP&tdtgmsO}3(oMu^`ncH1({6I-WF7nx7shFRykK?E6V#7f3ypjHz`?H)+ zvISS+>)-Bptc)^_+}U(!7>SLWVtQs7ameO8BX>x zM~2IWE(XmbcV`gJrYyL`9lG!bRb%%u%w-B(Uok$N<+Skiu`X)5rqo^LZ#UP8OONrZ zlxk-lr2Dx^OaETJEAGn;kL;9&uEuTCHPRf_2)Ayjz&UZ*1r`Czqo;dRA4zwjMjkIk z#NH&mT;tXz{?S~-Z|PmR-jvWobL$z2mHlZJx;< zw@f38Zae~>lvK9LO{&_c2dx^k@r*n0!*^>apmVD)G$jaowS_K8XAvrKTv&Z_Hr9 za-i(rVfZz=>+CB5flXKI!y-6gCZylj!jwVE0(Fcn~&U$@sc&*Pr6S)LZ(TDz!j^4o zDPF2p_JAP9*iBi-fwx#a_uzapcJ)w+PmzIUlw27-VVSuk9FWAEVcudB__+ecCryw94SV&lS4K?iVcQ&8n%;H-A&vc9m?)i zO&Qs)U4sj53s)QvyW4I_?VeqXSPK&$i;(jwxNrJe>3$yrS)$$Pe0opiS!@Okv(NVq zlU>$>nKvY6cGps(7@1BnbNILvg?(M3{=uC_HyG3w zODlBUqSo+T#=C?Rv($HKIH%dL&s{&2>QIl52y2`rss59PYL1UZ|9+^3k&%JH$-><7 z?}uvs+ByDT!u~gr|9-aOFDdSCb^Tve*Z=mR8ss0g0vQH4x2TD^oq-LvsJV`vfv|xd zPT%04&&M#pkXZPipN@$McT`a5yXxCf>FAQs2C<`Z$&ovIVUG5l@$mR1V9-eT$>;3rBlZWQ1`l7uOZqClj)6?6Hd}D(~%eLDC zu49E<1UI<_xVUMX;%GZ%3)wNPG zv+6oSZ*k>y8pVk?T!QliHeSue%#t|JsJHSlj=toadQP=UVeNr>6Uy{$h_P4V%6n^( zeWmMB4LXJ=9y9tao+RTCuQOz1SrvMsDN=En;5yst`Jf~3GtoUKSCcim;k_%Re&Q#~ z=p^GTEzMfuU9D~8uqVB&8A8Kqrt;^q=S--jMrjDHF7KbsnLb3W%8j%yUBegKE0*rG2Esv+94*mQ*?sCbD2D<_XfdD5qC5C zop1bz)ry-$r>Py@zsF*+EE;4j!Wv)3HU(%8eX5+|{B}ylT7(=YZ$h4>oh&P{%-r~D zcOxz~tXkjtdxIz4H_z)kea=*8Y%gKl$Yd{H&ZkUORDcz>Ai!DYs~x@0dL;>Y%8e8~yD5|M%yHr7i5=YMX?Pw1{P z`A6+w+mV>p?U&Z_DYxt5nD3rC8FE@7oON0bn7J((XrOLcO)n)NL~$EVv)q%$|p z)d=c8Kgo92Gz6u8PW3K{G4&ML?!D>lpB&hcVvB9xHC#ro(>Y1W8ZU1G%PwgMLuM_7yrI?U%;*2I-_HLQDvqLpZ_ULg= ztU0w0F%=i z1muZ1C)7N+t-xZ+lzvXp@6HQTvCVkPgoX$Csj|i}HEN6JMMADgOr3t;uiNpLk&HaH z6nZ2`o^b0+4wQ<7G|4}=+DRu7()8B;Eo18mDUKOl!wc}Bh+5rTVilpxQz(L#I^qwz z{lp8<1?+W9SuOQeR6(P zbLYhVX^&V2=`YNf3xY&VPdT632%ev~G;v~r`Q`nu41<@RJlFVUsEb|2tP)!X>;&Bu zf-#i7(!DR(#npAO%ehOlOA;25DdfN?7J6n%b4qkgWQ}P}o#@3=zo*5g)pbLK!-UK0 zr2S@JIf+|{8#O7uGGlJJDJwyCzy1D1vfVq4WPY!;(X^Jw3yP~ z-27Rs*{3BtJnI!76OV+D@f`$CjXmqFgEvabl{% zs}w!%A6A~!tk%3Cq7y9WTO%a$I?+ovL^tT$y?V(Pa0vxwSLSdzuP&lw*X9p-UN#@r z?o8JC2yyow=0ErI4eztQ^<(rRQAt=N{u8r&RGT`o=8A;ie8|?WSoayJlH^roCk;fqjO? zw@jA%mU=vrk}@a~@-Ec2I6@#V!PX}#Bq8MSZ^;1?1QIeL6ZdaD0Z zGec8+v-YP8r~=d!4ISh7o>iu>sW~q6L}$16`bX zobH&uK%s&on~}*umo*_N;d`O1+V8NRc_jwE;emJ3d0@2j*Xemo?&QYMM6<+f#)QTM zV+9&YMh^wy#%E4z~1} z1@}EKet~W&?{w{LY%qEv8_eB=t}E`^&W-b;AIoW>-`ZXsn?KSn-Le^73nI8MPWu5p zt`l#mZ8*Mt?`{02`1JT&)ic$=cZP*nZ{*&PzL6uODd;b>>^t|2sJ5(@xmK^{TJ4x{ ziO6f=0MSTM%jXqz$yD`$KLQ#=eZ|ni9a&b7a&h&-0g6%{tt%2EVHwI=n#m>X_B|0Q zO)7>9O&B{3VGa3VLPLW5AS~rF?IT)&78`>_BR)NzT*-m%>x42yMzHD|2{(1vJ8xLy zzS+IflT+;?=?hbDa(}rHrV+Z&!ptyzzgf^!*wl=Mi<4{dvaHXWnt5?$=|?gAZ*|_j zjDtp+yeZ|j4PS1-efG{%GPEa7O^i$9Pl&aOvbyc6>Y%ta6ulB1nvtx$uC$#6Rmrz) zn^Frde3T=UrI$6Yl~d)>@-vsT{hBFS@Y*EW0oOJBy4XZFe|9EG{hYd7(SC?oxcaL- zQ?t6>Y~HYnHs{G9-eTmeAac1$sUgXw5(7T|{ z_SE)jdH$5L@`dujD)jE*XOqotMI-%=%W=%nZ9L^xmW!pO>(sMGTsO6-mV*|nJfUmf z7GvXM4<)PKWNU1dxaIbhZVzAax9=0jB-!0l+oEK^Vp1P^^Sq`WR2pH8Fizth7*{-i#a9!U<3)~f8 zbzQp)10=Djt@SA>fOdntsYqS?&QbidHjUD+zfB(K9o!W6(7)GO^@iTrU5}$Y7$+$Eb{yhDcip85o<~cd;>$cac%h zb1~Dy>N5)P^E%yevaqr+u+#Zhz0b#}qmR=yxC7Mw$6#(ohTl-^%=j4LTu@Fl1j@)y z%=^z*k^gfL@IO9AW8fy;JKWrkj*eW8a4wvU5jPY_x40oNZWxRcz~HoXwzSi6;o>-@^l%p3z#q7wTyXAVLcr%c z4{UJy_Id_3{L&_RHaJ_HppT535jx|kb-bd1n`+tPy~996LL>P=pGVz4-ONA|0d?2#~up`K*TL=?Q|^l4E`Nz ze;E7k3J+MV&apH9!Oe7lha7%0yyL%dTiSA)=>N+j0Mt8HIyQFvfI$Bk`H%k|d&}|P z^l+AdXILD|!+-C0ls`g$!RKFUB>bDmf46J?lH&eW*Wc>;OB(n~$bVbc-|G5H8u&}d ze_Pl8hwA#rwl60v$`52h|Edl6|D(1rumo}tN1$@}Pf8f{A4(Wu6I&~D9cLg7Q!ueJ zH(;={u{StwlLItRFP@tH@gJCcr z7zzr*=MRPgjuY_5qF@*>41oZ{kT4K0C^QN<)&4UtXefw3I1~XIi-1DV`1BA^7!-m> z4}c-SFa!i&e+Vc7jn6XziiUylFerRI1DeNzU@!;@L=OfJ~X zAYjiI7UTR? zJR}5UFIXht)cCRi@f0L45)PIZ2?xbVED{0oEiAB0faFC20Tnba3go|7BpQkD3s}Ip z@a+@}9PHxz2Nnf^g78ofEJ&v)C>kU$>KE$MD6oyA zP@p)3MWNAPo-v>}jzwXAAukrZ=4c2gW@FJ%u$=-;7?7<20S2UJG#nKFuxJDlw7zJ- zu<&(&1{MSi1N%7|4YpG>1_81wG!_b`hXv~t1Ky8--2(~Y4+DdP&~T7!K&k@9!=gd!hJ}FkGAtGf0pme2Ala}m&|ZNB z+zrGF7Mycofj|VNhXmy+Siot(^w8ja0WfEfu8sx4*F6@CpGQD}#lg=-0T{^c0T>L1 zNADPhpR)omklh0?(3%4vtAz(96?48xD701W*Lo-qhKTLbX0__{iV;pbsc2o#DR zhmK+R`#u1J;pZg)3`k7=tY-j*faBQ^00TA^5FQYqK`<1)PXlAo2rxYie*OaBVe#Y8 zF$~`ap%5Sq1JQ#)@%JMD4*=rx2ZQ0)8UP*~KXw8z1b!R>V4(aSfT4cD3mShP1n__$ z2I2+e=KvlSJTDxW1%E8Cb%X2$IFtg-0f*t|AW#S#4hPc%stC{=pd1Mpi^Pvj01Sly z(*rgd5Iqb8%pV2~vMV?cIPk|JAozJ56oP=@?*RY|iXVpn7z{iI0!RQsb0EMm0!V%E z@(qCAFZ>*V!q3eBJW%Ziz%cmvBme{LZ^tmOpCch)|3yOaYX~R=2^cxPY(TgI`3#Wj zf%J?-;O`3nJtY3V0Kib-^+2NV_XPkC1CC)x41R6_-~m}CKF=r!IL4xWVfO$lAiDzU zc#vJ8eqr~hU)VjcZGq|i!tPPOuzMix%}} zra<=q29D1_UI*e2jR41IAg=@I56J64@f3{$$7i5)2H6@K1CGx?NCeXZGAw)@0Bt0Y zyg+RV8Vi^jNHz=%?3WlgIEG??9PywwG z7Suxl=wZO|6i7Vr*BnT6@bfMWNppCz7#{m#u ze^3YtWY2)Z;nzLDyl7BtIyNkPI{*{|%KrcuC>{U=G5B^5g+jsfpfET{4j|XV_siqd z5#MJ37%2V$Q-FL1=wgEQ1t?HcpwMQ z#-T7!FBiB-5e~|2f%YlL2ca+|D82wN{2CUZhXVP>aheU%DGVr1LHq&TG!P7n0<9ZR znu6>P=yQSS!NEB{6b=L1GaQ`rL*WQejtRg(`4tpM8NmEu!8QcPg4Y9RNrTo6Fh7tE z5Kyq)1MK1NM?jeZUP}a!6yoa?*xo?;1412WjSxVC2s9QAs(X&x=wNynP&@_P2o&$3 zNFa#e&jIxCKsp7^L_l*OK{Y$zmT<5fNW?GZK>T73BzQfLC{TV1xIQ>eB0;?yfES=S z0+J02UL&A~2a*@a>p=3NfSK{>p}@H<5Qadt&~a!2@dBi4Al(DUT_C#xdU&8%f&$m^ zP!t-!CkQwt1{`-$;JOwHv;;x?p@Gc@UtZv>2xQM_C^$Z&e_lz}M-qiG%PkK(d0Tdmx(x z#cUL?E#R*u00a3d5QRWKgTW#}c{>0D*(nxa8Gqe?bPc~YfB}6Z{2B)a0b=YQ?9|Ri z$Hd&ghLjk%_E_G;#o+jqnOhErvts}z0B$}O2OfZ9KmiIm{w%D{DdPX_++!9f219z&DiA726kp1b?U(Kf&n5FAN~nVCgoMgJdjCyGn} literal 0 HcmV?d00001 diff --git a/index.html b/index.html index affcae4..64cbde7 100644 --- a/index.html +++ b/index.html @@ -26,8 +26,8 @@

      Ofsted ILACS Summary

      Disclaimer: This summary is built from scraped data direct from https://reports.ofsted.gov.uk/ published PDF inspection report files. As a result of the nuances|variance within the inspection report content or pdf encoding, we're noting some problematic data extraction for a small number of LAs*.
      *LA extraction issues: southend-on-sea, [overall, help_and_protection_grade,care_leavers_grade], nottingham,[inspection_framework, inspection_date], redcar and cleveland,[inspection_framework, inspection_date], knowsley,[inspector_name], stoke-on-trent,[inspector_name]
      Feedback on specific problems|inaccuracies|suggestions welcomed.*

      -

      Summary data last updated: 15 07 2024 11:49

      -

      LA inspections last updated: ['2733698_westmorland and furness - 12 july 2024', '80471_halton - 12 july 2024', '80483_leicestershire - 12 july 2024', '80493_ealing - 12 july 2024', '80532_northumberland - 12 july 2024', '80534_nottinghamshire - 12 july 2024', '80535_oldham - 12 july 2024', '80540_reading - 12 july 2024', '80547_rutland - 12 july 2024', '80570_telford & wrekin - 12 july 2024']

      +

      Summary data last updated: 25 07 2024 13:46

      +

      LA inspections last updated: ['80472_hampshire - 23 july 2024', '80487_barnet - 23 july 2024', '80495_greenwich - 16 july 2024', '80512_redbridge - 23 july 2024', '80556_south gloucestershire - 23 july 2024']

      @@ -679,15 +679,15 @@

      Ofsted ILACS Summary

      - + - - + + - + @@ -935,15 +935,15 @@

      Ofsted ILACS Summary

      - + - - - + + + + - @@ -1063,15 +1063,15 @@

      Ofsted ILACS Summary

      - - + + - - - - + + + - + + @@ -1271,15 +1271,15 @@

      Ofsted ILACS Summary

      - + - - + + + + - - @@ -1991,15 +1991,15 @@

      Ofsted ILACS Summary

      - - + + - - - - - - + + + + + + diff --git a/ofsted_childrens_services_overview.xlsx b/ofsted_childrens_services_overview.xlsx index ba45a6a40095518c4a88f0112c430fdfa07d36c7..89d2b17bdd93ffdc4a51808a9bd806131e01ffcc 100644 GIT binary patch delta 40995 zcmXt91z1$i*9I1lZlvLdNG#nQN_R`g(jnb_L0LKkiA5Tuq(Mq*X=!Ps8>Ep2fp7Ky ze9yD9cjoSM@7b9-bIy6+Gn2lF(z=0C0|#ODM!XT0R6s(?`#1<<0F0HAi#kuL3I15r zU>|y&b(ml2%~}5P$epPozN%c@F^vhqeQAK2j8@Lb&&SM}KdN z3rytY+pyjlf4Vo%t-=d2uM|obntSro`{R6Z2=NZ~@eJ{QSf?9TUwOPbd8mIsdi3k^ z_SeklFV5n{Iq~d`(@UfAVw&96pf%PvZq;IS&`Z);)3)A2A3=6cCxdfxo+^v9ES5o;-sx!h)8nD*(`D0>(Zj*{=$(&$$Aj^$dHP)D_+n?@qSWf}<^FN5(9;Z%xL;@5 zA!cgsTBQew-{(FX&)NSi74rBic*Evt^}is#TOPl{bGSPpWMGm-6552aVJu8YklQ7N zCY$>NhU79Sr!pxEc=h@6QoLh)ac}Y}h`AFh>SPNV8g=iA@*;$btxzSJMZG+f>kXXj z7uf{B_@9vk5y5E3bAq#Aog+B_=5l|zYDVp3=kjcB5oi-O$aZnT7Zl2E^lYCw8haV= zIfJ_Po$xq{6D=f`UN67L3i+(PJswVse8%%w9}~rxlR;RjPFzm=Z9^;vBZ}*$CG>^} zASFn=mwpu#-H92+b!Ow-`-Skyfrj91)C|TGfDv`tNkjl(C!osWm}3J`5N|49_xi0yrrJ7J7GaTpzX6ZdGS5JWic{)tQN6W6F)S}!;= zG^-x-yAtBkfcf14acL6hPmdsOVp>xnK9duT*kwaLb4fr&?K8*kdX5}2b=a4F_Ir8z zZfg57GImNsOb3w9@~FUkCyZU=AIgDpXz;H0wfw6fduEgknR`3pBzf@zeuo9bC!eij z0`U(-bFrhC@7}x$vgShVRk&ItI6UPwZ#Drf{WXgQ=ZSc@zHOiCz$>}$)#0P*)4OQerBfIV$!ej*AeFG#AU$%cXk}@@Nk1Y+M+FmW8p19>UnBp6Y>SU zPD=#Vz{7TL;*?N-k*$@}+ZzfYXLu8TFl-9pnoJq?71D1KYE2XcM7H*bdR=A}oG_`$kbT%+ zGaK^nS;yv4Ti-=-EVx8)Zt|PV&zD0kxkTEpMU*eD8Fz=bR#e1c;n49W7w5C^-c z1qefD%%G4n8P|=X=Hz}u!QR#AO=Ovl;2XoMA7JrqDKOL;OKn#z1D@z(+4CXg@w)CQO&$di(UQ<=^58dRg#;|#MqVNg{C6Jc_ z*|y1^eJna3XrhJAJwr3{K_k>O5Zhl!d>YSS8Q<>BQCWF~q-F$fd^a>92^Oc@+F0CV zI-xCDC?jYyxl+dp&+2_{UD~rpO{=S_@K#nU^fR;T*T8es0~>2&mVTTysZI)nqd$1l z5zpjJHYy2tGtK?*vekOCHI1)5WJ3yA7jOfYp3rQk{m~gxNL4kGC-e=8x**ee$&J6f z;86knGKq^4IaG|Ocs`c<;i|lo`0J9%>Kwr760+)CGjwYUCXTRY;@0u6J$Vt4NZ6T^ zrRAqOhB1=-U5Zq2veeTy!N8gX2l_l&L%Hp}QE}Lk*DWBI@}X z<#-bLZo!)H!7~F5b}k1sbnwH4@%3AB#mks3x!ZcS2EMagOWM{W88VC-Lu=?_NfyDd z2V==5wRnVa7*>t-vpS0koeY1c!2(~`?eHNxolAxVvuK~BebsJes3bX7Vw;mBsW?+@ zz%6`3I;k9FNFPvC!_h-PSqP+d%a^yO5O}u)U2h+5%77g_-CI`t2~_-S9iBsdo)?@G zn3CilB3DBN!0>*4=-^k)KS-<8Q@nSP(pY_!JZctJ3j~e5|7FG7V^K|z2o|(FFMwpf z{o-s;SBQZ|xIe=ClMT*f^k#nR3s$D4HBnq9AgoV=ozqFlzC222R+2UNj9+N`n&G*t<92&*MF*&7n} zNVQl^J+1I>Sg$LKp(R#ea_-nJKTZ{w!=mcaOb#VUXMK%bIz5d{l22A?7WtoF$nMgA z!K{h5?LlUDo!J#4Q7=s&P2yw&fUYwCsDYdz)wrO^SHD>ak4aJ2QQb!AQ zJYqsF9!xAw@j7(jpkj10i~cQ}UnmL5GSj*Xr)O#qs?}4ZEDe<6cOY(3>d>+^mTPUd z=}j>Tp#Ni|8LnwvW@wK+!d}q!#PUu%{bw@mgtT*^1z}4`&9?=q+3{1^$k%H<-%uNk z=&mS`d^U2&2dSDt@~lLMy=|Bjpkie6pW>Z$!f+Bhh=rNm`I%H9?|9&Hr@!4c3rMv6 z+V-tQva>}}xYZC5l00grnntJjjA?V~1*Ieb8w^*b7>D6gNFFT_>2~34(%sMieCKbY z6>~#N(WJk->c)hSM=n2gf6lyH_(_Vjc!nsL&pEGI43jd`!cx{WU(t~Zrw&$i2%dgYR%d-{u&IUco<61~j18Kvsk+Tgc+4TyL>xnAyo%sMc zXuQ#a&oMhJZm)29lgc0leMI|f_vf^`IwD+Hsy)0yHa&Wi(;z)FEq|*JhmmffGtoMr z4oX8(SVKdKD9`KDw+hSBfTaqlW7Tr0(fT;7J{o#a{0TXV7%>6{&W_U%ry9y`NdxEx z-bL0=9~0YN8XJz4C4U@PU?OQFFqki@BY_Xw_lN6_r*j^&7#?LRQ$-K16EqIyUyLiS zv%wj`MQ(D+V3Uv9fevDy0$Q@?O#zAa1;cD%uR(1#oE=pNRfY7b9EGwtK}Ez8);clV zhgzrfEYvfdUSEDwD@OVKOgrWp&)`h>mg7rnhGdoXcU#)cFI!Buv}z{-!Bjz_jCjSJ z{Ep&3eVbZ4$S_`fc#3~Y;Gp;?TmP08BWFC96*{Le&gv?kSxrXqdR=T8vDo#NZove( zJswMipOK=O)CLf`0qLL50>*4acI>Y(>}- zta@X`HZLy-e)tzHFJcsP%Uxled-~(TUfg?dl_^ZQPF&6)f-rzN>v^8Kp^IEy0!9`# z4EA3{H(q$`Vw%;B>{>4>Pl`|8k%=S&!x2m1Sz}N{ciOlnOq3Pg_(yv_%^Yj-_izJE zDh)r2^UE~z31sR8sbAMvH5{EJjoaznjeizY7AE4-cgrtZm!DO-UK#2^EwcJfO(0Ya zcOUdAnT-9wOUZzKZAu|d5w*Qo)9H|+h%z|E)1L>~3A@^Tge}aFClGmF&kSpEXt;rz z^uTtCchUo6uV3#!{m-*ee{JH6Q}Wt6 z@3hirr(UAzo%i{=Ae!AV*qEXKD>$j1Nk|JOhM$Xl2r#Ra^Q9Yxwv3>R*ywE=#mAu4 zIgq{;_@Y^!FEuunJv#vMPCz<8M1rTh&;!kFf9nQ74&zjks6c8n{x%E|{ z<%}~c;A~*1qPd%L<@#BBKEYFe9?wgEKEZ2MC2t~a_&oEVeyT(fw~tw+>IIWN$&r5) z=NHX{e3rLSuEm6}mZ>-=Il=__C zOAVf7>V@GTOod&#GOHrzuk@k@26zPp$ab_DxO122?>TdvNn;f=Pe4j%Z?F`QC;5dK zKYns~c3e`G0W7L&{w_Hqs1c4=RvEQ^%f0+(+OfJtRBpBb6ytuHF;!C}+kF&n9kSF| z9>>}7;x{b)rP4eRkAhXT)9I-#3~+H0ByN1P(yK|!ub0374BrwTAKe~**w!r_z?kp{ z{`M#_O!&+IDa<+e4b&r!HN`4#GmfNV=sORqh|9a8VN8hfI@(o`SQ|LvnJQ0PH+z12 z1rb?djjmuNN<5ri^uIEaqHav?qSH_?^qDF+s3D!Y(7ExYq13uG^aRgPuTMLUW#k;g zL^q!RWKn=h%PpslB33RjK=;l^4x^ zQt)2*g&S>HENhDOe;+Dn22P_JM>q6Hm3hDZV$~6=;!TcI_QK3+QAeuxVFzk*f1tav zt|RMU;=`10h6E@ChLNUNC#^B;$)=T*R_ZD5+|p(==j$l3jPJ1;> z+7*}Sr-ru(6M>)Ps8jR2)b1{18)AZje9Ka-E(Q6yD|h;E+>7Kk$6m-f#T&YdO_ z(T1ys^;uXw!m;cAI9!%DJ)V^BUxRWNSx zN*cHBJW&LearX~7iiT`BsAc^fJ}~bh?jtM*qKFDq7B}GgZ+lWUet5TB2~*q7s3CKdZNG-Xt55X z{k(TFBC+bbuc#n7{st{9g|=XXh4t&_*0sq4asn`5bvW=88>C|P!UdJIiTE_SDwmF| z<=n`#&zJh$e86xW%h!5>?8rT7P3BMX2`}QwB`5G_y`XPcrd};(geznxIZPMm*4&?v zG*X?SHWoUqjl?~J*oq_ZZECfu7B-fj?i&t51MZkT8XtTO1M1d4XxDdlkDW7({(FK-I8)D!E zP_I6tw}EGoRBO>8F#?WcZ>N1aN+t6+T2Xf{H1C^i$Y>LP%ECvOP;3QjS5zt{QjLp) z?*4pTf4ldQ(ICi29%tOjkDhyqGK%bD1lHn)3dA^QCf`8jhi!@yyt&b{ntYW&+XVvdsfas>&%8zZ z+%1J^!}ieKmE&a!mFWz4xW=IVU$-!vaHc{jdoG-LII1N)T}n%NR0GCnn2qebs2WO% z4~4bh{WY3R$aV~{Zh3BKJfv#T9&yuw0pJnBfl|G@ThgQ($0)8LRJGXIK4=f8GHq`& zsMObxY@GX3$B*43`cL=vH3!4E5-{P}C9%yM<|PT^IWSK+Od$P0M9E+iwv|)xtPz z&>hV>VRMtY@K-=Iig4N9WA2A*Pm>oV+F^4;ospU1Gd&Ok*gWAq+}g@4 z1~ zt`&Je5E}0kEGu{^PzQFh)|vmlW0cUZzL_eR<+Q#Geiu+DlRMU2T;r~0q2hDMxU+Z1 zVLD4!tyexehC|hC?N4e3Bl-(brxCBUl5^-b4wLAlubxM*)f@>+@Vt#jK$6+_FWEa0 z@s&{bqV}58EyC>lYnhBp)c8nM0x~=bG%+G;Z$~BvHbv$_oqsWMt6aP8KlD;>ZVwz} zR%bFFB2j&_&LABUlJ=r4h!st7{ZFrPM|<88g0%=k++EB1Y4p>2i)vJ{t)+p8yGc(l zKL|9oWP}MbW<&OTYqR+~z8`NpRS-69FMSr_<60&IH4K(QQAK+JQ76a*+NY@=?ESq1 znwp-#{xaS}6KpZN>?pg0%>+N1p%AV2r8PDVylo?GJ`%d|Yv&Z>SfIef z*wJ=^2s)O`F=6*?Xf7@Ew||ADZJ#+14-29Ccz}my$Z`^ys~oI_>BH;Y-*Vl`o3l6Z zwVr3&y$62UQIHM`egaBcz=vf7mu5;clbs6uMczG!m1_VXG zs^x6ZfW0Em294K4S!~?ye?wL2Z0v$U1J4gtXLbImSj7D?JT&7a>c~rr`gHq3t|s;t z@xVzN|Ba6}`UIo@09?L#5|4^ZU*#}Q(2JTf0TKaQhp7zUBTiQR`NyXoU5_?e6>h16ZA33iQnTDa_Tc;=q=e! z3mmhmOvnZ}4+UpFQ~epV`6)ha=GcMwt>7ocdiuQ7Z>L@ex+C5Ji)!jB+3Di)_x|s@ z!=3#*2l4mDX*RVGhKOCBHv1QY=mqi*Z5`YU8F{Kyg82}HLAp3sldqZhj!S5AtA?Z_ zRb5jgIGyp^AD%J}Dh}#!Z)z?;T{sX}1x7Blnr=ZBTu>Wua@M z^=)uNNX$3=pt{4D>etch{=`Zm&uhm zVrX#88)4qlFIC7s2+> z4o3vx{a@O>sDcrs_T3z@IvnSG>!f(69JNjMTssB z0Zfwwb9}8kWQ7<;W);ulM;m z^(*F3CFZbfKz)ByZU-CwnHVxz=3OMOGT4J4EZmhLL|6}eBKWXP5=b#({bxojw11}D zoJgY=%FW@{#1;3bh>;Qb|A4H^TAG&IE^I;AF3g!_=G9b&iA83T<5z9Fk{6aJuomes z;zMm$CTwIrLk!qp_iP^}4L%O6vDQEaVg;oC5mrYz^D;3)-g!yD%^Y@QW)$yUD=zln z)v<6(l8FeQ9s3;P1-0MycEk$mzWq;ggzyU=b6AYW4@a5W2%ju5q`c860i#>?BP1mF z2q9KhUTOfJ0tQS(8qsRxoZUM_4HYE7q{gxbOM8uHQXzRh$AAr)LJggOsbj`jfINM; z{&JLVw>1|};Pg8Y8<8VIA6}_|u=Xn^^?O?&4>n=_RU5QR z7mEqW1kLi4O)u_*Vl7f@T4aL0F%=f_TP~n8KFT0x>u&77PnFCbMJ8<&$?Fz;wxsfr zrz*Yt;2-xgzCq(>?LaE)@jMIxK`{2LQX>X!Ltmtx*0M?p72?_eZT~&bOC+Quh<&8n+j)RozrRi;RQBAxt0s)!sGQFpumuD+- zDQ0I5bq09Jv3b^Xa-O@; z9!|dL?D+4=nA&#Xmb+Xx16Awm)*HFs>T4{5`a8ob?k6=d{k=c0p z$oNx5^DZc+5#WOPF-EFW_S?UGkLzR8^_Nx83XoF7M}IehjV1_$j8H> z=Q;z!>HQlrHoobfRk!7ygEf}eSC-D3)C}A0C zH6`8lxO65{;rpifX#zTl(^fk2VaDb&MRpW%DS+_IA7=U{5yHNsjL>6qM^=m#QAns< zPjRN%dL{A8yfP0j;~HlWMsd2(p5JRo6f8sp7qP?Tts67P-qyl4;OB4ozbO_X=IX_& zRd1{cM;jYw!#B;s2`E5`dyz%e$x9ip-l2g-&lKwXCq{tswDC;Ef(pSSoec|6N-*nB zaT4HDJ3g~cw|_LzW0k78r{Oq?|wxRcG~2o@`V$FxOCG*sz?AIbfS+E*N+d13XB_2clwQ(Uk+(>+p6Gse__VT04gC~oG_SeH_)6Bz_ zH#qU+Ilf6oGOvt%=uM_y^_@nC6#InBlMM;{@R282wb`P~rhf5y8IH=0c4o>xr|J5f z#tf0)PTmQq4C5+?*{g7;+@Lr_$L`kg2XeEPL_Ed;bO z{TjI#4~yGdGaFklVD@u~>3{UXB!4MEooeLyNeTr2`2=Z?5c1YsmJEouo#v|6Gv^X& zO>gOC9In_4`S|~Sj2SE6@v^)&0eBTh+O2&sbWkjAv3a^{O>kmQsz!D8#5Tmz(s@G4R1g zH>gXAtdx7F_M`w?j?(X0S_j5DvGd|2S-w2T+}wo{Hev5opq-~~i85atRx2;l4$kvK zMpUsD`F|j^gY9C9^9MRL)?VQo_6dUd6Bw#fn>K8}+l4M#UWa7(U}lav?hPUWXp3Pa z*Mj{EtPM%A*jM^bmB{wFfNz>WSRz+C$;cj;s0i6RJ26!xV{PtPbNFKNJ1k>uO$!yQ zZ;u5fidG1PKri3Z#X%;1pIRz(SU~~Tl|*h-T9ZVHD`shW@_uv)_J6dPo5Gwyuyr?1 zapXAzr-+Q;rRmR6Y(HZ`mrME{X-4#bu_d25n-ucwQbNDBUQ}+twe`S~5xvcSkp{Bj z^Q@Vn$0T|}r;6w31*1F}nCHhm><p7(f?uw|#2k@rMdTEKW}^ci zG1{XbSIt?8;TFUK`|D)95aZS*R0l<<;ny5?963sRv7SarhRMAm)KMuAG2GgiE|z~y ztr3}N5$Pk~94!60%iV(2`GfNU@;np7B64DFz4QZ_pX$-~w{YF>*MVUEn1Gg+TaUoA zORooayJSQrdnD$a$iKuBD!(n}P}YHQu!;|BJX~*UU&bAMMJqv{!d>1xs_9JGV)G6A zSm?h>YIi>ynO$7j8tm$I*Hca6XNrA?dRZV0J4QO;^l+M(Rn=l3Gla`Qeu7=d+$A@8 z`evAZxYQt-P|p8f)jb%KaE8G~RN-C&BV>r=pv*R4ob({&wnb1;J+U zAUc(CnR69Ji->niU_P!S#4x&ELWm<4vX0LDNzo|FH$*C?ywzr^>pt_+vHm~=iaEeO zXqhTca^;T-aNcPahSl&0;lm7NgY8QUOD7Ou1y?tB!v3PcPX~ksqb!x2wTEX?B9`7P5@@Dz|a( z*mr$`O{MzA31JThPNgBt8R+re+-=;$uHgmok|YR7xrCHP=zLM>w}^zm0uXJ|T>-$< z?SHl&bw}v2&UdsQ_6Z@(f>P#nFw)0WTf4cnGbbdSd30{*TMs9$8F>*SvtWPekWH?8 z_G%QZe)hOCge?p%oqzR#(nC4x2u=wX^nfPgdM(>3rY1REWc&HPOzoCXVw{ukdYLMk zsKgou-n+qdd#&AKX{Bm7@D)fTp+Y=P@b#i0{X24yb}7DVmiD}G0|JJzr{$_wk8|dD zK-sboIIN0~@W)S5Orbl?<}iDTmMyj0WEI-sbd!7!L`?NPRm0g#43 zn`%`cUpPZRPKO@b{V)ygRKYmY^+AeuEKH}tB8>r41adM&9|0ykI@8?>+0%3NcFi?> zC4{WjKG?kRa*U84G9X>HB?=qx1JNjvb~6W;&g{ulqMKwW4h_%%eHp4v)p;sBB=sfaOFohg?#xNi9839j$?*Ak z`OMDp-Og}iHlRbXlU`&%GW);GZo$CKOLpT@*Eke^=fzngge8%%Bcj}llec0|wHH$a zaT8ObkOiHZuaAbKLzwuH`0{yt;^lejKJs5+D)GIJx7`;jNZCl;$ZDoVwp9jk>rigC zdr{i7Zx7G-Jb0bDUk+RzzhgNcK4XtNVE>yX2goCnaXW}}49+n^3WPHR@!n85iFp?H z3o|T|m;Zs|&HOi}BhYU|wfjNdm$v+M)~+MLZWpE1oQqSXUtPa2kt@cYmrja~oOo__ z1y8~@)uurQ&x%TimY}cpP5sp9(agRE{d$^&*hkKz>>@LQjekr851tLp{*cm3Ga6v)7J9C%AGTol;M$en-rq^6w4Kh0g=VoD6C0wg76YGK<90w|^6~;#@Ut0>HW$hJyn`hUw#_(7>!s3GE&OIJjiGDF*6`LO z{N}%(aYlM$fQ=#dt0hIs=^>uvYlSQ1-PAyMcE~8h#l5?!;!izOo%pA%9}iDb4;Qyr zJD4wnK1Z{Y7KV=hqvG6I$kvCsX<60Jenf|036kQXF*u1e4Gpu%_g8*fWW{f;{JkZN zy$0d}0n1L~xl> z6+UTXtyXC+>ksUIQ`vpOA4;jq*;JP40}4tRd1Od2SM^;c(vyf~?op@0*Ds+ZAZC_TOU5^1Hb%j^>C0!2#b$7XCx!Q5v;H-YNQp3- z-Z)wlDQy-uFP@)LKXUbVVKSIgr6Vt=B$X`0Dhoq12paipYcRIg|Kf#vPP_1mij8*s z{loQ1>TS;MWJ4M^8y*$Idm8;#-a@lr z_4S!^_lj5ft!H@6e?Mb#EXHh`%fdURUbYyyp}Zs;g0&=SsOxi~@jijSG{5`~6E~M^ zH?FK!ul8*(6I_QenvyRV;*6s;=5rz?Qut8)3O%2Ub}yBqh%_Q;%+4@*4iv^wZqt(U zzuKPZ#S!k*1&x;(fU+z;A(y~x;UYUd)eM&`l^Jz3&&fhPtFGyG@ZZlluDyG79ltFk z`O>J`+}_^ycpA>PISp2zdGylUP5M4+b=}8sJaF|+#MTh>nE>ZIJ^W?TWv)n8ExAoN z(>1&XIcMA+T|8e4SDQT<9l#o@GJ_!}I`D&Nr*BRV;05pAY?U?kY%~>6!$TJ)x^X_n zLmby+$lVhxRzo%ud247t{BrPAxE}H3kyLmYgp44c!}n@~Uo64I*!{3fJ4_8wB4VRx+>%jLy*-2T99`dJop0+IcdzL+;d^Bzg0$SMtER{jzC z5%0)uYh*F(KZS3~RCxtIaY`ME!xDq-L+fn$@@jtKusDa@cw1*L*L^+`K9Kf~=`QQi zpqo54diUD$E*jnM^gGaGep~qUZMx7?08lRpEPO99^G89?&;Exo=mVTyd!p>WJ?GJ& zbi0FUlN?B@bjFb*=1Xwx;(geZMlZ^kMSUnfLG8m?nQ;^+z#~~goYthLS zk*H)ko9lzwvsnJ+$c@U#n0M$~C6Y zd1^-a_2iGtb%yh1A4{QT%d-evx7}t6H{e7VHw&;2T^y)HcKJ^T@oNI9o-E^A1dR@8m1$>Zj1HG{oZ=Ws9&bA_#`R;blaSP62;F7q7WOG5~3*2P%h>> zFwO7!$mUpb)=W#aYLDyd$KsU#jbXhy`AvlmekNpaiSpEe87F7~6O`-2v<0xDkqRJW zwdu^O_~u)03($QW2|7RG0a8TzmLGWSN)Fyn9h|?fFP}LnFPVmW9{a1yO?>+2S9pRd z+>|nUjXSWgG)Xj6nPf0y+P{xP5B9MzNdN8M=?`nZwc0_)52f_*+-J<0$cgHLAljTi zr<-v);*u0c!X@1dS^$Y{-+5|x{Ly(WUDwejf8NsW=wFpgVNXBEtdBjPD$mx*kVzN6 z>^|50w>^to5`Bd7Y*FEqcr8Z`vxw!Yo7WgC=0%Ad_`;2twT8(SZi?pkYQ3n%(-<*9 z=7?g|)#J)=E{vb)DApK5Jgw*cuFk|j z>?F=*KQG7|`|D+}Wy6*2Vui2IPE*eU{P`hmY?hZ;-{=&Z;jLK#ML)iYF`5zctu=}Y zoO-4qrm%t!bc`r2m4S$LM_Zn+^VRB3r7t_s56h)m2PEZ{(QLyNX8gNuUZqoeZaA?V zI2iR2@$p^z@nG`X(!0Sh`&hNt3FNOQSzsG|cFS-heTFJ@*6%mpV};Iq)7ai&)?4tr zF;~a_xrmkueXiG_R-h$%@eh*sBw`bxV15S(mKr5Yx?Zu=NSU^o-$ra~jMv&O$TdNt zsBGANO@;v{$Z1JsUR!85(b&cL`1>UYNN3wwI$y%+ka7*Xv{1HDqWU$pI~8(ntgEM z(u*ckR$TTlWspkVb4(6ZCACq6s13RFYxrEfu%GO3Zp`bxPiJp8DwABeC{&lZgi7>% z>&CK`u9q1!zTNESaIYYIg!tqYkNfW(j!(Nj-Z%GtWN#t!fr7rDrT{nzt7aajqa}Kd z7!4&i-&y%>;BON29C2tEvj#B{x!A39j8BCVy_;p*)TZ!Z_{+QVHjE8%?svi(aW_|N zK#JccM|{ri<9McMFdp<>cQH$HaV8m%PYTo7h6- zhUOG>?PkKlO6-B|gOHI`K7Q^~99$f6nU6m@Q>gWd?FR(r<=8_B=LKsRa7=Wm!DAVF zZ@&dzd2!vU@EN)2o#eU|&H6@)A9cHp(RS@7u3`5PkM!uT4~w@H4fxOXwZ)=wA4)VG zHGap0U`b%U|5g`GG2dv+bIPN!45sq8KyUn&hA54S-vM*wFSLIxD}N7F*bPB6V-D?- zMMY2IDLp>AS}og+Fdc@%_v^_Z6ADos}%S+4Ic0KuY&Incdm#0ZUf6F@@oQq zyIlKb@fL86!*q-ROV5huG@GY%hR0`I@=JTjv<|3RJP$dh+6)%vo`~Mx&P$)l)3Qc# zH1DVZp}RXJNwXys&)1g8GATj_>6fJjmf3uA1X@}GhHN_#X_kdw4EI@laW{yFohQgC z7kVVHQKGVsdHm^scXp`ee#xwmw`Crcyx4TyDxqDoE>3QZ@cq= z|DV6$wauok#kSK~VJp$sAjt!ED*>GQ@uj_n2bJtix(=h2Ux@WQt%4g=!tvl=o=)M_ zFGYT8Rvk%a_h+-uY$0J(6iuy01F~w*=C?`eyO!pN>~eYK!9}k+#hx4Rc=3aAyyG+_ z9pmptn+epDEgOB#(b?;5W5B5)nC{B561#Ogm24<$wn&!;`H50v1U`gq`5}+yPi5OH z5F6JIMAJrkUt4Qa05NwywbODC;yi~bb_wcy_eUFlwWVphZL=5Y#ml^V!$*Bxkw>V% z4;VZirII7u|=wp2bhuu4#shzyc zKHy7h+}7lA9H8QN33{|D4rR?G9d5;i0*LJ)6|+IbM*rMFOp?3*Sto`G&-&F6?PLoE zh>qG~t#H#UCcPL~o9=;1i}7i-|K<;py(Q`kLF`N*kZ7#Qz%gE>CJtuq4R)ktGyee` z^L7-BfX$U>Xy?6yY$3`TJZ|~S4{Cc#AmV^YczBKtAbo3@JXO{>#XTJv!z|1)5LIJz zH$*$NTf%+%h8`!#usQvvh(fBy!8`cz1aY$NF+5%cb6lLv3XB6OezjBkgkqkFA8p^k zEjeUteYTE@`;wQxmOSEN_afIu9Y<$BjE3Zs+6WxcVvor0{3Yc8xznJ8J=Uv6S+Fu` z6)yk@iBYvA@@u{B;go24c!^PBWTd{V$BYpU3d5sEU48qG-tFg)FV6<2xG?q+j6qPX zeEX>|`D;f(WJE5;b+gB|8NbPjd<2Q{E?2D+A8H?xE_&L{6(JbWBq7w8m6-t4iG z_N%HHm)oqjx`7&)(z=eP=2@=AeC2)KSM%g#Bgq^Ce)DxLhM&^UMp9A&{gG3tFpO-+ zVhws5&Qk25WJD2TIiyKaIR46JoGnoPV_#GkEGBzyHnhxgs9l%GxrK3R^yfe;Fb`ye z%H)dQN~@`cBX-v3+gq+gM~PfsWc%y!ONtlA3Gf_B4z#hBM3?FMu6giNlAp7_d2XOb zg4;|Rk1j7kNq+eyoT=DD!ie;(qs%P#d(#;Gcj)uXyA|cHtF>-u=l%4FSPf}LbG2N$P^?+LYhzGlY{w(|A z?&|}qzX1x#ZCH`wy2jv7Y`)WcLUc)fCRsjG{NzssG*YkS-7?d$h9pv|59ytaltIQ+ zlkn$}GiKj18Vy}KoaX%W>3nV1d=telX+@Zr`gdc*ZY{TQ7;G7(gYAmR-poG_Uue_8 zZ{Ll%e4{R`0=5gNwMHulj zs^2`pMhMkP>xP#U1!CGS_zV{voR=)SmaF^YMbu`4UD$f&1H)WLM53B+O?1t(Y1|C@ zVlr6uMr!U4RryO`WfzJ#Se8t-Ylu}#-~a3t|C){#`3<0pP*GAf7F(ylTau$2U4BVi z`F7%;T0Dx>`Te=;)Zt;CZd{|Pi_X8knpHo}X8?%9T`gp*u_WDp({@>TwB6g&Q$jlw zTEUx=Nc~t8SGn6}>hwCl;-#uSs!NayUqaTVRWPg_$-di*aq5*@M#sT1 zYd@`70aY&&q88O(ucZ-HUQG^seem$~h5tNWfQ2dK1Xw8AC9a(-oT9mDbgvDcrsf7^ zhRElyb!gSZG$0hS^>o<5iggA>lURTUWPXE-+eVEHJU#?ipm&_U599hnv;h0`A`4+P zKXA?Vmj=Fg#vsJzFJPAGYl8z6FURQ~6~#FK1H+50^^&>&5z&0xx+RnMzQT|MP|djy z`=w+@UF3=0>+Z<8Geg)TES_4*lfGn;7i*6q@p%&S)s!do{+9%Tb}q-Eg7(8g_&}`` zWy(<&j!X*0_RO_+#O<+X8khLd6Znb0dR7^H88CB%p*0IC_*3y|P38BSqmSY%=LZ46 z<(bEBE%$B?vn}~i#zqG%PCHrR+Q1dB6B(Cz2^q6xgDPpc%{<^j<(jH9tQ+7LVNRh4 zTI^>-kB(#c<4nbc>qNzc^QRxqnx9tofVdD?Q?q^|f8LkjzpM{0vlT`;zUD-3dYk^G z{VT6&ZCm?1=dsI}&sZd$>F+J<#CRb32LjfgzPWWISPgfWKJ8GY{&JM5*BY~p7~rPB zrlCQrFSUY@R$m81>HDviJiPO0r6}xwrIP43?34K;A{<@l^JT*n->LYMxJd_-knUX!LIR*O(IQ1kZmA+70{b3sJhf#(q8P>a+k{37y6cHReMx>&gu% zdLBIkeGjsDi)kG|jlSvVjlTLgL4=CHVyg=1f5n(NoJSznI>v|n)^MPkJd9XJv+D?T zhG8Qu6xro-`883W*UWF9hyPBOGJHVk>}TDuf2V4&!9CVDj~C&n5t@O^SX<*XH^NL+$f7V z>H2=(lTPqHhk+sX5G+^#7n-U*S7(lyv%0SohwWNYi5bBZMMyFqS4!J-?H1G=$|!l( zU$GI1?)0PFY7qN=+(z;sYpbaL+A%|e(qKmiz#)2{b9ayFz+W?hka}*&{F197_k-TE z-!U?B#3LVPMOyrA@EwxLC}CSrbS8hqM$R^`(KLmF%brwgv5yGA{|7rU_TMCusQu7b zjo~=A{1e`s#Pz)WG~Q+~ow$A4sK&RQ0yis2=6!EX$zzpJVc17}boGvuoxV$3Zy>K# zSeO5`WV`G@`B9Lv9UV?qu*ZM6srarP4z}X~5bNW)zL7KUK=Hh$b@=Ic{eS$wxgg(98 z|KusMB|%pO&>~ZNiGro!pbi!ar|dA*8p=F>+&^ z0*W|E_V6!+{56iKxD}LI%+owR)Vm}{!V*^QaRJPnrzG#weug55HFcBI&8;OB8bqX4 zF`7PVds&?w2`F9;ebmIW=E3V1VwM|=oxg>dD_Dm2#-2k9$Zw>1(gqOj-r)svVwspT zT!onXbW%1*59gts9~s1@21ne%^jGac-O^n=Q*sQ_ixXWO!@xxWdI;S=_D?4&TJ6)N z_opoTEbxXvCQCB!)$p#b`#YcNI?SAX78~yksQdxj2!+9ab9%#?1>0~kPLsYtjTZx3 zIpavpFQpZUmc*9@I>Q^;yFzu|?>c_?kMWQ501>X!zoMP}qo1FBRDB`=Kekp_zWsp& zyE(93)4iIE_4u;;p_gZKdu|xNq;*%d^XKlb=XBJ>|MMEK`2AMyeEYauBwt{xubVt1 z@n?~xI=N0_1F|`5H#|M2mOJ9HLpwaInq($)_}5>qGK=9Y0u_1}ybJ7*59bT1lE|I> z%)`&^jDxFMW_nT-|4YG`(sWr8Y{($#e+LcA1|M&l?zQ`&N;TGqfVM|(F|XgX@>eFj z;XRZrnRfAD&9ME93)9X-2a2a%EK_kF)XH!{Rp|g9NXJnKGgY-mQDY(@K0vJ^nXq{) z)6Yi3p@$Y^fn$x`54YvYS2cI~`PD4<*yPI-;vk6``Q$%sA?z7=&S_*a zTy8xNqy>nis_NK-{<*+jI5C1XXemLjc>iRJKGq(tT5JK>_{8{R1=gznA0h7;99Y!! z`^FR7$;7rb6Wg|JClhDKwr$(S#L2|A&54aO=XvX`Tldy`&-t)_tE+og*ZQ>f+N)Rp z|7}63*DN;W?F#(qAuSE8`^*@#W%L<(x4gT$J{=riEzMsMd~V^RrbA)=HGj3N!DYu@ zu9rpm-LAbu+wO2Yve#>bd@OT=9SyP|^sEg-LkBKFQ!RsPcISL%-ylJC|9g!0^@Zr> z9b`Ecf6*b3mQC_L;D`afKFzpfG4$wxK@6D)D+#r$(zNsH+7!AUJzD%X=w5f@jo0yo zMg`Z?|8|FEwIDCQWN2T*`e5K~5X$Nrk#qGJaMlh~SfjUi2H3U-;puSJ1}ku0wONv& zQs9gI$%Qk6tV(u?{+-Wc1=m}N5t8K3s|5!5b2a1|cDh;`gqrJddX1UAdXASqAnDW} z#CTAI%%wwTv-XP(UOSQZ5F8uYIDmm48`5R>b>cy@61qRn9~m`we7NEr===6O@84PZ zxO#jz{%^sG^ToHz)~=6`WuW)x*GS{TuE)&7@P+FXh3kK8h;cT5VQ>DM$bZr9KlVQ|;B5XQ@L$9KKwb96f9(GYJuCiAEjP-Jv2oMHWn|#waqJ`}boM)C;ST~a zx2&iuckE3^7NBF_&}HO*iu@;VT0F?qu|HuXq=t5SI4H4~pI}609iix{ z$ef@$MAcn|J=S5Aq^A*OV#+MVNH5mVf?bS-MXISAH8&m^U&SbP>NkFSIYn+shB8gJ zTNffNuA}alZkkoI53s;->yDYGICZ3q(;d06r)o}}dNMTT&12|#N~)h^Fm#vEny9K5 zrMd=Jok!gF*HF1`X2rBsT}IsR)x<68#_MfiH1yEU!F37!yMN*tu0D!eE5UdRt9giV zYN|(k-bK8?ItfN7I86l1(?bK|^FESpB03XMjiS_`;3}BN`+~YSRl}P) zy7yDY%1LELet_?z&eNyk)4`*gyG^UR_hY1ScKeFN>1B6s{i~<@#rvzbg&1&i_VT(r zT?cflEh?E_C~=z_XbrC*#AX@yEqFpx^zvK%oCIUi-Dq7&|im=Y9U; zM!lA!bbkKJ{o}Q5t0{K!W_&=olQXxA-z9c(tm}fWi;vIM)*0Anx;%A!;t4O1lw3u{pC{XBGhJJ-+g)fLrLdcS=*UGDX^-9Fit z8JFk*9_;nU-F&fB<6jslzIZ;3R88Yw^s~~wL=Uklo7ey;*0)|B*01qPujDsn`mYb& z`ODbO$3*XKyW!c3;kU~g_DBHu+5DvM%jNxk`+ogue6i)5EiQ?B3={UX>(G|^_d93k z71_4UR9WrYDky&f+UhA)4TfZ(Hn|-{`5DC{u zej)XX=ntF9ZB;34xV#K&-}z|26<7Lr@wraQeFo?HV*20=9Zu_i>~DWfS1tnj>FV(w z&GzeW`_CQEFO|oamd4ZbhtahmBdk5iU+;^`%T@C0uIJs&tfh1KA2-<-$F);lZy~(E z->uBQnIo51iBH4xHLGu5G*kK?7m>*r?BQUF*2Gqjy&j#{ju(;!IkWSIfK7L6%%!i_ ziNKlQOdBGEXdex+XSk5x1$XM^cC`*{it_H)FS}ps^QG$iZ~C_)E1h|RoPz0FpJ8r- zhJORd`~lsPBPgm$Mm1NRH2%X!wXg|*U7_?bAx!Cw^3GEA;0VCLf9yPJ(o839T*K4d ztXdo1h#nazT%EvdGF|;ZR(B-m`5$B*gFksijv_{Lq(1pD;uJTO26Bh6h3D?2*OFdo3u(W1`j%bL%#C0EhuR!NySn-^ zx9Uu7*hD@2McG!?D|@w9X(bh)-oSCY?7mU_y~Cg~!y;b+kFmfb^_(3m`;>pWHh*@t z!JF4NrH_|stHK7=%+MrnRJg>fxOFm4#&Fun?ENk6SWgnJyl4)->21F~lSh2yZa$H_ z?Xvqx&q8<-Z)x>L@3nL}tEl!hbYHvn>beg*f>a&E&3gbK?O{s|FgF5BAJvgIci;Qe zxtKn5JFPE@9XD)p-vLqCGqSP;UCI&KG$oWTb5Q|=J2)|B9HP8Qh!@E3&Z6&CikOz z+_Hw4>2_*ECw&idK2L$VZ@f`Zcd&?6_0`=TqUN1WM;Kp2sgg;73|g#O{U6X+GPU`q zMX}`?lKF7A_gNixvz)O@^hiE>jt*4}HnB)Ok2(ZVMny(@O0PyqB2M{Orq`^?i;#Pn z%ae)mPvz^l$K-YX4$qsoVvgpVYGoEYH=7sC2Qsf&QqlyHsEz=nsBIO^%<5k@H?9EX zRIRUNOUpBvD&@sLXJ%LLCRoVkYWl3D6?u7`W*-K0o4%%nfyvBa)AVHvO03$)IBAXF z_DfxIA1T1LuKxarN>AM4qS<14O04cES;!lP1h5vHm!~WkG(M`=<6xGn+J^a;-GrXT zbBY`@gVp{{-pm2E1}D2EN=xnAqTfN7F`sklV0@6>w_eU0^_@_fvKA(AfdZ0*-B+nw zw!v3}ZD4!L^|)jJI+d1E=Rp>ceN$eyUH|CFzVl#CXCpL{lhi>CPfk;+5EeUZK`Hhi+G)_! zua#Yy`|j~;e9J|74-<|v&7G7?BUzHfbea-PJgtnWMb1%&lW>jiOMuYOas$ z5yvExlLHt=NxG>c?K!*+a)e(FoF6%b6=h-Ajcb5Fj)>9WF?ufq})cUB}^O!6gzz@80RIts0afImJpHN z`{@lp0C7S$&shmJtKKr(r;$i1hC zveZHRbxEm2MYQUAuQqXahcK&ukt0JmQd_f5W1MsT-CnqRhGY=S6|NT2MdoF?=Y}Bf zwi9@yOCj01*Ar@p$8NH-4saD!vJ+Nt7oDrL_<4)al5;55%lEUDP`mf_cIAS-5`s@o z)sLlT5w-9@pHgi$!KKWk?c$_4A^xZ)K{1vcfi8M0J=$v}v(ob6(_qQR8K#gyitFu& zj3;z-LrY=7yJ>8G(fH2Ii#{NvxHj5IX#{9k;FCOCRvb$#QUq0x^T7(#OmVC~vfC&e zn-^6vb|@2y-0l7BUcZCcmawQDhpku~xn8fh)*oMKf_IK0*Q6L0pU@wsLTzY$F-fX= zXY*xzb4{nbL?mo|^7ko460~DpR&Daep_<7{$I1HKk}7G@LKzAycbPIyUQaDXxB+zN z=hmbv(zR1_U517yclV<)na3hJ!0;Y74Ux8=p1(f-wpgoATF(C(bYo}EhIvN4cB!V> zZP9o_+vlEO*=Ttk;gd6e9xJHYROgWeEjUWOv@O;wG)3Ki_zgrBv+*gI;UdJ0}>yP zf7fUufffI;T{FXS&!Gb)q`|JH4GnH`skoIbphMSQAP|%x_BSHx!YfojO$M-i1N@U4 zcG*F+DR=`0pVWfSv}enph+(0mU3(*SDaiVJwO7zXm67($mn?VR(lK7O+>RfF^&y$H zw!6vdz}FkMYY6F#9HUo$IzKk1VOL`B`jF+G#Pq$~)I8Kv1h+1hF42u_d%kG&OXJx+ z)%MH!-w|#+lm0UO={D9>1`jl;F}&Jhwd&|c@N~mrhNg-!0@g{ZU#l)U&s1g<-z|UV zIS8`-mO~bXRV-%0SxpkE38sb9DWpzu80jKD!nWO-5fM%`2~&+)!_Apk?9k<%JbbzQ zMow`vy&26k-!_o|-DB_ePl@cTZR=v~0qTxW@~SS6Y#gOrAeor8{|~SR@x%H7ncltD zsotgJ9ZjuH`L~tI9CG;iy49IWN!}_iXYK-zBMUiMxM|tUp!w}#L3>K=l;CD~2z_7_ zvjr}ikXB}THVW=E3*pmn_Fc2XHlOtQpesDX5xQ}b;D}O5EJuzLgDzXqVRpg8)TZcq zR!lr;yWOwhy=~4`3LHRJ0y3l5zU57Mp1m@3a<|P|!1^p77eQKH=@Kn+_lP+4<~*%r zu{q)98`DwdIDthyNZ(Hq?1{mpw|SAQ#?7Z{&|Oi64NM#p!$X*&U?=p~QYCi;Bo?d& zkT^O??g==nILLJ~nF=PRG5j;R*P`a$>;d83jL;b=nT_ZgqG`ZV$8o*~O9Lug4Dx5U z9f9mm*ROmZf66oyQ`CH^s2TGLk$1GvsXb~K#VKO)2F^aEE+pg;cy5|H0U>Laztbe` z_~=z_;Ut{ASR6>Zqu3EI0fj%f-hI%ROl;Fv1iGu@L4N2M}xBF?#PG3Tkkq{LH&{T;dgAE>EIY_#?y;~ zE+$(oKNjvbtK;-83tXEm$cbgL5*dr!V=vC!o*BQizCi=R3rv356#UH@rlWf>y5Fk8tRO zBR6Q)X4e8T>~OSd?pU#Eu5FYd+FYMaYwILKzrOqj9l+Z-g=kaB)+p5=@0JgI&@2qA`+6cDI&vlUM<#sW+rMq2 zL;88&PZD8%L+-5)5`49`I9K(wIua#+0YwH&DZ~ZV&b^NFa9rq6qKKDlF5OF(4JGvn z)~h}|-Flv`)y@iWbag6XSLBo}u|)=H)l_X4ujT}uhlm&kkK88VI<^wZMwOT(hl#nX zdG4UY3bAQpj0*hy|H*ZkxY8y(*1w2eK&jD;?%*PN?RF=-11UIOj+2>gbgF%x=i-QT zl}G@usXablG6{!-5dQTspUxBE*G+CNb-oUpTGTt85!h@xy1ig~#6{!pItUz5;uuk6 zFUH}};tT_-&iGdy>Yy4v{? z@$GHEx0%mn_{G)tEt*(MZCOJj3~E1E1{F|bevo|3=(1;4l+t~6cC0e2s6hX|Ry7`Z zyeD#km{H%m?Yps+Dg4)*7wo44{Ln7bN>+-Chx&5B(V0KBe+jRE9i3HRk@IM&X|ZvL z@8eT44UXV&pdvOscA;(kXhggZd37nZ#&0b?PNd5>+s@8*#~+pPn!EeIe0W^e&6)vj z7xB-BVZwz7{pQDTN1_J?TimtXPFObKjR$D9Hl3v9Ruhfe{kCLJ7La&k=rCNr_biPf z3V!9pd1)Al!R`S66anQ?_GzL-_k(b1iO)%BF_SlHFz)>Pw)Bf%;nt!k%s8>kqsVK- zSNZY+kLiitGPybpad-KfrNU1Rg@}Nfq*^|sdW8&m@?*Fx*OAt8Ndl68RACfBkL^#U zHmCW|OwIQLO}{H2nYFi>;Bn?dY+lc2%EJ;R|D?j+io%&;E(~KgU7fKT8hT}_i6aVU4kt&$uY8w$;GhFvW(55JIg>yNKu6@ z!S)AIB5A1I*9Os&Pd+BOWKi?wHDWlAxY+<7UHZ6o4dZIKkL>k+4?=Ya%21`|D93~;X zq)7>u=Fr8k)ZUW9lKFO#=4Qd>uA-o9_ z^0R8~@Tan`#hO{SkGl3K^u!VcA!X*?@Yz5$U9?U8c)a|&a^$6oR7Rkx8(*OTWqr3g zt}3jlYATKLqOW$5zCmw>W8;t1JP(G8rrYMgH@*|A& zQVq1HFgEEfoL>W8bq#_RBs{uk4XT}MSaM+w|2#aN z%<_BbbV*ekF%YA`12xpIN5)=78uOxY9L36QOP};KlM~0^sYT*i`UwPx-?GTn-3xqR z+`fF~FDI0HvxR?O@DxPy|l@}t7B<6^O?j=dgXk)ph* zcg4QwVv-sLmI-z|`xBWorp7FFBxW&8vky4PDx=;9ZKyf~>S!z4{KaWzOYUx!iylsFK$1FQJOu~WH9@)|ysbrJ`$~R2CKN~bY^zma2$D3C%HC51#=x*%O zKO}VG8@Vyf8wn=FCW5Uak^1=}e~9X~Nda z#)1&Y0+F}?yFoZKom5kh@S3RV#WY6812tFgzLW*F%M&2!ide9|9M>WGO2JlJVDs5v<3!48-mg*53MxRg@8BEk&G>ib(Mdy83cSw47=1D}s zRimg^DY^d+q2IW*u?d}yQ?3?O618H5)8-&YE)jiM^$d}k`RW_1+X4y(KT;s@HW5S#k4w>jl~oQ4xA7|I>ob5urZE3Uqns80 z6KD7jm;J?#>IWpcuz`ML{RG6QM2Pk}s9-O;rM^YG z%H3Te!8zlm?LC0ZIE0gTL?Jl;{vTD;@rXYicb+Fw|8z}vTPo`2Q zgRn>DDHn`~#@ZXTTEQx>(E(HBS)nq|@ifCLkYH5ECu5A4*va4AcAGqlVKUan^ba^w zz_rX>>8}gmUN|W*fcgtx3E^P@vb_tgWCjDJ1LgCCegGd}Dd_AhhII`HNN#>*&twDd zZ(oo5iEpvP`p|DCE+o`7I!T-$7t=EEP}&oT?s03!@Ivh zdV~LN4B;zA_WnEhoR>}r@W3@j`9Uy1t&$+~MkdMrAQ=UqwUNzLfWw*+yhkd~!Gl2u zVN6#HZq;zEr?Bc=LmgUOsjt?BnO~CKQ6Xm@_7V`XN@JE~F9;!8^lJK*5@FD+Fx&f3 zy%#%7B!{{?;Np=GS38D`+*qyL)Gr)q=*}U?yR9`drr}zbBNHctt4a;T2SzvEkO&-5 z#w5PHlC%I%W;0=Yx!2tta0mH}xEkCGs{aI?p+&Sc9KJ&^6TcH#43dbbRIMBN(xqM; z>tT)bsDO-ywu^>d$^4jshv%92`GxDn)GAkJ&O(0Y6~} zJg0ew;d!6i;pgd}cEp=`*p{ogu7%Le2n zaz>t8a%o=q6z#KG$oqtuHLF!ilbo(N%BSLL?U^_uw2jn1zq8DIY70F>6gmy{}QZp%t$6V(CW zG??{vJT~WJ@fpMjxjjOUh4MXN8dFb)K@UwpMgG3uhFnlj;V!WocrC)o&?z;|SKw`g zkQ+gGpYN0OP4UCj>6E?6t%x2YNA-vPUyD-c+}w#Tj$>_@QT%&6dchLVu0);Uz)zMb zc5h24hTeAlC*qmn(wp?IvyxmjrjA*l!aO4f{aQ@B2`&f5L@XHns**|zRutSQ;9ankWL_o002bFt^36^oR*}p^qNHw(39VWY$U61hd%|0RPpkS9^(4z zy=@UPj$1r|eF0N)z>F9E(WG2%7Iagm7A`g56sviZ--Qz^2GcNsI0N3%#Q&4f{))F@ zLRTUlYeY+4FQF_^R@v2;+VSxbKu9t*9QP$TE)cRevg;?Q4GNiInZ*sg^r`=HbT$vQ zE)#YO^JAT83|6CmpTBk(kf4*XpDYvgJF65>^FN|UW~K)JCi>i{4bwhnL(i5=(mD9N zfsIQ)Bbc|bsGzG&flu+kGr!O*Llr1HiCLYQdazK?HS8N(q@>%fm3a{lpnC#@B=l)_ zoZAM!f4F<(`Dnt&5k|B9_>d#3w{gc(nYZpPO$aI(K#uXa z!zNX$jZI1;c!EE4+K;va^WNMtPAuPqO{5$#YwT^W)_mT4y_Bx5t@L_u$SAag&p`a+ z=y>N+c~avK$FfChH6q9teiJg$Xs`-u)FO&u1PItJFoTettHqMJbHv9Dr*bRB@U6Ng z|9Di-RF-zk8L8Q<(Px^aXV}M0HrlpxtE6m1nJ(I1{MAh30$*_snA;=>jl>~$RRs*( z@CL6D_!%B<<)=x;gs(uXiQw?j-e~U_=_UqQn#`eenO;cKHi8i4IxK_DLZ?d7pt%%G zOSb7ri(vjZX@%)ViK9qwYG=`QU>BM}xJ`=n#r=h)`^{2k_{CRlWJWYv4?=F%1D8GJKJ8ZQ!?GhPNtHARNI=f-!@*ic_uODM&Gcy> z#S93_(Ku4Qr<(URx`t3<4jD#{LdL8!E(W@H;SWRgL1aMSIEcnkZ|KteVtsI<5pAEd zhCF{o%>A<0;}!J0o&z@u?v1PL8h4SMlfPmhyB zp`>zVb;^+k6r}4Rw5mf7iw`PycSkw*Lr%modAc=(E9FVTN$rkD_`}Bu2Wc?rD6zi7 zvMJjqC8E(?d;fI!oMB8}LLSslK$3qivqH@aR0u@(U)a}BC~B2r9Nb-^A)gwO&N^yC z{!@IMKbDh*%(Y{b4R7>k!LZcxO3H%Q~$8x4+= zQ_4yo{!=GK&nD{$d|uY2!j47@fSFiY`vy>q{Z7|^sQ?PLer&hR)<&F;`W0GaAY@gZ z!84*vW1w1x_ro!CNwcS&qf%7g{Eq4nk$|nLKQ%v#c?mV_sBt~;9L!X0UHQPchKpvn zv@iAoTzvTctmb5i3DS+I%OQTzpvRK#ETtQKyWTQwBx3C*AX!%vjyHpC&k+6^x#OD< zt>2eNRAqXDr09uPl&vsn*9q@1v>}MLN8OXrgyCO?X8pbYBggteNFsq4D{hz+L4JC| zBGv^-qcQ=sL~ZxG@ABuzFC{T)t7647hbHG}0HLZ1VnA6Z12Qf(A>h8wgn+p0!w?GQ zF?k)IuPrj>B1>}eFtrw*7Zut@l^DF@t!F*B6h|Tq^YdP&l6vdyJ|nDzvrZxAX94K7 zNvt@*05XPO>I6G*pi+mv39jLy}Y$(&7Ech;kFS|8M=Yv{;2Lg05_ zFxc)b_VpUw&F1rOreJ9?Z;Z|IHXDBF0IYhaiUpUD^uAoXc7@YjJOufKs$UCYN`k*X z;$XW3&W9oWIG)fBB$;NekEb)=2Bg#pMU;9V5%H0XwvF63{t1UX8g4GBrxaOMn1!(Y zxdAxL2>2ALQ}F1u&+@u2+EDk+V61QiK2$o$n#_^6$E9%U-BfWb0@+BhN?XTO z_!_4`gR@8()9<2wMcLkTJ&KRGpVJM33j%u?5>FSPx0Le7^_U#y{PYhAfb^><1cFmt zZjDL!a4wuxc=agI=am~ze|821Z>kDjlndTYD$=VJc(2=7c{j4i7L zQb=OVcPq;SAslo1;UvFY1c?wQN#JNqa=UlCrBl0|cbrP}FfxRPB>!}xlyA%;6ya`G zBNQS344#2iY4}aI_i;=Bz$fq|##V!6o=q!;c7mY*T@v2?owO%zzymIJY{X2*sy><_ z$INM8R#Gr&NB3sxIA%Zq!pkvc!U{dz92ONXB$(RzxjqIcO#+ofx7`>-O(Rz0|C< z4E8atEZrQU8Q!d9PUwS~Wmd&>zKZaXvo*iiBRTG;ZfCE(TI~5{&*i9FY+#+lxOssu z>go~h+HH6?;?X2L@D`qyyoW`@#>{UopIJ?~TVU89F2BH^|B;JMP>wi7k`DW;Pgo6) z3zPtlsvvS|=EX3gAcddSMij3Kv@QzLM~|iA76&^Q6BT(>CSb3=9D005q;IRqTs z%nal;70UMKlif#RL?W{tY4TgRHgn&26o)~~F4Su2zm|BilukZ}zq&5kn;VeV z=PQKddi6s4bUPFAqURvW%jzsEBH7QnCTlr1rW%t?T=-$-;zf@?_1ARc05*A zOPD|3E-jB1Anv*Ne<&XJQY&vIfrjZL^~>ta!6lf&!rF#tsUnO0Nw))okMpln`^1rm z-kWNS2YPO^pb!QJ=Oc{CX%+TsmXa*QFIdrNu-7PBo%5wv?$# zEHF!koXR|q8m>RwiVa5Kc%&(=!>sWR)yD~XfP#q-x!?qP%EVzs2x^XwMx*h#_R#C4 zkU7PFx68ti73`U6ba42)f50X?s%DLOuRL1VCuN2T z3~`_9uG=q%W@nRG-RZ}HG-k0-`QG(}1Cre^bJsg1OI8oJ|)H9!B#{dJ!6WW1U^qcY!1ApHkrqp1r&1j7eLDS#zz+F>Oa8KQK)XF4 zz9BY*^>;#N2FBgpG@53;uCdPZeD%XD)tEvz&kqxi){gTvd5Q2ulfdSFk%m7R*0%Zu zbpn>cyhJ~EAi)O`X{W!**nXC5w=!v@rgQP%VdlBbahuzpwWVAvOVTiKC9;xs0L~)# z0>=IDads84Np@*AH-b2d;I@BqXi&s9tgO;y!>1UyzN;oyz>r(zwvMcyvz0qi3u+h_ z5wy_WRqu#tiSD)svHf}vfHzejhSlE1%JQ5b)A=&fc)PbW&aai|n=-*F0p}{-wMBFz z3T70_)^#Cclzqfyu@6DEUZOzd24+_{vxR@~^344n!ze47;})zpbn;XoQOa!>k)3LV zYg`fpZ@hat=ml&#*FS!a)0S~*4VkAr_P9F9{LP1l7*tGImD{l%d#10v#(60PFHSsV zmDGUZ->T{qMh3qQF%usfVKpmG0*~JjNMluwMH!SLayjvQ(3Y5Hl8m?91z>+kBf7H& zJyCvmJwP^(-Hg3GzL>G@gyhj@`0@>S3uQn}_PtDnb2v{6XllnTL^@v~aD>1R&P4_F z%3mD?JEXh>9CJE|0%oLquwa>-fAzr&G6qg? zM)^?+Ui7%e)K}9Qag}Bf1vCZy6p)y*tD5a^0tLgKy#|hU#5yoxy_HaZieBU223~Y} z>+fWA<{h&!2ON4T>XL=BHaBdSGe-tKdkAryS(f{%?-=(Qrs6Y<05>lC*h?#Chwq~i z=JMZ0$cm_C%8MfFZr==L(YDIN_TF81ojF!!gV;<~K#=GMmFZYTEQ0T{;^+1CBV5^@ zp0q2&q79g&@54UsTAeyHg5D>b)`M;yOpeY1ltWbi^-sEC9VRnu#+<->M>?KAYCrYs za4%<7F{K{99}@7A0p<+WD8WZH`Z7Q|PA;ih37Fzqs;F1O%1UL)Sa}gpn8}M+1t&aF zm-=*ta6JCNdH*V+xCRZ1e$2?rO^ql_J7RK0uaE*|$otFTq}wOqH{tW$CD@IfM=7$& zoaa}*@D*OVb$GWB)548+2k$L?B`86n*QJSP3 zkxNdXjDI>A!di~i+cNSq!@&?P%U##fooJH7-t3vcu_>-e28Kz2qbs_`gR_E4qe>xO zle#3)hW|hTRm6+rgjACK+Qr?jGug5G*X8NauCZp!@q7L0()uq~E51uajRpyuznGW) zQ7AO!Wl>STR)K1>kz2MIwWW2@%UIWs?Nwg@K_+vCOQ zX!gh;-wYU1DtzhiWE+XaNjFlg7U!WlENb=r;rCWa`v- zqZct;Mj)steQwaI;m#nXLFp{31oV&z)HGn0ITN6a0ju(d`S}9nt{Jk@>I*q@0V{be>}W_5PjYC1A=i@1;o+Lk(s*7r6pd(SrBA(@rOnju49Wh&!4XM@Zs z?8a{VDZru0JD)IIY9E>7-BfI<&-E5W0IH=&P#feM0RkA(rbb)CX&QY^7uLj`FqI6$ z{O}x1N)Z#>ZQ|iQu1SMwM{JTcbb3hzD6z5i4>&Q> zA<>Ndhy|ZI`6{Uj-vsRqm`l82ODmf=Z1cc4c>o<*h$J=Y^}zT-Su;!8RN4l%{8-aU zRcXr42sa5Lc;!hOjVH^cJQi=Cc=KF{LTNeNX~H(!LJYcb-16&hcj|gKw=3a#_x@Vu zhCwndo%nQhf0!pWt=L7R^HGIGR*hSE#8cyt4*ffe0o~Bm!{*Clm4Gc}GgEHm!GUM^ zBM|<*UgyqRuY(0bG|=47Fuzha#oxZeB)2dU|F zb}Xj+(MU15?IcT?sWN+&a}jYNBe;~NRX}WM6;qosPe)HTbanfBRloljeK|6diwO== z@K?|({Eww2XlbIodRzo}V}CL2N${XGqtV)L?Bq#t2l>K|NgWAos#mQeM|Pawqfr{x zEXn)BMY#-&*nXt7%c12uY)?Wt%f?!!LuAMPBI33LylwtYa%^DFk(o;3Bs6Q%B?FJ) z&8jw-k^gjE&VwFvs+owgwoRd|gAeMetb?Zwv1?Sc_?pb=(bFtgJ#ANb#s>RH-du$3 zkLt9}1fmt>_8>@+v42oHl9r}{!$PyvLZzI;#Z;Tn(?I5$s00W8ruh~>wh?w>G(TLX(z7+C((bkU$7Be#BOT{AYC)Vr?VK2Iy zuO-`T!tkcxhYB<@th-r>P-BgT4e|SHu3ICd36F;9G&%Qh%RGzw`n|6Wqu@6bQtbYLcE8k>- zea=l5z;zT?mKN3vUcAC|DFb z^4YhANQqChp`D4Yhe2%eSxT75kLFKHK^v>dw)EY7mM63|341-{N0{M+y$5NCbY!4Q zVFxRmX+6fsS|4RK=0f=!p}Y950MqLdtF8#rsb&tRe+%w z(!nrY7G^ivS@_J5uP82^Qd)D;s3KoI97+hD->)@@O5+}6m!0frVv#=`HnAi|8zhTm zP|818DCg|Vn*-_m$Wpzg%W&Y3O*(6yKWNPT=g}kv zNh-#(js}6~3DSZczX3E3+2c1wI~c2hBt~RqSfP$TaAAqKf5)>bNxN%3z-y$DBh;!a zG#p@6I5YV!t#QW;SkH>COBbHf%RHr0KjF+4=he0~F8Sr15Yd5_QpS1N5K8mIV=pziZ%T*M?j8AI9DC| z==JdC`L0*Ru;UG|cV7PcxTi3tM`O*E;rB$rWx*P65AiXX)|p&8FvCB~RjqP|QH`Q7g~83{**xmN4gwbW6BLEpZ2dEhoO-h3_cJTY@6$wb~# ztYUMe+lM!&yRk<_WX&0~6_Z|N!=x{Iny1_xX&>P&)ENVOlMeL0bH8kpka{-L-WXln z6Qhnzb!Q=yfGY4TtD-IpD~4Q?c0piL5NMU6Oci>A{aZ8I3^g)WjipEYBdqo?CI^Bs>zutqfyB zQw}XY7Pr;EGB}A>ql-D70ijOrHtVyi^!xC{x?K)1m?ZP&aY16dX-Ww2W4cr!)`N{* zxb@KKj;T2O74)JouXx`ZO`9F2L#%;JIryzzE7q6o`%b1z_{jU0=C1qM#4*mF0Zri? z_eNR!>+_AI;17zKe-&jvS!vak;7hIY0(6I`WeXlCei*ow?rewG9ieyv9wUUnKs{X{ z6mvR&rb_uov4hyu^BSjImGb}&aqu!{Hd|3mj>uG?Qb|%Cy|Z#aaugO>{6MM52K@=A zsotllco$MzWEY(y?eSldc$gSCsBBHLva@mUUa>kPE30MM38hAqgHjFY+65bpwF2D2 z4g;I$g-sTSKk5_owCKNfX-Ao(#k(X40`TVnn7I8<2c8?8hg^RIGiQa!ApPdQzc>pAIj1z*%RlObQ8o_ zVqUAn-Vp%j=t|jC4pLI zW4Jtc=XDb|T*#lYHQr*tss4q6BAtP<*N%ZBsshYNzRr_VXiE`;hI5kb0^JdMiw1`{ z>`)_+OqL{c^W$=`Pz^lpq^#ST5El)2&Rs@=E^-U>N|`}upUeOKYeGTi>yVRGmZXZ0 z(QNi}^>QRg$uEv|V&)9%%nk*GRVRZ=&Zv>t!j1~^R2?)8e$Z)xKchJ1UsD83CCInJ zVUDm_n%{~XxGZs{&uqHJM=hb`Yi-^#YXLOxA0PRhK)C4W99XE*&=}JitgR?;i7QNH zBuX42am%g!b$m{9pQ&B+Pdbyt%dRmo$25p|jp{%pxVRsdEQRY`kZEdAEzNe{q`g#p za8M*QPWl2fkxnjP61Z8=^(Q6X%H7lJV#@w(t4imd?2y1PoEaiZBSIR07PK% zgP$S(J^9^3aRpeCx~gEpi{;blEKB;Pm4=a0Ta#=nGbdfeSbd=tepD2 z{6RIOIik~XctG-`P{sQW{)45AOwLllU+LDQR-9z7`|a(q<_G6yDRq2wnA>HKPcH&b zu{VY4$!P+~2*=?zNw zXXK+6Pmf4wLfbHW{bDGPwJc_JnV3JQ;c0$;bJbsX!L zT!|_4SA`S;N(jfL6!~dbc-GtlH>fzip<$BVx1WV)c31Xk1pD1J-x?*@akai$vO z8}ng}ys)R-Nu;;IxQ?`+s%81xPd~~T?D|x~h&batiidqc&n`UL?RSyhVCe2EF)!*h zG%<^gYMwzn+xqlW!tU^X*v`(n=?3}yYk8L{$H(!3Ze9kV*7dSi0TwU*s*4TBUS1v! zw@oP}P4k#Uor~ZANrAePB$s+&e+Gl%2~*L29$)8ALu77uPAZxqCI|a5Js8TPIDPz!`=u@Ns3aC&+cRJ5IZ<9tRu!PQa z;@rJiY|Pc%>Mr*gsZzutaSH}5MDmHZX^S->rZ=Ao zZO~9iTznINxvSkSeS3akT8K{`YS$}pWR&mZ?;aOPuQU_nD0zvURu9+aD^NLf22Kfd z*Y^xeQz}9neC=iS>&kBKJlMhZNpzUp(i8p_9&QXwDZ_l!#sWhUIMRd@ByY^6-Du60 zZX+%2imY_(q)tl@$}&08>szS9AtKH-MwX(3o8%sV4;+h*8lQcDT>s4oL{R|wZqJ@; zca+cns_LtP;%cI;aTuIIgF}YFEw}_3oFKu1Yw)0h>w(}dgX`cHG!UHN1h*i81cC-9 z1PB)3@;%)D*56hA(!0*?b@qPf?%LgJxqKHJtu2l!eu46Ap!oOAN1Zc0A79suU$*Zt zFg4SImm4vW=^?cdwc+n#byw_G`@X~5a+3Y<2fM4urLZfYa9lZ=Ux&N*r9mnrPKh?C zqDCx!HUQ9sTs zNGq0uqDz>U;V6@u(3(Ke(?Q>1X@cq8HN3n!-(dOE_{$Us4-^a%pmjG|&UwL*^s4Wqv};yR(e}PtWs`qFgRDpYGvE*VE@72X(Gz#ce1C0b{tS z!=FBU=FcB5u+}MrSX)W(D;@O=%=L23p59RTQug;bETU>Tm#gp4b|mQ9)@DlzU{c_< zj3l#=gLIfAuDdiC0x|MQdZD;B_51ejEp{3CNEb}>f(L) zQS-;7Q_}>Eaf;W`b6-r>;FXV5H$bePWd6-y$@Q{mwMQh%7kzm0jou3*pqaGonsth} zkGI{29IA^ie4FlnYCrJI+FvjlF!`Yu2PUy++_$!|zmTpb$ys-Cq2L>S#-g&cj~xt8TKl=}m`!BmhdPkDC*w z&&|ig{DB+Ht`aQ4q5FG0Q>D~hIc*Lz$8&t<%y*S{P$KA+3SA0(kRf_#g}U#1V0q{8 z1W{iRsEiE${9bjf8_6Gglo#1#GeueC{ z8*HSPny|-I9Szmrq#S48M>dHb%xq>G-N5@GDOzMd7d1>jlDliLx$M^Nzy;h1`Z6xG z^L2-?4FW9Xq#tLP@J*+DXs0B;YVu{QbzA?H&9egH5-5rBktmI8C*_J*Tmud=-Wd1h zT|g52%Z88xFdY+;)ga0frn_D0c$+{u|Idr;MY0L|Cen|CEE(fW(xNaiDq=N;-I|2n z9N~7+{8m1MVE=8PT33bWmm#z45RRz!jx<3maYoVOs2|=QJwj66kR^yF^~e`er9H}{ zA19qPUcNQU=)%#g1;{IHPa=37(IS0i{Or%!fo7yAFsi1k5UgHz^bxG83Lam(?8&lW zgA#l-N)`?L99XF^kx>)@9`&bbH3A!-q#q*KPc_#gj z&0_L^sub(NCWS}#3vCJKn~f2;uQaB6m*Km?-SG3@FRZvQA9sSn~JU6C^3*?MA`Q3j9ifDp6efKb>G)kDr z|C`AlB93K}JdqmzVQKQf)$Y!kiHKY&k8x=^=EI=h%&9n)QdX9MJ>Ts=sj%N8r_R*1`$mIM3nMowhwLug6NzQqog={>#>Ux?W@*43cob~ zK=fyR!K&Hk!2Wbx-9!Kp14f!?(8)ekbrPLWxuUdwa^BD+7eQVTe& z=wdwW3wg2YCJAB{C~2I~YTaM{S6O|Ggc;So`0$*8{Tb6 zpExEo^nwv8|F&InYJ*qf#01z_9JSd>`6n-@CnaHxOIL!Mbe=T`i&E!{Hk)gG8MbFL zmnJMW5^i#8K1N~3ACkvy37QprzS*|{#TTO!S5IZ-#v*l-g1}1ETQ-2YP=_)bIsE@n0rw^{vS{#l9O}1`TcST96 z3nXe_jk^6wBXXtbXU9%XOonk}+hyN^)3L-h4TW2W#pS(itt3~66oO9Yx6g#jYq}`q za;X*w;@KL|T_8-^Lja*Is`qbkYNa8m=qh;fI?Nt-c39izn=b66-Nd$NBhR|7`Mcagy>1}03ziod)~ zmG%|oUMXt+5g4~|);%op@?S`ixe*wqdQp#WOll|<*W0;nR29fduN>?aEYk01mrrFQ zNIu>C=3eW#i)){DkA{VHK^dqTd|6_JE4Y2chwh&F#mkdU9nukUYAB9IsY`PL0L zR53rhG;8yM=>ma({H&?K+Vi_r)^a5qy;Lo2z4cP1jxVIgh`|I%>HQAL?)bBH3DBp; z$~LF31p5bsi~-6Es8ZK|eI+%8c#5XR5Ir)w&{tW;a&i?dl{M`ajbZ(3T-(hSWPYLB zshFZ=pj*$_<|4+I{u~^5_b*ZtsH-z}mdAW-q6Y?NXVU>~a~Y6+76XjSMd+&raghO$ z&NsIM|LyW761BJB=b;7Kdf7w<>t+-m7$|a76zWi6tTv{<2TYgKE(Y#I#97kY7PZWj zT_UZvqoa0;h)9I(IxW52kx*@f&phnoZ~S1zbR05rJN@tpl_l<92NB9VM?YvL$g)$} zd}+ZD4=R9qhI4Go;v}~2-m}Cpo!lX-wVK=mTx*2cn`tD)nE8yM@H`UbrSc07o^HxG z69!NIWG%Pt*fRMuj7nZ0i!b5#n>Cd-q5>s7@AS9ts>@_f`3hviK!-Ssh*@Npmz~xu zSdF~Il=>B-lBG_N9d7%HWBcVx(Yk$MUnLt-MQccS zsPzf-7Yy1_lydc-12yC~q+YOFP1X4BY##rp_2qi-3-1!*eaPoxUpz)OG(*`>+A0{! zIDprjZfOpGw$Z?C-`~iMV~9UyA&vMdX8Lq9=w2KM^tD4FrFoxCxpD>aOxABLee=XK z07vueQdBPRX%NAE*a>~%M)}~M%m7y`A0DQN{XsLVx($drpNz0|u<7 znqPH6%WIB!e;|Eudu`3eQ?`Ox!HhN(9)R25a1m=DGInz=O^WGFM^k#IL#o~fwaHNMA&FN=h4doGnR!ignPIETvMExlF}Q!doq z%=nWfp0uh|=Fq+6!8fPGVm~SsTNrP>SE!fo)Y*ueSuegkV*sx%zS~QAQ>Su&+)J#{_*93 zb)Q7w%8h>B^o>lp)1C;fpqILIswEtpw@pdI+1BF_f{JM0>1jJUcNdZ0C}!CUb70va zvmtK9fZLo}n`-eC280fwGm3r)9HDo-{H@C)H})D*%3F%l1Hye>K%AbK!md3Q)?A<+Ug$J%doX*O%l@oCym%|7;@RuL2 zRp?+ISozpK=fORf&!R$lHA@s0xMqx((>rON9fQY*yxLYH!sm=>oC98-iou}WW$ zL@M$Qz%nA3O{Tt??BjEU9P_?WV5Kp4mw{F>6WP%tB-XwrjEC6#>bgkZZ+2apG4v?N z{n6N-O;M}HA?z$!*HC&*8cO(Dw56*TIAXc@J6{ouCX=gPrh*l=@0iZ*vnSN@ZCA|C z>yF>*sFl<0#JI5wzrAb~Xi@lP`tRak2n?2mf0}k>fyx=Me7Yj_q*um#z47{%WV5vI zF?qFjhbQ3LoP;1#f=RUD=>9${gl4+qj8coYMD-9EeORSw;EL&SVR(t>a!p*mE;774 zdqQeQuWQ|B-_zKt$SpZ(zVB8n95uo|g6E|_Hk$6(#Pptgtb+9oU~8S^&`S=vVUTMn zFA=%u7w`^Gm3#SSm=8>$#;Bpy-{V%nP00TWg;vqHp!F~+lUP1oLFM4>XfHG_V%w9d zY{K57IRlPDEUTcFh8BFWxbxE4UF{x!@O^AW7JbOuTWFZi!n@p3kR6^Onv8WBtJZV$ zKeQW=#zN?hc$S+mAas~ehN(;@{GGwXl5cLvu|JED8OTga9at`^XZ=NJML2fzonDjE zL#|8NraIhnawr>%U*D}(`je70`qcv4*KqZ0F{ggtL88KM~!r%)w&a$@qIbGN3%(}ew&KpS@enVnSAa0b7G-ypFB_rIb>q*7b zZKjcaVcN3x{ok+e-f6j##ll=m+^~aOpSX!du2?1&J*(T}vdG=&+i2H8vRz4ovZP86 zog&h{^?Ya=tn>y{G6G#RqO>`AdmrAGa#1j+CbLZhVxCSP&i7pfEU*?7*#_0< z-;4ME{-E$_v;^4}@OV5!(j39OI*8BM6MOO9^4KifY=ft^$d<~Kcy%7ekI>$8?_AR} z@g9AQjZ+>IX!Bic$;tb8qExYGToV_l*CYw`mu*{A|NV0gW9FgQdSnftx}qy15x3i*G|0MOIieH zv6cUEop9s7&PpPYLej_tXGYWgtqv&$6ImAMBTliiHARbI*JYX^u))<+Lo^)ddwdH5 zei*7AfU-CESI$FVAy_5nK6o=_sa2Ki6Y?edY`I=_U|Fc_WlZ=6Cnd zcWu5Xu`qIdBJEmHOFc%kcJ*CveZ3uvvWsUwH|lPxhF|b(RMU#}HP%kHzu*ZZ&-*!5 z=w7F`-lF5KZ`&!+9WBAA$w%BcxSl7wjs{$_0^V%a{i_nMoO!IHk5z5689-6Pg6^0! zAX$4|kZYMebi4w>V(lWGn56L8OJP;EZ^xI{T@Jq2J;lbkQ6n!Kp{(ZkDPozw?;0m9 z*t1%0xj%+ry2Pe8<%1Eamn%I_{?{!wimyd=?_6xOG}Q4E$6i-GX9JTP88POc3=JwH zfu`T+-_ay%Q3yddeB11>8c39;R+Da$i427ctMA~o!X$B769;E!6z6FKqwtZ=O|@0H zIYB@hBlk;lvCx-zV|d;FOz8MFZ4d_mW->5y50y9#h+Mt1Fp>~EH?PxAyZbE}GGRLF z*oKGfkeVro?_6}qua#on3 zYt2wFJ=p2ZPZ&u#@j2bua#*2U`8?BGBVL{blz5VvV+Ng)Yaib3N3(7jTZIzN0Z~Vp zD>&>7qE5W$9K-2BFK(T8uUC~mX=($GW%yvfQjD^QTGA^oLSng&vQPi~EY1W!)7vl> z_boiq>2BOLP4=1gPqE#cSf;*ypiqah6l+%&cf6h z80KGvXhc;UudL24jcn~Np*=Eu%*~g_Azb8DEQrTML78zyL3#cpWZA%i0GIOvJ`Oa+ zywS6H*-U=x-H*5aM%|OGJHBGBP(Pe`M=5Dj?~!v$f%~(YrNZ%Mqm$Khmw=AEUy~Qk zX608&(%pAKQqHHx0^{dr9UoShf7uAUTt8hhUp(B|_Y3~PLzHr>z_nvxwOM1}+2wHJ2U#-YjtC?P}I|mH!n${T#cZo79cRde zU>D9G8YAbgj6DM+Caykbn67l(Z8^A%A7$Qk1&Erg(f4$HShxP?pZ`7wLI3~bl| z+v`iI^{LhQ=7&aj*=rsJZRITZ*6S0MSA%IvxH}wL81WhMMJ8S4m05oPwIUO_DQFh_ z*XuQSoUWQ*(QBR){?PU^I2*4}r{&m)$n9fh9sd#SK^nCUf%aM!5+Sibg1br4sEQX6-+mH zhawOUpK0E?jP>?bh0O!SjUnbbEJan0m5l1?;pI6VlSog(9MxlXth6cF`A=`$1uaDF zIfis)Ane%c3thEXs=ts9a@vBPR!XpWX4yViuYrB_Y_EX`Va}7HZn02&%1pEG*w50h z%JwT9sGd(kl7f0Q%s+8PmF=rXXR)S5?Wtq+lzj5T%Ad~T_8$;3l~{mV7KzxC72`OS z8C!jX7OT`@8(F36{2HyyW5#o0sqfA6)S0i^6uRQr>PiIYyO+wac{8!%XOZFMEtN=f z9dJ&^Gk-y16?H)HW~#l3+^4cdc23FakdMbgmB2ZFnS=~*tSNFnsbj~jsln!hop2ZV zvZKo_%%*7t3Fx^(JhGlfOGjrzHjq^Y9I;sVAoV*O1W6S)@KVH!Fvsy#QiCTr$H={z z*zL(137F#v$(Am|u>& zPl0Nx3{~df5=AbqEA4o;5@w-G{8SR;Y)vht1ImG)6+@fmPa!Ack?@?!YynI_F$e=(Y^1W6PxZ89 zCe%7cUFC;YaZe)Iwb8J3M|{Y=?r{KG-E?XKZ+9Gs0XaXqD}k!ThT|6!8`2o=IjZo` z%lhPN=9n`3$_?B&e(ed+l1BeR!SjtQrVYo>64ATLVAs+!E38_O!9+@|tqfQW$X0%MO`n=pUDGn;(ns39ylrgGe387O~99o8bH z7J!(k^u?7_(8H`UAnh1R9*{WW)J(ML3xlK7+iucjne4C{NAgpBLwrOk$3X)NBvEDS z5=?t4ZxZoMzJI~xQ_QXp7?>}0cgLC(fYhnX?S+d=-;PjZ!y5Q_B)yFL_;rDkzO zevv~mD(a7uLZ0{C*E?sL|B=p;p`f7PJauUlOdkmsC@KodYcxb>4K<)Kz(=fb6{xTs zvP@JKJBGXG{QcISFc%)@Tmsy$Qv0&fvitD45b z9xKB?8L^VF*KIa*#Rf0n(4eVB%456P8~z}hATH7YNu%>>X};HDvh+aVVP>n#f5g5-8K_Y9(-|b2Ui=E*RdsWQI#34N&_bf3JzJwtN#cVj_jM}@g8uo zo?{wH2GS{+Jzar-Q~hz>1kL>FdB9j;_;~dp4h=LIsV6F>go1)Z#MSGgLJ?c_%ryUx z!uJRj<-ZvJZwm>nMKCtV63FGFp!hoRdU*Od*?1t%>d6rA8>msU5cv&In*V>H``<57 oP(nie5Ni#>H2;?=6cm#GGe6lC5xk93sJRH2#^+eNb^n?E2bk^%2LJ#7 delta 41113 zcmYg%by!s2_cbtpq;#t&T}lif^#KGK6zN84=#cKdfOLrT&@rSSol+yIbP6)G(hbt} zUj6?5c%Nqub8BXE&)sM5wb$CyvVxWR3#$qR!G|mGyVA>JV0=jY4q*luz9$rR>{pUr zn^Y6-%xSmP?)};A`P4E$`RX(w$?YB?k@Pomd;ApE_eto+yBl?v7Q=PXv?u*IM7WLq zOajqr?n%7P0!Mv!H(is_wLOoMI2xc_nD-VqQ@Pvi8}Zye%P5=L3UEZDcGnnrEB5xKZg0XFg=uukNY*nt z=KT%k9pW23w@KE|(02wMS0=~KZDJjMZkJBSvdtZfw+GADm#00c)VJ*mg|RJ-j+MOH z9dm|$msMZd?#93QxVr{)_+JlAo%9Vw=LEF2E|`*ZSUI-&T*U!2cg5#d0JYM|N_b9y z-_BLeblFJ8*Sm!lDZsVni=N?J<+DaIuj;ddiG{iOHUNX9@viP}>GJ(WyPseAPoI64 zlhf;op_`SxV>kDky{!QBt79FD~~0N%1)q>;q+_MP|n zy1di&vB$F6{&_QAqJuQnfZepyw<*$7+5XWV zFVRHWjF+e*y9(4k!|vh*Z6`N4Y(gR!*<(o$bzU>SymlYQBfIOsM|v=l<*O<*vh@0@Jrl25D>tqE4_7k}z7Vt7B4G34qQN z?^mTP(U`AjH)-8se_xJRopg7REK!iy1JiS+JF|#oS&0O^#}a*5Op=w@F9VH$3w{#b zB_phWpWIuCox;>Ag1J9KMs7Rdw&c`cf`W9}SWIZ-i2ZaRZOgBuI z@>uy(W|(6;+?ZsG(^DLsZs^LpTU)?U+!ft2fBS1{Vaw08qp|s_Dr@`mo+sNF#nA5v zs%~#;_%Vh)Q8mHCY`lp5T|ul7?C!qv5iX__FKrvsDext$N}7iC*5Dul~%o;BDEu1njYe4|1dYfdr zalc|%YDbaIxxbnXZw25%tzkCcRZ-xR-=o7k%*(=$Alc1PdP#p+K2cx;zQQZcVI}!m)q* zfM@=`l`!-auMjdyF3ivG4Cdvje0Z)#WJM;z82ljgON6lON8g%aESJyB`$=`1OtY_Q zEz*S(0YQ5s$6F!!nYZHf_Ua-$?ymie zucq9CY5Mr>U^TDby;{<&GfZ(B+0kC^SOEi-o@64*j~TB1-O{^)wN6~8P`aP~hikL= zd^&(ipr{k(8UX>{v?_t?;!R_pF*er`$yZAI#}(mNuB7jI7uLw&*ZyL-F{pMdaNHjE z`R`l*c(z#HIMIxr8X8(ax18A49t(T*3-witG}Y2(6An5nOC#yth8=UlTc@G+8JZea zZ@$}3q-klzCrZ6~mMXQ4!I!E{ApUbQ0~p{&8Ne~u$jdk~?dGa-Y#Ee=ck@~2DTObB zI@u&RU}TmxH(QL9Pdyvs@N>&r7CjltUE1~fL!PAL54N?=c#?IoM;NON;|&({rF9lr za>xu@PsoKq>2PH8B7Y}jsx>iLvB>w^FlD||hb@OCsWq`$7)+@0_3%B-pS#M-1%!28 z-od-c;H?K{p=mZ=I8Be|VKxu8R)PdFuI8U};6Bo`mCMTv-7rvPh-ONAAJ`xl#NkqD z07vuaSeYdYXT9#HrfZgcvT3yDcOL@^Evt%qxiz1lP2gFO+(|LsUr&PLDxqQDWvvxj zM{aBx@!I+UT|b^T9pmi zYc}kKp-^Mf`DPbz*bG5 zP55cB+g)Cuu;1$+*(HJ0x0{+zt|5@Kc8dL&-#*CzxtBttV~ktaXGSkh5gVWv zCPxsf7cngBM%GbH5zCdBT^wltDzVpog_b~c)D8As&Ai}2CU`$QGLL^z(?iE9@aDmOfup=b`aE-%6JLChM4H@S*H6QL(D7HJV9^1O! zA?AF}Q?I6ctlH)5&6{bkeW`g_9@yG8ee%4&$xd(92jC<5usK zM|>({+(ffqQ@4mwnvNWUAuEoBWzQAvt7_PE$v+RWck6;U3F9M7y--PAkfO)!4_FsV zuI>@{*4_t&hcm*bEj=79?oO z`CLn+AeN_ed^)y)&FYZB2MxK`sL68l_|W{^LP zLD*)rFu!Lw_qp-zQdiwVC%-VOHYs}bkp;_Hgg-!oCB7^eXi&bqO1B*K(J60MHp2m0 zRxhAaDI=+Cd2t`ZwZ4dNv#4FWS;mChD6eX&(y3bhyWd z;1lPd#N4(^(hnqOO3uh)<$_VAgU6$xZuWuC0&Ci&JKosOu-zmz#FnS`G0uK#Q@E7HN9-o*6VUul>11tQ#fpp4YbdP);%BBK zSRQS?`(!Nfi1kq*=OKn-q`auY%9!B5_Rx@Rt>>ACqpP#OYi(@+*K(T0TiRJYq7kYF z6CN2AQgH>z$)5!%tSdfh1<6rYhd5^D3yylHpj~G?#kTDcEd41u5t@SZPS(;QC%I3} zzmcX1_FVQe>D-!rxxU&zuyF8@4# z3BvMOP_-eEKjgnBY*iCnlU~*%77pyp$U_d+wBdW=7g=Zw!_|B@}yI6XFck|nhpZ=qlwmBABw7uZO;WVhd zBR^8;GRNl)wO3(Iat4y}V!$=V_MVPTp7XVfiWmM4ex+nlvJcu$)g*(M%dYmtw6o@5 zl+wVfz9+eHZ)GR@$yS!>6BL$H3e=mJOJSQLvp2jf-YHCKSv7y6lIZ_MMC|Ox+LPA= zc6}(y`a`Zso7`V9zZ?5E1i8M)9cwOQ!W9B=PMIdQ>@11^ss@<}0{v1O8e2_8K&ec( zL@iW?_{Le=ID{4t)fL zjvj%&;bv7XjA{!y**L&c^C?CWnZP2F=zK4*`5QSxpXR{g3oYM7Phi@!3WF>)en;VC zVV+Xf5?2M_YTXG3abb!Yq~RV+n%TBZ5<@;sP4#S~Ss#g~i&9B3kW;MSm<2P6W*#+U zxh7$k!1Wu}Ab%M_53SR1dG)6lT4cih1i3+Ab1(T!ACJ3bFd-j>L15a_Cxciuz2Gte zL5y%Lu@+607cMp(5{*QN^%TtGIhT_g(-_{+sZYRDEsu5@%x8MGJ?b$W<6xw<=8Ms# z=XzwMJ%jsnev#?33@fhK@GFn9IW6V{Vyp383_jKtEOeN7X0t0MLYxL`dNAfjyO|Pc z8DRG|R6T|($#lc9_Qji=4>o2fMFxoFY!iK9xApewYVm-T!O!ENCj+IbvHx41)KhnMVXM zF?FEj8^FZdDJQU?wH9l97awn;=>ojCr-FQl(O?)|GKlMEKLMhHIxzV^H3(I^BGyw& zBi==c6wafGR86SE?%C;BaN4C>#FCrT?H(N(m7Sb)^%Ro?M@c=}f9^lL03Uss;;Bab z0WVX2DW8Cfj{a4`kzm+Jo!KM33K==v^x-6la)GEA1#|q&j7J!j-(`c^L;!}?G%?)4 zNq%_I2kun!Nkxca*{g&nx${cwbl!_oqv5rN#G&>&vhbo^BON3qo&8xTG(#n0XvT~SI@-q?gOR<0SQ9=+%`!7nZ=_s zV){epil?}f?|&(hR`NvwN5s9s+HY7_cKnm(xtnvnFj%76>w0`kQ4$PvZx~C3KXK7Q zLv3Ewt{vXsAGBlgI{{m^rbb+PcFcbkfn2hqrm1>OoaZU6OJ^P z4o~H9j%(xe^Y9(k-fC6muyy{{h-He{&2(TDY6C)Zii05H ztp?s4FB=4WMdO0;_&|LImv{P|poE{uXW96#d8l5#A?%r@!vD}qg;m5xKJ|FTktZcb zbcXd71DCg!Cz;y@Q=9|Uy7gpT$FxRxgP&!wCpn6)`sNVRMfOC5$qciu6)DzPY7Ue6 zDphau17l4<5H}3t3yp;nFnl#=9@BlQ2G}t3ixU+x1Yho`GLGOCRgo#0WIX(k;NW(0 zWLt0aUyEhsg@p}um^<}f8R%W>@erFy^_=C+Icmg5MUT@WMM93GX`~wNpJup0$ zPQ6;6hzZb3@9F;_rtZ<*9{ug?rJ2KPOBAf8suT85L44GWjZoXF;GsM7!eB6_CAH#G zw~u058ZKl|kQQF_)t1InFwQawb1Y7Rjg^-YO^2m0iMLe z+;8XCPES@V9zZ*I`k1KXAKLH(Yw_DmSSq9fYiWmHO0veM<ELPkLkEOoosWmNUbT>2J;Odt%L~A4z)GYQAS)^vB9h$<^O*Zh4W|P(Ve^rVPf?T& zI0yrl7qHUG&mEKvCt$L_byN5}hW|D8zaRT49fQ+IHiKU!Y+ zKGb#cJx9{vZgHx3{#_-AZSA75BnZcvbAnT@Yhl zFJWJ?H`kc?CL9TTD{6-chsN3wF#I$a1Utze#yY)fO7Z0PQw06ZJK06H+l zanWlIcmuAtPEB{B=&-FMqz>hX-rt}H`VisQl~RjP`z}>Dn$J!K^PbOeiEl^;|FbQ}(zjL;{}j@!lZ$QEar(+oHU`^#F>Xhu$kNeNG+0`3%KlSz?%x(nweM z1EIO-b<~QVCu*rj4f9~DI^_9d*nNPHHNb_*?-!=>16HkC71RJ-*GP|nBjd4fCLccF z80_GaBFtP$_c;zEfIm{j9E1Q|vE0IM*;(t&q>BvISthCq`d1skO-quVwsVi)RopWM#L+sGK|QyfhZ|y#ah587WOP6 z*JTNV?~OBu9i@iVj}?r;w+{mKqLI$cuz`>h%~_}2Jd|W+Waj&pFfTwN8xt}Jg$Hu( z*~9RK*@jYhKoMhP>=cB4hKEl%_$3^fSo@efBwwHqyW}&%t0(_4w8_+md1MZNzE=-p zrjgUNq~l98#JWdHp)!@T=Jta(G4v?Ru$1OkQMU;3QFBrpvRGWb&Wm&=Eg_gi)Nl#p8zQrL*j6b#oX*Z|9}=IpET?tG>PSU!gw{t`tJ zaX6>x_JQ`a46JB`Vv3{ooe#|RB11Ms^RR~li{W!V)&u7*_DgbvsATLi6a_0+tqY>b z1k{d&>BeBpHH04i7zkUVAc}5v$4}mv8bgE#+l5{&hNo7TAc=rmCYhhiAy#gwiQM$7 zQDDqUAP!Bt56u5{`ODRe6KGv4@Y70^YCeqoFI(|)37_d@URe7BZmPlsSg~qxP&U-f z7Ah92okXok^Z*b8zibG4d+_%$0zRuC0#_)KxRBmj3`%GRRgcv^ z+L3SoS5>Wa5XFwV<1iMcD>WXX7WJct{-MUmgfR6xJiDC)#=bTge?Y9LHV#t*7YFe+ z)+0$9$(us6&iG76T&MbC?PH;K`44O6de}~jwQM~umRx<9m}{J>TK0ymY&Gca5kj*u zy2z=K1XE%ZL=$C?ep`C^q$$k#(3$oT_9 zu^J|>P(GGA5PdQaFs8QXgwuPOM^fPnF*!ZUwTBRFm5=Lm|EU&3&noz?N#^Fmxcz0* z${1#2)RD#Uw!f_yX55olNYesD&0kY>JG155SIAcYAS?Lw9!kCSGB{I%z%^(p zEP==^D+9}th3<0!YB#_fC5%&Ure4~pgh|!FncFFh{EN~6hRi)iieOy7C z{zNlHfdpturz93+Woj9^ak?xc>&@YPiJCeBCedirU+U#g9$5BLpu~!_bOn*ba)1dHWH;np=M%5eY~&mfqIgm; z5j_GJwYuQL3K(k~C$UhoEsh$zF>i)%9Mo81)gU?1q>f;U7N*pz%ln3< zWM%%|9%eqKa6i*D5Q0h~Zm9l-wJ=GHRpda*=l=e4G>;ftT`?Hfx%s~AVgom5qukC( zA)66JidOZRsNe>qCbj>Ws?1rJZQF&DKXAgK>~pobM%Q2D2hp4DIm@eyzt4R7H_|Ua zPQC={#p%EopAr?)&bn13`DMhL)+MktsviZGa@d)1;4=M(aUe|E2QWFl7YF;`t+=k<-)&y!Jo#+z-2HBDH^@(O~gyN7FrSI z!Wl5z;{(Jzn>2IFdj#R-f||S2{Rd-@!oJ;rgmQYGH%Fg<#y;X8WU1lz^|H44*#@Uo zT6E*ai z_gVcxMbqS#j0uc}01EPC*Zp`#mHcn~KffdGaax zY8?M6Q#l#}AyQ5Ua@z?BBc>AGCYdZS`j+H;iBU#Ue8!qsx))d)uw|MBx_bbY;t2)( zQ;yiQjUpl;+aq3CR(d`8M?c3m?oiIj(FXrHFuUb^;g^ZE1ZrCK{M&(ro$NL8RGwO< zw0}-W7Q`Mwv8uxFSER)7Stc1IExv(v6p-(FGLG0$NmB0B3Xp{)Da@kl*CuPtz_vjl zzexk=f-GzA$8o$_^?cBN(~HANDftrmJSC|ZyS>(e>88MiNqs=C<^h-XZMiX>A2ZU6b>)V92pZg&>&-2#VN->Yd=y|0ib&(NpXZ zDz!*6IC130X;;6Lg?DI^R~;&t5G=LulgAcuq%@X|jL?>~i<)~=z2VE}8~F>TYq=&8$#UGk1%J+Q04GtXL8gW8%&@cpQNXH=m)9Q57)BT4Aj8Iik z3MRP#x|Q@K%uwV$A`N8eC_T-vX_eF*?zWGHE-#PfD_HTT*xyt%J%$mDv`AZ5la6i{ z?suNfQ3?BecU9A!2^Ao+|1vVh&D^!|GD^Cz8x!PJdAb4{|E`iTfvH5 zz@{I^{m%CII~)A#L*N^;#Djl)Ar^S8ImkYiq-M0Joay9@Oz(TH&5W|kmvbO$|592q z(#$EjbBdBvjomjtph5PlLinL{Uh<+w79n(rCbP}OM=Karhg{T_D707M-)HhGnGou; z=2@Kh_$MF|X->CggQmlxi9z#cXVnm)k}MQq-vxju%jOHWyG-KPjt4a{QLD6SNuVN6 zIx1RdvH}m)>E0y@%KFO_{2k{*t2x+xGMh`p!Y$J75Y~aB*X-= zOniET8ih&K%yf16W!20O!dYgzuvC6J%Pim9atNxoN;ehL(F~N~K;FWnVqk-F0ile= ziOLHc<}39!S^s$GCd{Zgv-X|Q-&y5qJscY);UgTUr4 zerI>s$mi#2ET08=MutG@yIgk==AX=5JEa14HY(Qaj}%s>M7l z`7-}#@E(>)E4(cRdM`EM;MeH6%$yJ`;?|xyyc9BP#ozRJTb}nZ&;TAaq2Q7|Golkz z3GA2=gn~WCj@Z+H(2Pk-UXS;>NDLpbeZXE;J(W4uz1eK{ohZf9lt8_9(_ zwBsPHZ|3!+DpB#hB?QsVhn~k1b>6 z8IJwz)L+B>rS+w>l@7~KL`VX0EVbj9$kg*5q02PMl-+mWkw2Ngv|%;;X%UUiZ%lsu zAa&TdA#9B`AYf>w6n1GgM_O%pis5U5&{wQk6M%C+^A~&c98>XUMW?oanSesITFL-P z*}%wp3qUN;6n z9kM;P^gr929~P%uOD)u;{P8~}H=q3+V2QCf>J{0`!ryuGSv41|Q?BUzVYy@P^dK76 zr0XBTR{WZbH-?`Qugpz69#)E7(4yDp-m|sl{+*uNDW^ib(b8mcE6cDStMe|-2%>!^w@@>z(8BHSd@Qz2IpH7 zss_nP_ljR3$3udPb=?@7WNxKmJy~yUyHY{%iNkYZABj$=~9(g5s`F7sB6SOQs=pYyZRS}_BC$n1O zAw1UK{}lHbpdt}{$DNW+jVQIjd}m1%=aWovVB{j%5l`9_@04_e+_^0n^*rR=%q%pb zUHLytKBT>)CB=@TB|71ggg8%j#N^vzmJ{G+1>=Lw}RbzHxQ~%zmu-{H18??)T`gJE^;a!`nSN7Qg&R z9x7zu$UoXmGAZW3f|excIZM7DfiM-Z9J8HxWB))2>{5H)KKb69wzv9V@GOrHnoGsG zB{sC_^O1pAO?{1)QOUzi+1-fTK^MXeQ3z^~?x2qjr|-2q8&G5AdggT8Wos2$Ee=?2 zQX37E|83d$6QsBr;tXxTcQ7F2wc3<@itjs2>_f-@da<;H*au}lIZ)#4!{9Ya44n@TBb9l2Ne%mmIE81G5`6zt=f zUx|9mFR{-Y^qP@C@%*h_4r}iSQ0HFOJQGe&A)Jl2{T`us8TkdRP3VNSjqiVK{vgx7 z45!Jy9;5Ly^>iBL73H~NJ(ZP#Cc{fqH@ynuM+>bFk!T)@CSqq~H`~;0&g8`}hnrhH z?$!{i6nE#+kF?o+2TWlq*bbt)Su3kQkCaN_vUS;!t>^OU%}%q*nCsl0#~V-^M0FtW;*_VfO}__I7@>+c%S zvVBvB-^a7rISOh+&#H*sF}*sg(68=gn)XX375vF#3AMLkOYI4OB^}`rF)aNVClcw< zge+=R9P9!3p9(P^WdQe?rgCBP%q8+I+Qz`go zXaB@%sB)Iez)a&b_pvAmIq+~EyjsW6IFh}VMwl6&7q^c zwIk8@z>@KO?{T@eNu*if8%!@%cC-$DZ)o6J*)B1#TBBYU?~({=JT`=-{F^^Ib?6eO zI=#sDD27TxI_3yCR1yO&+|3`d3ToK*f%sN~Qkgiw>y=d&t&{(CKmAfraAn7lug&zc z{o9jM2mg!Kc$KyzY$6%)e*szMPd5;}hCMmGW|l3uZ)U^+GdXMCPHoWWe{f@KkJ`Kk zDbD$ZQ_?I5STPc1`tv!RvYK-?+@|MebzeR$f0bXgNMjbadHp_!#Fy{D*)d77a4UsT z=dA1`qs1y~BTqj&c$rw>uM*Wm!Ml$wGT{oA6;8n+c|4)}PjzstTkHnnfvPdw%n&{& za)mbXqVA!^*LV>2Cq$Vc_}&U8tU;sqk5>rTMK~6;W2UmlMe!i(kBKthBMA_iiK~4X zQj!u$y7OrOBvs-}hDzZt3<10G&QF_gya+tYhCVf|5-siho}l?*{ymipDS_36o9V~r zbW|FoB0UyZOM*KrNh<@7`7y1^>eo&D{Zd)zAdu}lU6+443&AktDbxaZ~+)9nR zyYk+lD3-X(r)NJmNfF0uqdD-nw3#fi5?hTvrpiqcTmJ4`w|^~r_R}ymMtYTuR(Pr9 z8Q+0n>K^`W9_FG)P>^E_3e{*xE|wh3AgxjN3u&x-`*N8QQuqfT)G6)j_FlU`&)#4N zE7jV%*#)wUC4W_%2gzr9sl5bykecr`YR(mo%{oKBTKM+s_ zS9Kba=>dbx%Clj>k@xJGgLX${b|ThD^SUUN+`Iqd79%@Zd&G&A$qasBlc~U=M$jI~IqR$(8mdNVIehzS zx%d9%Ox%)?Fj#flwcqyd7n(O4EE*aZW-sovCW-=X-!*v4qsafNdmyI+-(pnGL5)zV z*yV>PQ2LsrL2=~b6Z0w4L#=*nqKLf8rHM;g1U<94b201nd4~eo3EQuQ1>*E}N*m0| zL|)iav0D#NuE+n!JaS(0qUY>9s)>~>N{uPy%WT5Nt!;e(>{8jUW-vPVe}IIPi~z`b zy3*hosq-VjQ;x@o)AW#_W#ly~D$}cQw65h1${J42$A4ft@FVc`zilB7Lo98UZtlW2 zD6pr`xunUJL}mGR;wN@(@3baY73cK@jtd1tUQmI1j$WOS?aAwF{ynv2Su3`f7V#7J zsN7Fxko?y%`$6amzQaoFPq#k+{(Gp~(&h=%kGiUx7`87QF6k*)If7bameP84^aV4K zxEwLU5H93U;P?h_$A_JQR_lI`%q)vf+OF+V_8aGB zB|dJ8SLh5juQ$_$`4%iK`w6AAZOD4*N%<;J_>bob7JU^HaF|<-<%zjFy8s^cU_#UZk^h?w_i~!kG{;#$zx%YS;vd~%z~r*QA3c| zuekVB*`B62LXKaKCu;c$7)*e&M{%k??)r`oVK0s_HHaI+&CKL;a#;y`z-}c&rJ=qE zo$|=ctY!-%S%$u)J$E6;ZHPyzEWM62O=2tBOW9UA8<|zQS&O$aa#K_J*P)otPCeKg zaSvkrCMqZ{s+u%xXuUxtI+L_$^o=G*yciz@ElCAglnj+3F$eB!aU1*=-CkSNb~t=Hs1mW z9VEt1BXQ=u*@v#2XpENLuVuM!{MX`|u7RTDQpvU50w;If&00EWkaulgzt|QvE6+QG zYE-7cLL>kx0&?Ohb)+Kvb9r?!P?ei3uc!=chNe}rXf-Uvm&Ngo)1%|9HA|~CVuPbe z!gn?Q#3uswqV#h1jge9A@G=PEb$e4)s0-l1EUTA!;J{rYy% z-!?R1uBX_N0G2UFHat6kO5&r-CtO93tYv%gebWmjM)C`CuCxT#Gw}KSj^3(YlK1G9P@6eme}GnT+A77Ye_7da z+q++A)Lb}rx%aDf_^MPR+wX-gV0CUH`76e@o+F+1lvI#C2d`ufOXZ4uKN5nBcwoBgkgyD0@Am=#T-Zp`}M9$LnwETzqJNP@yjM>37nHcqz|<;uc|6e-aye?Kh!<@Wf#O z?ar#JL3bnccQ@cez`3<|9t{y!RCjpGx#_Jfib zj?zaJxYYVHuPz#Q#W~@(f%-C)4_Je3(pO!hRY?9CBy4^8SCEflvkp(SZ^rRAmJs(T zYEluY_b-02I`1u?NNQ5x=WpVuCK!d*qu1*XK*RhK+CW1@xRKvF@vPI=LT6k z1gznD;Q~*bN;%XsKv-iS_$4kv<*SsGywlm36W;U8@s66)tQ6#*r%Gq+pR@Iu79JkI zB!Wo%QW0be+avU|QI^9VEyaT{KK`}BYfyEP3Z-qDDOZdz;-bk&&fAb1?Z)8z1W@jMd-PNGvW675{aHv5FOfXHar$=}W&dVv zYb&--I@w_=c<}t05wPz%pWVyRgM!TH0ZC>y*%_y8Ik2ohAi!4)aB2m?J&)3YpsFtk zv>~y#%F?tVm{TZ+wX36FucTYjRnRu)T=%I|R8YZz+b39V~_%ajEwZ*m~ZTFdeeIOJi^V+R(WN{HC>pTCs;&O$bU&h8T;@j z)W^eUYviDEms@zLrp_fvxaeu4`Ii>2y8{w&3a5=kcH@$m$Wf5`pj1*6C*v>9ZiiYK z8AuhyB=he`_O)^q#{i|8{!96S^t8uZQ#3Q#91MJ0W2h2&2+}B7wO6x3q0H1mk&4^w zoKpBW1T)kE%=S7@#!wA%WoomChD({kt6c?$E8whbKJI(5L9IE_FNuE&kLh{0j5PyN zg*J29_jHy@iw9wH)l6rTOfje#Dh!9J)6c}zMd3jIGy-&-#C9+RNJhLi{#Qkd>C5Ve z%;x2(L5&Y%Rp)peii6lmY~X#&pVSi48Uh|qT}?3~f0Uu;`(C;Zy7Chof~$@IJ*wL? zPFFWHx5wG8vG@dMPcfz*x+5hnyjBOLYBy$NFj+D~mOQWvPr8*9>_mmbXwOFxHjay0U za9VWQN`pX58_jud=KF|@5xJA8G$UBf@N3#_iy40pw)BYsO&|Z5Z42uqs9GCyZ-d25 zpo*Nyl7<@Xxu#%VYN;WwhMY^RY$(M8O`-7p4^ctM8RBarxl3!wbRzfUIW1=$-V~nz zJ|}&{*H;5iM%vCT3rN9&U1k~kg!EbQqXoq7zy^coUe6`ym#ap~j2fF+QmsEgq?YM> zxccgk=hjzLDOjNy$vo0HHdGq>@Mh|h?qlYv$jc9u`^|{|*c{ezsMeWIPo|A8+PXpD zLLxWpq0>tw0m2B`|4R*lR{&c~0G;N`tQGX{KJTKYvc@u9`mViN!j4SABHMaQIa_Yz4$;lBJ_ zj>lHfWGaVkntZugz1gbn{h7lmDOIVnU+MXX&~?w-G;A!Jb8q|WsP7>*$QN`CA04@; zzb%TI63{A7c>&!0)Q6O1zAZ|(hIk-SaXk<^MC9W62aR2=f>r+;S~5>Ht_p*+9)AWZ?2Lm82gqoAKWxbxcm|(`*xlhXYbLKOBQS86@r!o9i>m-hbH_ zugLX2V@TH0RI1$acRHta1D+VLsHbRkSEkk2e+Tgh2JbOghsclk6(IhV5CR0)gIHAg z;0L~;;t)BGMxB{&j(d4DnMm~=Q&TdwB%1?{S)hI!!Ux3KWhrOdyqCjSde5D{A3clN z{Fid2zs34oKeId5kljM_Uar!gZ0TZl?YV;AqKv6QGaI<;KaM(;+}6dE1<+RoLI1ZK zf>l(+V)tox25{2p!=eq^of#v0xAX%J?~Y{SzTP@EuaKk;`V6$=8}-6;@O{Uw zFKGTh8~9bWyUc;QZ*rX&sm=qg^vBr?`DS8vk_7<15gb*}$qnWE`sP1{gK;5!`p?tG zdo1WQ-<70dV_hg%y*&A%D)?2>pS#E_@(}9g;LE+W_q&T>Ac2?NyHv<<-xf+QauJ3b zsYY`94~N2+e!t-~GO*Xa_bFOdj^g*kJ2#2x;bOPb$QQp{p!^#b6~@3#+Txq`(;)dA zppth%YMX_89%N-4rKA3rD@aM5PnJn4hZFWLx3Yq(mqKr>I1v=Bll8(&e>3+1{#QZ< zr~93#zk~=}=3rbkQy46f-kW&S`s1!Wirb;f3StUBd{2r}+EI@qZvp!>!5>z2oLSZf zu;C2xt8^X+6ySk$lgt=4KEUcmDVDV|&nM)CJ6D`ry@%u2{>_4RD|4^Vp$>C^Zxkg! zWcslwB!*ZwDhM~lG&iV_b}Qtd(1fShy6?=;bUxarxc3F^`EWG-`Nci@^P~N%dR_~C zcM_ck|B-KbT&VylK0mWQIum+Z!qjql{&votpJ!&CyYP^G^;}~v0Q@K=WqSL;5I690 zQq)3m-WHM)8HjmzdrkDd8!r-FjcQv<@#VkruUek4oD={A4uQcl! zg5zx(d_Q`t?(9qfrsCLAaeEX61>ZsUO9PIu+iZj?%7%lpw7aGN;Iww(JB0T&mS^A~&iMaH|wZqa4EA%AC< zfZY;#`OJ@n=n&dNkr}PUfBtBDN1eYos?^sWl^Vr&P-t2nmDf>8X|lvEM|-ZopBDw# zh|pw$MPVet9$F|r{V>7CPoXRg2BGL3Mag%mbt1msrof(q6?Pd}j>JtTYMAou@Yx?D ziJ%-lJD%^JQP0=4_O^AIHTvl3JaQ6ko{PpR)>aZD6fi@~-KSkW?L z5XeGp^)S%|QJmC{ebKSc4`SuEhX0JROnPOh{!D7It)t!F(;c`qu{tI8Kf;cA*A;SL zV4}YhI?R4*ulWBMdB@YN+qRudY$yM@zgu@} zYwOnTzBr$Hy8HCOn{)c<{`NNlxLtb>K(YVvnx;YB|M`Xs>ZF`1-mOJ%j4+YI2sRce zm{eH|SiJiSnfyC!-en|BaOCg)B}y0n#;+<0-a+2o+hX5Q$lwMEb4SI&t43|bsZ7Wh zlcYHQOWs+bXXoRN!LLM44#0l>SIYDX7GpPTxgua-A9QI0Q}Q__?B&tgIYVBYYQefc z-F^8lZ}H5Pt4Pi5z6k95(?2Z3QuD7hH?@`|^}i;5v8+t*iBN_i7IUuaR^PGJ`m&(Z z`ns^m(oz?+`768k!^m7GSeVeJL{Bo1*@>b4y`e`&aBVO4nk#@m)Q8>0vqg5(e`ML% z_GR+p;GaRo>;C?~>3#1vAC~8B&$Gq#i{_4xpk<)D>wP%I zc!Ok61J+Q3BoxqyCEh3*)QC0IC<)bsCEg?%)PyzEBnj1w3)L(s-i#~WEc-u9sAj|7 zbi~?Z{{N!of6n$$gl&9;ElIv6bK4|io7{gB_@BbXf2#h` zhPmy3r$-rMgl&3+Elqu(vGclt^S=lAZ?^v@{>OG>=l?g}|Fp*1q{rTrH#HhPap^yC z89k8)f@Uw`W;5aQd8EW$nIkSqu{TE<+v1I#Df&<3|CfgQpRQP&Qp|0rsTbt=>xlo= zt(ic)S>gXb8OZ+Kk|i8QQ?4Kx^$lptl4PKKG!d)K{-u0Ao@OY}S+bI>I_Tq}S<7%1 z_Ho~5sHcYUc3L>tRYCVSA0FV}I?S*Y(lN$#e)Wxruqis*g}tOETQSY96DX2L2+V z=_Kx4pfRre*U2-m;xX*rvAV>$ni$VP^9KEtOpnN_i@5WI#&}V^AlW;x;w|jHuR11C zFZS0fdfg+06-_i;5bYzDEv&@k$#X}f6Qfah_`yZLB> zf0FKBnbq66+qRFkYIav&H-=w!h{&xzt`85u_O`dzyWVEqnp@ed z3c7$(qbW**=>Bbf319Wz_)2O1K=mFK7c~V#_K7kx%@0CsfKpVw4uMDP#uNA~2j0*2 zeSnAB3;Fi_-R0^%hJ5w%#~OZHmte$hpND^TEt?GG>gDsTT-IqHH#48Fi^Y%ke+huQ zZJ*!Vnd(RCh{bx{Ygy9@U;7Vd^B(K`?8OYx3KzXzx1TF~>}Gd$Z`ZH)3yqUU4L0j{ z`=7s2#0JlXOj`aRqP4APm=nJ3iF~t4n-#^pkFn zs@1-{O@4_TGW@!jbYM1f@uK(|1j?&}j(0mB7TC`2Y&SjZ_^zh3JuhE5>hwCe8!nCx zI(^nSpuZY5-{x=ZEjyd{HaurPA4)G=#El}f-ajyDXlzg?_|Z#9 zds-s48*$Kmz8yI;z+}1>aM3IDRs{KU_XlfR#;fbmd@=>S zsh`^$a!1V_9BWTkmG1-}sB4X9OP<97exXmd%}2Sqjl}U2KcimCa#g zYS-jhE!)&-Y5h!P8NzC{iwkR?<7HMR=gx^Kz~WNYa_UEHUzhA|mfNyzgb|pUORjQ~ zyRu11!V*tk_sfbiL0T1G^_FfMbi>?>l~Ktgc7#wO+(rCKiK8qU`zv#(%&RRt0FIlR zJ!`s(x`i*FT(yV*pwEt1zh*u}`nghH^seeGMRuxoJjo{)Q{;cU7~(k@ntj%<`cf$= zyHVx16Z~nIJ@AA8HH}KDp*2*9G|qITab?}7(n4p4)&LJt8IWTg9f<$7t+6vSBNyDb zlFjWhJPxhb?YZ09=U1Lyq^}LU{&HwQompw98(Ju{!O=to(pG@OrNgSq{LG?9V5p)< z%J>WN_-?bxleKrG$-QHKF{++32=e`V>Ib}lr5{D3cRnljN;_QzRl|gM4sy`u0%h$>*cCBf+J6%w-q9jJDXd7~r zly<-#+g0khb@6R-z{(6Ww8ai#FHrM4)#O4!*=#x7Adfal{R2N``$#Mp#AYZwoRatoaSBsTrU?c3K!(>fJp)Pv(|gEa!{(}oabI1Q(t!hL2Rw!a@)>c-e zX8QKCp3}zf2AMYCcaY zcV4eh*BTvYBFX4HX(?lQT3_l97M7Hy&^)4GEt8iR$;$ZWw0wuvh4-{n-)+E^RjtjN z_t(@qgW6f8L&o&kMWMExI^Gw0te+T;(6-u;r_jt6QyPdh&!pErE0{omUowatb4@wIO-Lr-{h zk(1{dRWJ#`if1UshsdtI=ydOvw_?+_CMVXrB5a~`D%{V~T{ii<;Cx_3F9B~&%aoq( zQdq?y4y~kwcNar+I;mjgAeqE1X>5y2Y3v7$g`T|=p8B3(e`ME(Pjmd;O}2g<=Z z0diDIY&|JPYcpKmU_<6DB)}o#Sv7V7dx7}6qb>8L48FmZtuYXzd8e1?T zM>~t=bVVO}LJOF(lyRt*PC*ka{hiJzP}DLy7HCNHSN-ir&cF;m?GEBs!2u78Y>s{a z`_hxraUHR&brjcR8Bn2gKa?bS z!uTZ~_J*tCZ}70XDe*w#i)uIB7SDRqDzvRdJz&fK63ug?D@dCjZ7GQ^8|26qLTF4% z?oJ;rV#xbtmOiBmg7M8kD+nX!jZ{?@OJzmekD-V96v-$2=VQm+q5%Eh6%kk zgG=AD9}~`);HLAUs27$v+cf!@!Q`EQTf| zdo!-SOI)e%z64oDZ&6XHIEk_lk!4zI$PEps3Pmc%Y-|)xrSWbb zOB=shN0gS`(re=pDso6ALw@i4sO4cTpZ93DTh^ZNCT$h*i-VUaAXW>i_*U+SdQhP% z!g?$a&!Q8A*sc%lAe2evk3tb5qnQr*wUiZyDreHyf=xoxlA25XeivI2+n{$p3y;`VnSYU2Lzz~6Q1rMT zAiP7Q%9Jk&6F(jXrc)z>o&7S-hmzb8xgyYqhH`&2o z_KjX2y8sJ)OrD6PKrg6NJ(B{7d);=A_+bQ!0X;2@c4z+xIo69Sh`>D5bBe)oLiwyKu15vYtIh z9l-KW8EKZE7S*3JEvZ+~qTm9;4shh71ouRkK3uzC=R}oGNt~vUfB&M3pgco1!3t}H zTnibE50c>>Nikf7P|j>9b#{c?*K^@Jb+d4T;4Xrh-TYE!gPYc&fPt8w5&;P^A}xe8 z_=y%XB*|jay5?+_XiTE(pFs|lJPbAetQtO#mw4w*A9h>Zw++OJsaPo(%A9G?F*R_V zujpaR%C7g)g&eO5ch2Z^M)HgT@L(G741~;a{DoO%E5OU=ga^H_k*#|jt@mL65a(>9 zPjBm-e&3tgYsxJUc^+ef8&`G1jy8og7@QIwG+LG;kXS7cQx!EjGK@9lYc8%Y*92Bw zr&8{I6`3fdF18SAb9^>%ucQrJUi${vgU@jYvm}$QQK&)QEgyKJni*X5c7+eN@y~#9 zNZ^7o^6laOTG$cysy>T`)HIO%J(9swP+yE=O)1!i6}iLaMOILTuC%S|x3$=GYWtg( zc63^UC(fo;&K*n`vTkhfUKnXM@er^t9H38^_9rH`t}U}H_go%I`+?>_q}6TpYX&M= zR4mC)mwD);`^z3Tg$<>QHO<>^}#%Gyu91>7XlkLK8@1wvJ{9@YpD)AtP;`CSx-r&{}5hpaSpjWUUF;IZeVMF$rsR;_Nk0wt*E zHfC0dXPd#~kcw6$A(Pm&kb!AR^PHjUiy#%u3p!u78(Dbh7eVsXDX-z-&7(Qlp4@_l z0q%B!RT?tL7+jg{n%Z91+pKP~AK!HlY%O&9ze(c5_nQx5`GyDTMDWsD@W~B;@PV#z6!MdYch<`> zW8(l?0x%HO9d9|_`I+eUEc8k}na@ES2m`nhjeN`uW6+NhQ;|w-|H7juV*9w$Xvw@k z&sY{?x(f!318$CD0}H%RBq9;PNFn^_tHp}9Owo>$5>vx&*-@MQncNy=nt`7>rOHV^ z*C^N@Qmi^Nqzwzw%7I0QQL8eEbHVpf>*0Y`@E;_5#Y}d+>j_fQpoOppYHR&95jB6R ziK@_m2!BOtG!r3)QokHzB-AiJspw_MA zHLx2i89C)e`rNC}V5vAGS2tUv+b+e>IMOnrcMAdnfy$}jVL-(*D8e-3fefL28(p;t}(sT^LiXHmxPLpi@GFmWVf=jbeA?g(BaeeE)56bl~rsr{+goUe7|=1w0Lx zF~=gmR7AT5)eE9nIU&90zS>^q0#Iv(wnYC8vyZ14zMNe}opWjGo9wt!*A4z2Rv`Fk zV1rEb3tzpMBIB^3{@ZIXdx4eY6z!5MXRm>^ zJrJ^|x2yJOT*G2qR%b7}@cB&Rh9Q^b7qHd5yeQYo8T;gScuQ!`6Lb#VVM&G*JX24H zz>1#Or!FdxkwEUBpDr}X^?!EN_y@!WV@#n zyW`JK78gW?JRj7_)1c;A0kDk2`P(osbNpB&&APuqK3*yg(7~3W`pd=-_gilC9==l zF!r}qCJgrQd9=liprn6~U%jC@WgARHF<^}-kq0~v&p9mMUMpF6FMvx1hy$u65u~l# z0_FfO1Qbf%B23FjO{ZolM`x_Q5HIFg<#Z^j&?ks7dY_OW086_1Hg$(i~G*BLJPwy4(boyrt*-?{tTm4EuLrKdI>7rh<0{m1tDUY|v?B ze|ZQcy^J^wy)hi&MJ2bvz7aOO&F5xBZ9TC_CiB;AV^9H`6{6NG#l4IfP&zcF5^l)} zb}xt)`@p`gW7%?cBdfGK1iWRCg3D^nH>s=ZxlO+5zB;adbG$&uIUs*w>A7*`Y6W71 z{ljG5bAl(LL4npVR)u1SEDFc|u#PN5491%5-3Y|`W5_1iwW`a`i%p~F$9D_6*r7kH zoeO+dKZFRC+2Zdv;#ho1)do1rIQJ}vZW9=g=#LABA!Qp3B!?2=)3Y21XH%Rh;9t~f z4ROB9W&BotJMEVGnFplzEnQUbHT59CDSJtYGs>foPU0+Fwyp~3mn4g;=-7Dm$i|h@ z+LHP3!8MKSCVD3bZ-2Jjd1GWXVO(T>KJ)V}m-vAR)KkTYGUiSwL+ELd9WIGbVmMs$ z>;y5O(CiB-_?xps`evtHdVT93ThQ~5Y8$@XhPB`gA`B}@%m?s0K{3i>^V*{eUQ2_Q zC8d?h=MSANzdY=0JIS3!E4GJKiKiMB^18g!4wqyi7BxuO=2<0QYezKE+HQs}A_*`A z-^gu@+r$uYW8|N)0=ELTJ0esBzabLI7R5wvfid$ZGD6V?cLcuM75$+n8l8iD-00lm z!QqDGX`t@oU;|E&cV%!>5#LZ2BW(z!q3;f8RTTb++@C<=Bpi?_f9GuomRqjaLjG$# z&Z4M@E=_WQs*R#X81jwX1%f~tK51NMryz_;76l0<2NpK5KOr+X8uoJMPe*B*wDxTj zHQ`gPwZ^*37aFI=0oSL-7RRT{So-Lls@Y5vamely8!|V%*_oa+ShUSbw*?1}iSuco_n$5H?h(uR zHx?6{;`lQNU+yq&tuqO|ifm3xRFXO+3tf4QRb&?(?GteK+0rFj<4t>V(|5js#s=B| zLh1Xxjt*E+Iu1ks)s;Tq&nv_{mbikas+@WDsPdaesM&H3iG77VF#nSqt=$zZv((9G z$n@9%V04&WtM%##NGc0+v~Fa=lwIae4>`L9Eyhn&iT}K>HIhcI5O+T4>tf;>h+{2& z-sSJEG2vNSta+9YESTGumZFHO07ag|9P4;Lz6O}&Ma^+p8vf`XCkf`fyr8gKqDW@$ zmn~$1LuRDN88s(bV)vSw+ayECqv5b|>?mYjBpY%pHo5l-)^2ddn)^ZRi=IfbT%f|) zQ@bN2El6|0;omk#rqBn?@VI+@IFiYM#i3Bp%nVTRQRBqZ`_!|>pUd<;%&u?UXt;H$ zTLCbie)82c7o5CtrEI)h~@g4V9Zb;Ljwl!#!&QgCr-DFp^CzCWcWgRy!Yl*oN#cy zWfMA>Aq+*cgeXBcW=goxL3r3Qk)f*JH}jm2z2E$#YLmc`6NuDW;U#X_rUt`7kf5T; zY+kp2CFi!Qpg1GN6dQ*l&`|BUeX7$g9@wlqWbbT=)NhhZE_R&yI0g*%MThP zWeSgI-(ivWZ6TYQxy_@3|ol z!%NhXVA8rs%LO^o3iSurrquP1Q8latKu z{4(Bu+SvacuWyhK=pww^iGj36hG}#rr3LqYx~1?nCs8E{@=Bfh%u5!TD5(Ael5JwS zE0Z-ElePHt zSRdr$hgCN3?%^Wc>(lObmYy)1+0;n+&8Vr}vrZrA@v+EO>AIlNIazb|aTmlL25X6a z4WuLg_B8i@5X)q!rCp#&;M4gvR0}QGnn${(n)*0Tda@OVaU zLbZxfdC!Udo6r00qDX=f0eku z+#sCagZdwIPN&ZLGFJMlJXf0O5}q-Og3qXXHK_0vIgD|ID!fs+q#0omM;bwkX4qNv z?h!|OFRB|dXNj~?gh&W17g*K)sKHF>*7H2aaEyo|)3?2#d_DlvP`%7Po$w!#!l~;_ z=5pvqtS8jbg==v3eI4g_wc$EAm%N_*P9xSCs3~=i!O|k8(bz}1rr6PHFw7GO$>7w# zIr+0MFDdIfbR_*ShqbzO<4REFRDRo1IXoeJU(hlbPe@g}tt&E5=F-^cMrc3M4zS-S z3J6xDTpNI?Dk%Vz5l#`O#?d2gQZUXR=hFEYU8(Fr9&wcg$0jR$_7sAV%F}iU`*t?4 zaOswWde$fPH@OLMr|#KD7Jds-&dW|}El*Ib$7i(j_q z+{SZLAT!1PMz*7=0k}jYLMXShBK^N|*E=H4-nXVtzgqv!%5<=X?**tLZW#BC5m+c`W#zxg($e?%6dVti zefxk$Bt6uZ^x_xWV$ng{Czx%{WJrpwOinTeReIc#*pe|e$m!Zx1-*}kB*6Hqjw2IR7cPeV0OS!_rn*91t?5+cwG*Tnmk^I}FZ;gTiTvwC6#8bjTNd z(Kda#k{-`J<;lYa(WuBqEB{Z@KL5D!*J7af(v%xns)sbwL9w#4l;4gaJ9<+jB?x}t zl7d+AqE{cPb!hk#q>ALORc7yhc4{Oe^7g_BB2HovjUUn*+5|ZYLqkmMe%{;&t z6ztJN0&N~_T=hp%2xWUbC`dL2%yb^y1W7Z7*w6#_F%(|)H1T$QEpLG9cj!DWCR^)I z9cBnwDy=ZrNEL668xNy$U02jkQYmcIsCUUsy!@&3T9!FW+t3k&n4FN(_>KvY5sDzJ z?N+LiKAaH4b9Fg;ySXr4irv)8NA>&0quTs)rp9=k&#vm5*wFPysrDj|aMM%WquxbR0=TQzGXx(;F0+ zPxUJf?omXG;^YoKhZu)8z%HQcQnx>Bq~kBUo-u3W%~cn?LQ#weNfK#y;&-_oeevrm z=ug9NhbZ9yX^~uFVl2~IXMq{61GHPhFiR9u44hsDa_g&csT>OYQ32L@@Zb2~t|Wr- zoOFyptnnIhw5JwmSeV)j_k4eiq)k?n&L~=0K&tm*pdzR7NQ^TUe>qT}B$}QpA;NU? zDY`Su3r#c*qd?+Zy*Cz*6-orx5_`6sbFIrTO93Gx}8?bh+~{go%J~j{I#HPMUpzT&M+py zd>DEUGK(8%yjXW4?W;fxdL)AM&#PP=fniay0Sc*2G4Gu4qWBSwJq32qyrwAFQ4Ebs zNLC`56-lG+YBOv5Lhc|WCcZcWrD=VSIR2v2i*DGrZpRUX7D@722YJ87q2G5c7FT$s z%Ge|UbH^foQ=1~Fv+p@opg0M!G=j!zS3H{0uB7((5Tj6KZUuoj9DG+0?<1AHI4uGV zKgU?FpDj3aM35g2f3S4fOWw)pQ6d836wAdP&3`cqF>Mr&{O+}LAXp@pP0ba;Y5XSg zBl%Z2^W`+z$GC?iB9gl8CZ2%JFUC|#;emnwTJs2Q8Vrl2iz4@8Rx0vQzD^Y*9iXV4 zUjDcxCq{D40l@}nbuclI1vT&($9j4*davL+op1!unez0%86f95bJ@ZdV`N>a#RZzR z`b;E=KxgX|YBA%TDwjOQz+i%K}jWe+fZPFIWZ!$RGsSm%w3_gN%9nbTOT5 zTZ&n93PrI;Aa|3)u-?t66MEHf8^HUKhkcq^9g)N9QH&O@px;LoqfQZdxb}jd+FbyK zZ8Pk`lHaq6#iR?FFAEgd)3B)35s_6Se38W6uy-huWXODk9Ii%xPvaM^?cU^6Z;h4b zaL5ein7M(;n{eB!kdB}PT3I7BxYw51Kk~WL7`8~H%Y(vhTKODpKZ8f!Md>Iaytz9O z+&>qws^Qrt-f_z8@tB_^Jl(b`ea)Rp(-V_8Bh1gy2;1T;vsak3nead?MAbdE$t8T^ z640r%WLwa$a|*d*e)gXRW}Ee+o7s^!^Q1F<&MStuHzCfXRU}b8yGd1N_OezFb3}-2{c=I-ZUb4f z3Y5Q4g_{ys-;6EO0(7Z=vUWRp9&{o{RK5X^P5E2x%cFrf$QQEVEW0Ur+u(IX=yX;+ zFlvM*lg4F=LpDl(1mmfgn*t@VApKaFe6gq3!K-v282&ih_&dgG$gZ?mGrEP_=$hFk zz9EBK2$dAfTMP)&hI2Yf&o}!kj@^+i=R226`Z75yLY!|q;*@tT&`XwtqDMR)gYh{C$~`Ph!3s9`h`&ZDgOv2Yuih5NkpIno4qDCF{xS;r%=o5KUL!oTcm^ddNv_RZ%@^7AeHKdcuq=DfS4}!Cq8We4lXh{#&^oGc0(Tl=ecuQB= z{F)ajB!czorn{XWk^tFwxXPawLtjN{tx$Q};$N8X`iyWp`yTP9HmcHqtRo~TnjgBa zY*~K^xS69Y2^qD05Sbn7w^h3oZ1t5?*{}=wN5582+n*Wrrmg+9-W%()`Rp)3`?i0H z;DQKKe|{MEG}KB;)QZnP@!}gOU6L4kI}v`te>2x#8Sjo*p9HseCyV(*`yOvh%%s9{ zuP4?b=T%^kmXk#H6fOt@;E;hSrAs!VIqC*>t2RH0HXUlE=Xr=(3gB#k$Xr?SPfYVE z9P~d%-lR;ss!7`=X2^%o$v7aylEF&~!RR#;_tGIafDQpT1X?BO;Pmd0sD-`F|~yItpGd7(p;R-M_R-dZ~0kD?>5T@ugUS=^KQ$*$``SFp3mL`%+U z4AbaIj(>Fd$p2dMA{8}Xvf`R{_(CH`dI^}y5F8(2J>9hi;=yDmYComEet8EvIyT(q zdUvgpwh&oK+ebM+_c=WGde>e}>O+(Jc1-lC&xAm$T=^l06N1K@L@SPn{f>rwucKW; z9+rAF=s{&+I2|a`w{gj>B^uAhSxG>}!a8yvu9t%)N!j>I#fGOo!PZ|$*4*ZDSG8`# z-(mbp8z(>jFtn?*ui@)XlfmS|1eV~L`U9b2OUAMgzTTnNio9A_71Xz-#FuaTEi(6< z5jJ|FaWj#MjOXXo;b7lMeFC&=zG3e53MB7^CqD=(7|%Ghg2K7Dq_MLMXDEmD?w2qY z7{= ztq&JuPZDh2&4+#l&Xbd6oLVTwsHF@h`ec-(ymxWwq{&P15H(OM^-_gg=_a_ev5Vx{ zIdlI4rq+*(z~>GMFO?Dtv2HNIcbP}yEVAJR4+=s1)0J$m_;Nv=5O}uyw}mobT%c$U zK%vCYtZM{WC^)RpbDmytr{I@S{7j@vCuHkNhjQId7|+sz&NI1l(rDnIpp6I4b7(s* zW*u}2_=fAk$sM=DHvV3s_Z7$|-+c%em8z>SY|F)UMOYkmRCTIy26`Wbp4qyt2`xxH z-mtR&C`G7Ze!fH1v;maBS~#br_yosGqVz?5f6bPVq%_@{Q=rk;9;8JRzpR_B$8Yjh zZ4pEcJk2R#IK&YX$t(`ziK3R_!^`3TYxnGXuf6#{O%2XmzV#C$ZZQxhkl;2P62kA_@>0)hRI)Vq|GTPYgiHSD=GLl z6gb4*Ze4Q%KM^V}HU~cWQXYXRz;m^teSh@JtDc4aMRSzu2A4^a5?%aRf7jKtAnUZc zSMqxPg2?k~%URx}6y*Gh_6k#QMsQ_*sip3R?utFrew50h&~ka7q8pZ&ctqIUP?QUNna^buKd|7EH3FCneJjamq*=IGoTxIs$gXX^(_cO@(rMl87kGQesnPJwjF76%Y z#-CSgCoC`FjpFJGM2FXClcnDV(x}pIKts6KRX+}Bkz{j3j)~zFcb(}>dBR-jeod0BEmLQvA6SO5qP2YY~ zmUYu(WIpVMO+~g31t2VAWHd1gq6?x$l7|`2ez%~-@L(ZB9URneVXW7@i~wmKgen*# zA1k6l%*3}%!ivi|P}pU?m5(Pg)J^9n5t3SkMnB#aJr9bEnmPCn|K@%;w-7YO#Wp2L zNYrg-G^0UTzwxlj#L6Ik>1EpQ)yfLATy56f+iNPX_xQ_s0XrTsU(zN%paXE-xSnVJ z-EwPLMHW($WUQ3^;PQNE!Tnf8E{|3sb)n9T4t@rchWYbinby z=Eg0@i2R^-H_u+4JngW9K1kAhf}_4knWzd5s5XSxr!6>lA>7&i^^32ir&Q^rG9I_Y zEk}itZb_7Z55Oj;L>Fsj`XZ!>l;|Mp{bxNi2nuK5H{A z^YyXCV_@-v!&M0)#MIX$=h?#PDlgQHk;kN1nnR-OhEQ=cV^ z?z}=P|Dim2`h@+LTw*;{v9}qmhF@1#FTWJ586VQ%gUL@!X*1dY|GS2Dvd*yr>X*P@ zvaM0~nz>ia7Xq(ymA!hLU+9eJ9Nf{1&MwxATJyl6(Z!;Xb9>+tVkR7t7km=$(+((WoL zVH|fJKaF#0|;Ru+RGcBycv6^qxzIK}vLHHz~Osevw6L01$^DHvc?jni?eS=B%+UhJg;T9vnp z!+)m>Ic~6Qoh8$FQDerHXS8jQ20NE^g9hyWk8v#~exXi-DIzCzp{b!ECug!8q40Gi z)a=0!qV_-{c)Fy${btHtpZRcXCO6A|7#=&M8b#AGsZ4N8@n4JP4bPN2$1wvHU7&dL zXp4}-Y`+V!9r42FVZj+OMY0Lj5A|464&thM_{f*-X8>mM6N()>m)eiG&Rg@8^(V)g zZAV*#A7n6pxM1*MWOZK6r%35H^>|R{7Oh=bl-Jm-sPOsRb{ zNzjR?vFr4(DqDK{8f6?cJ$L_}&;#cTIzBD9-i*rw<*VTe!YEmfiZSQ}sGB8;=rXj`%w>e#o&lmQc=MEQkv>x7a|jTJ?@|%-zu>PKfB0(A2IbMN{w1g~ z^sxKh4c zdt+6FJ>Z-y-zj^OsBD7;MvFK2T8kmZi>_{ditx2A+u0eYIpjTOp$gJ3U5oGVSPCBw zB?ozvAk1i!k>J$g(g3jqCI>Cs8ww1T=pZnmYpxd}MtSe!ub{j4QDP2CnBSTrm_1m( z9=cl_Wd+g&-sdwCQ^%D+D<2o0K@lK8gfuVkqSs{eC6}t@D;?x#Q&B!1UBb8}c8M`a z1Ru(XUdh;+gd@m75$a~6eL)8)=5bhB_?Tydc8qQ@&~~e@qJhmLvLiwnxPsX5cmqdt zoUnhYdd2fF@q0xXaAJbB?oGAa_AQ6KP9)t0NiJarqHm0a6^&0LJTj_8q^6V94t36; z<3V})xlKi%ggHU`=QL(tK?L?8}Yu6 zsCe48yACIVtOE1Y66W^IO?5`MWy+dmBvZ_S4HWGg-__ZBDUsK4f z-M-siX#Bb{L~tD}q!uaVJW=*A;omI_u}~W8ISn((Q`@cx#rxIZDwDogbrJJZuZBP5 zfY8Vrsn@`QkMIYy_o$b5X&K0as%nh3&l=#-Fk$?JlM1AuvDmQKPDDmn`kV{K{#;C4 zEj`-fe($d-vvBR{CC_Tpb$ZN%G@Q>G)9{ZR+mDUsyvE4Qb zL2@rYD+ZFyWl)w=-Wn+cjt8T)-i#>=XV!R#XMBzZtwGlt?U(i9P_A^qlOhePe(ZO) z+R$OoJ3pf?Z{;K6$T(761h_pv$T+Uwd9!pa5=$&zWUo=Q+Pjvw4=}7e`jPvpbYv5+ zi8rXLT7ob(XmVUi3=1Fptc?D|GYA-z@xZ%^FbCTI$)Wx%h=1Z1HV$OP{7pR%LWTZ} z?rfMR3c;)mdrLz+mra~wladIw@OQUx1j@{#=(@p7LyNPPjbO2prsafEa+AizHeBNU z9&+H|N+fQvQ$k>wyp8PWJZ`FtYU~6FV#yQtV-X!5a7GHOIK*GnCk^VE*FS4JyIruB zHG!~OO}lX9jG8n8n=p*hPsj`Grow$U&WnhY;JbhJ#nr>;!OLX;##_OA-WsT!h(V#B zcWHhOkGX^Mrxr8);o)N-pOwjloRKVddY){ zK`W5oOC+iHOlCy(CW4o9*w&L4@odhX;b8Zae1oW%+LX*oo}{giLA%)9mp(bi+JKqN zz9QS%7ZJg5M&usoMGF!qAx6Vr*PrOeQ0;L8Ym#R*$8`zZ=E)c95!$c`YV|*;mV({< zeU$^tK(Yvr#1}j0FtMbKvLl#s^b6n%5lw49-e|z^%wO`2`t^QE?v^$ z(jY7i5(`U8NC*DRm+I2* z7)wQlhL?ty&{9{djCEA6Q{Engdy|z5c!Vp+ZyiSeE(zu!=Sy^Mk~6XO{|jNSOXkgE1IJCjm> zQR|I~+`v@^v2vTHo3@?b`%H#Oqb^g7Uv|DUBa%LaZ`blKxoWCbb1h7B0U-L$F=(`( zsWCX?1i%hAKXiQLD@~ya_q9o} zZ5)YX(g+A@9|s!gh-}pR>e37#8k%DB1FZx()I(IG2m=3##5F>`0*$p{;=9=vr*Umw znAd62Fr+JcsGx(oD99r-T%V^R(2T~ZSJWxhz3=G z=l2uLIc>^oC-pYF`v zERwko&12nPGX0|uc|Bz`-60;P9Iqeid&v!D?`T-2g$>$GjyH zrI0u?^&~ugNI9_3G26&VDJ&TaGn!>8S|z*B%_slv{4G+vcqHq1k6QGP3+aaZr{Bcp z9Fm1>X&h1j8HKPG;fJ>wW{+UPnmgnQ5Z=;UoTx_+XuN`&rdx{rx}k*9K$HvoDBPIG0 zX&!Sjv&v_tqU{8wxa?%i^nRZ%$?Yt*J{_}AIB?sLR1p5nlbcQz#34j;{{oAzCSu2< zDehE`v73Si2B`);Th%3;Ua6FDbF7=AUDuh0%1d2bMRR>`IMfe zblkd-PM~!waiNXPglp+I*y68j;WNWT;4ZL+Qjzyv%eQ|bWjd-6gh-Q+ls~N|cR#H^ z6HLP0OFnJeacD=0U1E#oyYFV=^y+@JTyX4N49y+79uVOo z#^W=1BjZf^mUWxmitP;qHaX)Ir~JjYTub)fW$uU6R~&JSXPC)}&XB0fA)zqOi3@0W zt|i<1Qlm5&*IxG0O^0tV2dv`oL=f-aPqz*aow9QBXe|mf;)ju)kgh1FN$8k`4Y3F zK`rDJxosxC94K9y8=Ih(oBg<*1)B?08Dv#yq)cJ{lmXBv3<+3V%H9}xI|--=8Dces ziuv-K4U?;SLyti+Va!OtA99Al7!HFz)#@IiM)9y>Dtw-*6U3fZWbwc= zI|ZBxSPcypioQPuK8WR0Kn5gG43Qv7$gPSQD0E2q#NKVuGolcC??5W!P8MHY<8){z zPVQ{vjE$nxDY{MMnYfgVd*ka0GQ*|eu0adIbJ$szkx!$!mE8B-JYMjlhJ81scVhPI zPSg2Q(=dARCxj^Tibx_2_K-;nVG#_+u7!gGmywS*6m*FupJ}T=uK+qDqMLJGyud-E z>7S^!Uxa`fCgSbZ%~w0zlaJQrwqXUQ!!sY$sh7r>2Ge-NT9b+H;*G$Wir02#X?EaP zabo_6O$}V{b1m!}%I8WMg%tdDkqReC7dRmEunM!1N9ltY&)E*N#?wBv(0pW@BPC+4 zYjJ+{I5P^v4io28Yz|O~!dU#AB{YKjc=vKOuZw-mN%QCZUwgdVWpMP){-7db7j+A}y>M0cbYb{;3| z{T)P@KpR{y(5-LW=+hYx+Mmp`B_lew-?Vgd3WJbV`sZ}Te221GY+{+Yf#Uk{%`_?f z($qdtBw%%AV$mUwUq9O1d#q;nwiiWT%3~R22r4u>i&6nP0o!&}9OVhSA2VspcUMA4`~D6696MzoqfnB;JYBl%#q?4AK)LV%VX!brKR+ znG0z}R1O32UcIKJ@scpZkKs$t`T616N}u2^oWEW}PR53}yJKlmM<*oAD6fdbNYq6k z4TH$p5UiO4X*x zjpC`|o|;B^(c8MNxAs^De@f-NqCNVK9K##piShuX@}u-G&SJ~Uq-`6WMt!jh+VFA1 z|7z8#XQ(I7$>pzZcPRaKhcw3C7JiN8t_v+qL)`3vhZQ6v3rbv7ltk)2CV#y|(~N$v zjn*Z&jis!RvUpt;9SDj$>KoTw5$p(Y~i3qvF!dsP~%5P2mUeR z76%wOb_b1nd%WcL$nhXJgMS#8BWWuQ)I0-^wgZH5k9ZC z>yzHHh~fXFChTc_=$DY|Pm8V^VvyymtFsK*BJEg3%f{_FC&P5QOx;H98LYm^zy7oQ znY1mCAC|{%Or&+d?a0u_8$R~Pe>LO{b`}UYA3I@ZAt9klWgO6Psb9^cSl*!1vEZF8 z3N~8ptiRn7jn%}mVPTva@$v{$4^FGiX}8z7K0<=%YGA_8t*K8T3Whi2iv6OPRfiIu z4qg#LxJi@l)s{iIK{n?`9eCT*g<#Q#96x`jpf6iDWBP_UJJed6)*)HB?nDcbKO%r8 z_T<2bw%e_`qWxrTotp~2Fa`b75EgL1gx+v#aNHeQ0Efs}|V=SUqmU0!{XPfkbl zS(`j1k^)Ka9cxv4LQ?>TV0J1eb6=>Ub)F98YVEH37+fLER ziCS?w=s2MHdq-&t>$mWRBZtW%)4jdyVq!`X&i8NtVz{0w&qo|VdmvZ4dSwDMy-=y| z7tGAR5smS;1)*UCGi{vaJKZSOJ|uGLVsB)d5n9s#2{Xh?J=X>|i?+&X?)aggHI&HQ zlgYWFsm?2f@=kx3%kmu;jRuj*`TrgUJuGay^3zxj;uJr6b}3n_t0h&-V5m$XEV(~R z1)A#?k+10fMFzw-HzL6z!1??60lNE{h0jh2eN(C{>k~N(IxJ$p3{=FZ5->Xl5w=f% z9oD+l-Nrgix&dnX>t|`Q$F;H1-*fAzjScVf?*EOQGxj|?u+w)ir*N1313JvN>;+`r zJ$*`yO{f`KmzG2iR@rC+3TG>wefx;@dZ<@_W(&kMjRrg^@HG3n#7 zY0Bz6)u5ft{`3!fZkhAxq8*lN`X|Z5P^cEL67x544z}Exh@^Nwg z+iwcZ+}^t}2zQQW10)W@XQK3EuLwGle}4~G$EmzJA&*r~!^O7X<9utva@J513h5^e zrk3=*_JEJ?UV2$%N^dGVA~;H<1;(I3l1>QGfYX^LQNZ;QDoKTsG>$$6RLlx)AEhL+ zOO$15!^?NYSVRO{jSG{5_>GC>I4~FbpM+i2pHvXhos=p9=`buatj6wmV&YDV<8;D= zJMo)TY{s(^wdXw)7Hq3_5(Ovb^z9LwLV2JpXUJXoO>rjuWptfyu&QOf4{-_%az^3j<%6 zg{F-8nGPJVo|KU^fqtCIPpiO{F!J+CffE*;$M`TU&E7i?zyZ^1UF>II!^Nt~9quNBX&*QscmKc!KbpaoCYQoFD?+21dW zvW}Vd)y&2%@NFz@K*qc)kF&Jrd#C0U*57W&9{g1x-(%az+wG|H^iac8Y~v)}%w^Hh zz#{WrEntxE==WZ7sEhR~`nj)A-Yy|eCjloEMf%hCPTYYpfSe?RfT^Fk-Y=Rm2D$l< ztKE9_N-mQji#nn9Nlb2m1H90Hl{fxfz^3aManL$C%ZcJ2%Kx=oQ-{2s#7rZcLW0cw z06hi(SOLr^gd#h9{GRkh9eR9uH1;LZt}`EWot$%;|LZECw#)UF{SWI!+=cb8>-zKK zI{~-tAq0D+H@;8_Mp|mJ7bJmtmhy^E&h%^EHvAxb@%##Aj3(ra(mb8oGf)ORTmMcYyq;4KZ0j{+gPhceZDD9YpnQlH>m2xmY1tY&C1jk6+k^* zQsZ=NtE8=kk;tQ4S9K(c)&;#;W;bRS@k5RAl`{c$6r1Ng7KMMG>j$nA zuBKAT*E$*%;#sS!6!aD>(AP<45FV2XQrk$z960M@Y3nO^uwI~o`yn)5Llj%lQY@^q z{FZH7bZ&c3N#kPH8avCqalg5Z3mBJHz+Ak3EBVrQx(~rT*IGUB#4YC$J|vImEN&+< zNx;SQ3Biam)pN98#tA>~)OVqwrZE7r1eIoT>D+&-yS23i$_f`E1AiouyTj*a?Xbn3 z#&VA3usXvRtX15C3>THRjGzQ-o^GFBoXCAyNq8d25Tu=1@@Vcl=lM5B6<~7ow=#{~ z4%0dFIs&Pt?%g5FOMfk-yAwmNyD#$WU3gWwWgE!H-fQ$4s@u{P#hO@@_7ztzk_Oqx zZ<*clvvu$HKmq1fsIXDIT;S2w)d8-E7I;Oi_xH80;0}=v5(=AcDy0Sdn4pxKW)!*Y`(m@au!7qx*el8=Te_^+mCc&tzoxh3MX(AF6)>wZ#tYGTqklW>wqo zY90p#pyyqD-YpFE@pi2{_n0oBNUIfA^IK(}i7`OR2KuYV0_AtNrd*DW_711^Z?pfA zK7>PXP#d-22CH07{6~g|8B8gtx1}$EIq4;#VA$IoqSu4y6Kv+c0R%iEnhI&*6o+r7-b`+3>g(d6nH^T!)~@kw^XiJ0Y~pLVUV?7ht>FjKx_ z*BZPy)Od4yB=s--vmpBJx5K@g|IL|H{)yZ*?cwg1$s;eBu14jirf)(2oEAzyw#nt~ zd>IL8`Oy~h?dQ?P_wP4a{Yi7&73!0xS1<2;7DQo8U8}oG{()Jua)vcj!=-8jAcPBK zSk@sf<4mp4j3YjD0{J90VUCI#0pxL~It?!1AdVr!rYko$jcRq({wI0xT-=Bp0Vdb`}N!;i-$Z;zBJY;5-&0 z1newU4r|`fTF-8%Up2W_A_VIE*$65$n-)<<;Y4g1txJ;irQKozm5Uq)8twVk2lUnL zKY)4E5FCY-J7!Ox#7FZf zysZ{c83vWNhmYj_gq9G>khb(!Q3VzD_R)Z!sfhG05E6zewC9;H``X~J zQ&4Hl6OT)Tr=?1W`clCUejPXG zDs%v}A2C+_=MBOjrZTs2eHm$~Gkyq^ShS32ve9iE`brl&Mc>#S%obo$_dsShRVsZD zbx9)qBsa3Gk05J~5Kqfsg*xrQO5quK?C8j{J7PvPU`j&?@t+e_E$|#(JfN(3l$&k% zU*AKDueok;KLLo_e7KQY$i=RVNHKZ>ScDg zfKNb%Hj}3XWeX&cy{wf>VI0sO$$%gGI}7#)TxK(Se(fkX(G2ck1DfoT`(r%Wz~pQ8 zcQ1&3^2F&PsXQd5DAP}NV(9RA#H zI!S#3m21*r#Ho_a9}It=^CVd5=_xaOiR=}2XtxO8%8jiO%2sP$92J|m1+=ZRpaNqB z{?Wan>fl`XuBuhN*1=q_Wx78_jgPdogxv$~d0|OWbEw&ZQFoz1qHUnQztwC1wA1z^(Tdw`bQ}{~fIV)xE`k zm~t5BJ_~mom>3u+vnmMS(j!Ese03K;i0&mR6yycznbz~@mFnqwzg|$R1IxW?BfbsR z!op-XG*3Lqed?{dF%;JqGO!_GkEFVXzNjM88rd|wFZMZ4h ze($lhK1xq0pmwT`>ahwz9x$tEWcKlyHDKDzIer_7;eefHA{+}K3I*7&B7-kv% zDEg{p5PhlQIb<&=sMjCctON~|NAYJcqroDQL#2hGL1-@(CDM8yO(PRGVuvkMIAS$oQH$xBf+=dzIEX~X}&siC3Y@hLM#?4XmP6-?st&$`V1v4Y* zLP^|{hCld)n2fRO%CevwG>)fkeKIMff=f!S7n9oe%c69<4 z$WlYt6Re7Xk%$tkHNwO~#niGs{{IULKlt~5M`&0as<#$~nT^7&lfpbj!Rk06|9hW3 z!oV1J#lT?uKgNeOG;E?2l~&4us;DD-{C|4`$HKrM|9_Z@QB!r#Ft1P)^=!CxHUE+R E2aVc7tN;K2 diff --git a/output.log b/output.log index 77a0dff..49c3053 100644 --- a/output.log +++ b/output.log @@ -1,4109 +1,4109 @@ -2024-07-15 10:42:31,439 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:31,441 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions) -2024-07-15 10:42:31,444 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-07-15T10:42:31.441802', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:31,446 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:31,446 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:31,446 - using serial LDA version on this node -2024-07-15 10:42:31,447 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:31,447 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:31,451 - -8.102 per-word bound, 274.8 perplexity estimate based on a held-out corpus of 1 documents with 2696 words -2024-07-15 10:42:31,451 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:31,452 - topic #0 (0.333): 0.013*"’" + 0.007*"leaders" + 0.005*"Barnsley" + 0.005*"practice" + 0.005*"within" + 0.004*"needs" + 0.004*"plans" + 0.004*"response" + 0.004*"15" + 0.004*"experiences" -2024-07-15 10:42:31,452 - topic #1 (0.333): 0.023*"’" + 0.011*"needs" + 0.008*"leaders" + 0.007*"within" + 0.006*"Barnsley" + 0.006*"practice" + 0.005*"plans" + 0.004*"senior" + 0.004*"response" + 0.004*"family" -2024-07-15 10:42:31,453 - topic #2 (0.333): 0.016*"’" + 0.007*"leaders" + 0.006*"needs" + 0.006*"practice" + 0.005*"within" + 0.005*"Barnsley" + 0.004*"11" + 0.004*"2023" + 0.004*"senior" + 0.004*"response" -2024-07-15 10:42:31,453 - topic diff=0.812192, rho=1.000000 -2024-07-15 10:42:31,453 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:31.453438', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:31,455 - Failed to import jpype dependencies. Fallback to subprocess. -2024-07-15 10:42:31,455 - No module named 'jpype' -2024-07-15 10:42:32,368 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:32,368 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:32,368 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:32,368 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:32,369 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:32,369 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:32,369 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:32,369 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:32,369 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:32,369 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:32,370 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:32,370 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:33,746 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:33,749 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions) -2024-07-15 10:42:33,749 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-07-15T10:42:33.749170', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:33,750 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:33,750 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:33,750 - using serial LDA version on this node -2024-07-15 10:42:33,750 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:33,751 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:33,754 - -8.026 per-word bound, 260.6 perplexity estimate based on a held-out corpus of 1 documents with 2085 words -2024-07-15 10:42:33,754 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:33,755 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.007*"practice" + 0.006*"needs" + 0.005*"leaders" + 0.005*"impact" + 0.005*"effective" + 0.005*"receive" + 0.004*"2022" + 0.004*"East" -2024-07-15 10:42:33,756 - topic #1 (0.333): 0.014*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"leaders" + 0.005*"plans" + 0.004*"clear" + 0.004*"North" + 0.004*"‘" + 0.004*"Somerset" + 0.004*"28" -2024-07-15 10:42:33,756 - topic #2 (0.333): 0.020*"’" + 0.010*"well" + 0.006*"plans" + 0.005*"needs" + 0.005*"practice" + 0.005*"Bath" + 0.005*"East" + 0.005*"4" + 0.005*"effective" + 0.005*"March" -2024-07-15 10:42:33,756 - topic diff=0.745017, rho=1.000000 -2024-07-15 10:42:33,756 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:33.756639', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:34,653 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:34,653 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:34,654 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:34,654 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:34,654 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:34,654 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:34,654 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:34,654 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:34,655 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:34,655 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:34,655 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:34,655 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:36,303 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:36,308 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions) -2024-07-15 10:42:36,308 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-07-15T10:42:36.308327', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:36,310 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:36,310 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:36,310 - using serial LDA version on this node -2024-07-15 10:42:36,311 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:36,311 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:36,321 - -8.113 per-word bound, 276.9 perplexity estimate based on a held-out corpus of 1 documents with 2585 words -2024-07-15 10:42:36,322 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:36,324 - topic #0 (0.333): 0.023*"’" + 0.007*"ensure" + 0.006*"plans" + 0.006*"needs" + 0.005*"Bedford" + 0.005*"well" + 0.005*"education" + 0.005*"supported" + 0.004*"progress" + 0.004*"2021" -2024-07-15 10:42:36,324 - topic #1 (0.333): 0.015*"’" + 0.006*"needs" + 0.006*"well" + 0.005*"family" + 0.005*"ensure" + 0.004*"supported" + 0.004*"Bedford" + 0.004*"good" + 0.004*"plans" + 0.004*"education" -2024-07-15 10:42:36,325 - topic #2 (0.333): 0.017*"’" + 0.008*"needs" + 0.007*"ensure" + 0.006*"well" + 0.006*"good" + 0.006*"progress" + 0.005*"Bedford" + 0.005*"supported" + 0.005*"Borough" + 0.005*"plans" -2024-07-15 10:42:36,325 - topic diff=0.789570, rho=1.000000 -2024-07-15 10:42:36,325 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:36.325606', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:37,460 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:37,460 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:37,461 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:37,461 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:37,461 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:37,461 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:37,462 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:37,462 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:37,462 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:37,462 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:37,463 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:37,463 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:39,031 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:39,033 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions) -2024-07-15 10:42:39,033 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-07-15T10:42:39.033817', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:39,034 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:39,035 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:39,035 - using serial LDA version on this node -2024-07-15 10:42:39,035 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:39,035 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:39,039 - -7.963 per-word bound, 249.5 perplexity estimate based on a held-out corpus of 1 documents with 2378 words -2024-07-15 10:42:39,039 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:39,040 - topic #0 (0.333): 0.019*"’" + 0.011*"needs" + 0.007*"effective" + 0.007*"well" + 0.007*"progress" + 0.006*"plans" + 0.006*"Birmingham" + 0.006*"trust" + 0.006*"3" + 0.005*"leaders" -2024-07-15 10:42:39,041 - topic #1 (0.333): 0.009*"’" + 0.007*"needs" + 0.004*"Birmingham" + 0.004*"well" + 0.003*"February" + 0.003*"protection" + 0.003*"plans" + 0.003*"effective" + 0.003*"trust" + 0.003*"ensure" -2024-07-15 10:42:39,041 - topic #2 (0.333): 0.013*"’" + 0.008*"needs" + 0.007*"effective" + 0.007*"well" + 0.007*"plans" + 0.005*"trust" + 0.005*"risk" + 0.005*"appropriate" + 0.005*"Birmingham" + 0.005*"progress" -2024-07-15 10:42:39,041 - topic diff=0.827233, rho=1.000000 -2024-07-15 10:42:39,041 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:39.041595', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:40,046 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:40,046 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:40,046 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:40,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:40,047 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:40,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:40,047 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:40,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:40,047 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:40,048 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:40,048 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:40,048 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:41,496 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:41,498 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions) -2024-07-15 10:42:41,499 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-07-15T10:42:41.499130', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:41,500 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:41,500 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:41,500 - using serial LDA version on this node -2024-07-15 10:42:41,501 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:41,501 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:41,505 - -7.965 per-word bound, 249.9 perplexity estimate based on a held-out corpus of 1 documents with 2353 words -2024-07-15 10:42:41,505 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:41,506 - topic #0 (0.333): 0.012*"’" + 0.010*"practice" + 0.009*"needs" + 0.007*"impact" + 0.007*"Darwen" + 0.007*"well" + 0.006*"Blackburn" + 0.005*"quality" + 0.005*"4" + 0.005*"planning" -2024-07-15 10:42:41,506 - topic #1 (0.333): 0.012*"’" + 0.006*"Blackburn" + 0.006*"quality" + 0.005*"effective" + 0.005*"Darwen" + 0.005*"needs" + 0.005*"practice" + 0.005*"impact" + 0.005*"plans" + 0.005*"well" -2024-07-15 10:42:41,507 - topic #2 (0.333): 0.017*"’" + 0.009*"quality" + 0.008*"needs" + 0.007*"Blackburn" + 0.006*"Darwen" + 0.006*"well" + 0.005*"impact" + 0.005*"practice" + 0.005*"result" + 0.005*"planning" -2024-07-15 10:42:41,507 - topic diff=0.819021, rho=1.000000 -2024-07-15 10:42:41,507 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:41.507372', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:42,514 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:42,514 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:42,515 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:42,515 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:42,515 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:42,515 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:42,515 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:42,516 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:42,516 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:42,516 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:42,516 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:42,516 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:44,171 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:44,173 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions) -2024-07-15 10:42:44,173 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-07-15T10:42:44.173599', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:44,175 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:44,175 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:44,175 - using serial LDA version on this node -2024-07-15 10:42:44,175 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:44,175 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:44,179 - -7.923 per-word bound, 242.7 perplexity estimate based on a held-out corpus of 1 documents with 2392 words -2024-07-15 10:42:44,179 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:44,180 - topic #0 (0.333): 0.020*"’" + 0.011*"needs" + 0.009*"well" + 0.008*"Blackpool" + 0.006*"practice" + 0.005*"progress" + 0.005*"16" + 0.005*"plans" + 0.005*"supported" + 0.005*"experiences" -2024-07-15 10:42:44,181 - topic #1 (0.333): 0.017*"’" + 0.010*"needs" + 0.008*"Blackpool" + 0.007*"well" + 0.006*"effective" + 0.005*"team" + 0.005*"quality" + 0.005*"carers" + 0.004*"supported" + 0.004*"understand" -2024-07-15 10:42:44,181 - topic #2 (0.333): 0.013*"’" + 0.010*"well" + 0.010*"needs" + 0.006*"Blackpool" + 0.006*"effective" + 0.006*"plans" + 0.005*"practice" + 0.005*"16" + 0.005*"quality" + 0.005*"supported" -2024-07-15 10:42:44,181 - topic diff=0.828279, rho=1.000000 -2024-07-15 10:42:44,181 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:44.181528', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:45,187 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:45,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:45,187 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:45,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:45,187 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:45,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:45,188 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:45,188 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:45,188 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:45,188 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:45,188 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:45,188 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:47,103 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:47,105 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions) -2024-07-15 10:42:47,105 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-07-15T10:42:47.105220', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:47,106 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:47,106 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:47,106 - using serial LDA version on this node -2024-07-15 10:42:47,106 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:47,107 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:47,110 - -7.912 per-word bound, 240.8 perplexity estimate based on a held-out corpus of 1 documents with 2055 words -2024-07-15 10:42:47,110 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:47,111 - topic #0 (0.333): 0.015*"’" + 0.008*"plans" + 0.007*"Bolton" + 0.007*"needs" + 0.007*"well" + 0.005*"supported" + 0.005*"experiences" + 0.005*"need" + 0.005*"strong" + 0.004*"planning" -2024-07-15 10:42:47,112 - topic #1 (0.333): 0.022*"’" + 0.011*"needs" + 0.010*"Bolton" + 0.010*"well" + 0.007*"plans" + 0.006*"effective" + 0.006*"supported" + 0.005*"need" + 0.005*"planning" + 0.005*"timely" -2024-07-15 10:42:47,112 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"plans" + 0.006*"well" + 0.005*"11" + 0.005*"Bolton" + 0.005*"planning" + 0.004*"supported" + 0.004*"15" + 0.004*"need" -2024-07-15 10:42:47,112 - topic diff=0.791425, rho=1.000000 -2024-07-15 10:42:47,112 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:47.112468', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:48,340 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:48,340 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:48,340 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:48,340 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:48,341 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:48,341 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:48,341 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:48,341 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:48,341 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:48,341 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:48,342 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:48,342 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:49,620 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:49,622 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions) -2024-07-15 10:42:49,622 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-07-15T10:42:49.622695', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:49,623 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:49,623 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:49,624 - using serial LDA version on this node -2024-07-15 10:42:49,624 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:49,624 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:49,628 - -8.031 per-word bound, 261.5 perplexity estimate based on a held-out corpus of 1 documents with 2004 words -2024-07-15 10:42:49,628 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:49,629 - topic #0 (0.333): 0.013*"’" + 0.006*"practice" + 0.005*"progress" + 0.005*"Bournemouth" + 0.005*"time" + 0.005*"6" + 0.005*"quality" + 0.005*"Poole" + 0.005*"However" + 0.004*"risk" -2024-07-15 10:42:49,629 - topic #1 (0.333): 0.023*"’" + 0.007*"quality" + 0.006*"practice" + 0.006*"progress" + 0.005*"17" + 0.005*"well" + 0.005*"time" + 0.005*"risk" + 0.005*"impact" + 0.004*"Poole" -2024-07-15 10:42:49,629 - topic #2 (0.333): 0.014*"’" + 0.005*"quality" + 0.005*"Christchurch" + 0.005*"Bournemouth" + 0.004*"6" + 0.004*"However" + 0.004*"practice" + 0.004*"December" + 0.004*"impact" + 0.004*"well" -2024-07-15 10:42:49,629 - topic diff=0.757402, rho=1.000000 -2024-07-15 10:42:49,630 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:49.630059', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:51,299 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:51,299 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:51,299 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:51,299 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:51,299 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:51,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:51,300 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:51,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:51,300 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:51,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:51,300 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:51,301 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:52,532 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:52,534 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions) -2024-07-15 10:42:52,535 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-07-15T10:42:52.535192', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:52,536 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:52,536 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:52,537 - using serial LDA version on this node -2024-07-15 10:42:52,537 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:52,537 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:52,541 - -7.855 per-word bound, 231.6 perplexity estimate based on a held-out corpus of 1 documents with 1846 words -2024-07-15 10:42:52,541 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:52,542 - topic #0 (0.333): 0.022*"’" + 0.008*"Bracknell" + 0.007*"needs" + 0.007*"good" + 0.006*"well" + 0.006*"Forest" + 0.006*"positive" + 0.006*"effective" + 0.006*"quality" + 0.005*"need" -2024-07-15 10:42:52,542 - topic #1 (0.333): 0.009*"’" + 0.007*"quality" + 0.007*"risk" + 0.006*"needs" + 0.005*"Forest" + 0.005*"Bracknell" + 0.005*"good" + 0.005*"provided" + 0.005*"carers" + 0.005*"plans" -2024-07-15 10:42:52,543 - topic #2 (0.333): 0.016*"’" + 0.008*"Forest" + 0.008*"risk" + 0.006*"needs" + 0.006*"Bracknell" + 0.006*"effective" + 0.006*"progress" + 0.006*"good" + 0.006*"plans" + 0.005*"provided" -2024-07-15 10:42:52,543 - topic diff=0.765162, rho=1.000000 -2024-07-15 10:42:52,543 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:52.543397', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:53,445 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:53,445 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:53,445 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:53,446 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:53,446 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:53,446 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:53,446 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:53,446 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:53,447 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:53,447 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:53,447 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:53,447 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:54,962 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:54,964 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions) -2024-07-15 10:42:54,964 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)", 'datetime': '2024-07-15T10:42:54.964775', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:54,965 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:54,965 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:54,966 - using serial LDA version on this node -2024-07-15 10:42:54,966 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:54,966 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:54,970 - -8.089 per-word bound, 272.4 perplexity estimate based on a held-out corpus of 1 documents with 2249 words -2024-07-15 10:42:54,970 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:54,971 - topic #0 (0.333): 0.013*"’" + 0.006*"Hove" + 0.006*"Brighton" + 0.006*"practice" + 0.006*"needs" + 0.005*"well" + 0.005*"relationships" + 0.005*"receive" + 0.005*"experiences" + 0.005*"range" -2024-07-15 10:42:54,972 - topic #1 (0.333): 0.019*"’" + 0.009*"well" + 0.008*"Hove" + 0.007*"Brighton" + 0.007*"needs" + 0.006*"progress" + 0.006*"practice" + 0.006*"relationships" + 0.005*"experiences" + 0.005*"family" -2024-07-15 10:42:54,972 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"practice" + 0.005*"Brighton" + 0.005*"experiences" + 0.005*"Hove" + 0.005*"progress" + 0.005*"11" + 0.004*"PAs" -2024-07-15 10:42:54,972 - topic diff=0.742882, rho=1.000000 -2024-07-15 10:42:54,972 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:54.972538', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:55,919 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:55,919 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:55,919 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:55,920 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:55,920 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:55,920 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:55,920 - Inspection date None / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:55,920 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:55,920 - Inspection date None / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:55,920 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:55,921 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:55,921 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:57,182 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:57,184 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions) -2024-07-15 10:42:57,185 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-07-15T10:42:57.185022', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:57,186 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:57,186 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:57,186 - using serial LDA version on this node -2024-07-15 10:42:57,186 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:57,187 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:57,190 - -8.034 per-word bound, 262.1 perplexity estimate based on a held-out corpus of 1 documents with 2647 words -2024-07-15 10:42:57,191 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:57,192 - topic #0 (0.333): 0.023*"’" + 0.009*"well" + 0.008*"needs" + 0.008*"good" + 0.006*"Bristol" + 0.006*"health" + 0.005*"always" + 0.005*"27" + 0.005*"leaders" + 0.005*"receive" -2024-07-15 10:42:57,192 - topic #1 (0.333): 0.019*"’" + 0.010*"well" + 0.009*"Bristol" + 0.008*"good" + 0.007*"needs" + 0.007*"progress" + 0.005*"16" + 0.005*"need" + 0.005*"plans" + 0.005*"arrangements" -2024-07-15 10:42:57,192 - topic #2 (0.333): 0.014*"’" + 0.007*"well" + 0.006*"Bristol" + 0.006*"needs" + 0.006*"good" + 0.005*"health" + 0.005*"leaders" + 0.005*"progress" + 0.004*"timely" + 0.004*"plans" -2024-07-15 10:42:57,193 - topic diff=0.826858, rho=1.000000 -2024-07-15 10:42:57,193 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:57.193189', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:58,033 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:42:58,034 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:58,034 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:42:58,034 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:58,034 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:42:58,034 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:58,034 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:42:58,035 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:58,035 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:42:58,035 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:58,035 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:42:58,035 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:42:59,586 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:42:59,589 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions) -2024-07-15 10:42:59,589 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-07-15T10:42:59.589452', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:42:59,590 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:42:59,590 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:42:59,591 - using serial LDA version on this node -2024-07-15 10:42:59,591 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:42:59,591 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:42:59,595 - -8.236 per-word bound, 301.5 perplexity estimate based on a held-out corpus of 1 documents with 2404 words -2024-07-15 10:42:59,595 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:42:59,598 - topic #0 (0.333): 0.015*"’" + 0.005*"17" + 0.005*"Buckinghamshire" + 0.004*"practice" + 0.004*"number" + 0.004*"plans" + 0.004*"December" + 0.004*"protection" + 0.004*"6" + 0.004*"needs" -2024-07-15 10:42:59,599 - topic #1 (0.333): 0.010*"’" + 0.005*"number" + 0.005*"plans" + 0.005*"Buckinghamshire" + 0.004*"many" + 0.004*"protection" + 0.004*"6" + 0.004*"needs" + 0.004*"small" + 0.004*"2021" -2024-07-15 10:42:59,599 - topic #2 (0.333): 0.014*"’" + 0.006*"plans" + 0.005*"17" + 0.005*"number" + 0.004*"2021" + 0.004*"many" + 0.004*"6" + 0.004*"December" + 0.004*"well" + 0.004*"Buckinghamshire" -2024-07-15 10:42:59,599 - topic diff=0.720616, rho=1.000000 -2024-07-15 10:42:59,599 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:42:59.599670', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:00,687 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:00,688 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:00,688 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:00,688 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:00,688 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:00,688 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:00,688 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:00,689 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:00,689 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:00,689 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:00,689 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:00,689 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:02,235 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:02,238 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions) -2024-07-15 10:43:02,238 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-07-15T10:43:02.238515', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:02,239 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:02,239 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:02,239 - using serial LDA version on this node -2024-07-15 10:43:02,240 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:02,240 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:02,244 - -7.973 per-word bound, 251.3 perplexity estimate based on a held-out corpus of 1 documents with 2427 words -2024-07-15 10:43:02,244 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:02,245 - topic #0 (0.333): 0.010*"’" + 0.007*"2021" + 0.006*"protection" + 0.005*"needs" + 0.005*"practice" + 0.004*"quality" + 0.004*"risk" + 0.004*"always" + 0.004*"October" + 0.004*"Bury" -2024-07-15 10:43:02,245 - topic #1 (0.333): 0.012*"’" + 0.007*"2021" + 0.006*"protection" + 0.006*"impact" + 0.005*"practice" + 0.005*"5" + 0.005*"need" + 0.005*"delay" + 0.005*"risk" + 0.004*"needs" -2024-07-15 10:43:02,245 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.008*"team" + 0.007*"protection" + 0.006*"practice" + 0.006*"need" + 0.006*"Bury" + 0.005*"2021" + 0.005*"quality" + 0.005*"impact" -2024-07-15 10:43:02,245 - topic diff=0.805574, rho=1.000000 -2024-07-15 10:43:02,246 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:02.246035', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:03,080 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:03,080 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:03,080 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:03,081 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:03,081 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:03,081 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:03,081 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:03,081 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:03,081 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:03,082 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:03,082 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:03,082 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:04,595 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:04,597 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions) -2024-07-15 10:43:04,597 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-07-15T10:43:04.597568', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:04,598 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:04,598 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:04,599 - using serial LDA version on this node -2024-07-15 10:43:04,599 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:04,599 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:04,603 - -8.033 per-word bound, 262.0 perplexity estimate based on a held-out corpus of 1 documents with 2389 words -2024-07-15 10:43:04,603 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:04,604 - topic #0 (0.333): 0.022*"’" + 0.009*"Calderdale" + 0.008*"needs" + 0.006*"ensure" + 0.005*"experiences" + 0.005*"well" + 0.005*"progress" + 0.005*"plans" + 0.005*"risk" + 0.005*"parents" -2024-07-15 10:43:04,604 - topic #1 (0.333): 0.021*"’" + 0.011*"needs" + 0.009*"Calderdale" + 0.007*"well" + 0.006*"plans" + 0.006*"ensure" + 0.006*"progress" + 0.006*"risk" + 0.005*"need" + 0.005*"parents" -2024-07-15 10:43:04,605 - topic #2 (0.333): 0.016*"’" + 0.009*"needs" + 0.007*"plans" + 0.006*"Calderdale" + 0.005*"well" + 0.005*"progress" + 0.004*"parents" + 0.004*"PAs" + 0.004*"23" + 0.004*"risk" -2024-07-15 10:43:04,605 - topic diff=0.792896, rho=1.000000 -2024-07-15 10:43:04,605 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:04.605412', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:05,542 - Inspection date 2024-02-19 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:05,543 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:05,543 - Inspection date 2024-02-19 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:05,543 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:05,543 - Inspection date 2024-02-19 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:05,543 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:05,543 - Inspection date 2024-02-19 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:05,543 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:05,544 - Inspection date 2024-02-19 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:05,544 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:05,544 - Inspection date 2024-02-19 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:05,544 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:07,196 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:07,199 - built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions) -2024-07-15 10:43:07,199 - Dictionary lifecycle event {'msg': "built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions)", 'datetime': '2024-07-15T10:43:07.199236', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:07,200 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:07,200 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:07,200 - using serial LDA version on this node -2024-07-15 10:43:07,201 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:07,201 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:07,204 - -8.009 per-word bound, 257.7 perplexity estimate based on a held-out corpus of 1 documents with 2339 words -2024-07-15 10:43:07,204 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:07,206 - topic #0 (0.333): 0.019*"’" + 0.007*"leaders" + 0.007*"Cambridgeshire" + 0.006*"needs" + 0.005*"effective" + 0.005*"good" + 0.005*"15" + 0.005*"well" + 0.005*"However" + 0.005*"quality" -2024-07-15 10:43:07,206 - topic #1 (0.333): 0.016*"’" + 0.007*"leaders" + 0.007*"needs" + 0.006*"Cambridgeshire" + 0.006*"good" + 0.005*"quality" + 0.005*"4" + 0.005*"practice" + 0.004*"March" + 0.004*"well" -2024-07-15 10:43:07,206 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.006*"Cambridgeshire" + 0.005*"well" + 0.005*"leaders" + 0.005*"effective" + 0.004*"good" + 0.004*"2024" + 0.004*"access" + 0.004*"leadership" -2024-07-15 10:43:07,206 - topic diff=0.786488, rho=1.000000 -2024-07-15 10:43:07,206 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:07.206890', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:08,225 - Inspection date 2024-03-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:08,225 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:08,225 - Inspection date 2024-03-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:08,225 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:08,226 - Inspection date 2024-03-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:08,226 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:08,226 - Inspection date 2024-03-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:08,226 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:08,226 - Inspection date 2024-03-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:08,226 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:08,227 - Inspection date 2024-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:08,227 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:09,640 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:09,642 - built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) -2024-07-15 10:43:09,643 - Dictionary lifecycle event {'msg': "built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-07-15T10:43:09.642975', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:09,643 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:09,644 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:09,644 - using serial LDA version on this node -2024-07-15 10:43:09,644 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:09,644 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:09,648 - -7.964 per-word bound, 249.8 perplexity estimate based on a held-out corpus of 1 documents with 2199 words -2024-07-15 10:43:09,648 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:09,649 - topic #0 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"need" + 0.006*"carers" + 0.006*"progress" + 0.005*"plans" + 0.005*"Bedfordshire" + 0.005*"good" + 0.005*"needs" + 0.005*"practice" -2024-07-15 10:43:09,650 - topic #1 (0.333): 0.014*"’" + 0.010*"well" + 0.008*"needs" + 0.007*"carers" + 0.007*"good" + 0.006*"need" + 0.006*"progress" + 0.006*"plans" + 0.005*"Central" + 0.005*"number" -2024-07-15 10:43:09,650 - topic #2 (0.333): 0.017*"’" + 0.008*"well" + 0.008*"needs" + 0.006*"good" + 0.006*"plans" + 0.005*"Bedfordshire" + 0.005*"carers" + 0.005*"effective" + 0.005*"need" + 0.004*"information" -2024-07-15 10:43:09,650 - topic diff=0.781522, rho=1.000000 -2024-07-15 10:43:09,650 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:09.650574', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:10,573 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:10,573 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:10,574 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:10,574 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:10,574 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:10,574 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:10,574 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:10,574 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:10,575 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:10,575 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:10,575 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:10,575 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:12,008 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:12,010 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions) -2024-07-15 10:43:12,010 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)", 'datetime': '2024-07-15T10:43:12.010749', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:12,011 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:12,011 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:12,012 - using serial LDA version on this node -2024-07-15 10:43:12,012 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:12,012 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:12,016 - -7.978 per-word bound, 252.2 perplexity estimate based on a held-out corpus of 1 documents with 2272 words -2024-07-15 10:43:12,016 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:12,017 - topic #0 (0.333): 0.010*"’" + 0.008*"2024" + 0.007*"needs" + 0.007*"well" + 0.006*"practice" + 0.006*"Cheshire" + 0.005*"East" + 0.005*"effective" + 0.005*"quality" + 0.005*"plans" -2024-07-15 10:43:12,017 - topic #1 (0.333): 0.015*"’" + 0.008*"plans" + 0.008*"needs" + 0.007*"2024" + 0.007*"quality" + 0.006*"need" + 0.006*"East" + 0.006*"well" + 0.005*"leaders" + 0.005*"practice" -2024-07-15 10:43:12,018 - topic #2 (0.333): 0.012*"’" + 0.008*"practice" + 0.008*"2024" + 0.007*"needs" + 0.007*"well" + 0.006*"plans" + 0.006*"Cheshire" + 0.005*"quality" + 0.005*"leaders" + 0.005*"always" -2024-07-15 10:43:12,018 - topic diff=0.780229, rho=1.000000 -2024-07-15 10:43:12,018 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:12.018252', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:12,999 - Inspection date 2024-02-26 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:13,000 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:13,000 - Inspection date 2024-02-26 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:13,000 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:13,000 - Inspection date 2024-02-26 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:13,000 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:13,000 - Inspection date 2024-02-26 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:13,001 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:13,001 - Inspection date 2024-02-26 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:13,001 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:13,001 - Inspection date 2024-02-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:13,001 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:14,545 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:14,548 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions) -2024-07-15 10:43:14,548 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions)", 'datetime': '2024-07-15T10:43:14.548282', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:14,549 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:14,549 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:14,549 - using serial LDA version on this node -2024-07-15 10:43:14,550 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:14,550 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:14,554 - -7.999 per-word bound, 255.9 perplexity estimate based on a held-out corpus of 1 documents with 2186 words -2024-07-15 10:43:14,554 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:14,555 - topic #0 (0.333): 0.025*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"plans" + 0.005*"impact" + 0.005*"effective" + 0.005*"practice" + 0.004*"effectively" + 0.004*"always" + 0.004*"receive" -2024-07-15 10:43:14,556 - topic #1 (0.333): 0.014*"’" + 0.007*"needs" + 0.006*"well" + 0.004*"However" + 0.004*"order" + 0.004*"always" + 0.004*"timely" + 0.004*"effectively" + 0.004*"abuse" + 0.004*"early" -2024-07-15 10:43:14,556 - topic #2 (0.333): 0.022*"’" + 0.008*"well" + 0.008*"needs" + 0.006*"practice" + 0.005*"learning" + 0.004*"always" + 0.004*"order" + 0.004*"early" + 0.004*"effective" + 0.004*"effectively" -2024-07-15 10:43:14,556 - topic diff=0.767361, rho=1.000000 -2024-07-15 10:43:14,556 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:14.556633', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:15,510 - Inspection date 2019-03-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:15,510 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:15,510 - Inspection date 2019-03-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:15,510 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:15,510 - Inspection date 2019-03-18 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:15,511 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:15,511 - Inspection date 2019-03-18 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:15,511 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:15,511 - Inspection date 2019-03-18 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:15,511 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:15,512 - Inspection date 2019-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:15,512 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:17,179 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:17,181 - built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions) -2024-07-15 10:43:17,181 - Dictionary lifecycle event {'msg': "built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions)", 'datetime': '2024-07-15T10:43:17.181767', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:17,182 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:17,183 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:17,183 - using serial LDA version on this node -2024-07-15 10:43:17,183 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:17,183 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:17,189 - -8.054 per-word bound, 265.8 perplexity estimate based on a held-out corpus of 1 documents with 2639 words -2024-07-15 10:43:17,190 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:17,192 - topic #0 (0.333): 0.023*"’" + 0.007*"plans" + 0.005*"2" + 0.005*"needs" + 0.005*"Bradford" + 0.005*"21" + 0.005*"practice" + 0.005*"impact" + 0.005*"Council" + 0.004*"◼" -2024-07-15 10:43:17,192 - topic #1 (0.333): 0.019*"’" + 0.007*"plans" + 0.005*"needs" + 0.005*"risk" + 0.005*"quality" + 0.005*"need" + 0.005*"Bradford" + 0.004*"senior" + 0.004*"Metropolitan" + 0.004*"2022" -2024-07-15 10:43:17,192 - topic #2 (0.333): 0.019*"’" + 0.006*"plans" + 0.005*"need" + 0.004*"Bradford" + 0.004*"November" + 0.004*"2" + 0.004*"quality" + 0.004*"City" + 0.004*"experiences" + 0.004*"lack" -2024-07-15 10:43:17,192 - topic diff=0.811068, rho=1.000000 -2024-07-15 10:43:17,193 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:17.193171', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:18,207 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:18,207 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:18,207 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:18,207 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:18,208 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:18,208 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:18,208 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:18,208 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:18,208 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:18,208 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:18,209 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:18,209 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:19,575 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:19,578 - built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions) -2024-07-15 10:43:19,578 - Dictionary lifecycle event {'msg': "built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions)", 'datetime': '2024-07-15T10:43:19.578264', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:19,579 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:19,579 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:19,579 - using serial LDA version on this node -2024-07-15 10:43:19,579 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:19,580 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:19,583 - -7.833 per-word bound, 228.0 perplexity estimate based on a held-out corpus of 1 documents with 1767 words -2024-07-15 10:43:19,583 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:19,584 - topic #0 (0.333): 0.012*"’" + 0.010*"needs" + 0.010*"well" + 0.007*"ensure" + 0.007*"progress" + 0.007*"effective" + 0.006*"plans" + 0.006*"clear" + 0.005*"good" + 0.005*"understanding" -2024-07-15 10:43:19,585 - topic #1 (0.333): 0.012*"needs" + 0.011*"’" + 0.010*"well" + 0.008*"ensure" + 0.006*"effective" + 0.006*"individual" + 0.005*"good" + 0.005*"clear" + 0.005*"practice" + 0.004*"clearly" -2024-07-15 10:43:19,585 - topic #2 (0.333): 0.012*"’" + 0.012*"needs" + 0.010*"well" + 0.009*"ensure" + 0.007*"clear" + 0.007*"progress" + 0.006*"effective" + 0.006*"plans" + 0.006*"within" + 0.005*"good" -2024-07-15 10:43:19,585 - topic diff=0.745380, rho=1.000000 -2024-07-15 10:43:19,585 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:19.585642', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:20,724 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:20,724 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:20,724 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:20,724 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:20,724 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:20,724 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:20,725 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:20,725 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:20,725 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:20,725 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:20,725 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:20,725 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:22,117 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:22,121 - built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions) -2024-07-15 10:43:22,121 - Dictionary lifecycle event {'msg': "built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions)", 'datetime': '2024-07-15T10:43:22.121204', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:22,122 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:22,123 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:22,123 - using serial LDA version on this node -2024-07-15 10:43:22,123 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:22,123 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:22,129 - -7.912 per-word bound, 240.8 perplexity estimate based on a held-out corpus of 1 documents with 2281 words -2024-07-15 10:43:22,130 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:22,132 - topic #0 (0.333): 0.017*"’" + 0.008*"well" + 0.008*"Wakefield" + 0.007*"quality" + 0.006*"leaders" + 0.006*"receive" + 0.006*"November" + 0.005*"plans" + 0.005*"timely" + 0.005*"good" -2024-07-15 10:43:22,132 - topic #1 (0.333): 0.017*"’" + 0.009*"November" + 0.009*"leaders" + 0.008*"Wakefield" + 0.008*"quality" + 0.008*"effective" + 0.008*"good" + 0.008*"well" + 0.006*"plans" + 0.006*"progress" -2024-07-15 10:43:22,132 - topic #2 (0.333): 0.014*"’" + 0.007*"quality" + 0.007*"effective" + 0.006*"good" + 0.006*"Wakefield" + 0.006*"well" + 0.005*"plans" + 0.005*"leaders" + 0.005*"receive" + 0.004*"November" -2024-07-15 10:43:22,132 - topic diff=0.812514, rho=1.000000 -2024-07-15 10:43:22,132 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:22.132967', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:23,192 - Inspection date 2021-11-08 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:23,192 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:23,193 - Inspection date 2021-11-08 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:23,193 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:23,193 - Inspection date 2021-11-08 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:23,193 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:23,193 - Inspection date 2021-11-08 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:23,193 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:23,194 - Inspection date 2021-11-08 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:23,194 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:23,194 - Inspection date 2021-11-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:23,194 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:24,605 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:24,608 - built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions) -2024-07-15 10:43:24,608 - Dictionary lifecycle event {'msg': "built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions)", 'datetime': '2024-07-15T10:43:24.608688', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:24,609 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:24,609 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:24,609 - using serial LDA version on this node -2024-07-15 10:43:24,610 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:24,610 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:24,613 - -7.864 per-word bound, 232.9 perplexity estimate based on a held-out corpus of 1 documents with 1855 words -2024-07-15 10:43:24,613 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:24,615 - topic #0 (0.333): 0.018*"’" + 0.009*"needs" + 0.007*"March" + 0.007*"quality" + 0.006*"effective" + 0.006*"York" + 0.006*"plans" + 0.006*"ensure" + 0.006*"However" + 0.006*"need" -2024-07-15 10:43:24,615 - topic #1 (0.333): 0.013*"’" + 0.007*"needs" + 0.007*"quality" + 0.006*"March" + 0.006*"effective" + 0.005*"However" + 0.005*"well" + 0.005*"education" + 0.005*"18" + 0.004*"experiences" -2024-07-15 10:43:24,615 - topic #2 (0.333): 0.010*"’" + 0.008*"March" + 0.006*"quality" + 0.005*"effective" + 0.004*"practice" + 0.004*"needs" + 0.004*"appropriate" + 0.004*"ensure" + 0.004*"small" + 0.004*"7" -2024-07-15 10:43:24,615 - topic diff=0.782295, rho=1.000000 -2024-07-15 10:43:24,615 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:24.615934', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:25,595 - Inspection date 2022-03-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:25,595 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:25,596 - Inspection date 2022-03-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:25,596 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:25,596 - Inspection date 2022-03-07 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:25,596 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:25,596 - Inspection date 2022-03-07 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:25,596 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:25,596 - Inspection date 2022-03-07 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:25,597 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:25,597 - Inspection date 2022-03-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:25,597 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:26,814 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:26,817 - built Dictionary<1014 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2157 corpus positions) -2024-07-15 10:43:26,817 - Dictionary lifecycle event {'msg': "built Dictionary<1014 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2157 corpus positions)", 'datetime': '2024-07-15T10:43:26.817168', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:26,818 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:26,818 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:26,818 - using serial LDA version on this node -2024-07-15 10:43:26,818 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:26,818 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:26,822 - -7.952 per-word bound, 247.6 perplexity estimate based on a held-out corpus of 1 documents with 2157 words -2024-07-15 10:43:26,822 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:26,823 - topic #0 (0.333): 0.017*"well" + 0.014*"’" + 0.011*"quality" + 0.010*"effective" + 0.010*"leaders" + 0.007*"plans" + 0.006*"timely" + 0.006*"good" + 0.006*"arrangements" + 0.006*"Senior" -2024-07-15 10:43:26,824 - topic #1 (0.333): 0.011*"well" + 0.011*"’" + 0.009*"quality" + 0.007*"leaders" + 0.006*"effective" + 0.005*"good" + 0.005*"highly" + 0.005*"arrangements" + 0.004*"timely" + 0.004*"high" -2024-07-15 10:43:26,824 - topic #2 (0.333): 0.013*"well" + 0.011*"’" + 0.008*"effective" + 0.008*"leaders" + 0.007*"quality" + 0.006*"plans" + 0.005*"good" + 0.005*"arrangements" + 0.005*"ensure" + 0.004*"timely" -2024-07-15 10:43:26,824 - topic diff=0.788395, rho=1.000000 -2024-07-15 10:43:26,824 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:26.824664', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:28,130 - Inspection date 2019-10-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:28,131 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:28,131 - Inspection date 2019-10-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:28,131 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:28,131 - Inspection date 2019-10-14 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:28,131 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:28,132 - Inspection date 2019-10-14 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:28,132 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:28,132 - Inspection date 2019-10-14 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:28,132 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:28,132 - Inspection date 2019-10-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:28,132 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:28,982 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:28,984 - built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions) -2024-07-15 10:43:28,984 - Dictionary lifecycle event {'msg': "built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions)", 'datetime': '2024-07-15T10:43:28.984682', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:28,985 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:28,985 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:28,985 - using serial LDA version on this node -2024-07-15 10:43:28,986 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:28,986 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:28,988 - -7.687 per-word bound, 206.1 perplexity estimate based on a held-out corpus of 1 documents with 1521 words -2024-07-15 10:43:28,989 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:28,990 - topic #0 (0.333): 0.012*"’" + 0.010*"Scilly" + 0.009*"Isles" + 0.009*"need" + 0.007*"practice" + 0.007*"information" + 0.006*"quality" + 0.005*"needs" + 0.005*"protection" + 0.005*"2023" -2024-07-15 10:43:28,990 - topic #1 (0.333): 0.013*"’" + 0.011*"Isles" + 0.009*"Scilly" + 0.009*"need" + 0.007*"needs" + 0.007*"information" + 0.006*"practice" + 0.006*"place" + 0.006*"protection" + 0.006*"quality" -2024-07-15 10:43:28,990 - topic #2 (0.333): 0.029*"’" + 0.014*"Scilly" + 0.014*"Isles" + 0.011*"information" + 0.010*"practice" + 0.008*"protection" + 0.007*"need" + 0.007*"needs" + 0.007*"place" + 0.006*"11" -2024-07-15 10:43:28,990 - topic diff=0.779804, rho=1.000000 -2024-07-15 10:43:28,990 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-07-15T10:43:28.990778', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:29,859 - Inspection date 2023-07-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:29,860 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:29,860 - Inspection date 2023-07-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:29,861 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:29,861 - Inspection date 2023-07-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:29,861 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:29,861 - Inspection date 2023-07-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:29,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:29,862 - Inspection date 2023-07-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:29,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:29,862 - Inspection date 2023-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:29,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:31,160 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:31,162 - built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions) -2024-07-15 10:43:31,162 - Dictionary lifecycle event {'msg': "built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions)", 'datetime': '2024-07-15T10:43:31.162563', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:31,163 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:31,163 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:31,163 - using serial LDA version on this node -2024-07-15 10:43:31,164 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:31,164 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:31,167 - -7.847 per-word bound, 230.3 perplexity estimate based on a held-out corpus of 1 documents with 2074 words -2024-07-15 10:43:31,167 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:31,168 - topic #0 (0.333): 0.017*"’" + 0.010*"well" + 0.008*"Coventry" + 0.007*"needs" + 0.006*"plans" + 0.006*"supported" + 0.005*"need" + 0.005*"strong" + 0.004*"20" + 0.004*"understand" -2024-07-15 10:43:31,169 - topic #1 (0.333): 0.021*"’" + 0.008*"Coventry" + 0.007*"family" + 0.007*"plans" + 0.007*"supported" + 0.007*"strong" + 0.006*"needs" + 0.005*"need" + 0.005*"well" + 0.005*"20" -2024-07-15 10:43:31,169 - topic #2 (0.333): 0.020*"’" + 0.009*"well" + 0.009*"needs" + 0.008*"Coventry" + 0.007*"supported" + 0.006*"family" + 0.005*"plans" + 0.005*"1" + 0.005*"PAs" + 0.004*"need" -2024-07-15 10:43:31,169 - topic diff=0.796283, rho=1.000000 -2024-07-15 10:43:31,169 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:31.169472', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:32,119 - Inspection date 2022-06-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:32,120 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:32,120 - Inspection date 2022-06-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:32,120 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:32,120 - Inspection date 2022-06-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:32,120 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:32,121 - Inspection date 2022-06-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:32,121 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:32,121 - Inspection date 2022-06-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:32,121 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:32,121 - Inspection date 2022-06-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:32,121 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:34,016 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:34,020 - built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions) -2024-07-15 10:43:34,020 - Dictionary lifecycle event {'msg': "built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions)", 'datetime': '2024-07-15T10:43:34.020918', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:34,022 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:34,023 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:34,023 - using serial LDA version on this node -2024-07-15 10:43:34,024 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:34,024 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:34,031 - -8.088 per-word bound, 272.2 perplexity estimate based on a held-out corpus of 1 documents with 2653 words -2024-07-15 10:43:34,031 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:34,033 - topic #0 (0.333): 0.017*"’" + 0.008*"well" + 0.008*"October" + 0.007*"needs" + 0.007*"leaders" + 0.006*"Darlington" + 0.006*"practice" + 0.005*"quality" + 0.005*"effective" + 0.005*"supported" -2024-07-15 10:43:34,034 - topic #1 (0.333): 0.021*"’" + 0.009*"well" + 0.007*"practice" + 0.007*"needs" + 0.006*"October" + 0.006*"leaders" + 0.006*"Darlington" + 0.005*"effective" + 0.005*"family" + 0.005*"supported" -2024-07-15 10:43:34,034 - topic #2 (0.333): 0.018*"’" + 0.006*"leaders" + 0.006*"well" + 0.006*"Darlington" + 0.005*"needs" + 0.005*"October" + 0.005*"quality" + 0.005*"appropriate" + 0.004*"practice" + 0.004*"education" -2024-07-15 10:43:34,034 - topic diff=0.798382, rho=1.000000 -2024-07-15 10:43:34,034 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:34.034829', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:35,052 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:35,052 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:35,053 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:35,053 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:35,053 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:35,053 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:35,053 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:35,054 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:35,054 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:35,054 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:35,054 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:35,054 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:36,639 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:36,642 - built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions) -2024-07-15 10:43:36,642 - Dictionary lifecycle event {'msg': "built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions)", 'datetime': '2024-07-15T10:43:36.642260', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:36,643 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:36,643 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:36,643 - using serial LDA version on this node -2024-07-15 10:43:36,644 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:36,644 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:36,647 - -8.048 per-word bound, 264.6 perplexity estimate based on a held-out corpus of 1 documents with 2396 words -2024-07-15 10:43:36,648 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:36,649 - topic #0 (0.333): 0.018*"’" + 0.009*"needs" + 0.006*"quality" + 0.006*"Derby" + 0.005*"receive" + 0.005*"progress" + 0.005*"appropriate" + 0.005*"need" + 0.005*"views" + 0.004*"plans" -2024-07-15 10:43:36,649 - topic #1 (0.333): 0.023*"’" + 0.010*"needs" + 0.007*"quality" + 0.007*"Derby" + 0.007*"good" + 0.006*"plans" + 0.006*"progress" + 0.006*"need" + 0.005*"well" + 0.005*"receive" -2024-07-15 10:43:36,649 - topic #2 (0.333): 0.021*"’" + 0.010*"needs" + 0.008*"Derby" + 0.007*"receive" + 0.006*"well" + 0.006*"leaders" + 0.005*"plans" + 0.005*"appropriate" + 0.005*"progress" + 0.005*"quality" -2024-07-15 10:43:36,650 - topic diff=0.777717, rho=1.000000 -2024-07-15 10:43:36,650 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:36.650257', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:37,601 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:37,601 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:37,602 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:37,602 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:37,602 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:37,602 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:37,602 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:37,602 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:37,603 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:37,603 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:37,603 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:37,603 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:38,738 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:38,740 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions) -2024-07-15 10:43:38,740 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions)", 'datetime': '2024-07-15T10:43:38.740703', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:38,741 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:38,741 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:38,742 - using serial LDA version on this node -2024-07-15 10:43:38,742 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:38,742 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:38,746 - -8.040 per-word bound, 263.2 perplexity estimate based on a held-out corpus of 1 documents with 2035 words -2024-07-15 10:43:38,746 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:38,747 - topic #0 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"Derbyshire" + 0.005*"plans" + 0.005*"10" + 0.005*"education" + 0.005*"needs" + 0.005*"positive" + 0.005*"practice" + 0.004*"number" -2024-07-15 10:43:38,747 - topic #1 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"Derbyshire" + 0.005*"effective" + 0.005*"plans" + 0.004*"positive" + 0.004*"leaders" + 0.004*"need" + 0.004*"30" + 0.004*"good" -2024-07-15 10:43:38,747 - topic #2 (0.333): 0.013*"’" + 0.009*"well" + 0.007*"Derbyshire" + 0.005*"needs" + 0.005*"leaders" + 0.005*"plans" + 0.005*"positive" + 0.005*"health" + 0.004*"education" + 0.004*"number" -2024-07-15 10:43:38,748 - topic diff=0.743747, rho=1.000000 -2024-07-15 10:43:38,748 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:38.748139', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:39,793 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:39,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:39,794 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:39,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:39,794 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:39,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:39,795 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:39,795 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:39,795 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:39,795 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:39,795 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:39,795 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:41,142 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:41,144 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions) -2024-07-15 10:43:41,145 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions)", 'datetime': '2024-07-15T10:43:41.144997', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:41,146 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:41,146 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:41,146 - using serial LDA version on this node -2024-07-15 10:43:41,146 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:41,146 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:41,150 - -8.146 per-word bound, 283.4 perplexity estimate based on a held-out corpus of 1 documents with 2313 words -2024-07-15 10:43:41,150 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:41,152 - topic #0 (0.333): 0.011*"’" + 0.006*"well" + 0.005*"leaders" + 0.004*"progress" + 0.004*"risk" + 0.004*"health" + 0.004*"quality" + 0.004*"case" + 0.004*"protection" + 0.003*"need" -2024-07-15 10:43:41,152 - topic #1 (0.333): 0.009*"’" + 0.006*"well" + 0.005*"leaders" + 0.004*"Devon" + 0.004*"health" + 0.004*"risk" + 0.004*"need" + 0.004*"progress" + 0.004*"areas" + 0.004*"living" -2024-07-15 10:43:41,152 - topic #2 (0.333): 0.009*"’" + 0.006*"well" + 0.006*"health" + 0.005*"risk" + 0.005*"progress" + 0.004*"case" + 0.004*"quality" + 0.004*"leaders" + 0.004*"protection" + 0.004*"Devon" -2024-07-15 10:43:41,152 - topic diff=0.732306, rho=1.000000 -2024-07-15 10:43:41,153 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:41.152994', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:42,205 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:42,205 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:42,205 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:42,205 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:42,206 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:42,206 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:42,206 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:42,206 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:42,206 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:42,206 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:42,207 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:42,207 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:43,594 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:43,597 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions) -2024-07-15 10:43:43,597 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions)", 'datetime': '2024-07-15T10:43:43.597531', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:43,598 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:43,599 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:43,599 - using serial LDA version on this node -2024-07-15 10:43:43,599 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:43,600 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:43,604 - -8.109 per-word bound, 276.0 perplexity estimate based on a held-out corpus of 1 documents with 2429 words -2024-07-15 10:43:43,604 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:43,605 - topic #0 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"Doncaster" + 0.005*"14" + 0.005*"quality" + 0.005*"records" + 0.005*"receive" + 0.005*"information" + 0.005*"many" + 0.004*"progress" -2024-07-15 10:43:43,606 - topic #1 (0.333): 0.019*"’" + 0.006*"well" + 0.006*"leaders" + 0.005*"plans" + 0.005*"Doncaster" + 0.005*"records" + 0.005*"many" + 0.005*"arrangements" + 0.005*"quality" + 0.005*"25" -2024-07-15 10:43:43,606 - topic #2 (0.333): 0.020*"’" + 0.006*"well" + 0.006*"Doncaster" + 0.006*"progress" + 0.005*"protection" + 0.005*"many" + 0.004*"leaders" + 0.004*"plans" + 0.004*"Trust" + 0.004*"information" -2024-07-15 10:43:43,606 - topic diff=0.766250, rho=1.000000 -2024-07-15 10:43:43,606 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:43.606606', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:45,721 - Inspection date 2022-02-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:45,721 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:45,722 - Inspection date 2022-02-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:45,722 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:45,722 - Inspection date 2022-02-14 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:45,722 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:45,722 - Inspection date 2022-02-14 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:45,722 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:45,722 - Inspection date 2022-02-14 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:45,723 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:45,723 - Inspection date 2022-02-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:45,723 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:46,985 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:46,986 - built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions) -2024-07-15 10:43:46,987 - Dictionary lifecycle event {'msg': "built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions)", 'datetime': '2024-07-15T10:43:46.987150', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:46,988 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:46,988 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:46,988 - using serial LDA version on this node -2024-07-15 10:43:46,988 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:46,989 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:46,992 - -8.103 per-word bound, 275.0 perplexity estimate based on a held-out corpus of 1 documents with 1942 words -2024-07-15 10:43:46,992 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:46,994 - topic #0 (0.333): 0.012*"’" + 0.006*"Dorset" + 0.005*"well" + 0.005*"good" + 0.004*"impact" + 0.004*"October" + 0.004*"arrangements" + 0.004*"Senior" + 0.004*"leaders" + 0.004*"change" -2024-07-15 10:43:46,994 - topic #1 (0.333): 0.008*"’" + 0.006*"Dorset" + 0.005*"good" + 0.004*"needs" + 0.004*"arrangements" + 0.004*"impact" + 0.004*"well" + 0.004*"8" + 0.003*"27" + 0.003*"need" -2024-07-15 10:43:46,994 - topic #2 (0.333): 0.017*"’" + 0.009*"Dorset" + 0.007*"good" + 0.007*"well" + 0.005*"needs" + 0.005*"8" + 0.005*"including" + 0.005*"arrangements" + 0.004*"quality" + 0.004*"leaders" -2024-07-15 10:43:46,994 - topic diff=0.750451, rho=1.000000 -2024-07-15 10:43:46,994 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:46.994861', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:47,883 - Inspection date 2021-09-27 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:47,883 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:47,883 - Inspection date 2021-09-27 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:47,883 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:47,884 - Inspection date 2021-09-27 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:47,884 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:47,884 - Inspection date 2021-09-27 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:47,884 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:47,884 - Inspection date 2021-09-27 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:47,884 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:47,884 - Inspection date 2021-09-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:47,884 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:49,215 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:49,217 - built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions) -2024-07-15 10:43:49,218 - Dictionary lifecycle event {'msg': "built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions)", 'datetime': '2024-07-15T10:43:49.218059', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:49,219 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:49,219 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:49,219 - using serial LDA version on this node -2024-07-15 10:43:49,219 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:49,219 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:49,223 - -8.010 per-word bound, 257.9 perplexity estimate based on a held-out corpus of 1 documents with 2138 words -2024-07-15 10:43:49,223 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:49,224 - topic #0 (0.333): 0.014*"’" + 0.010*"needs" + 0.009*"Dudley" + 0.006*"well" + 0.005*"plans" + 0.005*"arrangements" + 0.004*"quality" + 0.004*"ensure" + 0.004*"11" + 0.004*"experiences" -2024-07-15 10:43:49,225 - topic #1 (0.333): 0.016*"’" + 0.013*"needs" + 0.008*"Dudley" + 0.006*"always" + 0.006*"well" + 0.005*"arrangements" + 0.005*"plans" + 0.005*"oversight" + 0.005*"management" + 0.005*"quality" -2024-07-15 10:43:49,225 - topic #2 (0.333): 0.015*"’" + 0.009*"needs" + 0.006*"Dudley" + 0.005*"always" + 0.005*"arrangements" + 0.005*"plans" + 0.005*"well" + 0.004*"oversight" + 0.004*"ensure" + 0.004*"However" -2024-07-15 10:43:49,225 - topic diff=0.764642, rho=1.000000 -2024-07-15 10:43:49,225 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:49.225532', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:50,283 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:50,283 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:50,284 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:50,284 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:50,284 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:50,284 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:50,284 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:50,284 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:50,285 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:50,285 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:50,285 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:50,285 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:51,815 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:51,818 - built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions) -2024-07-15 10:43:51,818 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-07-15T10:43:51.818129', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:51,819 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:51,819 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:51,819 - using serial LDA version on this node -2024-07-15 10:43:51,819 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:51,819 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:51,823 - -7.975 per-word bound, 251.5 perplexity estimate based on a held-out corpus of 1 documents with 2278 words -2024-07-15 10:43:51,823 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:51,824 - topic #0 (0.333): 0.017*"’" + 0.012*"needs" + 0.007*"well" + 0.007*"ensure" + 0.007*"Durham" + 0.006*"May" + 0.006*"plans" + 0.005*"practice" + 0.005*"family" + 0.005*"number" -2024-07-15 10:43:51,825 - topic #1 (0.333): 0.011*"’" + 0.009*"needs" + 0.008*"May" + 0.007*"Durham" + 0.007*"plans" + 0.007*"well" + 0.006*"ensure" + 0.005*"practice" + 0.004*"2022" + 0.004*"10" -2024-07-15 10:43:51,825 - topic #2 (0.333): 0.015*"’" + 0.010*"needs" + 0.007*"May" + 0.007*"Durham" + 0.007*"plans" + 0.007*"well" + 0.005*"supported" + 0.005*"practice" + 0.005*"progress" + 0.004*"protection" -2024-07-15 10:43:51,825 - topic diff=0.775139, rho=1.000000 -2024-07-15 10:43:51,825 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:51.825447', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:52,743 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:52,744 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:52,744 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:52,744 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:52,744 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:52,744 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:52,745 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:52,745 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:52,745 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:52,745 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:52,745 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:52,745 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:54,103 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:54,105 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions) -2024-07-15 10:43:54,105 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions)", 'datetime': '2024-07-15T10:43:54.105866', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:54,106 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:54,106 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:54,107 - using serial LDA version on this node -2024-07-15 10:43:54,107 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:54,107 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:54,110 - -7.921 per-word bound, 242.4 perplexity estimate based on a held-out corpus of 1 documents with 2014 words -2024-07-15 10:43:54,110 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:54,112 - topic #0 (0.333): 0.020*"’" + 0.009*"needs" + 0.008*"plans" + 0.008*"well" + 0.007*"Riding" + 0.006*"progress" + 0.006*"East" + 0.005*"2023" + 0.005*"10" + 0.005*"education" -2024-07-15 10:43:54,112 - topic #1 (0.333): 0.010*"’" + 0.008*"needs" + 0.007*"well" + 0.006*"plans" + 0.006*"progress" + 0.005*"Riding" + 0.005*"10" + 0.005*"East" + 0.004*"education" + 0.004*"place" -2024-07-15 10:43:54,112 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.010*"plans" + 0.009*"well" + 0.007*"progress" + 0.007*"East" + 0.006*"Riding" + 0.005*"partners" + 0.005*"30" + 0.005*"good" -2024-07-15 10:43:54,112 - topic diff=0.779870, rho=1.000000 -2024-07-15 10:43:54,112 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:54.112872', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:55,147 - Inspection date 2023-01-30 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:55,147 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:55,147 - Inspection date 2023-01-30 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:55,147 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:55,148 - Inspection date 2023-01-30 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:55,148 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:55,148 - Inspection date 2023-01-30 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:55,148 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:55,148 - Inspection date 2023-01-30 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:55,148 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:55,148 - Inspection date 2023-01-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:55,149 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:56,613 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:56,616 - built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions) -2024-07-15 10:43:56,616 - Dictionary lifecycle event {'msg': "built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions)", 'datetime': '2024-07-15T10:43:56.616173', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:56,617 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:56,617 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:56,617 - using serial LDA version on this node -2024-07-15 10:43:56,618 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:56,618 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:56,621 - -8.074 per-word bound, 269.5 perplexity estimate based on a held-out corpus of 1 documents with 2220 words -2024-07-15 10:43:56,621 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:56,623 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.008*"needs" + 0.007*"plans" + 0.005*"progress" + 0.005*"East" + 0.005*"Sussex" + 0.005*"impact" + 0.005*"experiences" + 0.004*"including" -2024-07-15 10:43:56,623 - topic #1 (0.333): 0.014*"’" + 0.008*"needs" + 0.008*"well" + 0.006*"Sussex" + 0.006*"progress" + 0.006*"plans" + 0.005*"East" + 0.005*"including" + 0.004*"relationships" + 0.004*"impact" -2024-07-15 10:43:56,623 - topic #2 (0.333): 0.020*"’" + 0.011*"well" + 0.009*"plans" + 0.008*"East" + 0.007*"needs" + 0.007*"including" + 0.006*"Sussex" + 0.006*"progress" + 0.006*"provide" + 0.006*"11" -2024-07-15 10:43:56,623 - topic diff=0.770718, rho=1.000000 -2024-07-15 10:43:56,623 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:56.623949', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:57,644 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:43:57,644 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:57,644 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:43:57,644 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:57,645 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:43:57,645 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:57,645 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:43:57,645 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:57,645 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:43:57,645 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:57,646 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:43:57,646 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:43:59,063 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:43:59,067 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions) -2024-07-15 10:43:59,067 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions)", 'datetime': '2024-07-15T10:43:59.067879', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:43:59,069 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:43:59,070 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:43:59,070 - using serial LDA version on this node -2024-07-15 10:43:59,071 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:43:59,071 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:43:59,077 - -8.011 per-word bound, 258.0 perplexity estimate based on a held-out corpus of 1 documents with 2686 words -2024-07-15 10:43:59,077 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:43:59,079 - topic #0 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"plans" + 0.007*"family" + 0.007*"well" + 0.006*"progress" + 0.005*"Essex" + 0.005*"leaders" + 0.005*"understand" + 0.005*"parents" -2024-07-15 10:43:59,080 - topic #1 (0.333): 0.018*"’" + 0.007*"well" + 0.007*"progress" + 0.006*"needs" + 0.005*"experiences" + 0.005*"helped" + 0.005*"advisers" + 0.005*"‘" + 0.005*"Essex" + 0.005*"plans" -2024-07-15 10:43:59,080 - topic #2 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"progress" + 0.006*"plans" + 0.005*"needs" + 0.005*"practice" + 0.005*"risk" + 0.005*"new" + 0.005*"need" + 0.005*"understand" -2024-07-15 10:43:59,080 - topic diff=0.807055, rho=1.000000 -2024-07-15 10:43:59,080 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:43:59.080945', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:00,126 - Inspection date 2023-06-26 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:00,127 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:00,127 - Inspection date 2023-06-26 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:00,127 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:00,128 - Inspection date 2023-06-26 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:00,128 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:00,128 - Inspection date 2023-06-26 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:00,128 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:00,129 - Inspection date 2023-06-26 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:00,129 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:00,129 - Inspection date 2023-06-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:00,129 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:01,602 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:01,604 - built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions) -2024-07-15 10:44:01,604 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions)", 'datetime': '2024-07-15T10:44:01.604764', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:01,605 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:01,605 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:01,606 - using serial LDA version on this node -2024-07-15 10:44:01,606 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:01,606 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:01,610 - -8.041 per-word bound, 263.3 perplexity estimate based on a held-out corpus of 1 documents with 2356 words -2024-07-15 10:44:01,610 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:01,611 - topic #0 (0.333): 0.012*"’" + 0.009*"effective" + 0.007*"practice" + 0.006*"good" + 0.006*"needs" + 0.005*"quality" + 0.005*"early" + 0.005*"well" + 0.004*"home" + 0.004*"focus" -2024-07-15 10:44:01,612 - topic #1 (0.333): 0.015*"’" + 0.008*"quality" + 0.008*"effective" + 0.007*"good" + 0.007*"needs" + 0.006*"well" + 0.006*"timely" + 0.005*"practice" + 0.005*"plans" + 0.005*"improve" -2024-07-15 10:44:01,612 - topic #2 (0.333): 0.014*"’" + 0.009*"effective" + 0.007*"practice" + 0.006*"well" + 0.006*"good" + 0.006*"timely" + 0.005*"quality" + 0.005*"improve" + 0.005*"need" + 0.005*"early" -2024-07-15 10:44:01,612 - topic diff=0.764437, rho=1.000000 -2024-07-15 10:44:01,612 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:01.612590', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:02,522 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:02,522 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:02,523 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:02,523 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:02,523 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:02,523 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:02,523 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:02,524 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:02,524 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:02,524 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:02,524 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:02,524 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:03,753 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:03,756 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions) -2024-07-15 10:44:03,756 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions)", 'datetime': '2024-07-15T10:44:03.756207', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:03,757 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:03,757 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:03,757 - using serial LDA version on this node -2024-07-15 10:44:03,758 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:03,758 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:03,762 - -8.065 per-word bound, 267.7 perplexity estimate based on a held-out corpus of 1 documents with 2579 words -2024-07-15 10:44:03,762 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:03,763 - topic #0 (0.333): 0.018*"’" + 0.009*"needs" + 0.007*"February" + 0.007*"plans" + 0.006*"2022" + 0.006*"progress" + 0.006*"well" + 0.005*"experienced" + 0.005*"good" + 0.004*"18" -2024-07-15 10:44:03,763 - topic #1 (0.333): 0.016*"’" + 0.010*"needs" + 0.007*"February" + 0.007*"2022" + 0.007*"Gloucestershire" + 0.006*"plans" + 0.006*"appropriate" + 0.005*"well" + 0.005*"leaders" + 0.005*"protection" -2024-07-15 10:44:03,764 - topic #2 (0.333): 0.017*"’" + 0.007*"2022" + 0.006*"needs" + 0.006*"plans" + 0.005*"February" + 0.005*"experienced" + 0.005*"timely" + 0.005*"7" + 0.005*"well" + 0.005*"18" -2024-07-15 10:44:03,764 - topic diff=0.823474, rho=1.000000 -2024-07-15 10:44:03,764 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:03.764331', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:04,873 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:04,873 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:04,873 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:04,873 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:04,874 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:04,874 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:04,874 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:04,874 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:04,874 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:04,874 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:04,875 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:04,875 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:06,698 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:06,701 - built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions) -2024-07-15 10:44:06,701 - Dictionary lifecycle event {'msg': "built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions)", 'datetime': '2024-07-15T10:44:06.701211', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:06,702 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:06,702 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:06,702 - using serial LDA version on this node -2024-07-15 10:44:06,703 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:06,703 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:06,707 - -8.060 per-word bound, 266.9 perplexity estimate based on a held-out corpus of 1 documents with 2652 words -2024-07-15 10:44:06,707 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:06,708 - topic #0 (0.333): 0.017*"’" + 0.007*"Halton" + 0.007*"quality" + 0.007*"needs" + 0.007*"many" + 0.006*"plans" + 0.005*"protection" + 0.005*"including" + 0.005*"13" + 0.005*"experiences" -2024-07-15 10:44:06,708 - topic #1 (0.333): 0.012*"’" + 0.007*"many" + 0.006*"needs" + 0.005*"including" + 0.005*"Halton" + 0.005*"quality" + 0.005*"lack" + 0.005*"recently" + 0.004*"Leaders" + 0.004*"need" -2024-07-15 10:44:06,708 - topic #2 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"need" + 0.006*"Halton" + 0.006*"including" + 0.005*"quality" + 0.005*"Leaders" + 0.004*"protection" + 0.004*"always" + 0.004*"2024" -2024-07-15 10:44:06,709 - topic diff=0.808243, rho=1.000000 -2024-07-15 10:44:06,709 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:06.709224', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:07,667 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:07,667 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:07,667 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:07,668 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:07,668 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:07,668 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:07,668 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:07,668 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:07,668 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:07,669 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:07,669 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:07,669 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:08,972 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:08,975 - built Dictionary<1182 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2382 corpus positions) -2024-07-15 10:44:08,975 - Dictionary lifecycle event {'msg': "built Dictionary<1182 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2382 corpus positions)", 'datetime': '2024-07-15T10:44:08.975891', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:08,977 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:08,977 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:08,977 - using serial LDA version on this node -2024-07-15 10:44:08,977 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:08,977 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:08,981 - -8.139 per-word bound, 281.8 perplexity estimate based on a held-out corpus of 1 documents with 2382 words -2024-07-15 10:44:08,981 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:08,983 - topic #0 (0.333): 0.020*"’" + 0.008*"needs" + 0.007*"plans" + 0.006*"quality" + 0.005*"well" + 0.004*"Hampshire" + 0.004*"leaders" + 0.004*"carers" + 0.004*"progress" + 0.004*"health" -2024-07-15 10:44:08,983 - topic #1 (0.333): 0.015*"’" + 0.006*"needs" + 0.005*"well" + 0.005*"strong" + 0.004*"leaders" + 0.004*"need" + 0.004*"plans" + 0.004*"highly" + 0.004*"improve" + 0.004*"home" -2024-07-15 10:44:08,983 - topic #2 (0.333): 0.020*"’" + 0.008*"needs" + 0.006*"well" + 0.006*"plans" + 0.005*"strong" + 0.005*"home" + 0.005*"leaders" + 0.004*"quality" + 0.004*"highly" + 0.004*"improve" -2024-07-15 10:44:08,983 - topic diff=0.747878, rho=1.000000 -2024-07-15 10:44:08,983 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:08.983957', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:10,099 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:10,099 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:10,099 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:10,099 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:10,100 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:10,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:10,100 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:10,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:10,100 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:10,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:10,101 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:10,101 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:11,671 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:11,674 - built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions) -2024-07-15 10:44:11,674 - Dictionary lifecycle event {'msg': "built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions)", 'datetime': '2024-07-15T10:44:11.674433', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:11,675 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:11,675 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:11,676 - using serial LDA version on this node -2024-07-15 10:44:11,676 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:11,676 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:11,680 - -8.070 per-word bound, 268.7 perplexity estimate based on a held-out corpus of 1 documents with 2584 words -2024-07-15 10:44:11,680 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:11,681 - topic #0 (0.333): 0.016*"’" + 0.007*"March" + 0.007*"Hartlepool" + 0.006*"well" + 0.005*"needs" + 0.004*"clear" + 0.004*"strong" + 0.004*"leaders" + 0.004*"practice" + 0.004*"18" -2024-07-15 10:44:11,682 - topic #1 (0.333): 0.019*"’" + 0.008*"March" + 0.007*"needs" + 0.007*"Hartlepool" + 0.006*"well" + 0.005*"effective" + 0.005*"good" + 0.005*"leaders" + 0.005*"practice" + 0.004*"strong" -2024-07-15 10:44:11,682 - topic #2 (0.333): 0.023*"’" + 0.008*"needs" + 0.007*"Hartlepool" + 0.007*"March" + 0.007*"leaders" + 0.006*"supported" + 0.006*"plans" + 0.006*"well" + 0.006*"18" + 0.005*"ensure" -2024-07-15 10:44:11,682 - topic diff=0.794003, rho=1.000000 -2024-07-15 10:44:11,682 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:11.682581', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:12,695 - Inspection date 2024-03-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:12,695 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:12,695 - Inspection date 2024-03-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:12,695 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:12,696 - Inspection date 2024-03-18 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:12,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:12,696 - Inspection date 2024-03-18 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:12,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:12,696 - Inspection date 2024-03-18 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:12,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:12,696 - Inspection date 2024-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:12,697 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:14,184 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:14,186 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) -2024-07-15 10:44:14,186 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-07-15T10:44:14.186388', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:14,187 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:14,187 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:14,187 - using serial LDA version on this node -2024-07-15 10:44:14,188 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:14,188 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:14,192 - -8.037 per-word bound, 262.7 perplexity estimate based on a held-out corpus of 1 documents with 2531 words -2024-07-15 10:44:14,192 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:14,193 - topic #0 (0.333): 0.020*"’" + 0.006*"practice" + 0.005*"needs" + 0.005*"lack" + 0.005*"quality" + 0.004*"impact" + 0.004*"carers" + 0.004*"plans" + 0.004*"Herefordshire" + 0.004*"oversight" -2024-07-15 10:44:14,193 - topic #1 (0.333): 0.015*"’" + 0.006*"Herefordshire" + 0.005*"impact" + 0.004*"plans" + 0.004*"many" + 0.004*"needs" + 0.004*"practice" + 0.004*"July" + 0.004*"18" + 0.004*"carers" -2024-07-15 10:44:14,194 - topic #2 (0.333): 0.016*"’" + 0.006*"practice" + 0.006*"lack" + 0.006*"Herefordshire" + 0.005*"impact" + 0.005*"many" + 0.004*"progress" + 0.004*"18" + 0.004*"management" + 0.004*"needs" -2024-07-15 10:44:14,194 - topic diff=0.787751, rho=1.000000 -2024-07-15 10:44:14,194 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:14.194416', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:15,298 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:15,298 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:15,299 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:15,299 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:15,299 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:15,299 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:15,300 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:15,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:15,300 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:15,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:15,300 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:15,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:16,663 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:16,665 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions) -2024-07-15 10:44:16,665 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions)", 'datetime': '2024-07-15T10:44:16.665931', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:16,667 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:16,667 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:16,667 - using serial LDA version on this node -2024-07-15 10:44:16,667 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:16,667 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:16,671 - -8.136 per-word bound, 281.3 perplexity estimate based on a held-out corpus of 1 documents with 2456 words -2024-07-15 10:44:16,671 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:16,673 - topic #0 (0.333): 0.024*"’" + 0.007*"well" + 0.006*"Hertfordshire" + 0.006*"needs" + 0.006*"receive" + 0.005*"2023" + 0.004*"risk" + 0.004*"plans" + 0.004*"23" + 0.004*"positive" -2024-07-15 10:44:16,673 - topic #1 (0.333): 0.018*"’" + 0.006*"needs" + 0.006*"well" + 0.005*"receive" + 0.005*"Hertfordshire" + 0.004*"plans" + 0.004*"effective" + 0.004*"positive" + 0.004*"need" + 0.004*"risk" -2024-07-15 10:44:16,673 - topic #2 (0.333): 0.025*"’" + 0.008*"Hertfordshire" + 0.006*"well" + 0.006*"needs" + 0.005*"‘" + 0.005*"27" + 0.004*"leaders" + 0.004*"plans" + 0.004*"receive" + 0.004*"Leaders" -2024-07-15 10:44:16,673 - topic diff=0.789150, rho=1.000000 -2024-07-15 10:44:16,674 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:16.673982', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:18,497 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:18,497 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:18,497 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:18,497 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:18,498 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:18,498 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:18,498 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:18,498 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:18,498 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:18,498 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:18,499 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:18,499 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:19,771 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:19,773 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions) -2024-07-15 10:44:19,773 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions)", 'datetime': '2024-07-15T10:44:19.773450', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:19,774 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:19,775 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:19,775 - using serial LDA version on this node -2024-07-15 10:44:19,775 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:19,775 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:19,779 - -7.951 per-word bound, 247.4 perplexity estimate based on a held-out corpus of 1 documents with 1934 words -2024-07-15 10:44:19,779 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:19,780 - topic #0 (0.333): 0.016*"’" + 0.009*"leaders" + 0.007*"well" + 0.006*"practice" + 0.006*"plans" + 0.006*"Isle" + 0.006*"Wight" + 0.005*"progress" + 0.005*"supported" + 0.005*"improve" -2024-07-15 10:44:19,780 - topic #1 (0.333): 0.014*"’" + 0.007*"leaders" + 0.005*"needs" + 0.005*"3" + 0.004*"Senior" + 0.004*"effective" + 0.004*"Isle" + 0.004*"PAs" + 0.004*"supported" + 0.004*"Wight" -2024-07-15 10:44:19,780 - topic #2 (0.333): 0.022*"’" + 0.008*"leaders" + 0.007*"needs" + 0.005*"good" + 0.005*"3" + 0.005*"well" + 0.005*"30" + 0.005*"time" + 0.005*"protection" + 0.005*"Senior" -2024-07-15 10:44:19,780 - topic diff=0.785739, rho=1.000000 -2024-07-15 10:44:19,781 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:19.781046', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:20,907 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:20,908 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:20,908 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:20,908 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:20,908 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:20,908 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:20,908 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:20,909 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:20,909 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:20,909 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:20,909 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:20,909 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:23,102 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:23,105 - built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions) -2024-07-15 10:44:23,105 - Dictionary lifecycle event {'msg': "built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions)", 'datetime': '2024-07-15T10:44:23.105417', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:23,106 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:23,106 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:23,107 - using serial LDA version on this node -2024-07-15 10:44:23,107 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:23,107 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:23,111 - -8.174 per-word bound, 288.7 perplexity estimate based on a held-out corpus of 1 documents with 2888 words -2024-07-15 10:44:23,111 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:23,113 - topic #0 (0.333): 0.015*"’" + 0.008*"Kent" + 0.006*"needs" + 0.006*"supported" + 0.005*"County" + 0.005*"Council" + 0.005*"progress" + 0.005*"well" + 0.004*"practice" + 0.004*"impact" -2024-07-15 10:44:23,113 - topic #1 (0.333): 0.023*"’" + 0.010*"Kent" + 0.007*"needs" + 0.006*"well" + 0.006*"progress" + 0.005*"supported" + 0.005*"Council" + 0.005*"County" + 0.004*"including" + 0.004*"practice" -2024-07-15 10:44:23,113 - topic #2 (0.333): 0.015*"’" + 0.011*"Kent" + 0.009*"needs" + 0.008*"Council" + 0.006*"well" + 0.006*"supported" + 0.005*"leaders" + 0.005*"County" + 0.004*"practice" + 0.004*"including" -2024-07-15 10:44:23,113 - topic diff=0.802634, rho=1.000000 -2024-07-15 10:44:23,114 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:23.114048', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:24,062 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:24,062 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:24,063 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:24,063 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:24,063 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:24,063 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:24,063 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:24,064 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:24,064 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:24,064 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:24,064 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:24,064 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:25,244 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:25,247 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions) -2024-07-15 10:44:25,248 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions)", 'datetime': '2024-07-15T10:44:25.248194', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:25,249 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:25,250 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:25,250 - using serial LDA version on this node -2024-07-15 10:44:25,251 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:25,251 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:25,257 - -7.944 per-word bound, 246.3 perplexity estimate based on a held-out corpus of 1 documents with 1970 words -2024-07-15 10:44:25,257 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:25,259 - topic #0 (0.333): 0.017*"’" + 0.007*"protection" + 0.007*"number" + 0.006*"practice" + 0.006*"management" + 0.005*"planning" + 0.005*"Hull" + 0.005*"impact" + 0.005*"teams" + 0.005*"well" -2024-07-15 10:44:25,260 - topic #1 (0.333): 0.018*"’" + 0.007*"planning" + 0.007*"need" + 0.006*"number" + 0.006*"Hull" + 0.006*"practice" + 0.006*"25" + 0.005*"progress" + 0.005*"well" + 0.005*"oversight" -2024-07-15 10:44:25,260 - topic #2 (0.333): 0.012*"’" + 0.008*"number" + 0.007*"well" + 0.007*"planning" + 0.006*"protection" + 0.006*"risks" + 0.005*"need" + 0.005*"practice" + 0.005*"agency" + 0.005*"small" -2024-07-15 10:44:25,260 - topic diff=0.752620, rho=1.000000 -2024-07-15 10:44:25,261 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:25.261017', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:26,469 - Inspection date 2022-11-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:26,469 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:26,469 - Inspection date 2022-11-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:26,470 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:26,470 - Inspection date 2022-11-14 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:26,470 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:26,470 - Inspection date 2022-11-14 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:26,470 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:26,470 - Inspection date 2022-11-14 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:26,471 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:26,471 - Inspection date 2022-11-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:26,471 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:28,044 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:28,046 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2489 corpus positions) -2024-07-15 10:44:28,047 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2489 corpus positions)", 'datetime': '2024-07-15T10:44:28.047160', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:28,048 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:28,048 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:28,048 - using serial LDA version on this node -2024-07-15 10:44:28,049 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:28,049 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:28,053 - -8.052 per-word bound, 265.4 perplexity estimate based on a held-out corpus of 1 documents with 2489 words -2024-07-15 10:44:28,053 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:28,054 - topic #0 (0.333): 0.012*"’" + 0.006*"practice" + 0.006*"good" + 0.006*"senior" + 0.006*"permanence" + 0.005*"Senior" + 0.005*"plans" + 0.005*"quality" + 0.005*"protection" + 0.004*"training" -2024-07-15 10:44:28,054 - topic #1 (0.333): 0.013*"’" + 0.008*"quality" + 0.006*"practice" + 0.005*"plans" + 0.005*"training" + 0.004*"protection" + 0.004*"needs" + 0.004*"response" + 0.004*"well" + 0.004*"good" -2024-07-15 10:44:28,055 - topic #2 (0.333): 0.011*"’" + 0.007*"good" + 0.007*"quality" + 0.006*"practice" + 0.006*"well" + 0.006*"needs" + 0.005*"plans" + 0.005*"Senior" + 0.005*"permanence" + 0.005*"protection" -2024-07-15 10:44:28,055 - topic diff=0.788828, rho=1.000000 -2024-07-15 10:44:28,055 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:28.055514', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:29,046 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:29,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:29,047 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:29,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:29,047 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:29,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:29,048 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:29,048 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:29,048 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:29,048 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:29,048 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:29,048 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:30,195 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:30,197 - built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions) -2024-07-15 10:44:30,197 - Dictionary lifecycle event {'msg': "built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions)", 'datetime': '2024-07-15T10:44:30.197419', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:30,198 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:30,198 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:30,198 - using serial LDA version on this node -2024-07-15 10:44:30,199 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:30,199 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:30,202 - -7.830 per-word bound, 227.6 perplexity estimate based on a held-out corpus of 1 documents with 1837 words -2024-07-15 10:44:30,202 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:30,203 - topic #0 (0.333): 0.017*"’" + 0.009*"progress" + 0.008*"quality" + 0.008*"needs" + 0.007*"plans" + 0.007*"Knowsley" + 0.006*"2021" + 0.005*"need" + 0.005*"experiences" + 0.005*"good" -2024-07-15 10:44:30,203 - topic #1 (0.333): 0.011*"’" + 0.008*"progress" + 0.008*"plans" + 0.007*"needs" + 0.006*"Knowsley" + 0.006*"2021" + 0.005*"abuse" + 0.005*"experiences" + 0.005*"good" + 0.005*"22" -2024-07-15 10:44:30,203 - topic #2 (0.333): 0.013*"’" + 0.008*"quality" + 0.007*"progress" + 0.007*"needs" + 0.006*"plans" + 0.005*"Knowsley" + 0.005*"impact" + 0.005*"22" + 0.005*"2021" + 0.005*"education" -2024-07-15 10:44:30,204 - topic diff=0.745663, rho=1.000000 -2024-07-15 10:44:30,204 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:30.204198', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:31,287 - Inspection date 2021-10-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:31,288 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:31,288 - Inspection date 2021-10-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:31,288 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:31,288 - Inspection date 2021-10-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:31,289 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:31,289 - Inspection date 2021-10-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:31,289 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:31,289 - Inspection date 2021-10-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:31,289 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:31,290 - Inspection date 2021-10-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:31,290 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:32,521 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:32,523 - built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions) -2024-07-15 10:44:32,523 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions)", 'datetime': '2024-07-15T10:44:32.523509', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:32,524 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:32,524 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:32,524 - using serial LDA version on this node -2024-07-15 10:44:32,525 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:32,525 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:32,529 - -7.972 per-word bound, 251.0 perplexity estimate based on a held-out corpus of 1 documents with 2263 words -2024-07-15 10:44:32,529 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:32,530 - topic #0 (0.333): 0.010*"’" + 0.006*"well" + 0.005*"supported" + 0.005*"need" + 0.005*"needs" + 0.004*"live" + 0.004*"Lancashire" + 0.004*"plans" + 0.004*"positive" + 0.004*"practice" -2024-07-15 10:44:32,530 - topic #1 (0.333): 0.021*"’" + 0.010*"well" + 0.008*"need" + 0.008*"needs" + 0.007*"Lancashire" + 0.006*"plans" + 0.005*"progress" + 0.005*"health" + 0.005*"live" + 0.005*"practice" -2024-07-15 10:44:32,530 - topic #2 (0.333): 0.015*"’" + 0.009*"well" + 0.008*"needs" + 0.006*"need" + 0.006*"Lancashire" + 0.006*"positive" + 0.006*"supported" + 0.005*"homes" + 0.005*"practice" + 0.005*"9" -2024-07-15 10:44:32,530 - topic diff=0.795958, rho=1.000000 -2024-07-15 10:44:32,531 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:32.531145', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:33,529 - Inspection date 2022-11-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:33,529 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:33,529 - Inspection date 2022-11-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:33,529 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:33,529 - Inspection date 2022-11-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:33,530 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:33,530 - Inspection date 2022-11-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:33,530 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:33,530 - Inspection date 2022-11-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:33,530 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:33,530 - Inspection date 2022-11-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:33,530 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:34,780 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:34,782 - built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions) -2024-07-15 10:44:34,782 - Dictionary lifecycle event {'msg': "built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions)", 'datetime': '2024-07-15T10:44:34.782971', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:34,784 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:34,784 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:34,784 - using serial LDA version on this node -2024-07-15 10:44:34,784 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:34,784 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:34,788 - -8.007 per-word bound, 257.3 perplexity estimate based on a held-out corpus of 1 documents with 2261 words -2024-07-15 10:44:34,788 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:34,789 - topic #0 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"Leeds" + 0.005*"well" + 0.005*"plans" + 0.005*"ensure" + 0.005*"risk" + 0.004*"practice" + 0.004*"4" + 0.004*"protection" -2024-07-15 10:44:34,790 - topic #1 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"Leeds" + 0.005*"2022" + 0.005*"practice" + 0.004*"risk" + 0.004*"protection" + 0.004*"ensure" + 0.004*"21" -2024-07-15 10:44:34,790 - topic #2 (0.333): 0.017*"’" + 0.008*"Leeds" + 0.006*"needs" + 0.006*"risk" + 0.006*"well" + 0.005*"supported" + 0.004*"information" + 0.004*"4" + 0.004*"protection" + 0.004*"plans" -2024-07-15 10:44:34,790 - topic diff=0.775132, rho=1.000000 -2024-07-15 10:44:34,790 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:34.790554', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:35,718 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:35,718 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:35,718 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:35,718 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:35,719 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:35,719 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:35,719 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:35,719 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:35,719 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:35,719 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:35,720 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:35,720 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:37,060 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:37,062 - built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions) -2024-07-15 10:44:37,062 - Dictionary lifecycle event {'msg': "built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions)", 'datetime': '2024-07-15T10:44:37.062306', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:37,063 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:37,063 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:37,063 - using serial LDA version on this node -2024-07-15 10:44:37,064 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:37,064 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:37,067 - -7.875 per-word bound, 234.7 perplexity estimate based on a held-out corpus of 1 documents with 1950 words -2024-07-15 10:44:37,067 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:37,068 - topic #0 (0.333): 0.022*"’" + 0.011*"well" + 0.009*"2021" + 0.009*"Leicester" + 0.008*"needs" + 0.006*"ensure" + 0.006*"good" + 0.006*"1" + 0.005*"number" + 0.005*"Council" -2024-07-15 10:44:37,069 - topic #1 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"Leicester" + 0.006*"2021" + 0.006*"ensure" + 0.005*"good" + 0.005*"number" + 0.005*"20" + 0.005*"including" + 0.005*"1" -2024-07-15 10:44:37,069 - topic #2 (0.333): 0.020*"’" + 0.009*"2021" + 0.008*"well" + 0.007*"Leicester" + 0.006*"good" + 0.006*"needs" + 0.005*"number" + 0.005*"20" + 0.005*"October" + 0.005*"including" -2024-07-15 10:44:37,069 - topic diff=0.784057, rho=1.000000 -2024-07-15 10:44:37,069 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:37.069466', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:38,214 - Inspection date 2021-09-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:38,214 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:38,214 - Inspection date 2021-09-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:38,214 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:38,215 - Inspection date 2021-09-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:38,215 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:38,215 - Inspection date 2021-09-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:38,215 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:38,215 - Inspection date 2021-09-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:38,215 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:38,216 - Inspection date 2021-09-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:38,216 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:39,734 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:39,737 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions) -2024-07-15 10:44:39,737 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions)", 'datetime': '2024-07-15T10:44:39.737331', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:39,738 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:39,738 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:39,738 - using serial LDA version on this node -2024-07-15 10:44:39,739 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:39,739 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:39,743 - -8.111 per-word bound, 276.4 perplexity estimate based on a held-out corpus of 1 documents with 2745 words -2024-07-15 10:44:39,743 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:39,745 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.007*"Leicestershire" + 0.006*"need" + 0.006*"experiences" + 0.006*"family" + 0.006*"understand" + 0.006*"plans" + 0.005*"needs" + 0.005*"ensure" -2024-07-15 10:44:39,745 - topic #1 (0.333): 0.018*"’" + 0.009*"well" + 0.006*"Leicestershire" + 0.006*"needs" + 0.005*"risk" + 0.005*"progress" + 0.004*"3" + 0.004*"family" + 0.004*"plans" + 0.004*"understand" -2024-07-15 10:44:39,745 - topic #2 (0.333): 0.017*"’" + 0.008*"well" + 0.006*"Leicestershire" + 0.006*"family" + 0.005*"need" + 0.005*"needs" + 0.005*"PAs" + 0.004*"experiences" + 0.004*"plans" + 0.004*"understand" -2024-07-15 10:44:39,745 - topic diff=0.818913, rho=1.000000 -2024-07-15 10:44:39,745 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:39.745855', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:40,716 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:40,716 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:40,716 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:40,716 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:40,716 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:40,716 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:40,717 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:40,717 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:40,717 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:40,717 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:40,717 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:40,717 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:42,297 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:42,300 - built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions) -2024-07-15 10:44:42,300 - Dictionary lifecycle event {'msg': "built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions)", 'datetime': '2024-07-15T10:44:42.300815', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:42,302 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:42,302 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:42,302 - using serial LDA version on this node -2024-07-15 10:44:42,302 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:42,303 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:42,307 - -8.191 per-word bound, 292.3 perplexity estimate based on a held-out corpus of 1 documents with 2927 words -2024-07-15 10:44:42,307 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:42,308 - topic #0 (0.333): 0.020*"’" + 0.006*"needs" + 0.006*"Lincolnshire" + 0.006*"family" + 0.005*"well" + 0.005*"progress" + 0.004*"plans" + 0.004*"need" + 0.004*"24" + 0.004*"number" -2024-07-15 10:44:42,309 - topic #1 (0.333): 0.018*"’" + 0.008*"Lincolnshire" + 0.006*"needs" + 0.005*"plans" + 0.005*"well" + 0.004*"education" + 0.004*"family" + 0.004*"24" + 0.004*"progress" + 0.004*"April" -2024-07-15 10:44:42,309 - topic #2 (0.333): 0.025*"’" + 0.008*"Lincolnshire" + 0.007*"needs" + 0.007*"well" + 0.005*"28" + 0.005*"progress" + 0.004*"plans" + 0.004*"working" + 0.004*"24" + 0.004*"2023" -2024-07-15 10:44:42,309 - topic diff=0.789936, rho=1.000000 -2024-07-15 10:44:42,309 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:42.309508', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:43,241 - Inspection date 2023-04-24 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:43,242 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:43,242 - Inspection date 2023-04-24 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:43,242 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:43,242 - Inspection date 2023-04-24 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:43,242 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:43,243 - Inspection date 2023-04-24 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:43,243 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:43,243 - Inspection date 2023-04-24 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:43,243 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:43,243 - Inspection date 2023-04-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:43,243 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:44,884 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:44,886 - built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) -2024-07-15 10:44:44,887 - Dictionary lifecycle event {'msg': "built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-07-15T10:44:44.887083', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:44,888 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:44,888 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:44,888 - using serial LDA version on this node -2024-07-15 10:44:44,889 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:44,889 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:44,892 - -7.992 per-word bound, 254.6 perplexity estimate based on a held-out corpus of 1 documents with 2720 words -2024-07-15 10:44:44,892 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:44,894 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.006*"quality" + 0.005*"need" + 0.004*"practice" + 0.004*"24" + 0.004*"PAs" + 0.004*"Liverpool" + 0.004*"timely" + 0.004*"protection" -2024-07-15 10:44:44,894 - topic #1 (0.333): 0.022*"’" + 0.008*"practice" + 0.007*"always" + 0.007*"need" + 0.007*"needs" + 0.006*"Liverpool" + 0.006*"quality" + 0.005*"13" + 0.005*"harm" + 0.005*"protection" -2024-07-15 10:44:44,894 - topic #2 (0.333): 0.017*"’" + 0.007*"always" + 0.006*"need" + 0.006*"Liverpool" + 0.006*"practice" + 0.006*"needs" + 0.005*"protection" + 0.005*"24" + 0.005*"quality" + 0.004*"timely" -2024-07-15 10:44:44,894 - topic diff=0.841859, rho=1.000000 -2024-07-15 10:44:44,894 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:44.894929', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:45,844 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:45,844 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:45,844 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:45,844 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:45,844 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:45,845 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:45,845 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:45,845 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:45,845 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:45,845 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:45,845 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:45,845 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:47,658 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:47,660 - built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions) -2024-07-15 10:44:47,660 - Dictionary lifecycle event {'msg': "built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions)", 'datetime': '2024-07-15T10:44:47.660908', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:47,662 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:47,662 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:47,662 - using serial LDA version on this node -2024-07-15 10:44:47,662 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:47,662 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:47,666 - -8.095 per-word bound, 273.4 perplexity estimate based on a held-out corpus of 1 documents with 2610 words -2024-07-15 10:44:47,666 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:47,668 - topic #0 (0.333): 0.022*"’" + 0.009*"needs" + 0.006*"plans" + 0.005*"carers" + 0.005*"good" + 0.005*"London" + 0.005*"planning" + 0.005*"Barking" + 0.005*"leaders" + 0.005*"practice" -2024-07-15 10:44:47,668 - topic #1 (0.333): 0.029*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"good" + 0.006*"plans" + 0.006*"progress" + 0.006*"practice" + 0.005*"carers" + 0.005*"information" + 0.005*"e" -2024-07-15 10:44:47,668 - topic #2 (0.333): 0.008*"’" + 0.004*"Barking" + 0.004*"good" + 0.004*"information" + 0.004*"well" + 0.004*"needs" + 0.004*"plans" + 0.004*"Dagenham" + 0.004*"planning" + 0.004*"ensure" -2024-07-15 10:44:47,668 - topic diff=0.824433, rho=1.000000 -2024-07-15 10:44:47,669 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:47.669067', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:48,727 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:48,727 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:48,727 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:48,727 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:48,728 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:48,728 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:48,728 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:48,728 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:48,728 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:48,728 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:48,728 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:48,728 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:51,000 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:51,002 - built Dictionary<978 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1956 corpus positions) -2024-07-15 10:44:51,002 - Dictionary lifecycle event {'msg': "built Dictionary<978 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1956 corpus positions)", 'datetime': '2024-07-15T10:44:51.002713', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:51,003 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:51,003 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:51,004 - using serial LDA version on this node -2024-07-15 10:44:51,004 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:51,004 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:51,007 - -7.954 per-word bound, 247.9 perplexity estimate based on a held-out corpus of 1 documents with 1956 words -2024-07-15 10:44:51,007 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:51,009 - topic #0 (0.333): 0.013*"’" + 0.010*"good" + 0.010*"needs" + 0.008*"need" + 0.006*"well" + 0.006*"plans" + 0.006*"ensure" + 0.006*"clear" + 0.006*"carers" + 0.005*"progress" -2024-07-15 10:44:51,009 - topic #1 (0.333): 0.014*"’" + 0.010*"well" + 0.009*"good" + 0.008*"needs" + 0.008*"need" + 0.007*"progress" + 0.006*"receive" + 0.006*"ensure" + 0.005*"plans" + 0.005*"clear" -2024-07-15 10:44:51,009 - topic #2 (0.333): 0.015*"’" + 0.010*"needs" + 0.009*"well" + 0.008*"good" + 0.007*"progress" + 0.006*"need" + 0.006*"quality" + 0.006*"appropriate" + 0.006*"plans" + 0.005*"clear" -2024-07-15 10:44:51,009 - topic diff=0.767555, rho=1.000000 -2024-07-15 10:44:51,009 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:51.009673', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:51,978 - Inspection date 2019-05-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:51,978 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:51,979 - Inspection date 2019-05-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:51,979 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:51,979 - Inspection date 2019-05-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:51,979 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:51,979 - Inspection date 2019-05-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:51,980 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:51,980 - Inspection date 2019-05-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:51,980 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:51,980 - Inspection date 2019-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:51,980 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:53,580 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:53,583 - built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions) -2024-07-15 10:44:53,583 - Dictionary lifecycle event {'msg': "built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions)", 'datetime': '2024-07-15T10:44:53.583502', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:53,584 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:53,584 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:53,585 - using serial LDA version on this node -2024-07-15 10:44:53,585 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:53,585 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:53,589 - -8.104 per-word bound, 275.2 perplexity estimate based on a held-out corpus of 1 documents with 2563 words -2024-07-15 10:44:53,589 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:53,590 - topic #0 (0.333): 0.025*"’" + 0.008*"well" + 0.007*"need" + 0.006*"plans" + 0.006*"needs" + 0.006*"effective" + 0.006*"Bexley" + 0.005*"6" + 0.004*"clear" + 0.004*"10" -2024-07-15 10:44:53,591 - topic #1 (0.333): 0.016*"’" + 0.007*"needs" + 0.006*"plans" + 0.005*"effective" + 0.005*"well" + 0.005*"10" + 0.004*"Bexley" + 0.004*"need" + 0.004*"practice" + 0.004*"level" -2024-07-15 10:44:53,591 - topic #2 (0.333): 0.015*"’" + 0.006*"needs" + 0.005*"effective" + 0.005*"well" + 0.005*"Bexley" + 0.004*"practice" + 0.004*"including" + 0.004*"need" + 0.004*"oversight" + 0.004*"10" -2024-07-15 10:44:53,591 - topic diff=0.785100, rho=1.000000 -2024-07-15 10:44:53,591 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:53.591458', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:54,567 - Inspection date 2023-02-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:54,567 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:54,567 - Inspection date 2023-02-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:54,567 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:54,568 - Inspection date 2023-02-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:54,568 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:54,568 - Inspection date 2023-02-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:54,568 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:54,568 - Inspection date 2023-02-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:54,568 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:54,569 - Inspection date 2023-02-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:54,569 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:56,005 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:56,007 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions) -2024-07-15 10:44:56,007 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions)", 'datetime': '2024-07-15T10:44:56.007360', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:56,008 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:56,008 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:56,008 - using serial LDA version on this node -2024-07-15 10:44:56,009 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:56,009 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:56,012 - -7.930 per-word bound, 243.8 perplexity estimate based on a held-out corpus of 1 documents with 2371 words -2024-07-15 10:44:56,012 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:56,014 - topic #0 (0.333): 0.020*"’" + 0.009*"well" + 0.008*"progress" + 0.007*"leaders" + 0.006*"good" + 0.006*"number" + 0.006*"Brent" + 0.005*"timely" + 0.005*"plans" + 0.005*"information" -2024-07-15 10:44:56,014 - topic #1 (0.333): 0.018*"’" + 0.009*"plans" + 0.009*"well" + 0.007*"leaders" + 0.006*"quality" + 0.006*"senior" + 0.006*"practice" + 0.005*"progress" + 0.005*"number" + 0.005*"good" -2024-07-15 10:44:56,014 - topic #2 (0.333): 0.011*"’" + 0.007*"leaders" + 0.007*"well" + 0.005*"Brent" + 0.005*"good" + 0.005*"senior" + 0.004*"progress" + 0.004*"small" + 0.004*"number" + 0.004*"plans" -2024-07-15 10:44:56,014 - topic diff=0.830040, rho=1.000000 -2024-07-15 10:44:56,014 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:56.014727', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:57,086 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:44:57,086 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:57,087 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:44:57,087 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:57,087 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:44:57,087 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:57,087 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:44:57,088 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:57,088 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:44:57,088 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:57,088 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:44:57,088 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:44:59,021 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:44:59,023 - built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions) -2024-07-15 10:44:59,024 - Dictionary lifecycle event {'msg': "built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions)", 'datetime': '2024-07-15T10:44:59.024203', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:44:59,025 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:44:59,025 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:44:59,025 - using serial LDA version on this node -2024-07-15 10:44:59,026 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:44:59,026 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:44:59,030 - -8.183 per-word bound, 290.7 perplexity estimate based on a held-out corpus of 1 documents with 2640 words -2024-07-15 10:44:59,030 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:44:59,032 - topic #0 (0.333): 0.018*"’" + 0.011*"Bromley" + 0.008*"needs" + 0.007*"well" + 0.005*"plans" + 0.005*"leaders" + 0.005*"education" + 0.005*"experiences" + 0.005*"health" + 0.005*"practice" -2024-07-15 10:44:59,032 - topic #1 (0.333): 0.018*"’" + 0.007*"well" + 0.007*"Bromley" + 0.005*"needs" + 0.005*"leaders" + 0.005*"practice" + 0.004*"health" + 0.004*"education" + 0.004*"plans" + 0.004*"YPAs" -2024-07-15 10:44:59,032 - topic #2 (0.333): 0.023*"’" + 0.008*"Bromley" + 0.006*"plans" + 0.006*"needs" + 0.006*"well" + 0.005*"leaders" + 0.005*"practice" + 0.005*"progress" + 0.004*"17" + 0.004*"strong" -2024-07-15 10:44:59,032 - topic diff=0.770029, rho=1.000000 -2024-07-15 10:44:59,032 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:44:59.032942', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:00,037 - Inspection date 2023-11-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:00,038 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:00,038 - Inspection date 2023-11-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:00,038 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:00,038 - Inspection date 2023-11-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:00,039 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:00,039 - Inspection date 2023-11-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:00,039 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:00,039 - Inspection date 2023-11-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:00,039 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:00,040 - Inspection date 2023-11-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:00,040 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:01,324 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:01,326 - built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions) -2024-07-15 10:45:01,327 - Dictionary lifecycle event {'msg': "built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions)", 'datetime': '2024-07-15T10:45:01.327003', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:01,327 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:01,328 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:01,328 - using serial LDA version on this node -2024-07-15 10:45:01,328 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:01,328 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:01,332 - -8.064 per-word bound, 267.6 perplexity estimate based on a held-out corpus of 1 documents with 1735 words -2024-07-15 10:45:01,332 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:01,333 - topic #0 (0.333): 0.010*"’" + 0.008*"Camden" + 0.006*"leaders" + 0.006*"needs" + 0.006*"protection" + 0.005*"well" + 0.005*"practice" + 0.005*"25" + 0.005*"appropriate" + 0.004*"29" -2024-07-15 10:45:01,333 - topic #1 (0.333): 0.009*"’" + 0.006*"leaders" + 0.006*"practice" + 0.006*"Camden" + 0.005*"protection" + 0.005*"well" + 0.005*"response" + 0.004*"needs" + 0.004*"appropriate" + 0.004*"29" -2024-07-15 10:45:01,334 - topic #2 (0.333): 0.012*"’" + 0.007*"Camden" + 0.007*"leaders" + 0.007*"practice" + 0.005*"well" + 0.005*"response" + 0.004*"2022" + 0.004*"April" + 0.004*"needs" + 0.004*"progress" -2024-07-15 10:45:01,334 - topic diff=0.700340, rho=1.000000 -2024-07-15 10:45:01,334 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:01.334325', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:02,331 - Inspection date 2022-04-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:02,331 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:02,331 - Inspection date 2022-04-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:02,331 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:02,332 - Inspection date 2022-04-25 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:02,332 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:02,332 - Inspection date 2022-04-25 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:02,332 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:02,332 - Inspection date 2022-04-25 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:02,332 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:02,333 - Inspection date 2022-04-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:02,333 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:03,809 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:03,811 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions) -2024-07-15 10:45:03,811 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions)", 'datetime': '2024-07-15T10:45:03.811693', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:03,814 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:03,814 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:03,814 - using serial LDA version on this node -2024-07-15 10:45:03,815 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:03,815 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:03,821 - -7.988 per-word bound, 253.9 perplexity estimate based on a held-out corpus of 1 documents with 2209 words -2024-07-15 10:45:03,821 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:03,823 - topic #0 (0.333): 0.013*"’" + 0.008*"well" + 0.007*"Croydon" + 0.007*"needs" + 0.006*"quality" + 0.006*"Senior" + 0.005*"good" + 0.005*"effective" + 0.005*"ensure" + 0.005*"need" -2024-07-15 10:45:03,824 - topic #1 (0.333): 0.012*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"improved" + 0.005*"good" + 0.005*"plans" + 0.005*"health" + 0.005*"Senior" + 0.005*"need" + 0.005*"Croydon" -2024-07-15 10:45:03,824 - topic #2 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"need" + 0.006*"ensure" + 0.005*"quality" + 0.005*"Senior" + 0.004*"improved" + 0.004*"experiences" + 0.004*"health" -2024-07-15 10:45:03,824 - topic diff=0.771058, rho=1.000000 -2024-07-15 10:45:03,824 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:03.824832', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:04,895 - Inspection date 2020-02-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:04,896 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:04,896 - Inspection date 2020-02-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:04,896 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:04,896 - Inspection date 2020-02-03 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:04,896 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:04,896 - Inspection date 2020-02-03 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:04,897 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:04,897 - Inspection date 2020-02-03 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:04,897 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:04,897 - Inspection date 2020-02-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:04,897 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:06,550 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:06,559 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions) -2024-07-15 10:45:06,560 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions)", 'datetime': '2024-07-15T10:45:06.560634', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:06,562 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:06,562 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:06,563 - using serial LDA version on this node -2024-07-15 10:45:06,563 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:06,564 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:06,568 - -8.054 per-word bound, 265.7 perplexity estimate based on a held-out corpus of 1 documents with 2365 words -2024-07-15 10:45:06,568 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:06,570 - topic #0 (0.333): 0.016*"’" + 0.007*"Ealing" + 0.006*"plans" + 0.006*"well" + 0.005*"needs" + 0.005*"progress" + 0.004*"need" + 0.004*"3" + 0.004*"London" + 0.004*"improve" -2024-07-15 10:45:06,570 - topic #1 (0.333): 0.015*"’" + 0.007*"Ealing" + 0.006*"needs" + 0.006*"progress" + 0.006*"plans" + 0.006*"well" + 0.005*"22" + 0.005*"effective" + 0.004*"London" + 0.004*"health" -2024-07-15 10:45:06,570 - topic #2 (0.333): 0.020*"’" + 0.010*"well" + 0.009*"Ealing" + 0.006*"progress" + 0.006*"needs" + 0.006*"need" + 0.006*"effective" + 0.005*"3" + 0.005*"including" + 0.005*"plans" -2024-07-15 10:45:06,570 - topic diff=0.791770, rho=1.000000 -2024-07-15 10:45:06,570 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:06.570741', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:07,613 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:07,614 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:07,614 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:07,614 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:07,614 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:07,614 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:07,615 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:07,615 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:07,615 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:07,615 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:07,615 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:07,615 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:09,159 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:09,161 - built Dictionary<999 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2104 corpus positions) -2024-07-15 10:45:09,161 - Dictionary lifecycle event {'msg': "built Dictionary<999 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2104 corpus positions)", 'datetime': '2024-07-15T10:45:09.161452', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:09,162 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:09,162 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:09,162 - using serial LDA version on this node -2024-07-15 10:45:09,163 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:09,163 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:09,166 - -7.939 per-word bound, 245.4 perplexity estimate based on a held-out corpus of 1 documents with 2104 words -2024-07-15 10:45:09,166 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:09,168 - topic #0 (0.333): 0.011*"’" + 0.009*"needs" + 0.008*"good" + 0.008*"ensure" + 0.007*"practice" + 0.007*"leaders" + 0.006*"range" + 0.006*"effective" + 0.006*"clear" + 0.006*"Enfield" -2024-07-15 10:45:09,168 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.009*"practice" + 0.008*"ensure" + 0.007*"effective" + 0.007*"Enfield" + 0.007*"good" + 0.006*"clear" + 0.006*"timely" + 0.006*"improve" -2024-07-15 10:45:09,168 - topic #2 (0.333): 0.014*"’" + 0.007*"quality" + 0.006*"good" + 0.006*"needs" + 0.006*"effective" + 0.006*"clear" + 0.006*"ensure" + 0.006*"Enfield" + 0.006*"practice" + 0.005*"need" -2024-07-15 10:45:09,168 - topic diff=0.778021, rho=1.000000 -2024-07-15 10:45:09,168 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:09.168885', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:10,090 - Inspection date 2019-03-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:10,090 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:10,090 - Inspection date 2019-03-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:10,090 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:10,091 - Inspection date 2019-03-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:10,091 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:10,091 - Inspection date 2019-03-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:10,091 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:10,091 - Inspection date 2019-03-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:10,091 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:10,092 - Inspection date 2019-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:10,092 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:11,472 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:11,474 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1898 corpus positions) -2024-07-15 10:45:11,474 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1898 corpus positions)", 'datetime': '2024-07-15T10:45:11.474473', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:11,475 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:11,475 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:11,475 - using serial LDA version on this node -2024-07-15 10:45:11,476 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:11,476 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:11,479 - -7.913 per-word bound, 240.9 perplexity estimate based on a held-out corpus of 1 documents with 1898 words -2024-07-15 10:45:11,479 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:11,480 - topic #0 (0.333): 0.013*"’" + 0.009*"well" + 0.009*"plans" + 0.009*"good" + 0.008*"need" + 0.007*"needs" + 0.006*"ensure" + 0.006*"range" + 0.006*"progress" + 0.005*"risk" -2024-07-15 10:45:11,481 - topic #1 (0.333): 0.010*"’" + 0.007*"needs" + 0.007*"well" + 0.007*"good" + 0.005*"plans" + 0.005*"range" + 0.004*"information" + 0.004*"progress" + 0.004*"ensure" + 0.004*"quality" -2024-07-15 10:45:11,481 - topic #2 (0.333): 0.012*"well" + 0.011*"’" + 0.009*"needs" + 0.007*"good" + 0.007*"plans" + 0.006*"range" + 0.006*"need" + 0.005*"quality" + 0.005*"progress" + 0.004*"risk" -2024-07-15 10:45:11,481 - topic diff=0.766231, rho=1.000000 -2024-07-15 10:45:11,481 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:11.481592', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:12,696 - Inspection date 2019-12-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:12,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:12,696 - Inspection date 2019-12-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:12,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:12,696 - Inspection date 2019-12-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:12,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:12,697 - Inspection date 2019-12-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:12,697 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:12,697 - Inspection date 2019-12-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:12,697 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:12,697 - Inspection date 2019-12-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:12,697 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:14,334 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:14,336 - built Dictionary<1122 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2603 corpus positions) -2024-07-15 10:45:14,336 - Dictionary lifecycle event {'msg': "built Dictionary<1122 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2603 corpus positions)", 'datetime': '2024-07-15T10:45:14.336794', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:14,337 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:14,338 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:14,338 - using serial LDA version on this node -2024-07-15 10:45:14,338 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:14,338 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:14,342 - -8.001 per-word bound, 256.1 perplexity estimate based on a held-out corpus of 1 documents with 2603 words -2024-07-15 10:45:14,342 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:14,344 - topic #0 (0.333): 0.012*"’" + 0.009*"practice" + 0.007*"number" + 0.007*"needs" + 0.006*"planning" + 0.006*"effective" + 0.006*"plans" + 0.005*"making" + 0.005*"leaders" + 0.005*"within" -2024-07-15 10:45:14,344 - topic #1 (0.333): 0.014*"’" + 0.012*"practice" + 0.006*"number" + 0.006*"planning" + 0.006*"including" + 0.006*"needs" + 0.005*"quality" + 0.005*"However" + 0.005*"within" + 0.005*"effective" -2024-07-15 10:45:14,344 - topic #2 (0.333): 0.014*"’" + 0.008*"practice" + 0.006*"need" + 0.006*"plans" + 0.006*"planning" + 0.005*"within" + 0.005*"effective" + 0.005*"protection" + 0.005*"oversight" + 0.005*"number" -2024-07-15 10:45:14,344 - topic diff=0.837222, rho=1.000000 -2024-07-15 10:45:14,344 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:14.344784', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:15,532 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:15,532 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:15,532 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:15,532 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:15,532 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:15,533 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:15,533 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:15,533 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:15,533 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:15,533 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:15,534 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:15,534 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:17,337 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:17,340 - built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) -2024-07-15 10:45:17,340 - Dictionary lifecycle event {'msg': "built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-07-15T10:45:17.340441', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:17,341 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:17,341 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:17,342 - using serial LDA version on this node -2024-07-15 10:45:17,342 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:17,342 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:17,347 - -8.202 per-word bound, 294.5 perplexity estimate based on a held-out corpus of 1 documents with 2905 words -2024-07-15 10:45:17,347 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:17,348 - topic #0 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"receive" + 0.005*"needs" + 0.005*"plans" + 0.004*"effective" + 0.004*"Fulham" + 0.004*"11" + 0.004*"Hammersmith" + 0.004*"leaders" -2024-07-15 10:45:17,348 - topic #1 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"needs" + 0.005*"receive" + 0.005*"Hammersmith" + 0.004*"Fulham" + 0.004*"Leaders" + 0.004*"supported" + 0.004*"11" + 0.004*"leaders" -2024-07-15 10:45:17,349 - topic #2 (0.333): 0.014*"’" + 0.006*"well" + 0.005*"2024" + 0.005*"needs" + 0.004*"effective" + 0.004*"receive" + 0.004*"Fulham" + 0.004*"supported" + 0.004*"plans" + 0.004*"Hammersmith" -2024-07-15 10:45:17,349 - topic diff=0.797315, rho=1.000000 -2024-07-15 10:45:17,349 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:17.349442', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:18,272 - Inspection date 2024-03-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:18,273 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:18,273 - Inspection date 2024-03-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:18,273 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:18,273 - Inspection date 2024-03-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:18,274 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:18,274 - Inspection date 2024-03-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:18,274 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:18,274 - Inspection date 2024-03-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:18,274 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:18,275 - Inspection date 2024-03-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:18,275 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:20,120 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:20,123 - built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions) -2024-07-15 10:45:20,123 - Dictionary lifecycle event {'msg': "built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions)", 'datetime': '2024-07-15T10:45:20.123428', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:20,124 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:20,124 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:20,125 - using serial LDA version on this node -2024-07-15 10:45:20,125 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:20,125 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:20,129 - -8.168 per-word bound, 287.6 perplexity estimate based on a held-out corpus of 1 documents with 2620 words -2024-07-15 10:45:20,129 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:20,131 - topic #0 (0.333): 0.021*"’" + 0.011*"needs" + 0.010*"Haringey" + 0.006*"well" + 0.006*"plans" + 0.006*"good" + 0.005*"progress" + 0.005*"need" + 0.005*"risk" + 0.005*"24" -2024-07-15 10:45:20,131 - topic #1 (0.333): 0.011*"’" + 0.008*"plans" + 0.007*"Haringey" + 0.006*"need" + 0.005*"needs" + 0.005*"good" + 0.005*"well" + 0.004*"progress" + 0.004*"training" + 0.004*"impact" -2024-07-15 10:45:20,131 - topic #2 (0.333): 0.012*"’" + 0.007*"plans" + 0.006*"well" + 0.006*"Haringey" + 0.005*"needs" + 0.004*"progress" + 0.004*"education" + 0.004*"need" + 0.004*"good" + 0.004*"carers" -2024-07-15 10:45:20,131 - topic diff=0.783756, rho=1.000000 -2024-07-15 10:45:20,132 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:20.132044', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:21,095 - Inspection date 2023-02-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:21,095 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:21,095 - Inspection date 2023-02-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:21,096 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:21,096 - Inspection date 2023-02-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:21,096 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:21,096 - Inspection date 2023-02-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:21,096 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:21,096 - Inspection date 2023-02-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:21,096 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:21,097 - Inspection date 2023-02-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:21,097 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:22,380 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:22,383 - built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions) -2024-07-15 10:45:22,383 - Dictionary lifecycle event {'msg': "built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions)", 'datetime': '2024-07-15T10:45:22.383689', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:22,385 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:22,385 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:22,385 - using serial LDA version on this node -2024-07-15 10:45:22,386 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:22,386 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:22,392 - -7.970 per-word bound, 250.8 perplexity estimate based on a held-out corpus of 1 documents with 1732 words -2024-07-15 10:45:22,392 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:22,394 - topic #0 (0.333): 0.013*"’" + 0.009*"good" + 0.008*"well" + 0.007*"needs" + 0.005*"impact" + 0.005*"experiences" + 0.005*"protection" + 0.005*"school" + 0.004*"early" + 0.004*"plans" -2024-07-15 10:45:22,395 - topic #1 (0.333): 0.013*"good" + 0.011*"’" + 0.009*"well" + 0.008*"needs" + 0.006*"plans" + 0.006*"practice" + 0.005*"need" + 0.005*"impact" + 0.005*"experiences" + 0.004*"protection" -2024-07-15 10:45:22,395 - topic #2 (0.333): 0.011*"’" + 0.009*"needs" + 0.009*"good" + 0.008*"well" + 0.006*"impact" + 0.006*"need" + 0.005*"protection" + 0.005*"early" + 0.005*"plans" + 0.005*"practice" -2024-07-15 10:45:22,395 - topic diff=0.687537, rho=1.000000 -2024-07-15 10:45:22,395 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:22.395755', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:24,203 - Inspection date 2020-02-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:24,203 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:24,204 - Inspection date 2020-02-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:24,204 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:24,204 - Inspection date 2020-02-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:24,204 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:24,204 - Inspection date 2020-02-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:24,204 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:24,205 - Inspection date 2020-02-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:24,205 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:24,205 - Inspection date 2020-02-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:24,205 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:25,717 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:25,719 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions) -2024-07-15 10:45:25,719 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions)", 'datetime': '2024-07-15T10:45:25.719805', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:25,720 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:25,720 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:25,721 - using serial LDA version on this node -2024-07-15 10:45:25,721 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:25,721 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:25,725 - -8.010 per-word bound, 257.7 perplexity estimate based on a held-out corpus of 1 documents with 2243 words -2024-07-15 10:45:25,725 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:25,726 - topic #0 (0.333): 0.017*"’" + 0.012*"Havering" + 0.008*"quality" + 0.005*"plans" + 0.005*"needs" + 0.005*"oversight" + 0.004*"11" + 0.004*"22" + 0.004*"well" + 0.004*"experiences" -2024-07-15 10:45:25,726 - topic #1 (0.333): 0.010*"’" + 0.006*"plans" + 0.005*"Havering" + 0.004*"quality" + 0.004*"oversight" + 0.003*"22" + 0.003*"effective" + 0.003*"December" + 0.003*"practice" + 0.003*"needs" -2024-07-15 10:45:25,727 - topic #2 (0.333): 0.021*"’" + 0.013*"Havering" + 0.011*"quality" + 0.009*"plans" + 0.007*"effective" + 0.006*"oversight" + 0.005*"11" + 0.005*"needs" + 0.005*"practice" + 0.004*"many" -2024-07-15 10:45:25,727 - topic diff=0.794945, rho=1.000000 -2024-07-15 10:45:25,727 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:25.727363', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:26,694 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:26,694 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:26,695 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:26,695 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:26,695 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:26,695 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:26,695 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:26,695 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:26,695 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:26,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:26,696 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:26,696 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:28,426 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:28,429 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions) -2024-07-15 10:45:28,429 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions)", 'datetime': '2024-07-15T10:45:28.429392', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:28,430 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:28,430 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:28,430 - using serial LDA version on this node -2024-07-15 10:45:28,431 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:28,431 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:28,435 - -8.079 per-word bound, 270.5 perplexity estimate based on a held-out corpus of 1 documents with 2511 words -2024-07-15 10:45:28,435 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:28,436 - topic #0 (0.333): 0.014*"’" + 0.009*"needs" + 0.008*"plans" + 0.007*"Hillingdon" + 0.007*"well" + 0.005*"need" + 0.004*"2" + 0.004*"leaders" + 0.003*"supported" + 0.003*"October" -2024-07-15 10:45:28,436 - topic #1 (0.333): 0.020*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"plans" + 0.006*"Hillingdon" + 0.006*"team" + 0.005*"6" + 0.004*"2" + 0.004*"need" + 0.004*"leaders" -2024-07-15 10:45:28,437 - topic #2 (0.333): 0.018*"’" + 0.009*"Hillingdon" + 0.009*"needs" + 0.007*"plans" + 0.007*"well" + 0.005*"family" + 0.004*"team" + 0.004*"6" + 0.004*"2" + 0.004*"2023" -2024-07-15 10:45:28,437 - topic diff=0.796563, rho=1.000000 -2024-07-15 10:45:28,437 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:28.437285', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:29,509 - Inspection date 2023-10-02 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:29,509 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:29,510 - Inspection date 2023-10-02 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:29,510 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:29,510 - Inspection date 2023-10-02 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:29,510 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:29,511 - Inspection date 2023-10-02 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:29,511 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:29,511 - Inspection date 2023-10-02 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:29,511 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:29,512 - Inspection date 2023-10-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:29,512 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:31,066 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:31,068 - built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions) -2024-07-15 10:45:31,068 - Dictionary lifecycle event {'msg': "built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions)", 'datetime': '2024-07-15T10:45:31.068901', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:31,069 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:31,070 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:31,070 - using serial LDA version on this node -2024-07-15 10:45:31,070 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:31,070 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:31,074 - -8.007 per-word bound, 257.2 perplexity estimate based on a held-out corpus of 1 documents with 2271 words -2024-07-15 10:45:31,074 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:31,076 - topic #0 (0.333): 0.024*"’" + 0.011*"needs" + 0.010*"well" + 0.008*"effective" + 0.007*"Hounslow" + 0.006*"timely" + 0.006*"plans" + 0.005*"training" + 0.005*"16" + 0.005*"progress" -2024-07-15 10:45:31,076 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.009*"well" + 0.006*"Hounslow" + 0.006*"timely" + 0.005*"effective" + 0.005*"oversight" + 0.004*"experiences" + 0.004*"strong" + 0.004*"16" -2024-07-15 10:45:31,076 - topic #2 (0.333): 0.017*"’" + 0.012*"needs" + 0.010*"well" + 0.007*"effective" + 0.007*"Hounslow" + 0.007*"plans" + 0.006*"timely" + 0.005*"strong" + 0.004*"experiences" + 0.004*"progress" -2024-07-15 10:45:31,076 - topic diff=0.783850, rho=1.000000 -2024-07-15 10:45:31,076 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:31.076727', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:32,069 - Inspection date 2023-10-16 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:32,069 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:32,069 - Inspection date 2023-10-16 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:32,070 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:32,070 - Inspection date 2023-10-16 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:32,070 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:32,070 - Inspection date 2023-10-16 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:32,070 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:32,071 - Inspection date 2023-10-16 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:32,071 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:32,071 - Inspection date 2023-10-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:32,071 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:33,292 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:33,294 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions) -2024-07-15 10:45:33,294 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions)", 'datetime': '2024-07-15T10:45:33.294885', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:33,295 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:33,296 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:33,296 - using serial LDA version on this node -2024-07-15 10:45:33,296 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:33,296 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:33,300 - -7.925 per-word bound, 243.1 perplexity estimate based on a held-out corpus of 1 documents with 1982 words -2024-07-15 10:45:33,300 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:33,301 - topic #0 (0.333): 0.010*"’" + 0.009*"needs" + 0.009*"well" + 0.006*"good" + 0.006*"quality" + 0.006*"plans" + 0.005*"effective" + 0.004*"risk" + 0.004*"highly" + 0.004*"Islington" -2024-07-15 10:45:33,301 - topic #1 (0.333): 0.012*"’" + 0.011*"needs" + 0.008*"well" + 0.007*"highly" + 0.007*"plans" + 0.005*"effective" + 0.005*"quality" + 0.005*"good" + 0.004*"practice" + 0.004*"early" -2024-07-15 10:45:33,301 - topic #2 (0.333): 0.014*"’" + 0.012*"well" + 0.012*"needs" + 0.007*"leaders" + 0.007*"plans" + 0.006*"good" + 0.006*"highly" + 0.006*"Islington" + 0.006*"risk" + 0.005*"quality" -2024-07-15 10:45:33,301 - topic diff=0.748627, rho=1.000000 -2024-07-15 10:45:33,302 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:33.302074', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:35,134 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:35,134 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:35,134 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:35,134 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:35,135 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:35,135 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:35,135 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:35,135 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:35,135 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:35,135 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:35,136 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:35,136 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:36,459 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:36,461 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions) -2024-07-15 10:45:36,462 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions)", 'datetime': '2024-07-15T10:45:36.462017', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:36,462 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:36,463 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:36,463 - using serial LDA version on this node -2024-07-15 10:45:36,463 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:36,463 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:36,467 - -7.913 per-word bound, 241.0 perplexity estimate based on a held-out corpus of 1 documents with 2090 words -2024-07-15 10:45:36,467 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:36,468 - topic #0 (0.333): 0.013*"’" + 0.008*"good" + 0.008*"needs" + 0.008*"well" + 0.007*"plans" + 0.006*"progress" + 0.006*"leaders" + 0.005*"4" + 0.005*"Lambeth" + 0.005*"Leaders" -2024-07-15 10:45:36,468 - topic #1 (0.333): 0.016*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"Lambeth" + 0.007*"need" + 0.006*"good" + 0.006*"plans" + 0.006*"impact" + 0.005*"progress" + 0.005*"4" -2024-07-15 10:45:36,469 - topic #2 (0.333): 0.016*"’" + 0.009*"needs" + 0.009*"well" + 0.008*"plans" + 0.006*"Lambeth" + 0.006*"need" + 0.005*"progress" + 0.005*"good" + 0.005*"number" + 0.005*"impact" -2024-07-15 10:45:36,469 - topic diff=0.800881, rho=1.000000 -2024-07-15 10:45:36,469 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:36.469393', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:37,628 - Inspection date 2022-10-24 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:37,628 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:37,628 - Inspection date 2022-10-24 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:37,628 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:37,629 - Inspection date 2022-10-24 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:37,629 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:37,629 - Inspection date 2022-10-24 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:37,629 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:37,629 - Inspection date 2022-10-24 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:37,629 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:37,629 - Inspection date 2022-10-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:37,629 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:38,842 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:38,844 - built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions) -2024-07-15 10:45:38,844 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-07-15T10:45:38.844600', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:38,845 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:38,845 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:38,846 - using serial LDA version on this node -2024-07-15 10:45:38,846 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:38,846 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:38,850 - -8.049 per-word bound, 264.8 perplexity estimate based on a held-out corpus of 1 documents with 2352 words -2024-07-15 10:45:38,850 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:38,851 - topic #0 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"effective" + 0.005*"needs" + 0.005*"plans" + 0.005*"4" + 0.005*"good" + 0.004*"progress" + 0.004*"15" + 0.004*"Lewisham" -2024-07-15 10:45:38,851 - topic #1 (0.333): 0.019*"’" + 0.009*"needs" + 0.009*"plans" + 0.008*"well" + 0.006*"Lewisham" + 0.006*"effective" + 0.005*"progress" + 0.005*"leaders" + 0.005*"4" + 0.005*"arrangements" -2024-07-15 10:45:38,852 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.007*"Lewisham" + 0.006*"effective" + 0.006*"needs" + 0.005*"plans" + 0.005*"good" + 0.005*"progress" + 0.004*"need" + 0.004*"2023" -2024-07-15 10:45:38,852 - topic diff=0.774604, rho=1.000000 -2024-07-15 10:45:38,852 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:38.852221', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:40,045 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:40,046 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:40,046 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:40,046 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:40,046 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:40,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:40,047 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:40,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:40,047 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:40,047 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:40,047 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:40,048 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:41,401 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:41,403 - built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions) -2024-07-15 10:45:41,403 - Dictionary lifecycle event {'msg': "built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions)", 'datetime': '2024-07-15T10:45:41.403821', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:41,404 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:41,404 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:41,405 - using serial LDA version on this node -2024-07-15 10:45:41,405 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:41,405 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:41,409 - -7.986 per-word bound, 253.5 perplexity estimate based on a held-out corpus of 1 documents with 2032 words -2024-07-15 10:45:41,409 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:41,411 - topic #0 (0.333): 0.011*"’" + 0.008*"well" + 0.007*"Merton" + 0.006*"needs" + 0.005*"family" + 0.004*"leaders" + 0.004*"progress" + 0.004*"risk" + 0.004*"March" + 0.004*"2022" -2024-07-15 10:45:41,411 - topic #1 (0.333): 0.012*"’" + 0.008*"well" + 0.006*"needs" + 0.005*"plans" + 0.005*"Merton" + 0.005*"progress" + 0.004*"ensure" + 0.004*"4" + 0.004*"good" + 0.004*"family" -2024-07-15 10:45:41,411 - topic #2 (0.333): 0.021*"’" + 0.007*"well" + 0.007*"Merton" + 0.005*"needs" + 0.005*"plans" + 0.005*"education" + 0.005*"good" + 0.004*"access" + 0.004*"helping" + 0.004*"4" -2024-07-15 10:45:41,411 - topic diff=0.752959, rho=1.000000 -2024-07-15 10:45:41,411 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:41.411733', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:42,357 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:42,357 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:42,358 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:42,358 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:42,358 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:42,358 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:42,358 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:42,359 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:42,359 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:42,359 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:42,359 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:42,359 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:43,974 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:43,977 - built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions) -2024-07-15 10:45:43,977 - Dictionary lifecycle event {'msg': "built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions)", 'datetime': '2024-07-15T10:45:43.977495', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:43,978 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:43,978 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:43,978 - using serial LDA version on this node -2024-07-15 10:45:43,979 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:43,979 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:43,983 - -8.055 per-word bound, 265.9 perplexity estimate based on a held-out corpus of 1 documents with 2540 words -2024-07-15 10:45:43,983 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:43,984 - topic #0 (0.333): 0.022*"’" + 0.008*"needs" + 0.008*"Newham" + 0.007*"progress" + 0.007*"practice" + 0.007*"effective" + 0.006*"plans" + 0.006*"need" + 0.005*"18" + 0.005*"good" -2024-07-15 10:45:43,984 - topic #1 (0.333): 0.017*"’" + 0.008*"needs" + 0.006*"Newham" + 0.006*"practice" + 0.005*"need" + 0.005*"plans" + 0.005*"progress" + 0.005*"effective" + 0.004*"good" + 0.004*"Leaders" -2024-07-15 10:45:43,985 - topic #2 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"Newham" + 0.006*"plans" + 0.006*"need" + 0.006*"good" + 0.005*"effective" + 0.005*"progress" + 0.005*"practice" + 0.005*"Leaders" -2024-07-15 10:45:43,985 - topic diff=0.777674, rho=1.000000 -2024-07-15 10:45:43,985 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:43.985315', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:44,986 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:44,986 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:44,987 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:44,987 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:44,987 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:44,987 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:44,987 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:44,988 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:44,988 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:44,988 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:44,988 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:44,988 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:46,636 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:46,638 - built Dictionary<1149 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2458 corpus positions) -2024-07-15 10:45:46,639 - Dictionary lifecycle event {'msg': "built Dictionary<1149 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2458 corpus positions)", 'datetime': '2024-07-15T10:45:46.639021', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:46,640 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:46,640 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:46,640 - using serial LDA version on this node -2024-07-15 10:45:46,641 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:46,641 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:46,644 - -8.072 per-word bound, 269.1 perplexity estimate based on a held-out corpus of 1 documents with 2458 words -2024-07-15 10:45:46,645 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:46,646 - topic #0 (0.333): 0.010*"’" + 0.007*"well" + 0.007*"practice" + 0.007*"needs" + 0.007*"need" + 0.006*"strong" + 0.005*"team" + 0.005*"risk" + 0.005*"Redbridge" + 0.005*"effective" -2024-07-15 10:45:46,646 - topic #1 (0.333): 0.007*"practice" + 0.006*"’" + 0.005*"including" + 0.005*"Redbridge" + 0.005*"well" + 0.004*"strong" + 0.004*"need" + 0.004*"needs" + 0.004*"effective" + 0.004*"risk" -2024-07-15 10:45:46,646 - topic #2 (0.333): 0.006*"needs" + 0.006*"effective" + 0.006*"practice" + 0.005*"progress" + 0.005*"well" + 0.005*"need" + 0.005*"’" + 0.005*"risk" + 0.005*"Redbridge" + 0.005*"including" -2024-07-15 10:45:46,646 - topic diff=0.775892, rho=1.000000 -2024-07-15 10:45:46,647 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:46.647066', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:47,798 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:47,799 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:47,799 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:47,799 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:47,799 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:47,799 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:47,800 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:47,800 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:47,800 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:47,800 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:47,800 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:47,800 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:48,911 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:48,913 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions) -2024-07-15 10:45:48,913 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions)", 'datetime': '2024-07-15T10:45:48.913817', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:48,914 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:48,914 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:48,915 - using serial LDA version on this node -2024-07-15 10:45:48,915 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:48,915 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:48,918 - -7.982 per-word bound, 252.9 perplexity estimate based on a held-out corpus of 1 documents with 1818 words -2024-07-15 10:45:48,919 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:48,920 - topic #0 (0.333): 0.017*"’" + 0.013*"well" + 0.008*"Richmond" + 0.008*"needs" + 0.007*"good" + 0.006*"supported" + 0.006*"need" + 0.006*"additional" + 0.005*"4" + 0.005*"ensure" -2024-07-15 10:45:48,920 - topic #1 (0.333): 0.016*"’" + 0.011*"well" + 0.008*"Richmond" + 0.007*"team" + 0.007*"needs" + 0.007*"supported" + 0.005*"good" + 0.005*"upon" + 0.005*"need" + 0.005*"Thames" -2024-07-15 10:45:48,920 - topic #2 (0.333): 0.013*"’" + 0.008*"well" + 0.006*"Richmond" + 0.006*"needs" + 0.006*"need" + 0.004*"supported" + 0.004*"strong" + 0.004*"ensure" + 0.004*"team" + 0.004*"January" -2024-07-15 10:45:48,920 - topic diff=0.733415, rho=1.000000 -2024-07-15 10:45:48,921 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:48.921003', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:49,792 - Inspection date 2022-01-31 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:49,793 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:49,793 - Inspection date 2022-01-31 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:49,793 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:49,793 - Inspection date 2022-01-31 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:49,793 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:49,794 - Inspection date 2022-01-31 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:49,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:49,794 - Inspection date 2022-01-31 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:49,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:49,794 - Inspection date 2022-01-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:49,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:51,040 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:51,042 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions) -2024-07-15 10:45:51,042 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions)", 'datetime': '2024-07-15T10:45:51.042292', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:51,043 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:51,043 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:51,043 - using serial LDA version on this node -2024-07-15 10:45:51,043 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:51,044 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:51,047 - -7.921 per-word bound, 242.4 perplexity estimate based on a held-out corpus of 1 documents with 1878 words -2024-07-15 10:45:51,047 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:51,048 - topic #0 (0.333): 0.011*"’" + 0.008*"Southwark" + 0.008*"good" + 0.006*"well" + 0.006*"needs" + 0.005*"progress" + 0.005*"Leaders" + 0.005*"strong" + 0.005*"quality" + 0.004*"plans" -2024-07-15 10:45:51,048 - topic #1 (0.333): 0.024*"’" + 0.010*"well" + 0.008*"Southwark" + 0.008*"good" + 0.007*"needs" + 0.006*"effective" + 0.006*"progress" + 0.005*"need" + 0.005*"Leaders" + 0.005*"plans" -2024-07-15 10:45:51,049 - topic #2 (0.333): 0.017*"’" + 0.011*"Southwark" + 0.008*"needs" + 0.008*"good" + 0.006*"need" + 0.006*"plans" + 0.006*"leaders" + 0.006*"progress" + 0.006*"well" + 0.005*"effective" -2024-07-15 10:45:51,049 - topic diff=0.741624, rho=1.000000 -2024-07-15 10:45:51,049 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:51.049411', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:52,153 - Inspection date 2022-09-26 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:52,154 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:52,154 - Inspection date 2022-09-26 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:52,154 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:52,155 - Inspection date 2022-09-26 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:52,155 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:52,155 - Inspection date 2022-09-26 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:52,155 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:52,156 - Inspection date 2022-09-26 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:52,156 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:52,156 - Inspection date 2022-09-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:52,156 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:53,446 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:53,448 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions) -2024-07-15 10:45:53,448 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions)", 'datetime': '2024-07-15T10:45:53.448231', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:53,449 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:53,449 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:53,449 - using serial LDA version on this node -2024-07-15 10:45:53,449 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:53,450 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:53,453 - -7.982 per-word bound, 252.7 perplexity estimate based on a held-out corpus of 1 documents with 1847 words -2024-07-15 10:45:53,453 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:53,454 - topic #0 (0.333): 0.013*"’" + 0.006*"needs" + 0.006*"well" + 0.005*"Sutton" + 0.004*"progress" + 0.004*"effective" + 0.004*"receive" + 0.004*"good" + 0.004*"leaders" + 0.004*"positive" -2024-07-15 10:45:53,454 - topic #1 (0.333): 0.020*"’" + 0.007*"well" + 0.007*"Sutton" + 0.006*"progress" + 0.006*"needs" + 0.005*"receive" + 0.005*"6" + 0.005*"good" + 0.005*"effective" + 0.005*"leaders" -2024-07-15 10:45:53,455 - topic #2 (0.333): 0.015*"’" + 0.007*"well" + 0.006*"needs" + 0.005*"Sutton" + 0.005*"good" + 0.005*"effective" + 0.004*"receive" + 0.004*"progress" + 0.004*"‘" + 0.004*"10" -2024-07-15 10:45:53,455 - topic diff=0.746989, rho=1.000000 -2024-07-15 10:45:53,455 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:53.455378', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:55,141 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:55,142 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:55,142 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:55,142 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:55,142 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:55,142 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:55,142 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:55,143 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:55,143 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:55,143 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:55,143 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:55,143 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:56,851 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:56,854 - built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions) -2024-07-15 10:45:56,854 - Dictionary lifecycle event {'msg': "built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions)", 'datetime': '2024-07-15T10:45:56.854762', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:56,855 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:56,856 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:56,856 - using serial LDA version on this node -2024-07-15 10:45:56,856 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:56,856 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:56,860 - -8.130 per-word bound, 280.2 perplexity estimate based on a held-out corpus of 1 documents with 2465 words -2024-07-15 10:45:56,860 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:56,862 - topic #0 (0.333): 0.014*"’" + 0.007*"effective" + 0.007*"good" + 0.006*"well" + 0.006*"practice" + 0.005*"plans" + 0.005*"need" + 0.005*"carers" + 0.005*"including" + 0.005*"‘" -2024-07-15 10:45:56,862 - topic #1 (0.333): 0.014*"’" + 0.006*"plans" + 0.005*"practice" + 0.005*"effective" + 0.005*"well" + 0.004*"progress" + 0.004*"good" + 0.004*"‘" + 0.004*"risk" + 0.004*"including" -2024-07-15 10:45:56,862 - topic #2 (0.333): 0.016*"’" + 0.008*"good" + 0.007*"plans" + 0.007*"‘" + 0.006*"effective" + 0.005*"need" + 0.005*"early" + 0.005*"well" + 0.005*"progress" + 0.004*"needs" -2024-07-15 10:45:56,862 - topic diff=0.770770, rho=1.000000 -2024-07-15 10:45:56,862 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:56.862691', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:58,238 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:45:58,238 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:58,238 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:45:58,239 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:58,239 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:45:58,239 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:58,239 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:45:58,239 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:58,239 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:45:58,240 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:58,240 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:45:58,240 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:45:59,483 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:45:59,486 - built Dictionary<1036 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) -2024-07-15 10:45:59,486 - Dictionary lifecycle event {'msg': "built Dictionary<1036 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-07-15T10:45:59.486190', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:45:59,487 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:45:59,487 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:45:59,487 - using serial LDA version on this node -2024-07-15 10:45:59,488 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:45:59,488 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:45:59,491 - -7.973 per-word bound, 251.3 perplexity estimate based on a held-out corpus of 1 documents with 2199 words -2024-07-15 10:45:59,491 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:45:59,493 - topic #0 (0.333): 0.014*"well" + 0.014*"’" + 0.009*"needs" + 0.008*"good" + 0.007*"effective" + 0.006*"need" + 0.005*"plans" + 0.005*"timely" + 0.005*"protection" + 0.005*"risk" -2024-07-15 10:45:59,493 - topic #1 (0.333): 0.012*"well" + 0.011*"’" + 0.009*"good" + 0.008*"needs" + 0.006*"effective" + 0.005*"need" + 0.005*"plans" + 0.005*"timely" + 0.004*"progress" + 0.004*"risk" -2024-07-15 10:45:59,493 - topic #2 (0.333): 0.018*"’" + 0.009*"needs" + 0.009*"well" + 0.007*"effective" + 0.007*"good" + 0.006*"need" + 0.005*"plans" + 0.005*"risk" + 0.005*"timely" + 0.004*"education" -2024-07-15 10:45:59,493 - topic diff=0.783248, rho=1.000000 -2024-07-15 10:45:59,493 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:45:59.493706', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:00,441 - Inspection date 2019-01-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:00,441 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:00,442 - Inspection date 2019-01-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:00,442 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:00,442 - Inspection date 2019-01-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:00,442 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:00,442 - Inspection date 2019-01-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:00,442 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:00,443 - Inspection date 2019-01-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:00,443 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:00,443 - Inspection date 2019-01-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:00,443 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:01,731 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:01,733 - built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions) -2024-07-15 10:46:01,733 - Dictionary lifecycle event {'msg': "built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions)", 'datetime': '2024-07-15T10:46:01.733732', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:01,734 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:01,734 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:01,734 - using serial LDA version on this node -2024-07-15 10:46:01,735 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:01,735 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:01,738 - -7.853 per-word bound, 231.2 perplexity estimate based on a held-out corpus of 1 documents with 1772 words -2024-07-15 10:46:01,738 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:01,739 - topic #0 (0.333): 0.011*"’" + 0.007*"well" + 0.006*"needs" + 0.006*"Wandsworth" + 0.005*"ensure" + 0.005*"Senior" + 0.005*"7" + 0.005*"protection" + 0.005*"progress" + 0.005*"good" -2024-07-15 10:46:01,740 - topic #1 (0.333): 0.010*"’" + 0.007*"well" + 0.006*"Senior" + 0.006*"protection" + 0.006*"needs" + 0.005*"practice" + 0.005*"supported" + 0.005*"team" + 0.005*"progress" + 0.004*"2022" -2024-07-15 10:46:01,740 - topic #2 (0.333): 0.014*"’" + 0.006*"progress" + 0.006*"well" + 0.005*"practice" + 0.005*"Wandsworth" + 0.005*"7" + 0.005*"team" + 0.005*"ensure" + 0.005*"effective" + 0.004*"quality" -2024-07-15 10:46:01,740 - topic diff=0.746228, rho=1.000000 -2024-07-15 10:46:01,740 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:01.740432', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:02,652 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:02,652 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:02,652 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:02,653 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:02,653 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:02,653 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:02,653 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:02,653 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:02,653 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:02,653 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:02,654 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:02,654 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:04,297 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:04,301 - built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions) -2024-07-15 10:46:04,301 - Dictionary lifecycle event {'msg': "built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions)", 'datetime': '2024-07-15T10:46:04.301385', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:04,303 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:04,303 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:04,303 - using serial LDA version on this node -2024-07-15 10:46:04,304 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:04,304 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:04,309 - -8.155 per-word bound, 285.0 perplexity estimate based on a held-out corpus of 1 documents with 2101 words -2024-07-15 10:46:04,309 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:04,310 - topic #0 (0.333): 0.011*"’" + 0.005*"practice" + 0.005*"highly" + 0.005*"well" + 0.005*"needs" + 0.004*"many" + 0.004*"plans" + 0.003*"high" + 0.003*"across" + 0.003*"direct" -2024-07-15 10:46:04,310 - topic #1 (0.333): 0.013*"’" + 0.007*"practice" + 0.006*"highly" + 0.005*"needs" + 0.005*"well" + 0.004*"across" + 0.004*"family" + 0.004*"many" + 0.003*"Westminster" + 0.003*"supported" -2024-07-15 10:46:04,310 - topic #2 (0.333): 0.014*"’" + 0.007*"needs" + 0.007*"practice" + 0.005*"well" + 0.005*"highly" + 0.004*"across" + 0.004*"shared" + 0.004*"many" + 0.003*"family" + 0.003*"high" -2024-07-15 10:46:04,311 - topic diff=0.692602, rho=1.000000 -2024-07-15 10:46:04,311 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:04.311145', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:05,475 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:05,475 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:05,476 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:05,476 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:05,476 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:05,476 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:05,476 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:05,476 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:05,476 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:05,477 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:05,477 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:05,477 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:07,177 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:07,179 - built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions) -2024-07-15 10:46:07,179 - Dictionary lifecycle event {'msg': "built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions)", 'datetime': '2024-07-15T10:46:07.179494', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:07,180 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:07,180 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:07,181 - using serial LDA version on this node -2024-07-15 10:46:07,181 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:07,181 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:07,185 - -8.104 per-word bound, 275.2 perplexity estimate based on a held-out corpus of 1 documents with 2593 words -2024-07-15 10:46:07,185 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:07,186 - topic #0 (0.333): 0.011*"’" + 0.007*"needs" + 0.006*"need" + 0.005*"Luton" + 0.005*"plans" + 0.005*"effective" + 0.005*"including" + 0.005*"good" + 0.004*"progress" + 0.004*"impact" -2024-07-15 10:46:07,187 - topic #1 (0.333): 0.018*"’" + 0.006*"need" + 0.005*"Luton" + 0.005*"plans" + 0.005*"effective" + 0.005*"quality" + 0.005*"needs" + 0.005*"progress" + 0.004*"good" + 0.004*"receive" -2024-07-15 10:46:07,187 - topic #2 (0.333): 0.020*"’" + 0.007*"plans" + 0.007*"needs" + 0.007*"need" + 0.006*"effective" + 0.006*"Luton" + 0.006*"good" + 0.005*"impact" + 0.005*"ensure" + 0.005*"quality" -2024-07-15 10:46:07,187 - topic diff=0.797225, rho=1.000000 -2024-07-15 10:46:07,187 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:07.187420', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:08,188 - Inspection date 2022-07-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:08,188 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:08,189 - Inspection date 2022-07-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:08,189 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:08,189 - Inspection date 2022-07-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:08,189 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:08,189 - Inspection date 2022-07-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:08,189 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:08,189 - Inspection date 2022-07-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:08,190 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:08,190 - Inspection date 2022-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:08,190 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:09,552 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:09,554 - built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions) -2024-07-15 10:46:09,554 - Dictionary lifecycle event {'msg': "built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions)", 'datetime': '2024-07-15T10:46:09.554518', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:09,555 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:09,555 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:09,555 - using serial LDA version on this node -2024-07-15 10:46:09,556 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:09,556 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:09,559 - -7.773 per-word bound, 218.7 perplexity estimate based on a held-out corpus of 1 documents with 1938 words -2024-07-15 10:46:09,559 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:09,560 - topic #0 (0.333): 0.019*"’" + 0.011*"Manchester" + 0.010*"needs" + 0.007*"well" + 0.007*"always" + 0.006*"supported" + 0.005*"education" + 0.005*"progress" + 0.005*"family" + 0.005*"21" -2024-07-15 10:46:09,560 - topic #1 (0.333): 0.024*"’" + 0.012*"Manchester" + 0.010*"needs" + 0.008*"well" + 0.007*"always" + 0.006*"protection" + 0.006*"supported" + 0.006*"education" + 0.006*"plans" + 0.005*"effective" -2024-07-15 10:46:09,560 - topic #2 (0.333): 0.018*"’" + 0.007*"Manchester" + 0.007*"supported" + 0.006*"needs" + 0.006*"plans" + 0.005*"well" + 0.005*"always" + 0.005*"21" + 0.004*"effective" + 0.004*"quality" -2024-07-15 10:46:09,561 - topic diff=0.815506, rho=1.000000 -2024-07-15 10:46:09,561 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.00s', 'datetime': '2024-07-15T10:46:09.561140', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:10,451 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:10,451 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:10,451 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:10,451 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:10,451 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:10,452 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:10,452 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:10,452 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:10,452 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:10,452 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:10,452 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:10,453 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:11,860 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:11,864 - built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions) -2024-07-15 10:46:11,866 - Dictionary lifecycle event {'msg': "built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions)", 'datetime': '2024-07-15T10:46:11.866591', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:11,868 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:11,868 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:11,868 - using serial LDA version on this node -2024-07-15 10:46:11,868 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:11,868 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:11,874 - -7.893 per-word bound, 237.8 perplexity estimate based on a held-out corpus of 1 documents with 1857 words -2024-07-15 10:46:11,874 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:11,876 - topic #0 (0.333): 0.014*"’" + 0.011*"Medway" + 0.008*"quality" + 0.008*"practice" + 0.007*"well" + 0.006*"needs" + 0.006*"oversight" + 0.005*"progress" + 0.005*"clear" + 0.005*"risk" -2024-07-15 10:46:11,877 - topic #1 (0.333): 0.018*"’" + 0.009*"Medway" + 0.009*"practice" + 0.009*"well" + 0.008*"quality" + 0.007*"leaders" + 0.007*"needs" + 0.007*"impact" + 0.006*"oversight" + 0.005*"clear" -2024-07-15 10:46:11,877 - topic #2 (0.333): 0.015*"’" + 0.007*"leaders" + 0.006*"quality" + 0.006*"well" + 0.006*"practice" + 0.006*"Medway" + 0.006*"17" + 0.006*"oversight" + 0.005*"experiences" + 0.005*"progress" -2024-07-15 10:46:11,877 - topic diff=0.766710, rho=1.000000 -2024-07-15 10:46:11,877 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:11.877569', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:12,937 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:12,937 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:12,938 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:12,938 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:12,938 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:12,938 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:12,938 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:12,938 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:12,938 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:12,939 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:12,939 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:12,939 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:14,826 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:14,828 - built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions) -2024-07-15 10:46:14,828 - Dictionary lifecycle event {'msg': "built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-07-15T10:46:14.828451', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:14,829 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:14,829 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:14,829 - using serial LDA version on this node -2024-07-15 10:46:14,830 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:14,830 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:14,833 - -8.003 per-word bound, 256.6 perplexity estimate based on a held-out corpus of 1 documents with 2278 words -2024-07-15 10:46:14,833 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:14,835 - topic #0 (0.333): 0.014*"’" + 0.008*"Middlesbrough" + 0.007*"needs" + 0.006*"plans" + 0.006*"effective" + 0.006*"practice" + 0.005*"progress" + 0.005*"well" + 0.005*"24" + 0.005*"risk" -2024-07-15 10:46:14,835 - topic #1 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"effective" + 0.007*"plans" + 0.007*"Middlesbrough" + 0.006*"needs" + 0.006*"place" + 0.006*"progress" + 0.005*"13" + 0.005*"practice" -2024-07-15 10:46:14,835 - topic #2 (0.333): 0.010*"’" + 0.007*"plans" + 0.007*"effective" + 0.006*"well" + 0.005*"practice" + 0.005*"needs" + 0.005*"impact" + 0.004*"Middlesbrough" + 0.004*"progress" + 0.004*"24" -2024-07-15 10:46:14,835 - topic diff=0.783066, rho=1.000000 -2024-07-15 10:46:14,835 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:14.835831', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:15,704 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:15,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:15,705 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:15,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:15,705 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:15,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:15,706 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:15,706 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:15,706 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:15,706 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:15,706 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:15,706 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:17,134 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:17,136 - built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions) -2024-07-15 10:46:17,136 - Dictionary lifecycle event {'msg': "built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions)", 'datetime': '2024-07-15T10:46:17.136638', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:17,137 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:17,137 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:17,138 - using serial LDA version on this node -2024-07-15 10:46:17,138 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:17,138 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:17,142 - -8.042 per-word bound, 263.5 perplexity estimate based on a held-out corpus of 1 documents with 2328 words -2024-07-15 10:46:17,142 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:17,143 - topic #0 (0.333): 0.015*"’" + 0.006*"Keynes" + 0.005*"need" + 0.005*"practice" + 0.005*"Milton" + 0.005*"well" + 0.004*"plans" + 0.004*"impact" + 0.004*"25" + 0.004*"good" -2024-07-15 10:46:17,143 - topic #1 (0.333): 0.013*"’" + 0.005*"Keynes" + 0.005*"Milton" + 0.004*"well" + 0.004*"25" + 0.004*"practice" + 0.004*"need" + 0.004*"good" + 0.004*"leaders" + 0.004*"plans" -2024-07-15 10:46:17,144 - topic #2 (0.333): 0.016*"’" + 0.007*"Milton" + 0.006*"well" + 0.006*"need" + 0.006*"Keynes" + 0.005*"leaders" + 0.005*"2021" + 0.005*"good" + 0.005*"plans" + 0.005*"needs" -2024-07-15 10:46:17,144 - topic diff=0.794252, rho=1.000000 -2024-07-15 10:46:17,144 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:17.144236', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:18,182 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:18,182 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:18,182 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:18,182 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:18,182 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:18,182 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:18,183 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:18,183 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:18,183 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:18,183 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:18,183 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:18,183 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:19,675 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:19,677 - built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions) -2024-07-15 10:46:19,677 - Dictionary lifecycle event {'msg': "built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions)", 'datetime': '2024-07-15T10:46:19.677255', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:19,678 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:19,678 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:19,678 - using serial LDA version on this node -2024-07-15 10:46:19,679 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:19,679 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:19,682 - -7.880 per-word bound, 235.6 perplexity estimate based on a held-out corpus of 1 documents with 2076 words -2024-07-15 10:46:19,682 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:19,683 - topic #0 (0.333): 0.017*"’" + 0.009*"plans" + 0.008*"needs" + 0.008*"Newcastle" + 0.007*"well" + 0.007*"good" + 0.007*"protection" + 0.006*"progress" + 0.006*"2021" + 0.005*"ensure" -2024-07-15 10:46:19,684 - topic #1 (0.333): 0.016*"’" + 0.008*"plans" + 0.007*"needs" + 0.007*"Newcastle" + 0.007*"protection" + 0.006*"good" + 0.005*"need" + 0.005*"progress" + 0.005*"well" + 0.005*"response" -2024-07-15 10:46:19,684 - topic #2 (0.333): 0.014*"’" + 0.013*"plans" + 0.008*"needs" + 0.006*"good" + 0.006*"Newcastle" + 0.006*"protection" + 0.006*"planning" + 0.006*"well" + 0.006*"making" + 0.006*"ensure" -2024-07-15 10:46:19,684 - topic diff=0.786535, rho=1.000000 -2024-07-15 10:46:19,684 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:19.684467', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:20,641 - Inspection date 2021-11-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:20,641 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:20,642 - Inspection date 2021-11-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:20,642 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:20,642 - Inspection date 2021-11-29 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:20,642 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:20,642 - Inspection date 2021-11-29 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:20,643 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:20,643 - Inspection date 2021-11-29 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:20,643 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:20,643 - Inspection date 2021-11-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:20,643 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:22,430 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:22,432 - built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions) -2024-07-15 10:46:22,433 - Dictionary lifecycle event {'msg': "built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions)", 'datetime': '2024-07-15T10:46:22.433048', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:22,434 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:22,434 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:22,434 - using serial LDA version on this node -2024-07-15 10:46:22,435 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:22,435 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:22,439 - -8.129 per-word bound, 280.0 perplexity estimate based on a held-out corpus of 1 documents with 2655 words -2024-07-15 10:46:22,439 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:22,440 - topic #0 (0.333): 0.019*"’" + 0.007*"Norfolk" + 0.007*"carers" + 0.006*"well" + 0.006*"supported" + 0.006*"needs" + 0.006*"practice" + 0.005*"including" + 0.005*"information" + 0.005*"range" -2024-07-15 10:46:22,440 - topic #1 (0.333): 0.019*"’" + 0.009*"well" + 0.008*"Norfolk" + 0.006*"carers" + 0.006*"practice" + 0.006*"needs" + 0.005*"supported" + 0.005*"plans" + 0.004*"leaders" + 0.004*"7" -2024-07-15 10:46:22,441 - topic #2 (0.333): 0.010*"’" + 0.008*"Norfolk" + 0.008*"well" + 0.005*"needs" + 0.004*"carers" + 0.004*"18" + 0.004*"practice" + 0.004*"experiences" + 0.004*"supported" + 0.004*"plans" -2024-07-15 10:46:22,441 - topic diff=0.790226, rho=1.000000 -2024-07-15 10:46:22,441 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:22.441300', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:23,428 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:23,428 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:23,428 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:23,428 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:23,428 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:23,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:23,429 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:23,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:23,429 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:23,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:23,429 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:23,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:24,944 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:24,948 - built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions) -2024-07-15 10:46:24,948 - Dictionary lifecycle event {'msg': "built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions)", 'datetime': '2024-07-15T10:46:24.948803', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:24,950 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:24,950 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:24,951 - using serial LDA version on this node -2024-07-15 10:46:24,951 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:24,951 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:24,957 - -7.891 per-word bound, 237.3 perplexity estimate based on a held-out corpus of 1 documents with 2045 words -2024-07-15 10:46:24,957 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:24,959 - topic #0 (0.333): 0.015*"’" + 0.007*"practice" + 0.007*"leaders" + 0.007*"planning" + 0.006*"needs" + 0.006*"risk" + 0.006*"need" + 0.005*"October" + 0.005*"North" + 0.005*"oversight" -2024-07-15 10:46:24,959 - topic #1 (0.333): 0.016*"’" + 0.009*"risk" + 0.008*"practice" + 0.006*"needs" + 0.006*"planning" + 0.006*"senior" + 0.006*"leaders" + 0.005*"many" + 0.005*"East" + 0.005*"North" -2024-07-15 10:46:24,959 - topic #2 (0.333): 0.011*"’" + 0.007*"practice" + 0.006*"leaders" + 0.006*"needs" + 0.005*"planning" + 0.005*"Lincolnshire" + 0.005*"Council" + 0.005*"need" + 0.005*"2021" + 0.005*"risk" -2024-07-15 10:46:24,960 - topic diff=0.767127, rho=1.000000 -2024-07-15 10:46:24,960 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:24.960795', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:25,893 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:25,893 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:25,894 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:25,894 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:25,894 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:25,894 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:25,894 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:25,895 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:25,895 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:25,895 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:25,895 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:25,895 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:27,236 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:27,238 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions) -2024-07-15 10:46:27,238 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions)", 'datetime': '2024-07-15T10:46:27.238853', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:27,239 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:27,240 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:27,240 - using serial LDA version on this node -2024-07-15 10:46:27,240 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:27,240 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:27,244 - -8.064 per-word bound, 267.6 perplexity estimate based on a held-out corpus of 1 documents with 2174 words -2024-07-15 10:46:27,244 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:27,246 - topic #0 (0.333): 0.016*"’" + 0.006*"‘" + 0.006*"approach" + 0.006*"Lincolnshire" + 0.005*"North" + 0.005*"family" + 0.005*"leaders" + 0.005*"protection" + 0.004*"well" + 0.004*"14" -2024-07-15 10:46:27,246 - topic #1 (0.333): 0.023*"’" + 0.008*"‘" + 0.006*"family" + 0.005*"Lincolnshire" + 0.005*"well" + 0.005*"leaders" + 0.005*"North" + 0.005*"need" + 0.004*"14" + 0.004*"2022" -2024-07-15 10:46:27,246 - topic #2 (0.333): 0.021*"’" + 0.007*"family" + 0.006*"‘" + 0.006*"10" + 0.005*"North" + 0.005*"need" + 0.005*"well" + 0.005*"approach" + 0.005*"leaders" + 0.005*"council" -2024-07-15 10:46:27,246 - topic diff=0.747481, rho=1.000000 -2024-07-15 10:46:27,246 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:27.246758', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:28,218 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:28,218 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:28,218 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:28,218 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:28,219 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:28,219 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:28,219 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:28,219 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:28,219 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:28,219 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:28,220 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:28,220 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:29,488 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:29,490 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions) -2024-07-15 10:46:29,490 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions)", 'datetime': '2024-07-15T10:46:29.490932', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:29,492 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:29,492 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:29,492 - using serial LDA version on this node -2024-07-15 10:46:29,492 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:29,492 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:29,496 - -8.030 per-word bound, 261.3 perplexity estimate based on a held-out corpus of 1 documents with 2204 words -2024-07-15 10:46:29,496 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:29,497 - topic #0 (0.333): 0.019*"’" + 0.007*"Northamptonshire" + 0.007*"North" + 0.005*"Leaders" + 0.005*"well" + 0.005*"e" + 0.005*"quality" + 0.005*"plans" + 0.005*"3" + 0.005*"NCT" -2024-07-15 10:46:29,498 - topic #1 (0.333): 0.017*"’" + 0.008*"Northamptonshire" + 0.007*"well" + 0.007*"North" + 0.006*"quality" + 0.006*"practice" + 0.006*"impact" + 0.005*"need" + 0.005*"needs" + 0.005*"Leaders" -2024-07-15 10:46:29,498 - topic #2 (0.333): 0.013*"’" + 0.009*"Northamptonshire" + 0.006*"North" + 0.006*"well" + 0.005*"experiences" + 0.005*"quality" + 0.004*"needs" + 0.004*"NCT" + 0.004*"practice" + 0.004*"2022" -2024-07-15 10:46:29,498 - topic diff=0.750025, rho=1.000000 -2024-07-15 10:46:29,498 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:29.498595', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:30,624 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:30,624 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:30,625 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:30,625 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:30,625 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:30,625 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:30,625 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:30,626 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:30,626 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:30,626 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:30,626 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:30,627 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:32,136 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:32,139 - built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions) -2024-07-15 10:46:32,140 - Dictionary lifecycle event {'msg': "built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions)", 'datetime': '2024-07-15T10:46:32.140030', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:32,141 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:32,141 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:32,141 - using serial LDA version on this node -2024-07-15 10:46:32,142 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:32,142 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:32,146 - -8.070 per-word bound, 268.7 perplexity estimate based on a held-out corpus of 1 documents with 2902 words -2024-07-15 10:46:32,146 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:32,147 - topic #0 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"North" + 0.006*"Somerset" + 0.006*"always" + 0.005*"experienced" + 0.005*"number" + 0.005*"practice" + 0.005*"need" + 0.005*"progress" -2024-07-15 10:46:32,148 - topic #1 (0.333): 0.018*"’" + 0.008*"quality" + 0.007*"always" + 0.007*"practice" + 0.006*"needs" + 0.006*"number" + 0.006*"risk" + 0.006*"Somerset" + 0.005*"North" + 0.005*"need" -2024-07-15 10:46:32,148 - topic #2 (0.333): 0.014*"’" + 0.009*"quality" + 0.007*"needs" + 0.006*"progress" + 0.005*"well" + 0.005*"Somerset" + 0.005*"experienced" + 0.005*"North" + 0.005*"number" + 0.005*"always" -2024-07-15 10:46:32,148 - topic diff=0.832443, rho=1.000000 -2024-07-15 10:46:32,148 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:32.148621', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:34,104 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:34,105 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:34,105 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:34,105 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:34,105 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:34,105 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:34,106 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:34,106 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:34,106 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:34,106 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:34,106 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:34,106 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:35,567 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:35,569 - built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions) -2024-07-15 10:46:35,569 - Dictionary lifecycle event {'msg': "built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions)", 'datetime': '2024-07-15T10:46:35.569863', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:35,571 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:35,571 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:35,571 - using serial LDA version on this node -2024-07-15 10:46:35,571 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:35,571 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:35,576 - -8.220 per-word bound, 298.1 perplexity estimate based on a held-out corpus of 1 documents with 2518 words -2024-07-15 10:46:35,576 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:35,578 - topic #0 (0.333): 0.014*"’" + 0.006*"well" + 0.005*"make" + 0.005*"leaders" + 0.004*"need" + 0.004*"quality" + 0.004*"clear" + 0.004*"impact" + 0.004*"progress" + 0.003*"understand" -2024-07-15 10:46:35,578 - topic #1 (0.333): 0.019*"’" + 0.006*"well" + 0.006*"leaders" + 0.006*"need" + 0.005*"needs" + 0.005*"quality" + 0.005*"early" + 0.005*"make" + 0.004*"impact" + 0.004*"foster" -2024-07-15 10:46:35,578 - topic #2 (0.333): 0.014*"’" + 0.006*"well" + 0.005*"need" + 0.004*"quality" + 0.004*"leaders" + 0.004*"needs" + 0.004*"impact" + 0.003*"make" + 0.003*"understand" + 0.003*"protection" -2024-07-15 10:46:35,578 - topic diff=0.733480, rho=1.000000 -2024-07-15 10:46:35,578 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:35.578865', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:36,819 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:36,819 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:36,820 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:36,820 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:36,820 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:36,820 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:36,820 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:36,820 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:36,821 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:36,821 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:36,821 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:36,821 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:38,262 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:38,264 - built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions) -2024-07-15 10:46:38,265 - Dictionary lifecycle event {'msg': "built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions)", 'datetime': '2024-07-15T10:46:38.265079', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:38,266 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:38,266 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:38,266 - using serial LDA version on this node -2024-07-15 10:46:38,267 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:38,267 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:38,271 - -8.145 per-word bound, 283.1 perplexity estimate based on a held-out corpus of 1 documents with 2759 words -2024-07-15 10:46:38,271 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:38,272 - topic #0 (0.333): 0.012*"’" + 0.008*"well" + 0.006*"family" + 0.006*"Yorkshire" + 0.005*"needs" + 0.005*"North" + 0.004*"‘" + 0.004*"practice" + 0.004*"supported" + 0.004*"7" -2024-07-15 10:46:38,273 - topic #1 (0.333): 0.022*"’" + 0.009*"well" + 0.006*"North" + 0.006*"practice" + 0.006*"Yorkshire" + 0.006*"family" + 0.005*"needs" + 0.005*"‘" + 0.004*"3" + 0.004*"7" -2024-07-15 10:46:38,273 - topic #2 (0.333): 0.024*"’" + 0.008*"well" + 0.007*"North" + 0.007*"practice" + 0.006*"Yorkshire" + 0.006*"needs" + 0.005*"family" + 0.005*"‘" + 0.005*"3" + 0.005*"supported" -2024-07-15 10:46:38,273 - topic diff=0.807619, rho=1.000000 -2024-07-15 10:46:38,273 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:38.273562', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:39,444 - Inspection date 2023-07-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:39,444 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:39,445 - Inspection date 2023-07-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:39,445 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:39,445 - Inspection date 2023-07-03 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:39,445 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:39,445 - Inspection date 2023-07-03 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:39,446 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:39,446 - Inspection date 2023-07-03 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:39,446 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:39,446 - Inspection date 2023-07-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:39,446 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:40,980 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:40,982 - built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions) -2024-07-15 10:46:40,982 - Dictionary lifecycle event {'msg': "built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions)", 'datetime': '2024-07-15T10:46:40.982896', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:40,984 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:40,984 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:40,984 - using serial LDA version on this node -2024-07-15 10:46:40,984 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:40,984 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:40,988 - -8.072 per-word bound, 269.2 perplexity estimate based on a held-out corpus of 1 documents with 2884 words -2024-07-15 10:46:40,988 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:40,990 - topic #0 (0.333): 0.016*"’" + 0.006*"needs" + 0.006*"family" + 0.005*"strong" + 0.005*"provide" + 0.005*"leaders" + 0.005*"well" + 0.005*"experiences" + 0.005*"Northumberland" + 0.005*"plans" -2024-07-15 10:46:40,990 - topic #1 (0.333): 0.017*"’" + 0.009*"family" + 0.008*"leaders" + 0.007*"needs" + 0.007*"experiences" + 0.006*"well" + 0.006*"Northumberland" + 0.005*"within" + 0.005*"strong" + 0.005*"plans" -2024-07-15 10:46:40,990 - topic #2 (0.333): 0.022*"’" + 0.007*"strong" + 0.007*"family" + 0.006*"experiences" + 0.006*"leaders" + 0.006*"needs" + 0.005*"effective" + 0.005*"well" + 0.005*"Northumberland" + 0.005*"practice" -2024-07-15 10:46:40,990 - topic diff=0.837580, rho=1.000000 -2024-07-15 10:46:40,990 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:40.990962', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:42,298 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:42,298 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:42,299 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:42,299 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:42,299 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:42,299 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:42,300 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:42,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:42,300 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:42,300 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:42,300 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:42,301 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:43,961 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:43,963 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) -2024-07-15 10:46:43,964 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-07-15T10:46:43.964141', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:43,965 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:43,965 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:43,965 - using serial LDA version on this node -2024-07-15 10:46:43,966 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:43,966 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:43,969 - -8.027 per-word bound, 260.8 perplexity estimate based on a held-out corpus of 1 documents with 2316 words -2024-07-15 10:46:43,969 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:43,971 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.005*"effective" + 0.005*"Nottingham" + 0.005*"July" + 0.005*"oversight" + 0.005*"impact" + 0.005*"11" + 0.004*"2022" + 0.004*"risk" -2024-07-15 10:46:43,971 - topic #1 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"effective" + 0.007*"plans" + 0.006*"Nottingham" + 0.005*"impact" + 0.005*"However" + 0.005*"11" + 0.005*"risk" + 0.004*"City" -2024-07-15 10:46:43,971 - topic #2 (0.333): 0.015*"’" + 0.006*"needs" + 0.006*"Nottingham" + 0.005*"City" + 0.005*"oversight" + 0.005*"plans" + 0.004*"practice" + 0.004*"impact" + 0.004*"11" + 0.004*"July" -2024-07-15 10:46:43,971 - topic diff=0.768551, rho=1.000000 -2024-07-15 10:46:43,972 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:43.971996', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:44,927 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:44,928 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:44,928 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:44,928 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:44,928 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:44,929 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:44,929 - Inspection date None / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:44,929 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:44,929 - Inspection date None / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:44,930 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:44,930 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:44,930 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:46,132 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:46,134 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions) -2024-07-15 10:46:46,134 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions)", 'datetime': '2024-07-15T10:46:46.134921', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:46,135 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:46,136 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:46,136 - using serial LDA version on this node -2024-07-15 10:46:46,136 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:46,136 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:46,140 - -8.014 per-word bound, 258.5 perplexity estimate based on a held-out corpus of 1 documents with 2129 words -2024-07-15 10:46:46,140 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:46,141 - topic #0 (0.333): 0.014*"’" + 0.010*"well" + 0.009*"needs" + 0.007*"Nottinghamshire" + 0.006*"plans" + 0.005*"20" + 0.005*"benefit" + 0.005*"2024" + 0.004*"education" + 0.004*"Leaders" -2024-07-15 10:46:46,141 - topic #1 (0.333): 0.011*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"Nottinghamshire" + 0.005*"plans" + 0.005*"24" + 0.004*"Leaders" + 0.004*"benefit" + 0.004*"May" + 0.004*"County" -2024-07-15 10:46:46,141 - topic #2 (0.333): 0.025*"’" + 0.009*"well" + 0.009*"needs" + 0.006*"plans" + 0.006*"Nottinghamshire" + 0.006*"effective" + 0.005*"leaders" + 0.005*"practice" + 0.005*"Leaders" + 0.005*"ensure" -2024-07-15 10:46:46,142 - topic diff=0.765884, rho=1.000000 -2024-07-15 10:46:46,142 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:46.142125', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:47,098 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:47,098 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:47,098 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:47,099 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:47,099 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:47,099 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:47,099 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:47,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:47,100 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:47,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:47,100 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:47,101 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:48,447 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:48,449 - built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions) -2024-07-15 10:46:48,449 - Dictionary lifecycle event {'msg': "built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions)", 'datetime': '2024-07-15T10:46:48.449886', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:48,450 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:48,451 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:48,451 - using serial LDA version on this node -2024-07-15 10:46:48,451 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:48,451 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:48,455 - -8.083 per-word bound, 271.1 perplexity estimate based on a held-out corpus of 1 documents with 2441 words -2024-07-15 10:46:48,455 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:48,456 - topic #0 (0.333): 0.011*"’" + 0.009*"well" + 0.007*"plans" + 0.006*"needs" + 0.006*"Oldham" + 0.005*"practice" + 0.005*"PAs" + 0.005*"effective" + 0.005*"need" + 0.005*"progress" -2024-07-15 10:46:48,457 - topic #1 (0.333): 0.010*"’" + 0.009*"plans" + 0.007*"well" + 0.006*"practice" + 0.005*"Oldham" + 0.005*"supported" + 0.005*"leaders" + 0.005*"quality" + 0.005*"needs" + 0.004*"PAs" -2024-07-15 10:46:48,457 - topic #2 (0.333): 0.016*"’" + 0.009*"plans" + 0.008*"well" + 0.007*"needs" + 0.007*"PAs" + 0.006*"leaders" + 0.006*"Oldham" + 0.006*"practice" + 0.005*"progress" + 0.005*"risk" -2024-07-15 10:46:48,457 - topic diff=0.792929, rho=1.000000 -2024-07-15 10:46:48,457 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:48.457566', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:49,489 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:49,489 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:49,489 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:49,489 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:49,489 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:49,489 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:49,490 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:49,490 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:49,490 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:49,490 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:49,490 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:49,490 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:50,817 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:50,819 - built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions) -2024-07-15 10:46:50,819 - Dictionary lifecycle event {'msg': "built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions)", 'datetime': '2024-07-15T10:46:50.819813', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:50,820 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:50,820 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:50,821 - using serial LDA version on this node -2024-07-15 10:46:50,821 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:50,821 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:50,825 - -7.992 per-word bound, 254.5 perplexity estimate based on a held-out corpus of 1 documents with 2294 words -2024-07-15 10:46:50,825 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:50,826 - topic #0 (0.333): 0.019*"’" + 0.010*"needs" + 0.007*"Oxfordshire" + 0.006*"well" + 0.006*"12" + 0.006*"risk" + 0.005*"receive" + 0.005*"supported" + 0.005*"progress" + 0.004*"arrangements" -2024-07-15 10:46:50,827 - topic #1 (0.333): 0.019*"’" + 0.010*"needs" + 0.007*"Oxfordshire" + 0.007*"good" + 0.006*"well" + 0.006*"risk" + 0.005*"education" + 0.005*"12" + 0.005*"supported" + 0.005*"progress" -2024-07-15 10:46:50,827 - topic #2 (0.333): 0.020*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"supported" + 0.006*"Oxfordshire" + 0.006*"quality" + 0.005*"good" + 0.005*"risk" + 0.005*"practice" + 0.004*"progress" -2024-07-15 10:46:50,827 - topic diff=0.773917, rho=1.000000 -2024-07-15 10:46:50,827 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:50.827467', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:51,783 - Inspection date 2024-02-12 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:51,783 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:51,784 - Inspection date 2024-02-12 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:51,784 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:51,784 - Inspection date 2024-02-12 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:51,784 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:51,784 - Inspection date 2024-02-12 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:51,785 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:51,785 - Inspection date 2024-02-12 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:51,785 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:51,785 - Inspection date 2024-02-12 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:51,785 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:53,512 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:53,514 - built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions) -2024-07-15 10:46:53,514 - Dictionary lifecycle event {'msg': "built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions)", 'datetime': '2024-07-15T10:46:53.514923', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:53,515 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:53,515 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:53,516 - using serial LDA version on this node -2024-07-15 10:46:53,516 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:53,516 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:53,519 - -7.883 per-word bound, 236.1 perplexity estimate based on a held-out corpus of 1 documents with 1737 words -2024-07-15 10:46:53,519 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:53,521 - topic #0 (0.333): 0.012*"’" + 0.010*"needs" + 0.007*"well" + 0.006*"need" + 0.006*"Peterborough" + 0.006*"2023" + 0.005*"good" + 0.005*"progress" + 0.005*"8" + 0.004*"supported" -2024-07-15 10:46:53,521 - topic #1 (0.333): 0.016*"’" + 0.015*"needs" + 0.008*"need" + 0.008*"Peterborough" + 0.007*"2023" + 0.006*"progress" + 0.006*"plans" + 0.005*"8" + 0.005*"well" + 0.005*"supported" -2024-07-15 10:46:53,521 - topic #2 (0.333): 0.015*"’" + 0.014*"needs" + 0.006*"Peterborough" + 0.006*"well" + 0.006*"need" + 0.005*"good" + 0.005*"progress" + 0.005*"supported" + 0.005*"education" + 0.005*"receive" -2024-07-15 10:46:53,521 - topic diff=0.732124, rho=1.000000 -2024-07-15 10:46:53,521 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:53.521569', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:54,485 - Inspection date 2023-11-27 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:54,485 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:54,485 - Inspection date 2023-11-27 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:54,485 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:54,486 - Inspection date 2023-11-27 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:54,486 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:54,486 - Inspection date 2023-11-27 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:54,486 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:54,486 - Inspection date 2023-11-27 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:54,486 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:54,486 - Inspection date 2023-11-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:54,487 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:56,106 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:56,109 - built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) -2024-07-15 10:46:56,109 - Dictionary lifecycle event {'msg': "built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-07-15T10:46:56.109235', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:56,110 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:56,110 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:56,110 - using serial LDA version on this node -2024-07-15 10:46:56,111 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:56,111 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:56,115 - -8.088 per-word bound, 272.0 perplexity estimate based on a held-out corpus of 1 documents with 2905 words -2024-07-15 10:46:56,115 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:56,117 - topic #0 (0.333): 0.011*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"Plymouth" + 0.006*"practice" + 0.005*"appropriate" + 0.005*"February" + 0.005*"plans" + 0.005*"2" + 0.005*"Council" -2024-07-15 10:46:56,117 - topic #1 (0.333): 0.012*"’" + 0.006*"well" + 0.006*"needs" + 0.006*"Plymouth" + 0.005*"practice" + 0.004*"January" + 0.004*"2024" + 0.004*"plans" + 0.004*"benefit" + 0.004*"appropriate" -2024-07-15 10:46:56,117 - topic #2 (0.333): 0.016*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"Plymouth" + 0.006*"education" + 0.005*"good" + 0.005*"2" + 0.005*"risks" + 0.004*"plans" + 0.004*"practice" -2024-07-15 10:46:56,117 - topic diff=0.839530, rho=1.000000 -2024-07-15 10:46:56,117 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:56.117580', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:57,034 - Inspection date 2024-01-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:57,034 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:57,035 - Inspection date 2024-01-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:57,035 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:57,035 - Inspection date 2024-01-22 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:57,036 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:57,036 - Inspection date 2024-01-22 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:57,036 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:57,036 - Inspection date 2024-01-22 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:57,036 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:57,036 - Inspection date 2024-01-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:57,036 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:58,752 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:46:58,755 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions) -2024-07-15 10:46:58,755 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions)", 'datetime': '2024-07-15T10:46:58.755350', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:58,756 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:46:58,756 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:46:58,756 - using serial LDA version on this node -2024-07-15 10:46:58,757 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:46:58,757 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:46:58,762 - -8.113 per-word bound, 276.8 perplexity estimate based on a held-out corpus of 1 documents with 2738 words -2024-07-15 10:46:58,762 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:46:58,764 - topic #0 (0.333): 0.018*"’" + 0.008*"well" + 0.008*"care-experienced" + 0.007*"needs" + 0.006*"plans" + 0.005*"Portsmouth" + 0.005*"health" + 0.005*"practice" + 0.005*"19" + 0.004*"good" -2024-07-15 10:46:58,764 - topic #1 (0.333): 0.015*"’" + 0.008*"care-experienced" + 0.007*"Portsmouth" + 0.006*"needs" + 0.006*"family" + 0.005*"need" + 0.005*"practice" + 0.005*"2023" + 0.004*"plans" + 0.004*"well" -2024-07-15 10:46:58,764 - topic #2 (0.333): 0.018*"’" + 0.009*"well" + 0.008*"care-experienced" + 0.008*"Portsmouth" + 0.006*"needs" + 0.006*"family" + 0.006*"health" + 0.005*"plans" + 0.004*"progress" + 0.004*"leaders" -2024-07-15 10:46:58,764 - topic diff=0.793634, rho=1.000000 -2024-07-15 10:46:58,764 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:46:58.764972', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:46:59,876 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:46:59,876 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:59,877 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:46:59,877 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:59,877 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:46:59,877 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:59,877 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:46:59,878 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:59,878 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:46:59,878 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:46:59,878 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:46:59,878 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:01,168 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:01,170 - built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions) -2024-07-15 10:47:01,171 - Dictionary lifecycle event {'msg': "built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions)", 'datetime': '2024-07-15T10:47:01.171107', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:01,172 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:01,172 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:01,172 - using serial LDA version on this node -2024-07-15 10:47:01,173 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:01,173 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:01,177 - -8.158 per-word bound, 285.7 perplexity estimate based on a held-out corpus of 1 documents with 2562 words -2024-07-15 10:47:01,177 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:01,179 - topic #0 (0.333): 0.011*"’" + 0.005*"needs" + 0.005*"well" + 0.005*"plans" + 0.005*"Reading" + 0.005*"progress" + 0.004*"PAs" + 0.004*"2024" + 0.003*"practice" + 0.003*"3" -2024-07-15 10:47:01,179 - topic #1 (0.333): 0.014*"’" + 0.008*"needs" + 0.005*"PAs" + 0.005*"Reading" + 0.005*"progress" + 0.005*"22" + 0.005*"clear" + 0.005*"well" + 0.004*"3" + 0.004*"plans" -2024-07-15 10:47:01,179 - topic #2 (0.333): 0.017*"’" + 0.006*"PAs" + 0.006*"needs" + 0.005*"plans" + 0.005*"well" + 0.005*"progress" + 0.005*"arrangements" + 0.004*"effective" + 0.004*"2024" + 0.004*"risk" -2024-07-15 10:47:01,179 - topic diff=0.764295, rho=1.000000 -2024-07-15 10:47:01,179 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:01.179905', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:02,177 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:02,177 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:02,177 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:02,177 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:02,178 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:02,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:02,178 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:02,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:02,178 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:02,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:02,178 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:02,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:04,261 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:04,265 - built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions) -2024-07-15 10:47:04,265 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions)", 'datetime': '2024-07-15T10:47:04.265481', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:04,267 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:04,267 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:04,268 - using serial LDA version on this node -2024-07-15 10:47:04,268 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:04,268 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:04,275 - -8.007 per-word bound, 257.2 perplexity estimate based on a held-out corpus of 1 documents with 2515 words -2024-07-15 10:47:04,275 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:04,277 - topic #0 (0.333): 0.016*"’" + 0.007*"leaders" + 0.006*"However" + 0.006*"practice" + 0.006*"needs" + 0.006*"consistently" + 0.005*"plans" + 0.005*"Cleveland" + 0.005*"2022" + 0.005*"July" -2024-07-15 10:47:04,277 - topic #1 (0.333): 0.015*"’" + 0.006*"needs" + 0.005*"leaders" + 0.005*"However" + 0.005*"Cleveland" + 0.005*"risk" + 0.005*"consistently" + 0.005*"Redcar" + 0.004*"plans" + 0.004*"practice" -2024-07-15 10:47:04,277 - topic #2 (0.333): 0.021*"’" + 0.007*"plans" + 0.006*"leaders" + 0.006*"20" + 0.005*"2022" + 0.005*"However" + 0.005*"consistently" + 0.005*"needs" + 0.005*"carers" + 0.004*"risk" -2024-07-15 10:47:04,278 - topic diff=0.798595, rho=1.000000 -2024-07-15 10:47:04,278 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:04.278416', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:05,248 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:05,248 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:05,248 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:05,248 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:05,249 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:05,249 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:05,249 - Inspection date None / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:05,249 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:05,249 - Inspection date None / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:05,249 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:05,250 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:05,250 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:06,646 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:06,648 - built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions) -2024-07-15 10:47:06,648 - Dictionary lifecycle event {'msg': "built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions)", 'datetime': '2024-07-15T10:47:06.648751', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:06,649 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:06,650 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:06,650 - using serial LDA version on this node -2024-07-15 10:47:06,650 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:06,650 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:06,654 - -8.026 per-word bound, 260.7 perplexity estimate based on a held-out corpus of 1 documents with 2656 words -2024-07-15 10:47:06,654 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:06,656 - topic #0 (0.333): 0.019*"’" + 0.008*"experienced" + 0.007*"practice" + 0.006*"response" + 0.006*"needs" + 0.006*"plans" + 0.005*"good" + 0.005*"quality" + 0.005*"consistently" + 0.004*"need" -2024-07-15 10:47:06,656 - topic #1 (0.333): 0.017*"’" + 0.009*"experienced" + 0.008*"needs" + 0.007*"practice" + 0.006*"consistently" + 0.006*"plans" + 0.006*"response" + 0.005*"Rochdale" + 0.005*"quality" + 0.005*"well" -2024-07-15 10:47:06,656 - topic #2 (0.333): 0.024*"’" + 0.011*"experienced" + 0.009*"needs" + 0.009*"practice" + 0.006*"response" + 0.006*"plans" + 0.005*"consistently" + 0.005*"good" + 0.005*"quality" + 0.005*"Rochdale" -2024-07-15 10:47:06,656 - topic diff=0.820674, rho=1.000000 -2024-07-15 10:47:06,656 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:06.656912', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:07,638 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:07,638 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:07,639 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:07,639 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:07,639 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:07,639 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:07,639 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:07,639 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:07,640 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:07,640 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:07,640 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:07,640 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:08,966 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:08,969 - built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions) -2024-07-15 10:47:08,969 - Dictionary lifecycle event {'msg': "built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions)", 'datetime': '2024-07-15T10:47:08.969219', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:08,970 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:08,970 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:08,970 - using serial LDA version on this node -2024-07-15 10:47:08,971 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:08,971 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:08,975 - -8.063 per-word bound, 267.5 perplexity estimate based on a held-out corpus of 1 documents with 2366 words -2024-07-15 10:47:08,975 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:08,977 - topic #0 (0.333): 0.013*"’" + 0.007*"needs" + 0.007*"Rotherham" + 0.005*"well" + 0.005*"plans" + 0.004*"good" + 0.004*"Council" + 0.004*"clear" + 0.004*"ensure" + 0.004*"protection" -2024-07-15 10:47:08,977 - topic #1 (0.333): 0.018*"’" + 0.010*"Rotherham" + 0.006*"needs" + 0.005*"However" + 0.005*"good" + 0.005*"Council" + 0.005*"well" + 0.005*"1" + 0.005*"ensure" + 0.004*"27" -2024-07-15 10:47:08,977 - topic #2 (0.333): 0.014*"’" + 0.009*"Rotherham" + 0.005*"needs" + 0.005*"well" + 0.005*"ensure" + 0.005*"good" + 0.004*"Council" + 0.004*"However" + 0.004*"2022" + 0.004*"clear" -2024-07-15 10:47:08,977 - topic diff=0.769773, rho=1.000000 -2024-07-15 10:47:08,977 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:08.977682', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:10,287 - Inspection date 2022-06-27 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:10,287 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:10,287 - Inspection date 2022-06-27 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:10,288 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:10,288 - Inspection date 2022-06-27 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:10,288 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:10,288 - Inspection date 2022-06-27 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:10,288 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:10,288 - Inspection date 2022-06-27 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:10,288 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:10,289 - Inspection date 2022-06-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:10,289 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:11,571 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:11,574 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions) -2024-07-15 10:47:11,574 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions)", 'datetime': '2024-07-15T10:47:11.574909', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:11,576 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:11,576 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:11,576 - using serial LDA version on this node -2024-07-15 10:47:11,576 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:11,576 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:11,580 - -8.047 per-word bound, 264.5 perplexity estimate based on a held-out corpus of 1 documents with 2380 words -2024-07-15 10:47:11,580 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:11,582 - topic #0 (0.333): 0.012*"’" + 0.010*"well" + 0.007*"practice" + 0.006*"highly" + 0.005*"strong" + 0.005*"effective" + 0.004*"needs" + 0.004*"leaders" + 0.004*"high" + 0.004*"professionals" -2024-07-15 10:47:11,582 - topic #1 (0.333): 0.012*"well" + 0.011*"’" + 0.008*"practice" + 0.006*"highly" + 0.005*"effective" + 0.004*"strong" + 0.004*"needs" + 0.004*"improve" + 0.004*"need" + 0.004*"leaders" -2024-07-15 10:47:11,582 - topic #2 (0.333): 0.016*"well" + 0.014*"practice" + 0.012*"’" + 0.008*"highly" + 0.008*"strong" + 0.007*"needs" + 0.006*"leaders" + 0.005*"effective" + 0.005*"professionals" + 0.005*"high" -2024-07-15 10:47:11,582 - topic diff=0.780428, rho=1.000000 -2024-07-15 10:47:11,582 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:11.582842', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:12,712 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:12,712 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:12,713 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:12,713 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:12,713 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:12,713 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:12,713 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:12,713 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:12,713 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:12,713 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:12,714 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:12,714 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:14,522 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:14,524 - built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions) -2024-07-15 10:47:14,525 - Dictionary lifecycle event {'msg': "built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions)", 'datetime': '2024-07-15T10:47:14.525055', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:14,526 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:14,526 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:14,526 - using serial LDA version on this node -2024-07-15 10:47:14,526 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:14,526 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:14,530 - -8.068 per-word bound, 268.4 perplexity estimate based on a held-out corpus of 1 documents with 2257 words -2024-07-15 10:47:14,530 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:14,532 - topic #0 (0.333): 0.013*"’" + 0.009*"well" + 0.007*"plans" + 0.006*"needs" + 0.005*"practice" + 0.005*"effective" + 0.005*"supported" + 0.005*"progress" + 0.004*"clear" + 0.004*"good" -2024-07-15 10:47:14,532 - topic #1 (0.333): 0.016*"’" + 0.010*"well" + 0.009*"plans" + 0.008*"needs" + 0.005*"good" + 0.005*"need" + 0.004*"risk" + 0.004*"clear" + 0.004*"practice" + 0.004*"range" -2024-07-15 10:47:14,532 - topic #2 (0.333): 0.012*"’" + 0.008*"plans" + 0.008*"needs" + 0.007*"well" + 0.006*"good" + 0.005*"effective" + 0.005*"parents" + 0.004*"need" + 0.004*"range" + 0.004*"appropriate" -2024-07-15 10:47:14,532 - topic diff=0.752665, rho=1.000000 -2024-07-15 10:47:14,532 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:14.532645', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:15,792 - Inspection date 2019-10-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:15,792 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:15,793 - Inspection date 2019-10-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:15,793 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:15,793 - Inspection date 2019-10-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:15,793 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:15,794 - Inspection date 2019-10-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:15,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:15,794 - Inspection date 2019-10-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:15,794 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:15,795 - Inspection date 2019-10-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:15,795 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:17,154 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:17,157 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions) -2024-07-15 10:47:17,157 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions)", 'datetime': '2024-07-15T10:47:17.157204', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:17,159 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:17,159 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:17,160 - using serial LDA version on this node -2024-07-15 10:47:17,160 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:17,160 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:17,167 - -8.116 per-word bound, 277.4 perplexity estimate based on a held-out corpus of 1 documents with 2088 words -2024-07-15 10:47:17,167 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:17,169 - topic #0 (0.333): 0.013*"’" + 0.005*"plans" + 0.004*"benefit" + 0.004*"quality" + 0.004*"needs" + 0.004*"well" + 0.004*"actions" + 0.004*"information" + 0.004*"However" + 0.004*"health" -2024-07-15 10:47:17,169 - topic #1 (0.333): 0.011*"’" + 0.006*"well" + 0.005*"quality" + 0.005*"needs" + 0.005*"plans" + 0.004*"always" + 0.004*"information" + 0.004*"benefit" + 0.004*"effective" + 0.004*"need" -2024-07-15 10:47:17,169 - topic #2 (0.333): 0.011*"’" + 0.006*"well" + 0.005*"needs" + 0.005*"quality" + 0.004*"use" + 0.004*"effective" + 0.004*"plans" + 0.004*"However" + 0.004*"informed" + 0.003*"information" -2024-07-15 10:47:17,169 - topic diff=0.714410, rho=1.000000 -2024-07-15 10:47:17,169 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:17.169889', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:18,427 - Inspection date 2020-01-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:18,427 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:18,427 - Inspection date 2020-01-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:18,427 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:18,428 - Inspection date 2020-01-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:18,428 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:18,428 - Inspection date 2020-01-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:18,428 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:18,428 - Inspection date 2020-01-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:18,428 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:18,429 - Inspection date 2020-01-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:18,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:20,028 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:20,032 - built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions) -2024-07-15 10:47:20,032 - Dictionary lifecycle event {'msg': "built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions)", 'datetime': '2024-07-15T10:47:20.032264', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:20,033 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:20,033 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:20,033 - using serial LDA version on this node -2024-07-15 10:47:20,034 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:20,034 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:20,038 - -8.053 per-word bound, 265.5 perplexity estimate based on a held-out corpus of 1 documents with 2211 words -2024-07-15 10:47:20,038 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:20,039 - topic #0 (0.333): 0.018*"’" + 0.010*"Rutland" + 0.007*"needs" + 0.006*"positive" + 0.006*"impact" + 0.005*"need" + 0.005*"family" + 0.005*"plans" + 0.004*"understand" + 0.004*"effective" -2024-07-15 10:47:20,040 - topic #1 (0.333): 0.018*"’" + 0.007*"Rutland" + 0.007*"needs" + 0.006*"plans" + 0.006*"need" + 0.005*"positive" + 0.005*"effective" + 0.004*"good" + 0.004*"experiences" + 0.004*"impact" -2024-07-15 10:47:20,040 - topic #2 (0.333): 0.019*"’" + 0.009*"effective" + 0.009*"Rutland" + 0.008*"needs" + 0.007*"impact" + 0.005*"practice" + 0.005*"plans" + 0.005*"2024" + 0.005*"positive" + 0.005*"good" -2024-07-15 10:47:20,040 - topic diff=0.765814, rho=1.000000 -2024-07-15 10:47:20,040 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:20.040966', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:21,092 - Inspection date 2024-04-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:21,092 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:21,092 - Inspection date 2024-04-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:21,093 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:21,093 - Inspection date 2024-04-15 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:21,093 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:21,093 - Inspection date 2024-04-15 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:21,093 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:21,094 - Inspection date 2024-04-15 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:21,094 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:21,094 - Inspection date 2024-04-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:21,094 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:22,237 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:22,240 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions) -2024-07-15 10:47:22,240 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions)", 'datetime': '2024-07-15T10:47:22.240300', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:22,241 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:22,241 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:22,241 - using serial LDA version on this node -2024-07-15 10:47:22,242 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:22,242 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:22,245 - -8.012 per-word bound, 258.1 perplexity estimate based on a held-out corpus of 1 documents with 2253 words -2024-07-15 10:47:22,245 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:22,247 - topic #0 (0.333): 0.012*"’" + 0.008*"plans" + 0.006*"well" + 0.005*"Salford" + 0.005*"needs" + 0.005*"effective" + 0.005*"leaders" + 0.004*"practice" + 0.004*"planning" + 0.004*"progress" -2024-07-15 10:47:22,247 - topic #1 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"plans" + 0.007*"well" + 0.007*"effective" + 0.007*"Salford" + 0.005*"planning" + 0.005*"practice" + 0.005*"progress" + 0.005*"quality" -2024-07-15 10:47:22,247 - topic #2 (0.333): 0.011*"’" + 0.008*"well" + 0.007*"needs" + 0.007*"plans" + 0.007*"effective" + 0.005*"practice" + 0.005*"10" + 0.005*"planning" + 0.005*"Salford" + 0.005*"Council" -2024-07-15 10:47:22,247 - topic diff=0.792773, rho=1.000000 -2024-07-15 10:47:22,247 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:22.247909', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:23,149 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:23,149 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:23,149 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:23,149 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:23,150 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:23,150 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:23,150 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:23,150 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:23,150 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:23,150 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:23,151 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:23,151 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:25,063 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:25,066 - built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions) -2024-07-15 10:47:25,066 - Dictionary lifecycle event {'msg': "built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions)", 'datetime': '2024-07-15T10:47:25.066203', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:25,067 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:25,067 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:25,067 - using serial LDA version on this node -2024-07-15 10:47:25,067 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:25,068 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:25,071 - -7.946 per-word bound, 246.6 perplexity estimate based on a held-out corpus of 1 documents with 2066 words -2024-07-15 10:47:25,071 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:25,072 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"Sandwell" + 0.006*"well" + 0.006*"plans" + 0.005*"quality" + 0.005*"effective" + 0.005*"20" + 0.005*"good" + 0.005*"many" -2024-07-15 10:47:25,073 - topic #1 (0.333): 0.014*"’" + 0.008*"plans" + 0.008*"Sandwell" + 0.008*"well" + 0.007*"needs" + 0.006*"quality" + 0.005*"Trust" + 0.005*"9" + 0.005*"education" + 0.005*"number" -2024-07-15 10:47:25,073 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.006*"plans" + 0.006*"quality" + 0.005*"Sandwell" + 0.005*"well" + 0.004*"number" + 0.004*"20" + 0.004*"education" + 0.004*"Trust" -2024-07-15 10:47:25,073 - topic diff=0.766446, rho=1.000000 -2024-07-15 10:47:25,073 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:25.073500', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:25,961 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:25,961 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:25,962 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:25,962 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:25,962 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:25,962 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:25,962 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:25,963 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:25,963 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:25,963 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:25,963 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:25,963 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:27,710 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:27,712 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions) -2024-07-15 10:47:27,713 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions)", 'datetime': '2024-07-15T10:47:27.712995', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:27,714 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:27,714 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:27,714 - using serial LDA version on this node -2024-07-15 10:47:27,714 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:27,714 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:27,718 - -7.928 per-word bound, 243.5 perplexity estimate based on a held-out corpus of 1 documents with 2300 words -2024-07-15 10:47:27,718 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:27,719 - topic #0 (0.333): 0.015*"’" + 0.007*"needs" + 0.006*"practice" + 0.005*"March" + 0.005*"lack" + 0.005*"21" + 0.005*"including" + 0.005*"protection" + 0.004*"l" + 0.004*"Sefton" -2024-07-15 10:47:27,720 - topic #1 (0.333): 0.016*"’" + 0.012*"needs" + 0.006*"oversight" + 0.006*"practice" + 0.006*"including" + 0.005*"protection" + 0.005*"plans" + 0.005*"lack" + 0.005*"many" + 0.004*"Sefton" -2024-07-15 10:47:27,720 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.006*"practice" + 0.006*"oversight" + 0.006*"◼" + 0.005*"management" + 0.005*"always" + 0.005*"planning" + 0.005*"4" + 0.005*"many" -2024-07-15 10:47:27,720 - topic diff=0.787522, rho=1.000000 -2024-07-15 10:47:27,720 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:27.720398', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:28,708 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:28,708 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:28,708 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:28,709 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:28,709 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:28,709 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:28,709 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:28,709 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:28,709 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:28,709 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:28,710 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:28,710 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:30,127 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:30,129 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions) -2024-07-15 10:47:30,130 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions)", 'datetime': '2024-07-15T10:47:30.130011', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:30,131 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:30,131 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:30,131 - using serial LDA version on this node -2024-07-15 10:47:30,131 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:30,131 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:30,135 - -8.068 per-word bound, 268.3 perplexity estimate based on a held-out corpus of 1 documents with 2327 words -2024-07-15 10:47:30,136 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:30,137 - topic #0 (0.333): 0.020*"’" + 0.010*"Sheffield" + 0.007*"needs" + 0.005*"quality" + 0.005*"well" + 0.005*"good" + 0.005*"health" + 0.004*"11" + 0.004*"leaders" + 0.004*"receive" -2024-07-15 10:47:30,137 - topic #1 (0.333): 0.023*"’" + 0.011*"Sheffield" + 0.009*"well" + 0.008*"needs" + 0.007*"practice" + 0.006*"leaders" + 0.005*"health" + 0.004*"quality" + 0.004*"experiences" + 0.004*"11" -2024-07-15 10:47:30,137 - topic #2 (0.333): 0.018*"’" + 0.012*"Sheffield" + 0.010*"needs" + 0.006*"leaders" + 0.006*"practice" + 0.006*"health" + 0.006*"well" + 0.005*"mental" + 0.004*"plans" + 0.004*"right" -2024-07-15 10:47:30,137 - topic diff=0.766788, rho=1.000000 -2024-07-15 10:47:30,138 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:30.138051', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:31,185 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:31,185 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:31,185 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:31,185 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:31,185 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:31,186 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:31,186 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:31,186 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:31,186 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:31,186 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:31,186 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:31,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:32,435 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:32,438 - built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions) -2024-07-15 10:47:32,439 - Dictionary lifecycle event {'msg': "built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions)", 'datetime': '2024-07-15T10:47:32.439072', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:32,440 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:32,440 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:32,441 - using serial LDA version on this node -2024-07-15 10:47:32,441 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:32,442 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:32,447 - -7.956 per-word bound, 248.3 perplexity estimate based on a held-out corpus of 1 documents with 1749 words -2024-07-15 10:47:32,447 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:32,449 - topic #0 (0.333): 0.022*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"progress" + 0.006*"Shropshire" + 0.006*"plans" + 0.005*"making" + 0.005*"2022" + 0.005*"effectively" + 0.005*"leaders" -2024-07-15 10:47:32,450 - topic #1 (0.333): 0.014*"’" + 0.007*"Shropshire" + 0.006*"needs" + 0.006*"well" + 0.005*"training" + 0.005*"progress" + 0.005*"making" + 0.005*"2022" + 0.005*"7" + 0.005*"11" -2024-07-15 10:47:32,450 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.007*"Shropshire" + 0.006*"well" + 0.006*"plans" + 0.004*"2022" + 0.004*"practice" + 0.004*"progress" + 0.004*"need" + 0.004*"health" -2024-07-15 10:47:32,450 - topic diff=0.728475, rho=1.000000 -2024-07-15 10:47:32,450 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:32.450715', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:33,422 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:33,422 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:33,422 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:33,422 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:33,422 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:33,422 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:33,423 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:33,423 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:33,423 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:33,424 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:33,424 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:33,424 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:35,001 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:35,005 - built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions) -2024-07-15 10:47:35,005 - Dictionary lifecycle event {'msg': "built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-07-15T10:47:35.005624', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:35,007 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:35,007 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:35,008 - using serial LDA version on this node -2024-07-15 10:47:35,008 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:35,008 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:35,014 - -8.048 per-word bound, 264.6 perplexity estimate based on a held-out corpus of 1 documents with 2352 words -2024-07-15 10:47:35,014 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:35,017 - topic #0 (0.333): 0.014*"’" + 0.007*"Slough" + 0.007*"plans" + 0.006*"quality" + 0.006*"needs" + 0.005*"3" + 0.005*"impact" + 0.005*"However" + 0.004*"supported" + 0.004*"leaders" -2024-07-15 10:47:35,017 - topic #1 (0.333): 0.016*"’" + 0.009*"Slough" + 0.007*"practice" + 0.006*"quality" + 0.006*"needs" + 0.005*"plans" + 0.005*"leaders" + 0.005*"3" + 0.005*"23" + 0.004*"2023" -2024-07-15 10:47:35,017 - topic #2 (0.333): 0.017*"’" + 0.007*"Slough" + 0.007*"needs" + 0.006*"plans" + 0.005*"quality" + 0.005*"practice" + 0.005*"progress" + 0.005*"planning" + 0.005*"impact" + 0.005*"need" -2024-07-15 10:47:35,017 - topic diff=0.780968, rho=1.000000 -2024-07-15 10:47:35,018 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:35.018013', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:36,094 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:36,094 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:36,094 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:36,094 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:36,095 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:36,095 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:36,095 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:36,095 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:36,095 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:36,095 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:36,096 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:36,096 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:37,553 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:37,556 - built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions) -2024-07-15 10:47:37,556 - Dictionary lifecycle event {'msg': "built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions)", 'datetime': '2024-07-15T10:47:37.556632', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:37,557 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:37,557 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:37,558 - using serial LDA version on this node -2024-07-15 10:47:37,558 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:37,558 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:37,562 - -7.918 per-word bound, 241.9 perplexity estimate based on a held-out corpus of 1 documents with 2163 words -2024-07-15 10:47:37,562 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:37,564 - topic #0 (0.333): 0.018*"’" + 0.012*"lack" + 0.008*"2022" + 0.006*"quality" + 0.006*"experiences" + 0.006*"need" + 0.006*"risk" + 0.006*"effective" + 0.006*"Solihull" + 0.005*"practice" -2024-07-15 10:47:37,564 - topic #1 (0.333): 0.013*"’" + 0.009*"lack" + 0.009*"2022" + 0.006*"significant" + 0.006*"risk" + 0.005*"quality" + 0.005*"Solihull" + 0.005*"need" + 0.005*"practice" + 0.005*"experiences" -2024-07-15 10:47:37,564 - topic #2 (0.333): 0.014*"’" + 0.009*"lack" + 0.008*"2022" + 0.007*"Solihull" + 0.007*"need" + 0.005*"risk" + 0.005*"practice" + 0.004*"delay" + 0.004*"quality" + 0.004*"significant" -2024-07-15 10:47:37,564 - topic diff=0.791564, rho=1.000000 -2024-07-15 10:47:37,564 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:37.564879', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:38,763 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:38,763 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:38,764 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:38,764 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:38,764 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:38,764 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:38,764 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:38,764 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:38,765 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:38,765 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:38,765 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:38,765 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:40,460 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:40,463 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions) -2024-07-15 10:47:40,464 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions)", 'datetime': '2024-07-15T10:47:40.464017', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:40,465 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:40,465 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:40,466 - using serial LDA version on this node -2024-07-15 10:47:40,466 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:40,466 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:40,472 - -7.922 per-word bound, 242.5 perplexity estimate based on a held-out corpus of 1 documents with 2181 words -2024-07-15 10:47:40,473 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:40,475 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.008*"needs" + 0.007*"plans" + 0.007*"Somerset" + 0.006*"including" + 0.006*"progress" + 0.006*"need" + 0.006*"supported" + 0.005*"good" -2024-07-15 10:47:40,475 - topic #1 (0.333): 0.016*"’" + 0.010*"well" + 0.010*"needs" + 0.007*"Somerset" + 0.006*"plans" + 0.006*"good" + 0.006*"leaders" + 0.006*"number" + 0.005*"supported" + 0.005*"practice" -2024-07-15 10:47:40,475 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"needs" + 0.006*"good" + 0.005*"Somerset" + 0.005*"need" + 0.004*"18" + 0.004*"leaders" + 0.004*"number" + 0.004*"practice" -2024-07-15 10:47:40,475 - topic diff=0.812514, rho=1.000000 -2024-07-15 10:47:40,476 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:40.476015', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:41,416 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:41,416 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:41,416 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:41,416 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:41,416 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:41,416 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:41,417 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:41,417 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:41,417 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:41,417 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:41,417 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:41,417 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:42,749 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:42,752 - built Dictionary<1052 unique tokens: ['0', '016', '0161', '0300', '0–25']...> from 1 documents (total 2383 corpus positions) -2024-07-15 10:47:42,752 - Dictionary lifecycle event {'msg': "built Dictionary<1052 unique tokens: ['0', '016', '0161', '0300', '0–25']...> from 1 documents (total 2383 corpus positions)", 'datetime': '2024-07-15T10:47:42.752926', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:42,754 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:42,754 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:42,754 - using serial LDA version on this node -2024-07-15 10:47:42,754 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:42,754 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:42,758 - -7.952 per-word bound, 247.7 perplexity estimate based on a held-out corpus of 1 documents with 2383 words -2024-07-15 10:47:42,758 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:42,760 - topic #0 (0.333): 0.011*"quality" + 0.010*"’" + 0.009*"plans" + 0.009*"well" + 0.008*"leaders" + 0.008*"good" + 0.006*"timely" + 0.006*"needs" + 0.005*"progress" + 0.005*"impact" -2024-07-15 10:47:42,760 - topic #1 (0.333): 0.011*"well" + 0.010*"quality" + 0.009*"leaders" + 0.007*"’" + 0.005*"needs" + 0.005*"plans" + 0.005*"progress" + 0.005*"always" + 0.005*"good" + 0.004*"including" -2024-07-15 10:47:42,760 - topic #2 (0.333): 0.013*"well" + 0.009*"quality" + 0.008*"’" + 0.008*"leaders" + 0.008*"plans" + 0.007*"good" + 0.007*"timely" + 0.006*"progress" + 0.005*"Senior" + 0.005*"needs" -2024-07-15 10:47:42,760 - topic diff=0.799489, rho=1.000000 -2024-07-15 10:47:42,760 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:42.760977', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:43,911 - Inspection date 2019-03-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:43,912 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:43,912 - Inspection date 2019-03-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:43,912 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:43,912 - Inspection date 2019-03-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:43,912 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:43,913 - Inspection date 2019-03-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:43,913 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:43,913 - Inspection date 2019-03-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:43,913 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:43,913 - Inspection date 2019-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:43,914 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:45,451 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:45,454 - built Dictionary<981 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2189 corpus positions) -2024-07-15 10:47:45,454 - Dictionary lifecycle event {'msg': 'built Dictionary<981 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2189 corpus positions)', 'datetime': '2024-07-15T10:47:45.454756', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:45,456 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:45,456 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:45,456 - using serial LDA version on this node -2024-07-15 10:47:45,457 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:45,457 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:45,463 - -7.886 per-word bound, 236.6 perplexity estimate based on a held-out corpus of 1 documents with 2189 words -2024-07-15 10:47:45,463 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:45,466 - topic #0 (0.333): 0.017*"’" + 0.008*"Tyneside" + 0.007*"South" + 0.007*"needs" + 0.005*"practice" + 0.005*"management" + 0.004*"2022" + 0.004*"15" + 0.004*"living" + 0.004*"oversight" -2024-07-15 10:47:45,466 - topic #1 (0.333): 0.030*"’" + 0.009*"needs" + 0.008*"Tyneside" + 0.008*"South" + 0.006*"effective" + 0.006*"carers" + 0.006*"oversight" + 0.006*"However" + 0.005*"management" + 0.005*"December" -2024-07-15 10:47:45,466 - topic #2 (0.333): 0.021*"’" + 0.010*"needs" + 0.007*"South" + 0.006*"Tyneside" + 0.005*"5" + 0.005*"oversight" + 0.005*"practice" + 0.005*"well" + 0.005*"2023" + 0.005*"14" -2024-07-15 10:47:45,466 - topic diff=0.807384, rho=1.000000 -2024-07-15 10:47:45,466 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:45.466961', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:46,573 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:46,573 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:46,573 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:46,574 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:46,574 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:46,574 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:46,574 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:46,574 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:46,575 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:46,575 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:46,575 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:46,575 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:48,043 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:48,046 - built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions) -2024-07-15 10:47:48,046 - Dictionary lifecycle event {'msg': "built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions)", 'datetime': '2024-07-15T10:47:48.046459', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:48,047 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:48,047 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:48,047 - using serial LDA version on this node -2024-07-15 10:47:48,048 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:48,048 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:48,052 - -8.149 per-word bound, 283.8 perplexity estimate based on a held-out corpus of 1 documents with 2318 words -2024-07-15 10:47:48,053 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:48,054 - topic #0 (0.333): 0.015*"’" + 0.005*"plans" + 0.004*"progress" + 0.004*"including" + 0.004*"2023" + 0.004*"Southampton" + 0.004*"5" + 0.004*"improve" + 0.004*"June" + 0.004*"timely" -2024-07-15 10:47:48,054 - topic #1 (0.333): 0.016*"’" + 0.006*"Southampton" + 0.006*"plans" + 0.005*"including" + 0.005*"5" + 0.005*"improve" + 0.004*"experiences" + 0.004*"needs" + 0.004*"provide" + 0.004*"June" -2024-07-15 10:47:48,054 - topic #2 (0.333): 0.017*"’" + 0.006*"Southampton" + 0.006*"plans" + 0.005*"progress" + 0.005*"improve" + 0.005*"good" + 0.005*"needs" + 0.005*"16" + 0.004*"5" + 0.004*"timely" -2024-07-15 10:47:48,055 - topic diff=0.743886, rho=1.000000 -2024-07-15 10:47:48,055 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:48.055143', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:48,949 - Inspection date 2023-06-05 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:48,949 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:48,950 - Inspection date 2023-06-05 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:48,950 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:48,950 - Inspection date 2023-06-05 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:48,950 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:48,950 - Inspection date 2023-06-05 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:48,951 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:48,951 - Inspection date 2023-06-05 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:48,951 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:48,951 - Inspection date 2023-06-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:48,951 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:50,526 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:50,528 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions) -2024-07-15 10:47:50,528 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions)", 'datetime': '2024-07-15T10:47:50.528539', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:50,529 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:50,529 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:50,529 - using serial LDA version on this node -2024-07-15 10:47:50,530 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:50,530 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:50,533 - -7.951 per-word bound, 247.5 perplexity estimate based on a held-out corpus of 1 documents with 2086 words -2024-07-15 10:47:50,533 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:50,534 - topic #0 (0.333): 0.014*"’" + 0.007*"planning" + 0.005*"leaders" + 0.005*"practice" + 0.005*"risk" + 0.005*"number" + 0.005*"protection" + 0.004*"good" + 0.004*"within" + 0.004*"always" -2024-07-15 10:47:50,535 - topic #1 (0.333): 0.016*"’" + 0.009*"planning" + 0.009*"quality" + 0.008*"practice" + 0.006*"plans" + 0.006*"leaders" + 0.005*"effective" + 0.005*"good" + 0.005*"need" + 0.005*"Southend" -2024-07-15 10:47:50,535 - topic #2 (0.333): 0.009*"’" + 0.007*"protection" + 0.007*"leaders" + 0.006*"practice" + 0.006*"planning" + 0.006*"number" + 0.005*"quality" + 0.005*"always" + 0.005*"within" + 0.005*"However" -2024-07-15 10:47:50,535 - topic diff=0.778099, rho=1.000000 -2024-07-15 10:47:50,535 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:50.535555', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:52,484 - Inspection date 2019-07-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:52,484 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:52,485 - Inspection date 2019-07-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:52,485 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:52,485 - Inspection date 2019-07-15 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:52,485 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:52,485 - Inspection date 2019-07-15 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:52,485 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:52,486 - Inspection date 2019-07-15 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:52,486 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:52,486 - Inspection date 2019-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:52,486 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:53,721 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:53,723 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions) -2024-07-15 10:47:53,723 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions)", 'datetime': '2024-07-15T10:47:53.723434', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:53,724 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:53,724 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:53,724 - using serial LDA version on this node -2024-07-15 10:47:53,725 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:53,725 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:53,729 - -8.050 per-word bound, 265.1 perplexity estimate based on a held-out corpus of 1 documents with 2218 words -2024-07-15 10:47:53,729 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:53,730 - topic #0 (0.333): 0.017*"’" + 0.009*"Helens" + 0.008*"St" + 0.008*"well" + 0.007*"needs" + 0.007*"progress" + 0.005*"10" + 0.005*"receive" + 0.005*"risk" + 0.005*"need" -2024-07-15 10:47:53,730 - topic #1 (0.333): 0.010*"’" + 0.008*"St" + 0.006*"Helens" + 0.005*"21" + 0.005*"needs" + 0.005*"good" + 0.004*"risk" + 0.004*"10" + 0.004*"need" + 0.004*"2023" -2024-07-15 10:47:53,730 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"Helens" + 0.006*"receive" + 0.006*"St" + 0.006*"need" + 0.006*"progress" + 0.006*"good" + 0.006*"21" -2024-07-15 10:47:53,730 - topic diff=0.777023, rho=1.000000 -2024-07-15 10:47:53,731 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:53.731103', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:54,804 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:54,804 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:54,804 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:54,805 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:54,805 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:54,805 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:54,805 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:54,805 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:54,806 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:54,806 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:54,806 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:54,806 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:56,486 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:56,490 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions) -2024-07-15 10:47:56,490 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions)", 'datetime': '2024-07-15T10:47:56.490885', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:56,492 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:56,492 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:56,493 - using serial LDA version on this node -2024-07-15 10:47:56,493 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:56,494 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:56,500 - -7.993 per-word bound, 254.8 perplexity estimate based on a held-out corpus of 1 documents with 2334 words -2024-07-15 10:47:56,500 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:56,502 - topic #0 (0.333): 0.011*"’" + 0.006*"needs" + 0.005*"practice" + 0.004*"progress" + 0.004*"Staffordshire" + 0.004*"ensure" + 0.004*"plans" + 0.004*"quality" + 0.004*"good" + 0.004*"oversight" -2024-07-15 10:47:56,502 - topic #1 (0.333): 0.019*"’" + 0.012*"needs" + 0.006*"oversight" + 0.006*"practice" + 0.006*"quality" + 0.005*"plans" + 0.005*"progress" + 0.005*"Staffordshire" + 0.005*"impact" + 0.005*"ensure" -2024-07-15 10:47:56,502 - topic #2 (0.333): 0.018*"’" + 0.013*"needs" + 0.007*"health" + 0.007*"quality" + 0.006*"progress" + 0.006*"ensure" + 0.006*"Staffordshire" + 0.006*"oversight" + 0.005*"practice" + 0.005*"6" -2024-07-15 10:47:56,503 - topic diff=0.825196, rho=1.000000 -2024-07-15 10:47:56,503 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:56.503278', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:57,429 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:57,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:57,429 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:57,429 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:57,430 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:57,430 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:57,430 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:57,430 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:57,430 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:57,430 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:57,430 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:57,430 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:58,676 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:47:58,678 - built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) -2024-07-15 10:47:58,679 - Dictionary lifecycle event {'msg': "built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-07-15T10:47:58.679132', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:58,680 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:47:58,680 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:47:58,680 - using serial LDA version on this node -2024-07-15 10:47:58,680 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:47:58,681 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:47:58,685 - -7.980 per-word bound, 252.5 perplexity estimate based on a held-out corpus of 1 documents with 2316 words -2024-07-15 10:47:58,685 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:47:58,686 - topic #0 (0.333): 0.012*"’" + 0.007*"well" + 0.007*"practice" + 0.007*"Stockport" + 0.007*"needs" + 0.006*"plans" + 0.005*"strong" + 0.005*"risk" + 0.004*"ensure" + 0.004*"need" -2024-07-15 10:47:58,686 - topic #1 (0.333): 0.009*"’" + 0.007*"Stockport" + 0.007*"needs" + 0.006*"well" + 0.006*"practice" + 0.006*"strong" + 0.005*"risk" + 0.005*"leaders" + 0.004*"range" + 0.004*"ensure" -2024-07-15 10:47:58,686 - topic #2 (0.333): 0.011*"’" + 0.010*"well" + 0.008*"practice" + 0.006*"strong" + 0.005*"Stockport" + 0.005*"plans" + 0.005*"quality" + 0.005*"ensure" + 0.005*"1" + 0.005*"needs" -2024-07-15 10:47:58,687 - topic diff=0.792979, rho=1.000000 -2024-07-15 10:47:58,687 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:47:58.687229', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:47:59,649 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:47:59,649 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:59,649 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:47:59,649 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:59,649 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:47:59,650 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:59,650 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:47:59,650 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:59,650 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:47:59,650 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:47:59,650 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:47:59,650 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:01,421 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:01,424 - built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions) -2024-07-15 10:48:01,424 - Dictionary lifecycle event {'msg': "built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions)", 'datetime': '2024-07-15T10:48:01.424215', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:01,425 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:01,425 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:01,425 - using serial LDA version on this node -2024-07-15 10:48:01,425 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:01,426 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:01,429 - -7.967 per-word bound, 250.1 perplexity estimate based on a held-out corpus of 1 documents with 2269 words -2024-07-15 10:48:01,429 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:01,431 - topic #0 (0.333): 0.019*"’" + 0.010*"leaders" + 0.007*"needs" + 0.006*"good" + 0.006*"plans" + 0.006*"on-Tees" + 0.005*"quality" + 0.005*"well" + 0.005*"17" + 0.005*"senior" -2024-07-15 10:48:01,431 - topic #1 (0.333): 0.014*"’" + 0.008*"plans" + 0.007*"well" + 0.007*"leaders" + 0.006*"on-Tees" + 0.006*"Stockton" + 0.005*"good" + 0.005*"quality" + 0.004*"needs" + 0.004*"17" -2024-07-15 10:48:01,431 - topic #2 (0.333): 0.023*"’" + 0.010*"plans" + 0.008*"leaders" + 0.007*"needs" + 0.007*"well" + 0.007*"Stockton" + 0.006*"quality" + 0.006*"senior" + 0.006*"on-Tees" + 0.005*"good" -2024-07-15 10:48:01,431 - topic diff=0.776190, rho=1.000000 -2024-07-15 10:48:01,432 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:01.432099', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:02,393 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:02,393 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:02,394 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:02,394 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:02,394 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:02,394 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:02,394 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:02,394 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:02,395 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:02,395 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:02,395 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:02,395 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:03,669 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:03,671 - built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions) -2024-07-15 10:48:03,671 - Dictionary lifecycle event {'msg': "built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions)", 'datetime': '2024-07-15T10:48:03.671780', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:03,672 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:03,672 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:03,673 - using serial LDA version on this node -2024-07-15 10:48:03,673 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:03,673 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:03,676 - -7.903 per-word bound, 239.3 perplexity estimate based on a held-out corpus of 1 documents with 2165 words -2024-07-15 10:48:03,676 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:03,678 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"well" + 0.008*"Stoke" + 0.008*"However" + 0.006*"protection" + 0.006*"plans" + 0.006*"on-Trent" + 0.006*"ensure" + 0.005*"practice" -2024-07-15 10:48:03,678 - topic #1 (0.333): 0.017*"’" + 0.007*"on-Trent" + 0.007*"needs" + 0.007*"Stoke" + 0.007*"plans" + 0.006*"progress" + 0.006*"well" + 0.006*"protection" + 0.005*"However" + 0.005*"ensure" -2024-07-15 10:48:03,678 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.007*"on-Trent" + 0.006*"plans" + 0.006*"well" + 0.005*"However" + 0.005*"quality" + 0.005*"ensure" + 0.004*"Stoke" + 0.004*"progress" -2024-07-15 10:48:03,678 - topic diff=0.780153, rho=1.000000 -2024-07-15 10:48:03,678 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:03.678819', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:04,546 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:04,546 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:04,547 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:04,547 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:04,547 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:04,547 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:04,547 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:04,547 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:04,547 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:04,548 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:04,548 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:04,548 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:06,170 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:06,174 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2286 corpus positions) -2024-07-15 10:48:06,174 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2286 corpus positions)", 'datetime': '2024-07-15T10:48:06.174507', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:06,176 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:06,176 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:06,177 - using serial LDA version on this node -2024-07-15 10:48:06,177 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:06,177 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:06,184 - -8.180 per-word bound, 290.0 perplexity estimate based on a held-out corpus of 1 documents with 2286 words -2024-07-15 10:48:06,184 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:06,186 - topic #0 (0.333): 0.012*"’" + 0.006*"progress" + 0.005*"well" + 0.005*"effective" + 0.004*"good" + 0.004*"leaders" + 0.004*"practice" + 0.003*"ensure" + 0.003*"Senior" + 0.003*"Suffolk" -2024-07-15 10:48:06,186 - topic #1 (0.333): 0.014*"’" + 0.006*"well" + 0.006*"progress" + 0.005*"leaders" + 0.005*"good" + 0.005*"ensure" + 0.004*"needs" + 0.004*"effective" + 0.004*"high" + 0.004*"practice" -2024-07-15 10:48:06,187 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"progress" + 0.006*"effective" + 0.005*"practice" + 0.005*"ensure" + 0.005*"good" + 0.004*"leaders" + 0.004*"need" + 0.004*"carers" -2024-07-15 10:48:06,187 - topic diff=0.726721, rho=1.000000 -2024-07-15 10:48:06,187 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:06.187717', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:07,594 - Got stderr: Jul 15, 2024 10:48:07 AM org.apache.pdfbox.pdmodel.font.PDTrueTypeFont +2024-07-25 12:38:42,561 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:38:42,565 - built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions) +2024-07-25 12:38:42,574 - Dictionary lifecycle event {'msg': "built Dictionary<1216 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2696 corpus positions)", 'datetime': '2024-07-25T12:38:42.567634', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:42,576 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:38:42,577 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:38:42,577 - using serial LDA version on this node +2024-07-25 12:38:42,577 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:38:42,578 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:38:42,585 - -8.107 per-word bound, 275.7 perplexity estimate based on a held-out corpus of 1 documents with 2696 words +2024-07-25 12:38:42,585 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:38:42,587 - topic #0 (0.333): 0.017*"’" + 0.007*"needs" + 0.006*"within" + 0.006*"Barnsley" + 0.005*"practice" + 0.005*"leaders" + 0.004*"understand" + 0.004*"family" + 0.004*"plans" + 0.004*"15" +2024-07-25 12:38:42,588 - topic #1 (0.333): 0.020*"’" + 0.009*"needs" + 0.008*"leaders" + 0.006*"within" + 0.006*"Barnsley" + 0.005*"practice" + 0.005*"11" + 0.004*"response" + 0.004*"senior" + 0.004*"plans" +2024-07-25 12:38:42,588 - topic #2 (0.333): 0.019*"’" + 0.008*"leaders" + 0.008*"needs" + 0.007*"practice" + 0.006*"within" + 0.005*"Barnsley" + 0.005*"plans" + 0.005*"senior" + 0.005*"response" + 0.004*"quality" +2024-07-25 12:38:42,588 - topic diff=0.798849, rho=1.000000 +2024-07-25 12:38:42,589 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:38:42.588999', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:42,592 - Failed to import jpype dependencies. Fallback to subprocess. +2024-07-25 12:38:42,592 - No module named 'jpype' +2024-07-25 12:38:45,348 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:38:45,349 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:45,349 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:38:45,350 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:45,350 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:38:45,350 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:45,351 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:38:45,351 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:45,351 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:38:45,351 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:45,352 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:38:45,352 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:46,901 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:38:46,904 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions) +2024-07-25 12:38:46,904 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2085 corpus positions)", 'datetime': '2024-07-25T12:38:46.904881', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:46,905 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:38:46,906 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:38:46,906 - using serial LDA version on this node +2024-07-25 12:38:46,906 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:38:46,906 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:38:46,910 - -8.024 per-word bound, 260.2 perplexity estimate based on a held-out corpus of 1 documents with 2085 words +2024-07-25 12:38:46,910 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:38:46,911 - topic #0 (0.333): 0.019*"’" + 0.008*"well" + 0.006*"needs" + 0.006*"leaders" + 0.006*"effective" + 0.006*"clear" + 0.005*"practice" + 0.005*"Somerset" + 0.005*"protection" + 0.005*"plans" +2024-07-25 12:38:46,911 - topic #1 (0.333): 0.015*"’" + 0.009*"well" + 0.006*"plans" + 0.006*"needs" + 0.006*"practice" + 0.005*"effective" + 0.005*"4" + 0.004*"East" + 0.004*"North" + 0.004*"28" +2024-07-25 12:38:46,911 - topic #2 (0.333): 0.018*"’" + 0.010*"well" + 0.006*"needs" + 0.006*"practice" + 0.005*"plans" + 0.005*"Bath" + 0.005*"East" + 0.004*"impact" + 0.004*"leaders" + 0.004*"Somerset" +2024-07-25 12:38:46,912 - topic diff=0.747845, rho=1.000000 +2024-07-25 12:38:46,912 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:38:46.912210', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:48,149 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:38:48,149 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:48,150 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:38:48,150 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:48,150 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:38:48,150 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:48,151 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:38:48,151 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:48,152 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:38:48,152 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:48,152 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:38:48,152 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:49,970 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:38:49,973 - built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions) +2024-07-25 12:38:49,973 - Dictionary lifecycle event {'msg': "built Dictionary<1202 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2585 corpus positions)", 'datetime': '2024-07-25T12:38:49.973375', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:49,974 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:38:49,974 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:38:49,974 - using serial LDA version on this node +2024-07-25 12:38:49,975 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:38:49,975 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:38:49,979 - -8.114 per-word bound, 277.0 perplexity estimate based on a held-out corpus of 1 documents with 2585 words +2024-07-25 12:38:49,979 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:38:49,980 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"ensure" + 0.005*"plans" + 0.005*"supported" + 0.005*"family" + 0.005*"good" + 0.005*"well" + 0.004*"Bedford" + 0.004*"progress" +2024-07-25 12:38:49,981 - topic #1 (0.333): 0.018*"’" + 0.005*"Bedford" + 0.005*"well" + 0.005*"ensure" + 0.004*"needs" + 0.004*"Borough" + 0.004*"family" + 0.004*"relationships" + 0.004*"supported" + 0.004*"plans" +2024-07-25 12:38:49,981 - topic #2 (0.333): 0.021*"’" + 0.008*"needs" + 0.007*"well" + 0.006*"ensure" + 0.006*"good" + 0.006*"plans" + 0.005*"education" + 0.005*"Bedford" + 0.005*"progress" + 0.005*"supported" +2024-07-25 12:38:49,981 - topic diff=0.789142, rho=1.000000 +2024-07-25 12:38:49,981 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:38:49.981639', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:51,036 - Inspection date 2021-11-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:38:51,037 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:51,037 - Inspection date 2021-11-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:38:51,037 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:51,037 - Inspection date 2021-11-15 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:38:51,037 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:51,038 - Inspection date 2021-11-15 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:38:51,038 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:51,038 - Inspection date 2021-11-15 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:38:51,038 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:51,038 - Inspection date 2021-11-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:38:51,038 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:52,609 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:38:52,613 - built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions) +2024-07-25 12:38:52,613 - Dictionary lifecycle event {'msg': "built Dictionary<1065 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2378 corpus positions)", 'datetime': '2024-07-25T12:38:52.613479', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:52,615 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:38:52,615 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:38:52,615 - using serial LDA version on this node +2024-07-25 12:38:52,616 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:38:52,616 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:38:52,622 - -7.970 per-word bound, 250.8 perplexity estimate based on a held-out corpus of 1 documents with 2378 words +2024-07-25 12:38:52,622 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:38:52,624 - topic #0 (0.333): 0.013*"’" + 0.009*"needs" + 0.006*"effective" + 0.006*"well" + 0.005*"plans" + 0.005*"trust" + 0.005*"timely" + 0.004*"progress" + 0.004*"risk" + 0.004*"Birmingham" +2024-07-25 12:38:52,624 - topic #1 (0.333): 0.018*"’" + 0.011*"needs" + 0.007*"plans" + 0.007*"effective" + 0.007*"well" + 0.007*"Birmingham" + 0.006*"trust" + 0.006*"appropriate" + 0.006*"progress" + 0.005*"risk" +2024-07-25 12:38:52,625 - topic #2 (0.333): 0.013*"’" + 0.009*"needs" + 0.006*"well" + 0.006*"3" + 0.006*"progress" + 0.006*"effective" + 0.005*"Birmingham" + 0.005*"appropriate" + 0.005*"trust" + 0.005*"20" +2024-07-25 12:38:52,625 - topic diff=0.797099, rho=1.000000 +2024-07-25 12:38:52,625 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:38:52.625313', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:53,678 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:38:53,679 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:53,679 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:38:53,679 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:53,679 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:38:53,679 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:53,680 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:38:53,680 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:53,680 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:38:53,680 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:53,680 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:38:53,680 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:55,769 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:38:55,771 - built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions) +2024-07-25 12:38:55,771 - Dictionary lifecycle event {'msg': "built Dictionary<1055 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2353 corpus positions)", 'datetime': '2024-07-25T12:38:55.771924', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:55,772 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:38:55,773 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:38:55,773 - using serial LDA version on this node +2024-07-25 12:38:55,773 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:38:55,773 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:38:55,777 - -7.962 per-word bound, 249.3 perplexity estimate based on a held-out corpus of 1 documents with 2353 words +2024-07-25 12:38:55,777 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:38:55,779 - topic #0 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"Darwen" + 0.006*"practice" + 0.006*"quality" + 0.006*"impact" + 0.005*"Blackburn" + 0.005*"planning" + 0.005*"well" + 0.005*"plans" +2024-07-25 12:38:55,779 - topic #1 (0.333): 0.013*"’" + 0.007*"quality" + 0.006*"impact" + 0.006*"well" + 0.006*"Blackburn" + 0.006*"needs" + 0.006*"practice" + 0.006*"Darwen" + 0.005*"result" + 0.005*"need" +2024-07-25 12:38:55,779 - topic #2 (0.333): 0.017*"’" + 0.009*"needs" + 0.009*"practice" + 0.008*"Blackburn" + 0.007*"quality" + 0.007*"Darwen" + 0.006*"well" + 0.006*"impact" + 0.005*"February" + 0.005*"plans" +2024-07-25 12:38:55,779 - topic diff=0.817257, rho=1.000000 +2024-07-25 12:38:55,779 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:38:55.779759', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:56,641 - Inspection date 2022-01-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:38:56,642 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:56,642 - Inspection date 2022-01-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:38:56,642 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:56,642 - Inspection date 2022-01-24 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:38:56,642 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:56,643 - Inspection date 2022-01-24 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:38:56,643 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:56,643 - Inspection date 2022-01-24 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:38:56,643 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:56,643 - Inspection date 2022-01-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:38:56,643 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:58,443 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:38:58,445 - built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions) +2024-07-25 12:38:58,445 - Dictionary lifecycle event {'msg': "built Dictionary<1037 unique tokens: ['0', '0161', '030', '0300', '1']...> from 1 documents (total 2392 corpus positions)", 'datetime': '2024-07-25T12:38:58.445759', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:58,446 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:38:58,446 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:38:58,447 - using serial LDA version on this node +2024-07-25 12:38:58,447 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:38:58,447 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:38:58,451 - -7.928 per-word bound, 243.6 perplexity estimate based on a held-out corpus of 1 documents with 2392 words +2024-07-25 12:38:58,451 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:38:58,452 - topic #0 (0.333): 0.015*"’" + 0.011*"needs" + 0.009*"well" + 0.009*"Blackpool" + 0.006*"effective" + 0.006*"16" + 0.005*"experiences" + 0.005*"supported" + 0.005*"understand" + 0.005*"plans" +2024-07-25 12:38:58,452 - topic #1 (0.333): 0.015*"’" + 0.009*"needs" + 0.009*"well" + 0.007*"Blackpool" + 0.005*"effective" + 0.005*"practice" + 0.004*"experiences" + 0.004*"2022" + 0.004*"plans" + 0.004*"carers" +2024-07-25 12:38:58,453 - topic #2 (0.333): 0.020*"’" + 0.010*"needs" + 0.009*"well" + 0.006*"Blackpool" + 0.006*"effective" + 0.005*"plans" + 0.005*"practice" + 0.005*"response" + 0.005*"supported" + 0.005*"quality" +2024-07-25 12:38:58,453 - topic diff=0.831384, rho=1.000000 +2024-07-25 12:38:58,453 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:38:58.453340', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:38:59,345 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:38:59,346 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:59,346 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:38:59,346 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:59,346 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:38:59,346 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:59,347 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:38:59,347 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:59,347 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:38:59,347 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:38:59,347 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:38:59,347 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:01,041 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:01,043 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions) +2024-07-25 12:39:01,043 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2055 corpus positions)", 'datetime': '2024-07-25T12:39:01.043454', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:01,044 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:01,044 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:01,044 - using serial LDA version on this node +2024-07-25 12:39:01,045 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:01,045 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:01,048 - -7.912 per-word bound, 240.8 perplexity estimate based on a held-out corpus of 1 documents with 2055 words +2024-07-25 12:39:01,048 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:01,050 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.007*"plans" + 0.007*"well" + 0.006*"Bolton" + 0.005*"supported" + 0.005*"11" + 0.005*"strong" + 0.005*"effective" + 0.005*"planning" +2024-07-25 12:39:01,050 - topic #1 (0.333): 0.018*"’" + 0.010*"needs" + 0.010*"Bolton" + 0.008*"well" + 0.008*"plans" + 0.006*"supported" + 0.005*"effective" + 0.005*"planning" + 0.005*"progress" + 0.005*"need" +2024-07-25 12:39:01,050 - topic #2 (0.333): 0.022*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"Bolton" + 0.007*"plans" + 0.006*"need" + 0.006*"planning" + 0.005*"response" + 0.005*"15" + 0.005*"11" +2024-07-25 12:39:01,050 - topic diff=0.774730, rho=1.000000 +2024-07-25 12:39:01,050 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:01.050691', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:02,064 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:02,065 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:02,065 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:02,065 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:02,065 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:02,066 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:02,066 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:02,066 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:02,066 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:02,066 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:02,067 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:02,067 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:03,571 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:03,573 - built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions) +2024-07-25 12:39:03,573 - Dictionary lifecycle event {'msg': "built Dictionary<1035 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2004 corpus positions)", 'datetime': '2024-07-25T12:39:03.573647', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:03,574 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:03,574 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:03,575 - using serial LDA version on this node +2024-07-25 12:39:03,575 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:03,575 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:03,579 - -8.028 per-word bound, 261.0 perplexity estimate based on a held-out corpus of 1 documents with 2004 words +2024-07-25 12:39:03,579 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:03,580 - topic #0 (0.333): 0.020*"’" + 0.007*"practice" + 0.007*"quality" + 0.005*"6" + 0.005*"Poole" + 0.005*"progress" + 0.005*"Bournemouth" + 0.005*"risk" + 0.004*"time" + 0.004*"2021" +2024-07-25 12:39:03,580 - topic #1 (0.333): 0.016*"’" + 0.006*"quality" + 0.005*"progress" + 0.005*"Christchurch" + 0.005*"risk" + 0.005*"17" + 0.005*"time" + 0.005*"impact" + 0.004*"practice" + 0.004*"right" +2024-07-25 12:39:03,580 - topic #2 (0.333): 0.016*"’" + 0.005*"practice" + 0.005*"quality" + 0.005*"Christchurch" + 0.005*"17" + 0.004*"progress" + 0.004*"Poole" + 0.004*"impact" + 0.004*"However" + 0.004*"many" +2024-07-25 12:39:03,581 - topic diff=0.751182, rho=1.000000 +2024-07-25 12:39:03,581 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:03.581186', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:07,152 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:07,153 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:07,153 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:07,153 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:07,153 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:07,153 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:07,154 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:07,154 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:07,154 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:07,154 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:07,154 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:07,154 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:08,574 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:08,576 - built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions) +2024-07-25 12:39:08,576 - Dictionary lifecycle event {'msg': "built Dictionary<900 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1846 corpus positions)", 'datetime': '2024-07-25T12:39:08.576955', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:08,577 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:08,577 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:08,578 - using serial LDA version on this node +2024-07-25 12:39:08,578 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:08,578 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:08,581 - -7.857 per-word bound, 231.8 perplexity estimate based on a held-out corpus of 1 documents with 1846 words +2024-07-25 12:39:08,581 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:08,583 - topic #0 (0.333): 0.013*"’" + 0.006*"Bracknell" + 0.005*"quality" + 0.005*"progress" + 0.005*"carers" + 0.005*"needs" + 0.005*"Forest" + 0.005*"plans" + 0.005*"risk" + 0.004*"good" +2024-07-25 12:39:08,583 - topic #1 (0.333): 0.020*"’" + 0.009*"Forest" + 0.008*"risk" + 0.007*"needs" + 0.007*"good" + 0.007*"Bracknell" + 0.006*"well" + 0.006*"effective" + 0.006*"quality" + 0.006*"progress" +2024-07-25 12:39:08,583 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"Bracknell" + 0.006*"quality" + 0.006*"effective" + 0.006*"good" + 0.006*"provided" + 0.005*"carers" + 0.005*"need" + 0.005*"risk" +2024-07-25 12:39:08,583 - topic diff=0.769756, rho=1.000000 +2024-07-25 12:39:08,583 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:08.583662', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:09,696 - Inspection date 2022-06-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:09,696 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:09,696 - Inspection date 2022-06-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:09,696 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:09,696 - Inspection date 2022-06-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:09,696 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:09,697 - Inspection date 2022-06-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:09,697 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:09,697 - Inspection date 2022-06-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:09,697 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:09,697 - Inspection date 2022-06-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:09,697 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:11,235 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:11,237 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions) +2024-07-25 12:39:11,238 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2249 corpus positions)", 'datetime': '2024-07-25T12:39:11.238134', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:11,239 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:11,239 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:11,239 - using serial LDA version on this node +2024-07-25 12:39:11,240 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:11,240 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:11,243 - -8.093 per-word bound, 273.0 perplexity estimate based on a held-out corpus of 1 documents with 2249 words +2024-07-25 12:39:11,244 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:11,245 - topic #0 (0.333): 0.019*"’" + 0.007*"well" + 0.007*"practice" + 0.006*"Hove" + 0.006*"needs" + 0.006*"Brighton" + 0.005*"experiences" + 0.005*"15" + 0.005*"receive" + 0.005*"progress" +2024-07-25 12:39:11,245 - topic #1 (0.333): 0.013*"’" + 0.007*"Hove" + 0.006*"relationships" + 0.005*"well" + 0.005*"needs" + 0.005*"practice" + 0.004*"experiences" + 0.004*"progress" + 0.004*"need" + 0.004*"family" +2024-07-25 12:39:11,245 - topic #2 (0.333): 0.016*"’" + 0.009*"well" + 0.008*"needs" + 0.008*"Brighton" + 0.007*"Hove" + 0.006*"practice" + 0.006*"progress" + 0.005*"experiences" + 0.005*"relationships" + 0.005*"family" +2024-07-25 12:39:11,245 - topic diff=0.746763, rho=1.000000 +2024-07-25 12:39:11,246 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:11.246104', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:12,514 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:12,516 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:12,516 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:12,516 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:12,517 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:12,517 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:12,517 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:12,517 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:12,517 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:12,518 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:12,518 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:12,518 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:14,241 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:14,245 - built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions) +2024-07-25 12:39:14,245 - Dictionary lifecycle event {'msg': "built Dictionary<1151 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2647 corpus positions)", 'datetime': '2024-07-25T12:39:14.245596', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:14,247 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:14,247 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:14,248 - using serial LDA version on this node +2024-07-25 12:39:14,248 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:14,248 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:14,255 - -8.030 per-word bound, 261.4 perplexity estimate based on a held-out corpus of 1 documents with 2647 words +2024-07-25 12:39:14,255 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:14,258 - topic #0 (0.333): 0.016*"’" + 0.008*"good" + 0.008*"Bristol" + 0.007*"well" + 0.006*"needs" + 0.006*"health" + 0.005*"progress" + 0.005*"receive" + 0.004*"leaders" + 0.004*"plans" +2024-07-25 12:39:14,258 - topic #1 (0.333): 0.023*"’" + 0.010*"well" + 0.009*"needs" + 0.008*"Bristol" + 0.007*"good" + 0.005*"health" + 0.005*"leaders" + 0.005*"need" + 0.005*"risk" + 0.005*"16" +2024-07-25 12:39:14,258 - topic #2 (0.333): 0.017*"’" + 0.008*"well" + 0.008*"good" + 0.007*"Bristol" + 0.007*"needs" + 0.005*"progress" + 0.005*"plans" + 0.005*"27" + 0.004*"need" + 0.004*"16" +2024-07-25 12:39:14,259 - topic diff=0.820781, rho=1.000000 +2024-07-25 12:39:14,259 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:14.259357', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:15,262 - Inspection date 2023-01-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:15,262 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:15,262 - Inspection date 2023-01-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:15,262 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:15,263 - Inspection date 2023-01-16 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:15,263 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:15,263 - Inspection date 2023-01-16 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:15,263 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:15,263 - Inspection date 2023-01-16 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:15,263 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:15,264 - Inspection date 2023-01-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:15,264 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:17,464 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:17,466 - built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions) +2024-07-25 12:39:17,466 - Dictionary lifecycle event {'msg': "built Dictionary<1263 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2404 corpus positions)", 'datetime': '2024-07-25T12:39:17.466858', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:17,468 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:17,468 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:17,468 - using serial LDA version on this node +2024-07-25 12:39:17,468 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:17,469 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:17,473 - -8.238 per-word bound, 302.0 perplexity estimate based on a held-out corpus of 1 documents with 2404 words +2024-07-25 12:39:17,473 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:17,474 - topic #0 (0.333): 0.015*"’" + 0.005*"number" + 0.005*"6" + 0.004*"teams" + 0.004*"17" + 0.004*"needs" + 0.004*"practice" + 0.004*"Buckinghamshire" + 0.004*"plans" + 0.004*"protection" +2024-07-25 12:39:17,474 - topic #1 (0.333): 0.012*"’" + 0.005*"number" + 0.004*"plans" + 0.004*"17" + 0.004*"Buckinghamshire" + 0.004*"many" + 0.004*"well" + 0.004*"2021" + 0.003*"December" + 0.003*"needs" +2024-07-25 12:39:17,475 - topic #2 (0.333): 0.014*"’" + 0.006*"plans" + 0.005*"Buckinghamshire" + 0.005*"protection" + 0.005*"17" + 0.005*"many" + 0.004*"December" + 0.004*"number" + 0.004*"6" + 0.004*"2021" +2024-07-25 12:39:17,475 - topic diff=0.721681, rho=1.000000 +2024-07-25 12:39:17,475 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:17.475286', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:18,947 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:18,951 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:18,951 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:18,951 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:18,952 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:18,952 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:18,952 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:18,952 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:18,953 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:18,953 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:18,953 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:18,953 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:20,660 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:20,662 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions) +2024-07-25 12:39:20,662 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2427 corpus positions)", 'datetime': '2024-07-25T12:39:20.662915', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:20,664 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:20,664 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:20,664 - using serial LDA version on this node +2024-07-25 12:39:20,664 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:20,664 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:20,668 - -7.974 per-word bound, 251.4 perplexity estimate based on a held-out corpus of 1 documents with 2427 words +2024-07-25 12:39:20,668 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:20,669 - topic #0 (0.333): 0.011*"’" + 0.007*"2021" + 0.006*"protection" + 0.006*"impact" + 0.006*"needs" + 0.006*"need" + 0.005*"team" + 0.005*"practice" + 0.005*"always" + 0.005*"risk" +2024-07-25 12:39:20,670 - topic #1 (0.333): 0.012*"’" + 0.007*"2021" + 0.007*"needs" + 0.007*"protection" + 0.006*"practice" + 0.006*"team" + 0.006*"quality" + 0.005*"Bury" + 0.005*"need" + 0.005*"risk" +2024-07-25 12:39:20,670 - topic #2 (0.333): 0.011*"’" + 0.006*"protection" + 0.006*"needs" + 0.005*"team" + 0.005*"practice" + 0.004*"2021" + 0.004*"impact" + 0.004*"delay" + 0.004*"new" + 0.004*"need" +2024-07-25 12:39:20,670 - topic diff=0.805995, rho=1.000000 +2024-07-25 12:39:20,670 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:20.670418', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:21,716 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:21,717 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:21,717 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:21,717 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:21,717 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:21,718 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:21,718 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:21,718 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:21,718 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:21,718 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:21,718 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:21,719 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:23,073 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:23,076 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions) +2024-07-25 12:39:23,076 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-07-25T12:39:23.076183', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:23,077 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:23,077 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:23,077 - using serial LDA version on this node +2024-07-25 12:39:23,078 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:23,078 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:23,081 - -8.027 per-word bound, 260.8 perplexity estimate based on a held-out corpus of 1 documents with 2389 words +2024-07-25 12:39:23,081 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:23,083 - topic #0 (0.333): 0.019*"’" + 0.008*"Calderdale" + 0.008*"needs" + 0.006*"plans" + 0.006*"ensure" + 0.005*"parents" + 0.005*"well" + 0.005*"information" + 0.005*"need" + 0.004*"progress" +2024-07-25 12:39:23,083 - topic #1 (0.333): 0.020*"’" + 0.010*"Calderdale" + 0.010*"needs" + 0.007*"well" + 0.006*"plans" + 0.006*"progress" + 0.005*"risk" + 0.005*"experiences" + 0.005*"ensure" + 0.004*"23" +2024-07-25 12:39:23,083 - topic #2 (0.333): 0.021*"’" + 0.011*"needs" + 0.006*"Calderdale" + 0.006*"well" + 0.006*"progress" + 0.006*"ensure" + 0.005*"plans" + 0.005*"risk" + 0.005*"19" + 0.004*"parents" +2024-07-25 12:39:23,083 - topic diff=0.779186, rho=1.000000 +2024-07-25 12:39:23,084 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:23.084043', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:24,381 - Inspection date 2024-02-19 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:24,381 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:24,381 - Inspection date 2024-02-19 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:24,382 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:24,382 - Inspection date 2024-02-19 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:24,382 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:24,382 - Inspection date 2024-02-19 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:24,383 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:24,383 - Inspection date 2024-02-19 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:24,383 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:24,383 - Inspection date 2024-02-19 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:24,384 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:26,220 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:26,222 - built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions) +2024-07-25 12:39:26,222 - Dictionary lifecycle event {'msg': "built Dictionary<1082 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2339 corpus positions)", 'datetime': '2024-07-25T12:39:26.222549', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:26,223 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:26,224 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:26,224 - using serial LDA version on this node +2024-07-25 12:39:26,224 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:26,224 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:26,228 - -8.004 per-word bound, 256.6 perplexity estimate based on a held-out corpus of 1 documents with 2339 words +2024-07-25 12:39:26,228 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:26,230 - topic #0 (0.333): 0.022*"’" + 0.008*"needs" + 0.007*"Cambridgeshire" + 0.007*"leaders" + 0.006*"good" + 0.006*"practice" + 0.005*"well" + 0.005*"4" + 0.005*"However" + 0.005*"effective" +2024-07-25 12:39:26,230 - topic #1 (0.333): 0.012*"’" + 0.006*"needs" + 0.005*"Cambridgeshire" + 0.005*"4" + 0.004*"leaders" + 0.004*"good" + 0.004*"well" + 0.004*"leadership" + 0.004*"2024" + 0.004*"timely" +2024-07-25 12:39:26,230 - topic #2 (0.333): 0.013*"’" + 0.007*"leaders" + 0.006*"Cambridgeshire" + 0.005*"needs" + 0.005*"effective" + 0.005*"good" + 0.005*"leadership" + 0.004*"well" + 0.004*"2024" + 0.004*"15" +2024-07-25 12:39:26,230 - topic diff=0.800708, rho=1.000000 +2024-07-25 12:39:26,230 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:26.230879', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:27,414 - Inspection date 2024-03-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:27,414 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:27,415 - Inspection date 2024-03-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:27,415 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:27,415 - Inspection date 2024-03-04 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:27,415 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:27,416 - Inspection date 2024-03-04 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:27,416 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:27,416 - Inspection date 2024-03-04 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:27,416 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:27,417 - Inspection date 2024-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:27,417 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:29,106 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:29,110 - built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) +2024-07-25 12:39:29,110 - Dictionary lifecycle event {'msg': "built Dictionary<1030 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-07-25T12:39:29.110644', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:29,111 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:29,112 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:29,112 - using serial LDA version on this node +2024-07-25 12:39:29,112 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:29,112 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:29,116 - -7.964 per-word bound, 249.6 perplexity estimate based on a held-out corpus of 1 documents with 2199 words +2024-07-25 12:39:29,116 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:29,118 - topic #0 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"needs" + 0.007*"need" + 0.006*"carers" + 0.005*"plans" + 0.005*"Bedfordshire" + 0.005*"progress" + 0.005*"good" + 0.004*"effective" +2024-07-25 12:39:29,118 - topic #1 (0.333): 0.018*"’" + 0.011*"well" + 0.007*"needs" + 0.007*"good" + 0.006*"progress" + 0.006*"plans" + 0.006*"need" + 0.006*"carers" + 0.006*"information" + 0.005*"Leaders" +2024-07-25 12:39:29,118 - topic #2 (0.333): 0.015*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"good" + 0.006*"carers" + 0.005*"need" + 0.005*"Central" + 0.005*"effective" + 0.005*"plans" + 0.004*"supported" +2024-07-25 12:39:29,118 - topic diff=0.786066, rho=1.000000 +2024-07-25 12:39:29,119 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:29.119080', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:30,152 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:30,152 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:30,152 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:30,152 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:30,153 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:30,153 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:30,153 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:30,153 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:30,153 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:30,153 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:30,154 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:30,154 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:31,684 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:31,686 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions) +2024-07-25 12:39:31,687 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2272 corpus positions)", 'datetime': '2024-07-25T12:39:31.687017', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:31,688 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:31,688 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:31,688 - using serial LDA version on this node +2024-07-25 12:39:31,688 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:31,688 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:31,692 - -7.974 per-word bound, 251.4 perplexity estimate based on a held-out corpus of 1 documents with 2272 words +2024-07-25 12:39:31,692 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:31,693 - topic #0 (0.333): 0.014*"’" + 0.007*"needs" + 0.007*"2024" + 0.007*"plans" + 0.006*"well" + 0.006*"practice" + 0.005*"quality" + 0.005*"East" + 0.005*"Cheshire" + 0.005*"effective" +2024-07-25 12:39:31,694 - topic #1 (0.333): 0.014*"’" + 0.009*"2024" + 0.008*"needs" + 0.007*"well" + 0.007*"practice" + 0.006*"plans" + 0.006*"leaders" + 0.006*"Cheshire" + 0.005*"East" + 0.005*"effective" +2024-07-25 12:39:31,694 - topic #2 (0.333): 0.010*"’" + 0.007*"quality" + 0.007*"plans" + 0.007*"practice" + 0.006*"2024" + 0.006*"needs" + 0.006*"well" + 0.006*"means" + 0.006*"East" + 0.005*"access" +2024-07-25 12:39:31,694 - topic diff=0.774677, rho=1.000000 +2024-07-25 12:39:31,694 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:31.694570', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:32,625 - Inspection date 2024-02-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:32,625 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:32,626 - Inspection date 2024-02-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:32,626 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:32,626 - Inspection date 2024-02-26 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:32,626 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:32,626 - Inspection date 2024-02-26 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:32,626 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:32,626 - Inspection date 2024-02-26 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:32,626 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:32,627 - Inspection date 2024-02-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:32,627 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:33,958 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:33,960 - built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions) +2024-07-25 12:39:33,961 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2186 corpus positions)", 'datetime': '2024-07-25T12:39:33.961061', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:33,962 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:33,962 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:33,962 - using serial LDA version on this node +2024-07-25 12:39:33,962 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:33,962 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:33,966 - -8.004 per-word bound, 256.7 perplexity estimate based on a held-out corpus of 1 documents with 2186 words +2024-07-25 12:39:33,966 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:33,967 - topic #0 (0.333): 0.021*"’" + 0.007*"well" + 0.007*"needs" + 0.005*"always" + 0.004*"effectively" + 0.004*"leaders" + 0.004*"impact" + 0.004*"timely" + 0.004*"order" + 0.004*"improve" +2024-07-25 12:39:33,968 - topic #1 (0.333): 0.018*"’" + 0.007*"well" + 0.007*"needs" + 0.005*"practice" + 0.004*"impact" + 0.004*"always" + 0.004*"good" + 0.004*"effective" + 0.004*"use" + 0.004*"receive" +2024-07-25 12:39:33,968 - topic #2 (0.333): 0.025*"’" + 0.007*"needs" + 0.007*"well" + 0.005*"plans" + 0.005*"practice" + 0.005*"effective" + 0.004*"order" + 0.004*"including" + 0.004*"effectively" + 0.004*"timely" +2024-07-25 12:39:33,968 - topic diff=0.764324, rho=1.000000 +2024-07-25 12:39:33,968 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:33.968575', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:34,923 - Inspection date 2019-03-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:34,923 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:34,923 - Inspection date 2019-03-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:34,924 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:34,924 - Inspection date 2019-03-18 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:34,924 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:34,924 - Inspection date 2019-03-18 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:34,924 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:34,924 - Inspection date 2019-03-18 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:34,925 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:34,925 - Inspection date 2019-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:34,925 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:36,964 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:36,966 - built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions) +2024-07-25 12:39:36,967 - Dictionary lifecycle event {'msg': "built Dictionary<1164 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2639 corpus positions)", 'datetime': '2024-07-25T12:39:36.967025', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:36,968 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:36,968 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:36,968 - using serial LDA version on this node +2024-07-25 12:39:36,969 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:36,969 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:36,973 - -8.050 per-word bound, 265.0 perplexity estimate based on a held-out corpus of 1 documents with 2639 words +2024-07-25 12:39:36,973 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:36,974 - topic #0 (0.333): 0.019*"’" + 0.007*"plans" + 0.005*"Bradford" + 0.005*"2" + 0.005*"needs" + 0.004*"quality" + 0.004*"Council" + 0.004*"practice" + 0.004*"Borough" + 0.004*"City" +2024-07-25 12:39:36,974 - topic #1 (0.333): 0.020*"’" + 0.006*"plans" + 0.005*"impact" + 0.005*"2" + 0.004*"◼" + 0.004*"quality" + 0.004*"Council" + 0.004*"Bradford" + 0.004*"need" + 0.004*"risk" +2024-07-25 12:39:36,975 - topic #2 (0.333): 0.023*"’" + 0.007*"plans" + 0.005*"needs" + 0.005*"progress" + 0.005*"Bradford" + 0.005*"risk" + 0.004*"21" + 0.004*"need" + 0.004*"lack" + 0.004*"November" +2024-07-25 12:39:36,975 - topic diff=0.807590, rho=1.000000 +2024-07-25 12:39:36,975 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:36.975380', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:38,218 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:38,219 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:38,219 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:38,219 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:38,220 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:38,220 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:38,220 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:38,220 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:38,221 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:38,221 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:38,221 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:38,221 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:39,592 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:39,594 - built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions) +2024-07-25 12:39:39,594 - Dictionary lifecycle event {'msg': "built Dictionary<876 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1767 corpus positions)", 'datetime': '2024-07-25T12:39:39.594791', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:39,595 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:39,595 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:39,596 - using serial LDA version on this node +2024-07-25 12:39:39,596 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:39,596 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:39,599 - -7.838 per-word bound, 228.9 perplexity estimate based on a held-out corpus of 1 documents with 1767 words +2024-07-25 12:39:39,599 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:39,600 - topic #0 (0.333): 0.012*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"ensure" + 0.007*"clear" + 0.007*"effective" + 0.006*"progress" + 0.005*"good" + 0.005*"plans" + 0.005*"individual" +2024-07-25 12:39:39,601 - topic #1 (0.333): 0.012*"needs" + 0.011*"well" + 0.009*"’" + 0.008*"ensure" + 0.007*"clear" + 0.006*"progress" + 0.006*"effective" + 0.005*"practice" + 0.005*"plans" + 0.005*"within" +2024-07-25 12:39:39,601 - topic #2 (0.333): 0.013*"’" + 0.012*"needs" + 0.010*"well" + 0.009*"ensure" + 0.007*"effective" + 0.006*"good" + 0.005*"progress" + 0.005*"plans" + 0.005*"supported" + 0.005*"individual" +2024-07-25 12:39:39,601 - topic diff=0.742921, rho=1.000000 +2024-07-25 12:39:39,601 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:39.601719', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:40,744 - Inspection date 2020-03-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:40,745 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:40,745 - Inspection date 2020-03-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:40,745 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:40,745 - Inspection date 2020-03-02 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:40,745 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:40,746 - Inspection date 2020-03-02 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:40,746 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:40,746 - Inspection date 2020-03-02 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:40,746 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:40,746 - Inspection date 2020-03-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:40,746 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:42,464 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:42,466 - built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions) +2024-07-25 12:39:42,466 - Dictionary lifecycle event {'msg': "built Dictionary<1007 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2281 corpus positions)", 'datetime': '2024-07-25T12:39:42.466384', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:42,467 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:42,467 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:42,467 - using serial LDA version on this node +2024-07-25 12:39:42,468 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:42,468 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:42,471 - -7.904 per-word bound, 239.5 perplexity estimate based on a held-out corpus of 1 documents with 2281 words +2024-07-25 12:39:42,471 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:42,473 - topic #0 (0.333): 0.016*"’" + 0.008*"quality" + 0.008*"well" + 0.008*"November" + 0.008*"plans" + 0.007*"Wakefield" + 0.006*"good" + 0.006*"leaders" + 0.005*"receive" + 0.005*"strong" +2024-07-25 12:39:42,473 - topic #1 (0.333): 0.019*"’" + 0.009*"Wakefield" + 0.009*"effective" + 0.008*"leaders" + 0.008*"well" + 0.007*"quality" + 0.007*"good" + 0.007*"November" + 0.006*"practice" + 0.006*"progress" +2024-07-25 12:39:42,473 - topic #2 (0.333): 0.014*"’" + 0.007*"leaders" + 0.007*"November" + 0.006*"quality" + 0.006*"Wakefield" + 0.006*"well" + 0.006*"good" + 0.005*"receive" + 0.005*"effective" + 0.005*"19" +2024-07-25 12:39:42,473 - topic diff=0.805261, rho=1.000000 +2024-07-25 12:39:42,473 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:42.473795', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:43,386 - Inspection date 2021-11-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:43,387 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:43,387 - Inspection date 2021-11-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:43,387 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:43,387 - Inspection date 2021-11-08 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:43,387 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:43,388 - Inspection date 2021-11-08 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:43,388 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:43,388 - Inspection date 2021-11-08 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:43,388 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:43,388 - Inspection date 2021-11-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:43,388 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:44,875 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:44,878 - built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions) +2024-07-25 12:39:44,878 - Dictionary lifecycle event {'msg': "built Dictionary<909 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1855 corpus positions)", 'datetime': '2024-07-25T12:39:44.878825', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:44,879 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:44,879 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:44,880 - using serial LDA version on this node +2024-07-25 12:39:44,880 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:44,880 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:44,885 - -7.862 per-word bound, 232.7 perplexity estimate based on a held-out corpus of 1 documents with 1855 words +2024-07-25 12:39:44,885 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:44,886 - topic #0 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"March" + 0.007*"effective" + 0.006*"York" + 0.006*"quality" + 0.006*"ensure" + 0.006*"However" + 0.005*"7" + 0.005*"practice" +2024-07-25 12:39:44,887 - topic #1 (0.333): 0.016*"’" + 0.007*"quality" + 0.007*"needs" + 0.007*"March" + 0.005*"However" + 0.005*"plans" + 0.005*"ensure" + 0.005*"supported" + 0.005*"appropriate" + 0.005*"good" +2024-07-25 12:39:44,887 - topic #2 (0.333): 0.013*"’" + 0.007*"March" + 0.007*"needs" + 0.006*"quality" + 0.006*"effective" + 0.005*"training" + 0.004*"York" + 0.004*"well" + 0.004*"education" + 0.004*"However" +2024-07-25 12:39:44,887 - topic diff=0.770689, rho=1.000000 +2024-07-25 12:39:44,887 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:44.887722', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:45,870 - Inspection date 2022-03-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:45,870 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:45,871 - Inspection date 2022-03-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:45,871 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:45,871 - Inspection date 2022-03-07 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:45,871 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:45,871 - Inspection date 2022-03-07 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:45,872 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:45,872 - Inspection date 2022-03-07 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:45,872 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:45,872 - Inspection date 2022-03-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:45,872 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:47,288 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:47,292 - built Dictionary<1014 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2157 corpus positions) +2024-07-25 12:39:47,292 - Dictionary lifecycle event {'msg': "built Dictionary<1014 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2157 corpus positions)", 'datetime': '2024-07-25T12:39:47.292510', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:47,294 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:47,294 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:47,295 - using serial LDA version on this node +2024-07-25 12:39:47,295 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:47,296 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:47,301 - -7.950 per-word bound, 247.2 perplexity estimate based on a held-out corpus of 1 documents with 2157 words +2024-07-25 12:39:47,301 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:47,303 - topic #0 (0.333): 0.011*"well" + 0.010*"’" + 0.008*"effective" + 0.007*"leaders" + 0.006*"arrangements" + 0.006*"quality" + 0.005*"plans" + 0.005*"timely" + 0.004*"good" + 0.004*"highly" +2024-07-25 12:39:47,304 - topic #1 (0.333): 0.017*"well" + 0.012*"quality" + 0.011*"’" + 0.009*"effective" + 0.009*"leaders" + 0.007*"good" + 0.006*"plans" + 0.005*"timely" + 0.005*"ensure" + 0.005*"needs" +2024-07-25 12:39:47,304 - topic #2 (0.333): 0.015*"well" + 0.014*"’" + 0.009*"quality" + 0.009*"leaders" + 0.008*"effective" + 0.006*"arrangements" + 0.006*"highly" + 0.006*"timely" + 0.005*"plans" + 0.005*"good" +2024-07-25 12:39:47,304 - topic diff=0.784478, rho=1.000000 +2024-07-25 12:39:47,305 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:47.305014', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:49,060 - Inspection date 2019-10-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:49,060 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:49,061 - Inspection date 2019-10-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:49,061 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:49,061 - Inspection date 2019-10-14 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:49,062 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:49,062 - Inspection date 2019-10-14 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:49,063 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:49,064 - Inspection date 2019-10-14 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:49,064 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:49,065 - Inspection date 2019-10-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:49,065 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:50,099 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:50,102 - built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions) +2024-07-25 12:39:50,102 - Dictionary lifecycle event {'msg': "built Dictionary<754 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1521 corpus positions)", 'datetime': '2024-07-25T12:39:50.102186', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:50,103 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:50,103 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:50,103 - using serial LDA version on this node +2024-07-25 12:39:50,103 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:50,103 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:50,106 - -7.679 per-word bound, 205.0 perplexity estimate based on a held-out corpus of 1 documents with 1521 words +2024-07-25 12:39:50,107 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:50,108 - topic #0 (0.333): 0.014*"’" + 0.011*"Scilly" + 0.009*"Isles" + 0.008*"practice" + 0.007*"information" + 0.006*"protection" + 0.006*"need" + 0.005*"needs" + 0.005*"place" + 0.005*"risks" +2024-07-25 12:39:50,108 - topic #1 (0.333): 0.024*"’" + 0.013*"Scilly" + 0.012*"Isles" + 0.010*"information" + 0.010*"need" + 0.009*"practice" + 0.007*"needs" + 0.007*"place" + 0.006*"quality" + 0.006*"risks" +2024-07-25 12:39:50,108 - topic #2 (0.333): 0.022*"’" + 0.013*"Isles" + 0.011*"Scilly" + 0.009*"information" + 0.009*"practice" + 0.008*"protection" + 0.008*"need" + 0.007*"needs" + 0.006*"quality" + 0.006*"11" +2024-07-25 12:39:50,108 - topic diff=0.753083, rho=1.000000 +2024-07-25 12:39:50,109 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:50.109022', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:51,016 - Inspection date 2023-07-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:51,016 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:51,017 - Inspection date 2023-07-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:51,017 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:51,017 - Inspection date 2023-07-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:51,017 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:51,017 - Inspection date 2023-07-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:51,017 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:51,017 - Inspection date 2023-07-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:51,018 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:51,018 - Inspection date 2023-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:51,018 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:52,542 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:52,544 - built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions) +2024-07-25 12:39:52,544 - Dictionary lifecycle event {'msg': "built Dictionary<938 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2074 corpus positions)", 'datetime': '2024-07-25T12:39:52.544820', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:52,545 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:52,545 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:52,546 - using serial LDA version on this node +2024-07-25 12:39:52,546 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:52,546 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:52,549 - -7.847 per-word bound, 230.3 perplexity estimate based on a held-out corpus of 1 documents with 2074 words +2024-07-25 12:39:52,550 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:52,551 - topic #0 (0.333): 0.015*"’" + 0.009*"supported" + 0.008*"needs" + 0.008*"Coventry" + 0.007*"well" + 0.007*"plans" + 0.006*"family" + 0.006*"need" + 0.005*"strong" + 0.005*"training" +2024-07-25 12:39:52,551 - topic #1 (0.333): 0.019*"’" + 0.009*"Coventry" + 0.008*"well" + 0.008*"needs" + 0.006*"supported" + 0.006*"plans" + 0.005*"family" + 0.005*"strong" + 0.004*"2022" + 0.004*"need" +2024-07-25 12:39:52,551 - topic #2 (0.333): 0.024*"’" + 0.008*"well" + 0.007*"Coventry" + 0.006*"needs" + 0.006*"family" + 0.005*"strong" + 0.005*"plans" + 0.005*"need" + 0.005*"supported" + 0.005*"PAs" +2024-07-25 12:39:52,551 - topic diff=0.796455, rho=1.000000 +2024-07-25 12:39:52,551 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:52.551947', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:53,491 - Inspection date 2022-06-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:53,491 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:53,491 - Inspection date 2022-06-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:53,491 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:53,492 - Inspection date 2022-06-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:53,492 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:53,492 - Inspection date 2022-06-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:53,492 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:53,492 - Inspection date 2022-06-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:53,492 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:53,493 - Inspection date 2022-06-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:53,493 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:56,259 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:56,262 - built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions) +2024-07-25 12:39:56,262 - Dictionary lifecycle event {'msg': "built Dictionary<1195 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2653 corpus positions)", 'datetime': '2024-07-25T12:39:56.262452', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:56,263 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:56,263 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:56,264 - using serial LDA version on this node +2024-07-25 12:39:56,264 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:56,264 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:56,268 - -8.087 per-word bound, 272.0 perplexity estimate based on a held-out corpus of 1 documents with 2653 words +2024-07-25 12:39:56,268 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:56,270 - topic #0 (0.333): 0.013*"’" + 0.009*"well" + 0.008*"October" + 0.006*"leaders" + 0.006*"needs" + 0.005*"practice" + 0.005*"Darlington" + 0.004*"range" + 0.004*"family" + 0.004*"quality" +2024-07-25 12:39:56,270 - topic #1 (0.333): 0.024*"’" + 0.008*"leaders" + 0.008*"well" + 0.007*"Darlington" + 0.006*"practice" + 0.006*"needs" + 0.006*"October" + 0.006*"quality" + 0.005*"education" + 0.005*"supported" +2024-07-25 12:39:56,270 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"practice" + 0.006*"October" + 0.005*"effective" + 0.005*"leaders" + 0.004*"Darlington" + 0.004*"supported" + 0.004*"access" +2024-07-25 12:39:56,270 - topic diff=0.803476, rho=1.000000 +2024-07-25 12:39:56,270 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:56.270860', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:57,228 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:39:57,228 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:57,228 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:39:57,229 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:57,229 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:39:57,229 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:57,229 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:39:57,229 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:57,229 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:39:57,229 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:57,230 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:39:57,230 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:39:59,073 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:39:59,075 - built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions) +2024-07-25 12:39:59,075 - Dictionary lifecycle event {'msg': "built Dictionary<1121 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2396 corpus positions)", 'datetime': '2024-07-25T12:39:59.075511', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:39:59,076 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:39:59,076 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:39:59,077 - using serial LDA version on this node +2024-07-25 12:39:59,077 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:39:59,077 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:39:59,081 - -8.043 per-word bound, 263.7 perplexity estimate based on a held-out corpus of 1 documents with 2396 words +2024-07-25 12:39:59,081 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:39:59,082 - topic #0 (0.333): 0.019*"’" + 0.008*"needs" + 0.007*"receive" + 0.007*"Derby" + 0.006*"leaders" + 0.005*"well" + 0.005*"need" + 0.005*"appropriate" + 0.005*"plans" + 0.004*"2022" +2024-07-25 12:39:59,082 - topic #1 (0.333): 0.024*"’" + 0.011*"needs" + 0.008*"quality" + 0.007*"Derby" + 0.007*"receive" + 0.007*"plans" + 0.006*"progress" + 0.006*"well" + 0.006*"leaders" + 0.005*"appropriate" +2024-07-25 12:39:59,083 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"Derby" + 0.006*"good" + 0.006*"quality" + 0.005*"progress" + 0.005*"need" + 0.005*"oversight" + 0.005*"appropriate" + 0.005*"views" +2024-07-25 12:39:59,083 - topic diff=0.776746, rho=1.000000 +2024-07-25 12:39:59,083 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:39:59.083462', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:00,869 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:00,869 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:00,869 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:00,869 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:00,869 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:00,869 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:00,870 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:00,870 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:00,870 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:00,870 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:00,870 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:00,870 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:02,029 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:02,033 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions) +2024-07-25 12:40:02,033 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2035 corpus positions)", 'datetime': '2024-07-25T12:40:02.033717', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:02,035 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:02,035 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:02,035 - using serial LDA version on this node +2024-07-25 12:40:02,036 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:02,036 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:02,039 - -8.035 per-word bound, 262.3 perplexity estimate based on a held-out corpus of 1 documents with 2035 words +2024-07-25 12:40:02,039 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:02,041 - topic #0 (0.333): 0.017*"’" + 0.010*"well" + 0.008*"Derbyshire" + 0.005*"positive" + 0.005*"good" + 0.005*"needs" + 0.005*"education" + 0.005*"need" + 0.005*"plans" + 0.005*"health" +2024-07-25 12:40:02,041 - topic #1 (0.333): 0.012*"’" + 0.006*"well" + 0.006*"plans" + 0.005*"Derbyshire" + 0.005*"10" + 0.004*"30" + 0.004*"progress" + 0.004*"effective" + 0.004*"leaders" + 0.004*"health" +2024-07-25 12:40:02,041 - topic #2 (0.333): 0.010*"’" + 0.005*"Derbyshire" + 0.004*"well" + 0.004*"plans" + 0.004*"leaders" + 0.004*"needs" + 0.003*"positive" + 0.003*"health" + 0.003*"10" + 0.003*"risk" +2024-07-25 12:40:02,041 - topic diff=0.771858, rho=1.000000 +2024-07-25 12:40:02,041 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:02.041899', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:03,007 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:03,007 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:03,008 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:03,008 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:03,008 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:03,008 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:03,008 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:03,008 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:03,009 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:03,009 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:03,009 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:03,009 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:04,368 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:04,370 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions) +2024-07-25 12:40:04,370 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '1,000', '10']...> from 1 documents (total 2313 corpus positions)", 'datetime': '2024-07-25T12:40:04.370430', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:04,371 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:04,371 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:04,371 - using serial LDA version on this node +2024-07-25 12:40:04,372 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:04,372 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:04,376 - -8.140 per-word bound, 282.1 perplexity estimate based on a held-out corpus of 1 documents with 2313 words +2024-07-25 12:40:04,376 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:04,377 - topic #0 (0.333): 0.010*"’" + 0.007*"well" + 0.005*"risk" + 0.004*"progress" + 0.004*"Devon" + 0.004*"leaders" + 0.004*"including" + 0.003*"needs" + 0.003*"practice" + 0.003*"health" +2024-07-25 12:40:04,377 - topic #1 (0.333): 0.009*"’" + 0.005*"leaders" + 0.004*"health" + 0.004*"risk" + 0.004*"need" + 0.004*"case" + 0.004*"protection" + 0.004*"progress" + 0.004*"well" + 0.004*"practice" +2024-07-25 12:40:04,378 - topic #2 (0.333): 0.009*"’" + 0.006*"well" + 0.006*"health" + 0.005*"leaders" + 0.005*"progress" + 0.005*"risk" + 0.005*"living" + 0.005*"time" + 0.004*"protection" + 0.004*"areas" +2024-07-25 12:40:04,378 - topic diff=0.733291, rho=1.000000 +2024-07-25 12:40:04,378 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:04.378250', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:05,406 - Inspection date 2020-01-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:05,406 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:05,406 - Inspection date 2020-01-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:05,406 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:05,406 - Inspection date 2020-01-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:05,407 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:05,407 - Inspection date 2020-01-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:05,407 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:05,407 - Inspection date 2020-01-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:05,407 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:05,407 - Inspection date 2020-01-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:05,408 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:07,116 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:07,119 - built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions) +2024-07-25 12:40:07,119 - Dictionary lifecycle event {'msg': "built Dictionary<1175 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2429 corpus positions)", 'datetime': '2024-07-25T12:40:07.119312', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:07,120 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:07,120 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:07,120 - using serial LDA version on this node +2024-07-25 12:40:07,121 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:07,121 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:07,125 - -8.116 per-word bound, 277.4 perplexity estimate based on a held-out corpus of 1 documents with 2429 words +2024-07-25 12:40:07,125 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:07,126 - topic #0 (0.333): 0.021*"’" + 0.007*"Doncaster" + 0.006*"well" + 0.005*"leaders" + 0.005*"quality" + 0.005*"many" + 0.005*"oversight" + 0.005*"information" + 0.005*"25" + 0.005*"records" +2024-07-25 12:40:07,126 - topic #1 (0.333): 0.013*"’" + 0.006*"well" + 0.006*"Doncaster" + 0.004*"many" + 0.004*"plans" + 0.004*"arrangements" + 0.004*"leaders" + 0.004*"February" + 0.004*"effective" + 0.004*"protection" +2024-07-25 12:40:07,127 - topic #2 (0.333): 0.024*"’" + 0.008*"well" + 0.006*"records" + 0.006*"progress" + 0.005*"plans" + 0.005*"leaders" + 0.005*"Doncaster" + 0.005*"many" + 0.005*"experiences" + 0.005*"information" +2024-07-25 12:40:07,127 - topic diff=0.775553, rho=1.000000 +2024-07-25 12:40:07,127 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:07.127445', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:09,038 - Inspection date 2022-02-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:09,038 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:09,039 - Inspection date 2022-02-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:09,039 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:09,039 - Inspection date 2022-02-14 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:09,039 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:09,040 - Inspection date 2022-02-14 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:09,040 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:09,040 - Inspection date 2022-02-14 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:09,040 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:09,040 - Inspection date 2022-02-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:09,040 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:10,887 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:10,890 - built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions) +2024-07-25 12:40:10,891 - Dictionary lifecycle event {'msg': "built Dictionary<1067 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1942 corpus positions)", 'datetime': '2024-07-25T12:40:10.891176', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:10,892 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:10,893 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:10,893 - using serial LDA version on this node +2024-07-25 12:40:10,894 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:10,894 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:10,900 - -8.100 per-word bound, 274.4 perplexity estimate based on a held-out corpus of 1 documents with 1942 words +2024-07-25 12:40:10,900 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:10,902 - topic #0 (0.333): 0.010*"’" + 0.009*"Dorset" + 0.006*"good" + 0.005*"arrangements" + 0.005*"well" + 0.004*"needs" + 0.004*"October" + 0.004*"8" + 0.004*"September" + 0.004*"leaders" +2024-07-25 12:40:10,902 - topic #1 (0.333): 0.012*"’" + 0.008*"Dorset" + 0.006*"well" + 0.006*"good" + 0.005*"needs" + 0.004*"need" + 0.004*"including" + 0.004*"2021" + 0.004*"leaders" + 0.004*"quality" +2024-07-25 12:40:10,903 - topic #2 (0.333): 0.019*"’" + 0.006*"Dorset" + 0.006*"well" + 0.005*"good" + 0.004*"change" + 0.004*"arrangements" + 0.004*"needs" + 0.004*"8" + 0.004*"Senior" + 0.004*"27" +2024-07-25 12:40:10,903 - topic diff=0.712281, rho=1.000000 +2024-07-25 12:40:10,903 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:10.903679', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:12,009 - Inspection date 2021-09-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:12,010 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:12,010 - Inspection date 2021-09-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:12,010 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:12,011 - Inspection date 2021-09-27 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:12,011 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:12,011 - Inspection date 2021-09-27 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:12,011 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:12,012 - Inspection date 2021-09-27 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:12,012 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:12,012 - Inspection date 2021-09-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:12,012 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:13,393 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:13,395 - built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions) +2024-07-25 12:40:13,395 - Dictionary lifecycle event {'msg': "built Dictionary<1050 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2138 corpus positions)", 'datetime': '2024-07-25T12:40:13.395614', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:13,396 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:13,396 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:13,397 - using serial LDA version on this node +2024-07-25 12:40:13,397 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:13,397 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:13,401 - -8.011 per-word bound, 257.9 perplexity estimate based on a held-out corpus of 1 documents with 2138 words +2024-07-25 12:40:13,401 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:13,402 - topic #0 (0.333): 0.018*"’" + 0.012*"needs" + 0.009*"Dudley" + 0.006*"plans" + 0.006*"arrangements" + 0.005*"ensure" + 0.005*"always" + 0.005*"well" + 0.004*"experiences" + 0.004*"quality" +2024-07-25 12:40:13,402 - topic #1 (0.333): 0.014*"’" + 0.010*"needs" + 0.008*"Dudley" + 0.006*"well" + 0.005*"plans" + 0.005*"always" + 0.005*"oversight" + 0.005*"arrangements" + 0.005*"ensure" + 0.004*"enough" +2024-07-25 12:40:13,402 - topic #2 (0.333): 0.012*"’" + 0.009*"needs" + 0.005*"well" + 0.005*"Dudley" + 0.005*"However" + 0.005*"always" + 0.005*"management" + 0.005*"quality" + 0.005*"arrangements" + 0.004*"31" +2024-07-25 12:40:13,403 - topic diff=0.758432, rho=1.000000 +2024-07-25 12:40:13,403 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:13.403238', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:14,390 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:14,391 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:14,391 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:14,391 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:14,391 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:14,391 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:14,391 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:14,392 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:14,392 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:14,392 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:14,392 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:14,392 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:16,086 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:16,089 - built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions) +2024-07-25 12:40:16,090 - Dictionary lifecycle event {'msg': "built Dictionary<1051 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-07-25T12:40:16.090114', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:16,091 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:16,091 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:16,091 - using serial LDA version on this node +2024-07-25 12:40:16,092 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:16,092 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:16,095 - -7.975 per-word bound, 251.6 perplexity estimate based on a held-out corpus of 1 documents with 2278 words +2024-07-25 12:40:16,095 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:16,097 - topic #0 (0.333): 0.015*"’" + 0.013*"needs" + 0.008*"well" + 0.008*"May" + 0.008*"plans" + 0.007*"Durham" + 0.007*"ensure" + 0.005*"practice" + 0.005*"number" + 0.005*"carers" +2024-07-25 12:40:16,097 - topic #1 (0.333): 0.015*"’" + 0.009*"needs" + 0.007*"Durham" + 0.006*"May" + 0.006*"well" + 0.005*"plans" + 0.005*"practice" + 0.005*"ensure" + 0.005*"2022" + 0.005*"leaders" +2024-07-25 12:40:16,097 - topic #2 (0.333): 0.013*"’" + 0.009*"needs" + 0.006*"May" + 0.006*"Durham" + 0.005*"well" + 0.005*"practice" + 0.005*"plans" + 0.005*"ensure" + 0.004*"progress" + 0.004*"20" +2024-07-25 12:40:16,097 - topic diff=0.780292, rho=1.000000 +2024-07-25 12:40:16,098 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:16.098076', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:17,179 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:17,180 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:17,180 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:17,180 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:17,180 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:17,180 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:17,181 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:17,181 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:17,181 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:17,181 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:17,181 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:17,181 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:18,727 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:18,729 - built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions) +2024-07-25 12:40:18,729 - Dictionary lifecycle event {'msg': "built Dictionary<972 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2014 corpus positions)", 'datetime': '2024-07-25T12:40:18.729725', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:18,730 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:18,730 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:18,731 - using serial LDA version on this node +2024-07-25 12:40:18,731 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:18,731 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:18,734 - -7.925 per-word bound, 243.0 perplexity estimate based on a held-out corpus of 1 documents with 2014 words +2024-07-25 12:40:18,734 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:18,736 - topic #0 (0.333): 0.020*"’" + 0.011*"needs" + 0.010*"plans" + 0.009*"well" + 0.008*"Riding" + 0.007*"progress" + 0.007*"East" + 0.006*"10" + 0.005*"place" + 0.005*"education" +2024-07-25 12:40:18,736 - topic #1 (0.333): 0.014*"’" + 0.008*"well" + 0.007*"needs" + 0.007*"progress" + 0.006*"plans" + 0.006*"East" + 0.005*"30" + 0.005*"good" + 0.005*"partners" + 0.005*"Riding" +2024-07-25 12:40:18,736 - topic #2 (0.333): 0.012*"’" + 0.008*"plans" + 0.008*"needs" + 0.007*"well" + 0.006*"progress" + 0.006*"East" + 0.005*"Riding" + 0.005*"January" + 0.004*"partners" + 0.004*"2023" +2024-07-25 12:40:18,736 - topic diff=0.776506, rho=1.000000 +2024-07-25 12:40:18,736 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:18.736764', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:19,624 - Inspection date 2023-01-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:19,624 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:19,625 - Inspection date 2023-01-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:19,625 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:19,625 - Inspection date 2023-01-30 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:19,625 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:19,625 - Inspection date 2023-01-30 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:19,625 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:19,626 - Inspection date 2023-01-30 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:19,626 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:19,626 - Inspection date 2023-01-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:19,626 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:21,297 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:21,301 - built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions) +2024-07-25 12:40:21,301 - Dictionary lifecycle event {'msg': "built Dictionary<1111 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2220 corpus positions)", 'datetime': '2024-07-25T12:40:21.301441', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:21,303 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:21,303 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:21,303 - using serial LDA version on this node +2024-07-25 12:40:21,304 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:21,304 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:21,310 - -8.080 per-word bound, 270.6 perplexity estimate based on a held-out corpus of 1 documents with 2220 words +2024-07-25 12:40:21,310 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:21,312 - topic #0 (0.333): 0.010*"’" + 0.009*"well" + 0.007*"plans" + 0.007*"Sussex" + 0.007*"East" + 0.006*"needs" + 0.005*"including" + 0.005*"progress" + 0.005*"impact" + 0.004*"December" +2024-07-25 12:40:21,313 - topic #1 (0.333): 0.021*"’" + 0.010*"well" + 0.009*"needs" + 0.008*"plans" + 0.007*"progress" + 0.007*"including" + 0.006*"East" + 0.006*"Sussex" + 0.005*"effective" + 0.005*"impact" +2024-07-25 12:40:21,313 - topic #2 (0.333): 0.017*"’" + 0.009*"well" + 0.007*"plans" + 0.007*"needs" + 0.006*"East" + 0.006*"impact" + 0.006*"relationships" + 0.005*"11" + 0.005*"progress" + 0.005*"experiences" +2024-07-25 12:40:21,313 - topic diff=0.756391, rho=1.000000 +2024-07-25 12:40:21,313 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:21.313834', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:22,511 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:22,512 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:22,512 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:22,512 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:22,512 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:22,512 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:22,513 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:22,513 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:22,513 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:22,513 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:22,513 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:22,513 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:24,209 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:24,211 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions) +2024-07-25 12:40:24,212 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2686 corpus positions)", 'datetime': '2024-07-25T12:40:24.212117', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:24,213 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:24,213 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:24,213 - using serial LDA version on this node +2024-07-25 12:40:24,214 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:24,214 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:24,217 - -8.008 per-word bound, 257.5 perplexity estimate based on a held-out corpus of 1 documents with 2686 words +2024-07-25 12:40:24,218 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:24,219 - topic #0 (0.333): 0.017*"’" + 0.007*"well" + 0.007*"needs" + 0.006*"progress" + 0.005*"family" + 0.005*"understand" + 0.005*"practice" + 0.005*"quality" + 0.004*"helped" + 0.004*"need" +2024-07-25 12:40:24,219 - topic #1 (0.333): 0.019*"’" + 0.008*"well" + 0.006*"plans" + 0.006*"progress" + 0.005*"needs" + 0.005*"Essex" + 0.005*"‘" + 0.005*"advisers" + 0.005*"risk" + 0.005*"experiences" +2024-07-25 12:40:24,219 - topic #2 (0.333): 0.017*"’" + 0.007*"plans" + 0.007*"progress" + 0.006*"needs" + 0.005*"well" + 0.005*"family" + 0.005*"experiences" + 0.005*"health" + 0.005*"understand" + 0.005*"parents" +2024-07-25 12:40:24,220 - topic diff=0.805277, rho=1.000000 +2024-07-25 12:40:24,220 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:24.220184', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:25,182 - Inspection date 2023-06-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:25,182 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:25,183 - Inspection date 2023-06-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:25,183 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:25,183 - Inspection date 2023-06-26 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:25,183 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:25,184 - Inspection date 2023-06-26 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:25,184 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:25,184 - Inspection date 2023-06-26 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:25,184 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:25,184 - Inspection date 2023-06-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:25,185 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:27,006 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:27,009 - built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions) +2024-07-25 12:40:27,009 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '0–19', '1', '10']...> from 1 documents (total 2356 corpus positions)", 'datetime': '2024-07-25T12:40:27.009456', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:27,010 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:27,010 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:27,010 - using serial LDA version on this node +2024-07-25 12:40:27,011 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:27,011 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:27,015 - -8.042 per-word bound, 263.5 perplexity estimate based on a held-out corpus of 1 documents with 2356 words +2024-07-25 12:40:27,015 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:27,016 - topic #0 (0.333): 0.018*"’" + 0.008*"good" + 0.008*"effective" + 0.007*"quality" + 0.007*"practice" + 0.006*"needs" + 0.006*"plans" + 0.005*"timely" + 0.005*"need" + 0.005*"well" +2024-07-25 12:40:27,016 - topic #1 (0.333): 0.011*"’" + 0.010*"effective" + 0.007*"good" + 0.006*"practice" + 0.006*"needs" + 0.006*"well" + 0.005*"quality" + 0.005*"timely" + 0.005*"home" + 0.004*"early" +2024-07-25 12:40:27,016 - topic #2 (0.333): 0.011*"’" + 0.008*"effective" + 0.007*"practice" + 0.006*"well" + 0.006*"needs" + 0.006*"quality" + 0.005*"improve" + 0.005*"good" + 0.005*"timely" + 0.005*"early" +2024-07-25 12:40:27,016 - topic diff=0.769066, rho=1.000000 +2024-07-25 12:40:27,017 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:27.017107', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:27,945 - Inspection date 2019-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:27,945 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:27,945 - Inspection date 2019-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:27,945 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:27,946 - Inspection date 2019-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:27,946 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:27,946 - Inspection date 2019-04-29 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:27,946 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:27,946 - Inspection date 2019-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:27,946 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:27,947 - Inspection date 2019-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:27,947 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:29,499 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:29,502 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions) +2024-07-25 12:40:29,502 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2579 corpus positions)", 'datetime': '2024-07-25T12:40:29.502925', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:29,504 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:29,505 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:29,505 - using serial LDA version on this node +2024-07-25 12:40:29,505 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:29,505 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:29,510 - -8.055 per-word bound, 265.9 perplexity estimate based on a held-out corpus of 1 documents with 2579 words +2024-07-25 12:40:29,510 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:29,512 - topic #0 (0.333): 0.018*"’" + 0.010*"needs" + 0.008*"plans" + 0.007*"2022" + 0.006*"Gloucestershire" + 0.006*"progress" + 0.006*"February" + 0.005*"protection" + 0.005*"experienced" + 0.005*"7" +2024-07-25 12:40:29,512 - topic #1 (0.333): 0.021*"’" + 0.009*"February" + 0.007*"needs" + 0.007*"2022" + 0.007*"well" + 0.006*"plans" + 0.005*"experienced" + 0.005*"appropriate" + 0.005*"Gloucestershire" + 0.005*"18" +2024-07-25 12:40:29,512 - topic #2 (0.333): 0.011*"’" + 0.007*"needs" + 0.006*"2022" + 0.005*"February" + 0.004*"well" + 0.004*"plans" + 0.004*"timely" + 0.004*"18" + 0.004*"progress" + 0.004*"quality" +2024-07-25 12:40:29,512 - topic diff=0.834403, rho=1.000000 +2024-07-25 12:40:29,512 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:29.512677', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:30,660 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:30,660 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:30,660 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:30,661 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:30,661 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:30,661 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:30,661 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:30,661 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:30,661 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:30,662 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:30,662 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:30,662 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:32,680 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:32,683 - built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions) +2024-07-25 12:40:32,683 - Dictionary lifecycle event {'msg': "built Dictionary<1172 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2652 corpus positions)", 'datetime': '2024-07-25T12:40:32.683476', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:32,684 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:32,684 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:32,685 - using serial LDA version on this node +2024-07-25 12:40:32,685 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:32,685 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:32,689 - -8.055 per-word bound, 265.9 perplexity estimate based on a held-out corpus of 1 documents with 2652 words +2024-07-25 12:40:32,689 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:32,690 - topic #0 (0.333): 0.012*"’" + 0.007*"many" + 0.006*"needs" + 0.005*"including" + 0.005*"quality" + 0.005*"recently" + 0.005*"Halton" + 0.005*"24" + 0.005*"plans" + 0.005*"lack" +2024-07-25 12:40:32,691 - topic #1 (0.333): 0.015*"’" + 0.008*"needs" + 0.007*"Halton" + 0.006*"need" + 0.006*"plans" + 0.006*"quality" + 0.005*"including" + 0.005*"13" + 0.005*"many" + 0.005*"Leaders" +2024-07-25 12:40:32,691 - topic #2 (0.333): 0.018*"’" + 0.006*"quality" + 0.006*"needs" + 0.006*"many" + 0.006*"Halton" + 0.005*"including" + 0.005*"protection" + 0.005*"experiences" + 0.005*"need" + 0.004*"carers" +2024-07-25 12:40:32,691 - topic diff=0.803777, rho=1.000000 +2024-07-25 12:40:32,691 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:32.691640', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:33,593 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:33,593 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:33,593 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:33,593 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:33,594 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:33,594 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:33,594 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:33,594 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:33,594 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:33,594 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:33,594 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:33,595 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:35,139 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:35,143 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2524 corpus positions) +2024-07-25 12:40:35,143 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2524 corpus positions)", 'datetime': '2024-07-25T12:40:35.143933', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:35,145 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:35,146 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:35,146 - using serial LDA version on this node +2024-07-25 12:40:35,146 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:35,147 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:35,153 - -7.974 per-word bound, 251.4 perplexity estimate based on a held-out corpus of 1 documents with 2524 words +2024-07-25 12:40:35,153 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:35,155 - topic #0 (0.333): 0.017*"’" + 0.009*"new" + 0.007*"progress" + 0.007*"well" + 0.007*"family" + 0.007*"plans" + 0.006*"quality" + 0.005*"need" + 0.005*"achieve" + 0.005*"practice" +2024-07-25 12:40:35,155 - topic #1 (0.333): 0.016*"’" + 0.008*"family" + 0.007*"plans" + 0.007*"well" + 0.006*"new" + 0.006*"needs" + 0.005*"practice" + 0.005*"receive" + 0.005*"Hampshire" + 0.005*"progress" +2024-07-25 12:40:35,155 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"family" + 0.006*"progress" + 0.005*"plans" + 0.005*"quality" + 0.005*"achieve" + 0.005*"new" + 0.005*"receive" + 0.004*"needs" +2024-07-25 12:40:35,156 - topic diff=0.810636, rho=1.000000 +2024-07-25 12:40:35,156 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:35.156374', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:36,161 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:36,161 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:36,161 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:36,161 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:36,161 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:36,161 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:36,162 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:36,162 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:36,162 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:36,162 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:36,162 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:36,162 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:37,856 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:37,859 - built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions) +2024-07-25 12:40:37,859 - Dictionary lifecycle event {'msg': "built Dictionary<1171 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2584 corpus positions)", 'datetime': '2024-07-25T12:40:37.859654', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:37,860 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:37,860 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:37,861 - using serial LDA version on this node +2024-07-25 12:40:37,861 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:37,861 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:37,865 - -8.069 per-word bound, 268.5 perplexity estimate based on a held-out corpus of 1 documents with 2584 words +2024-07-25 12:40:37,865 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:37,867 - topic #0 (0.333): 0.024*"’" + 0.008*"Hartlepool" + 0.008*"March" + 0.008*"needs" + 0.007*"well" + 0.006*"18" + 0.005*"plans" + 0.005*"strong" + 0.005*"effective" + 0.005*"ensure" +2024-07-25 12:40:37,867 - topic #1 (0.333): 0.016*"’" + 0.007*"March" + 0.006*"leaders" + 0.006*"Hartlepool" + 0.005*"needs" + 0.004*"well" + 0.004*"strong" + 0.004*"practice" + 0.004*"supported" + 0.004*"progress" +2024-07-25 12:40:37,867 - topic #2 (0.333): 0.015*"’" + 0.007*"March" + 0.007*"leaders" + 0.006*"needs" + 0.005*"Hartlepool" + 0.005*"clear" + 0.005*"well" + 0.005*"practice" + 0.005*"plans" + 0.004*"22" +2024-07-25 12:40:37,867 - topic diff=0.802571, rho=1.000000 +2024-07-25 12:40:37,868 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:37.868006', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:38,832 - Inspection date 2024-03-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:38,832 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:38,832 - Inspection date 2024-03-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:38,833 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:38,833 - Inspection date 2024-03-18 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:38,833 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:38,833 - Inspection date 2024-03-18 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:38,833 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:38,833 - Inspection date 2024-03-18 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:38,834 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:38,834 - Inspection date 2024-03-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:38,834 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:40,965 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:40,969 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions) +2024-07-25 12:40:40,969 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2531 corpus positions)", 'datetime': '2024-07-25T12:40:40.969755', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:40,971 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:40,971 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:40,972 - using serial LDA version on this node +2024-07-25 12:40:40,972 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:40,973 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:40,979 - -8.041 per-word bound, 263.3 perplexity estimate based on a held-out corpus of 1 documents with 2531 words +2024-07-25 12:40:40,979 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:40,981 - topic #0 (0.333): 0.014*"’" + 0.004*"practice" + 0.004*"Herefordshire" + 0.004*"many" + 0.004*"plans" + 0.004*"lack" + 0.004*"needs" + 0.004*"impact" + 0.004*"carers" + 0.004*"including" +2024-07-25 12:40:40,982 - topic #1 (0.333): 0.020*"’" + 0.006*"practice" + 0.006*"Herefordshire" + 0.006*"lack" + 0.005*"needs" + 0.005*"impact" + 0.005*"18" + 0.005*"July" + 0.005*"many" + 0.004*"plans" +2024-07-25 12:40:40,982 - topic #2 (0.333): 0.015*"’" + 0.005*"practice" + 0.005*"Herefordshire" + 0.005*"impact" + 0.005*"lack" + 0.004*"needs" + 0.004*"many" + 0.004*"progress" + 0.004*"29" + 0.004*"quality" +2024-07-25 12:40:40,982 - topic diff=0.794851, rho=1.000000 +2024-07-25 12:40:40,982 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:40.982735', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:42,096 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:42,096 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:42,097 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:42,097 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:42,097 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:42,097 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:42,097 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:42,097 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:42,097 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:42,098 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:42,098 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:42,098 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:43,834 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:43,837 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions) +2024-07-25 12:40:43,837 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '100']...> from 1 documents (total 2456 corpus positions)", 'datetime': '2024-07-25T12:40:43.837774', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:43,838 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:43,839 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:43,839 - using serial LDA version on this node +2024-07-25 12:40:43,839 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:43,839 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:43,843 - -8.134 per-word bound, 281.0 perplexity estimate based on a held-out corpus of 1 documents with 2456 words +2024-07-25 12:40:43,843 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:43,845 - topic #0 (0.333): 0.024*"’" + 0.008*"well" + 0.007*"needs" + 0.006*"Hertfordshire" + 0.005*"plans" + 0.004*"positive" + 0.004*"January" + 0.004*"receive" + 0.004*"need" + 0.004*"supported" +2024-07-25 12:40:43,845 - topic #1 (0.333): 0.024*"’" + 0.007*"Hertfordshire" + 0.007*"needs" + 0.006*"receive" + 0.005*"well" + 0.005*"27" + 0.005*"Leaders" + 0.004*"family" + 0.004*"need" + 0.004*"‘" +2024-07-25 12:40:43,845 - topic #2 (0.333): 0.020*"’" + 0.006*"Hertfordshire" + 0.005*"well" + 0.005*"needs" + 0.004*"leaders" + 0.004*"2023" + 0.004*"plans" + 0.004*"positive" + 0.004*"risk" + 0.004*"receive" +2024-07-25 12:40:43,845 - topic diff=0.790524, rho=1.000000 +2024-07-25 12:40:43,845 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:43.845941', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:45,559 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:45,559 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:45,560 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:45,560 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:45,560 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:45,560 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:45,560 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:45,560 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:45,561 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:45,561 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:45,561 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:45,561 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:47,381 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:47,383 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions) +2024-07-25 12:40:47,383 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '10-year']...> from 1 documents (total 1934 corpus positions)", 'datetime': '2024-07-25T12:40:47.383258', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:47,384 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:47,384 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:47,384 - using serial LDA version on this node +2024-07-25 12:40:47,385 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:47,385 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:47,388 - -7.958 per-word bound, 248.7 perplexity estimate based on a held-out corpus of 1 documents with 1934 words +2024-07-25 12:40:47,388 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:47,389 - topic #0 (0.333): 0.017*"’" + 0.008*"leaders" + 0.006*"progress" + 0.005*"plans" + 0.005*"supported" + 0.005*"well" + 0.005*"improve" + 0.005*"needs" + 0.005*"3" + 0.005*"good" +2024-07-25 12:40:47,390 - topic #1 (0.333): 0.019*"’" + 0.008*"leaders" + 0.006*"needs" + 0.005*"plans" + 0.005*"well" + 0.005*"Senior" + 0.005*"Wight" + 0.005*"progress" + 0.005*"Isle" + 0.005*"protection" +2024-07-25 12:40:47,390 - topic #2 (0.333): 0.016*"’" + 0.008*"leaders" + 0.006*"well" + 0.006*"needs" + 0.005*"Isle" + 0.005*"Senior" + 0.005*"practice" + 0.005*"Wight" + 0.005*"PAs" + 0.005*"supported" +2024-07-25 12:40:47,390 - topic diff=0.768768, rho=1.000000 +2024-07-25 12:40:47,390 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:47.390479', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:48,314 - Inspection date 2023-10-30 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:48,315 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:48,315 - Inspection date 2023-10-30 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:48,315 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:48,315 - Inspection date 2023-10-30 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:48,315 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:48,316 - Inspection date 2023-10-30 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:48,316 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:48,316 - Inspection date 2023-10-30 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:48,316 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:48,316 - Inspection date 2023-10-30 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:48,316 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:50,658 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:50,663 - built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions) +2024-07-25 12:40:50,663 - Dictionary lifecycle event {'msg': "built Dictionary<1298 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2888 corpus positions)", 'datetime': '2024-07-25T12:40:50.663662', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:50,665 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:50,665 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:50,666 - using serial LDA version on this node +2024-07-25 12:40:50,666 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:50,667 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:50,674 - -8.172 per-word bound, 288.4 perplexity estimate based on a held-out corpus of 1 documents with 2888 words +2024-07-25 12:40:50,674 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:50,677 - topic #0 (0.333): 0.019*"’" + 0.009*"Kent" + 0.006*"Council" + 0.005*"needs" + 0.005*"well" + 0.004*"progress" + 0.004*"County" + 0.004*"supported" + 0.004*"appropriate" + 0.004*"leaders" +2024-07-25 12:40:50,678 - topic #1 (0.333): 0.013*"’" + 0.009*"Kent" + 0.007*"well" + 0.006*"needs" + 0.006*"supported" + 0.005*"Council" + 0.005*"County" + 0.005*"ensure" + 0.004*"practice" + 0.004*"provide" +2024-07-25 12:40:50,678 - topic #2 (0.333): 0.020*"’" + 0.011*"Kent" + 0.009*"needs" + 0.006*"supported" + 0.006*"Council" + 0.006*"well" + 0.006*"progress" + 0.006*"County" + 0.005*"practice" + 0.005*"leaders" +2024-07-25 12:40:50,678 - topic diff=0.803176, rho=1.000000 +2024-07-25 12:40:50,678 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:50.678808', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:51,685 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:51,685 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:51,685 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:51,685 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:51,685 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:51,686 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:51,686 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:51,686 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:51,686 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:51,686 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:51,686 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:51,686 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:53,504 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:53,507 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions) +2024-07-25 12:40:53,508 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1970 corpus positions)", 'datetime': '2024-07-25T12:40:53.507993', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:53,509 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:53,509 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:53,510 - using serial LDA version on this node +2024-07-25 12:40:53,510 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:53,510 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:53,516 - -7.945 per-word bound, 246.5 perplexity estimate based on a held-out corpus of 1 documents with 1970 words +2024-07-25 12:40:53,516 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:53,518 - topic #0 (0.333): 0.014*"’" + 0.006*"planning" + 0.006*"risks" + 0.006*"well" + 0.006*"need" + 0.005*"practice" + 0.005*"teams" + 0.005*"Hull" + 0.005*"number" + 0.005*"right" +2024-07-25 12:40:53,519 - topic #1 (0.333): 0.017*"’" + 0.008*"number" + 0.007*"protection" + 0.007*"planning" + 0.007*"Hull" + 0.006*"well" + 0.006*"practice" + 0.006*"need" + 0.006*"oversight" + 0.006*"management" +2024-07-25 12:40:53,519 - topic #2 (0.333): 0.015*"’" + 0.006*"number" + 0.006*"planning" + 0.006*"practice" + 0.005*"protection" + 0.005*"well" + 0.005*"management" + 0.004*"risks" + 0.004*"oversight" + 0.004*"need" +2024-07-25 12:40:53,519 - topic diff=0.769479, rho=1.000000 +2024-07-25 12:40:53,519 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:53.519803', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:54,686 - Inspection date 2022-11-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:54,686 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:54,686 - Inspection date 2022-11-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:54,686 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:54,686 - Inspection date 2022-11-14 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:54,687 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:54,687 - Inspection date 2022-11-14 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:54,687 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:54,687 - Inspection date 2022-11-14 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:54,687 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:54,687 - Inspection date 2022-11-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:54,688 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:56,385 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:56,387 - built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2489 corpus positions) +2024-07-25 12:40:56,388 - Dictionary lifecycle event {'msg': "built Dictionary<1142 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2489 corpus positions)", 'datetime': '2024-07-25T12:40:56.388104', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:56,389 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:56,389 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:56,389 - using serial LDA version on this node +2024-07-25 12:40:56,390 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:56,390 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:56,393 - -8.051 per-word bound, 265.2 perplexity estimate based on a held-out corpus of 1 documents with 2489 words +2024-07-25 12:40:56,393 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:56,395 - topic #0 (0.333): 0.012*"’" + 0.007*"quality" + 0.006*"practice" + 0.006*"plans" + 0.006*"well" + 0.006*"good" + 0.005*"Senior" + 0.005*"senior" + 0.005*"protection" + 0.005*"permanence" +2024-07-25 12:40:56,395 - topic #1 (0.333): 0.013*"’" + 0.008*"quality" + 0.007*"practice" + 0.006*"good" + 0.006*"permanence" + 0.005*"training" + 0.005*"needs" + 0.005*"need" + 0.005*"well" + 0.005*"Senior" +2024-07-25 12:40:56,395 - topic #2 (0.333): 0.009*"’" + 0.005*"result" + 0.005*"good" + 0.005*"plans" + 0.005*"permanence" + 0.004*"quality" + 0.004*"need" + 0.004*"practice" + 0.004*"protection" + 0.004*"needs" +2024-07-25 12:40:56,395 - topic diff=0.788317, rho=1.000000 +2024-07-25 12:40:56,395 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:56.395948', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:57,442 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:57,443 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:57,443 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:57,443 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:57,443 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:57,444 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:57,444 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:57,444 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:57,444 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:57,444 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:57,444 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:57,445 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:59,014 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:40:59,016 - built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions) +2024-07-25 12:40:59,016 - Dictionary lifecycle event {'msg': "built Dictionary<886 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1837 corpus positions)", 'datetime': '2024-07-25T12:40:59.016947', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:59,017 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:40:59,017 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:40:59,018 - using serial LDA version on this node +2024-07-25 12:40:59,018 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:40:59,018 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:40:59,021 - -7.833 per-word bound, 228.1 perplexity estimate based on a held-out corpus of 1 documents with 1837 words +2024-07-25 12:40:59,021 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:40:59,023 - topic #0 (0.333): 0.009*"’" + 0.008*"progress" + 0.008*"needs" + 0.006*"plans" + 0.005*"quality" + 0.005*"risk" + 0.005*"2021" + 0.004*"October" + 0.004*"11" + 0.004*"abuse" +2024-07-25 12:40:59,023 - topic #1 (0.333): 0.014*"’" + 0.009*"progress" + 0.008*"quality" + 0.007*"needs" + 0.006*"experiences" + 0.005*"Knowsley" + 0.005*"impact" + 0.005*"good" + 0.005*"plans" + 0.005*"need" +2024-07-25 12:40:59,023 - topic #2 (0.333): 0.018*"’" + 0.009*"plans" + 0.008*"progress" + 0.007*"Knowsley" + 0.007*"needs" + 0.007*"2021" + 0.007*"quality" + 0.005*"experiences" + 0.005*"need" + 0.005*"good" +2024-07-25 12:40:59,023 - topic diff=0.753199, rho=1.000000 +2024-07-25 12:40:59,023 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:40:59.023870', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:40:59,930 - Inspection date 2021-10-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:40:59,931 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:59,931 - Inspection date 2021-10-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:40:59,931 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:59,931 - Inspection date 2021-10-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:40:59,932 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:59,932 - Inspection date 2021-10-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:40:59,932 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:59,932 - Inspection date 2021-10-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:40:59,932 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:40:59,932 - Inspection date 2021-10-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:40:59,933 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:01,292 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:01,295 - built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions) +2024-07-25 12:41:01,295 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2263 corpus positions)", 'datetime': '2024-07-25T12:41:01.295508', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:01,296 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:01,296 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:01,296 - using serial LDA version on this node +2024-07-25 12:41:01,297 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:01,297 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:01,300 - -7.976 per-word bound, 251.8 perplexity estimate based on a held-out corpus of 1 documents with 2263 words +2024-07-25 12:41:01,301 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:01,302 - topic #0 (0.333): 0.014*"’" + 0.008*"well" + 0.007*"needs" + 0.007*"supported" + 0.006*"Lancashire" + 0.006*"need" + 0.006*"live" + 0.005*"plans" + 0.005*"positive" + 0.004*"parents" +2024-07-25 12:41:01,302 - topic #1 (0.333): 0.014*"’" + 0.008*"well" + 0.008*"needs" + 0.007*"need" + 0.005*"Lancashire" + 0.005*"positive" + 0.005*"information" + 0.005*"supported" + 0.005*"number" + 0.004*"parents" +2024-07-25 12:41:01,302 - topic #2 (0.333): 0.020*"’" + 0.010*"well" + 0.008*"need" + 0.007*"needs" + 0.006*"Lancashire" + 0.006*"practice" + 0.006*"plans" + 0.005*"progress" + 0.005*"health" + 0.005*"parents" +2024-07-25 12:41:01,302 - topic diff=0.780694, rho=1.000000 +2024-07-25 12:41:01,303 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:01.303185', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:02,251 - Inspection date 2022-11-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:02,251 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:02,252 - Inspection date 2022-11-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:02,252 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:02,252 - Inspection date 2022-11-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:02,252 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:02,252 - Inspection date 2022-11-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:02,253 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:02,253 - Inspection date 2022-11-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:02,253 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:02,253 - Inspection date 2022-11-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:02,253 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:03,725 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:03,728 - built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions) +2024-07-25 12:41:03,728 - Dictionary lifecycle event {'msg': "built Dictionary<1071 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2261 corpus positions)", 'datetime': '2024-07-25T12:41:03.728837', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:03,729 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:03,730 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:03,730 - using serial LDA version on this node +2024-07-25 12:41:03,730 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:03,730 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:03,734 - -8.009 per-word bound, 257.5 perplexity estimate based on a held-out corpus of 1 documents with 2261 words +2024-07-25 12:41:03,734 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:03,735 - topic #0 (0.333): 0.015*"’" + 0.007*"Leeds" + 0.007*"needs" + 0.006*"well" + 0.004*"risk" + 0.004*"practice" + 0.004*"plans" + 0.004*"ensure" + 0.004*"21" + 0.004*"benefit" +2024-07-25 12:41:03,736 - topic #1 (0.333): 0.018*"’" + 0.008*"Leeds" + 0.007*"needs" + 0.006*"practice" + 0.006*"well" + 0.005*"risk" + 0.005*"protection" + 0.004*"ensure" + 0.004*"supported" + 0.004*"March" +2024-07-25 12:41:03,736 - topic #2 (0.333): 0.015*"’" + 0.007*"needs" + 0.007*"Leeds" + 0.006*"well" + 0.006*"risk" + 0.005*"plans" + 0.005*"4" + 0.004*"2022" + 0.004*"ensure" + 0.004*"including" +2024-07-25 12:41:03,736 - topic diff=0.773729, rho=1.000000 +2024-07-25 12:41:03,736 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:03.736608', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:05,366 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:05,366 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:05,367 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:05,367 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:05,367 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:05,367 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:05,368 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:05,368 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:05,368 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:05,369 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:05,369 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:05,369 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:06,675 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:06,677 - built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions) +2024-07-25 12:41:06,677 - Dictionary lifecycle event {'msg': "built Dictionary<932 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1950 corpus positions)", 'datetime': '2024-07-25T12:41:06.677174', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:06,678 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:06,678 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:06,678 - using serial LDA version on this node +2024-07-25 12:41:06,678 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:06,679 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:06,684 - -7.870 per-word bound, 234.0 perplexity estimate based on a held-out corpus of 1 documents with 1950 words +2024-07-25 12:41:06,684 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:06,686 - topic #0 (0.333): 0.017*"’" + 0.009*"2021" + 0.009*"Leicester" + 0.007*"well" + 0.006*"needs" + 0.006*"good" + 0.006*"ensure" + 0.005*"including" + 0.005*"20" + 0.005*"1" +2024-07-25 12:41:06,686 - topic #1 (0.333): 0.018*"’" + 0.008*"well" + 0.007*"Leicester" + 0.007*"needs" + 0.006*"2021" + 0.006*"number" + 0.006*"ensure" + 0.005*"good" + 0.005*"20" + 0.005*"protection" +2024-07-25 12:41:06,687 - topic #2 (0.333): 0.023*"’" + 0.011*"well" + 0.009*"2021" + 0.007*"Leicester" + 0.007*"needs" + 0.006*"good" + 0.006*"1" + 0.005*"City" + 0.005*"number" + 0.005*"September" +2024-07-25 12:41:06,687 - topic diff=0.777580, rho=1.000000 +2024-07-25 12:41:06,687 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:06.687589', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:07,748 - Inspection date 2021-09-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:07,748 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:07,749 - Inspection date 2021-09-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:07,749 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:07,749 - Inspection date 2021-09-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:07,749 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:07,749 - Inspection date 2021-09-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:07,749 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:07,750 - Inspection date 2021-09-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:07,750 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:07,750 - Inspection date 2021-09-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:07,750 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:09,372 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:09,375 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions) +2024-07-25 12:41:09,376 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2745 corpus positions)", 'datetime': '2024-07-25T12:41:09.376016', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:09,377 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:09,377 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:09,377 - using serial LDA version on this node +2024-07-25 12:41:09,378 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:09,378 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:09,382 - -8.109 per-word bound, 276.2 perplexity estimate based on a held-out corpus of 1 documents with 2745 words +2024-07-25 12:41:09,382 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:09,383 - topic #0 (0.333): 0.016*"’" + 0.008*"well" + 0.008*"Leicestershire" + 0.006*"needs" + 0.006*"PAs" + 0.005*"experiences" + 0.005*"progress" + 0.005*"family" + 0.005*"ensure" + 0.004*"plans" +2024-07-25 12:41:09,383 - topic #1 (0.333): 0.021*"’" + 0.008*"well" + 0.006*"Leicestershire" + 0.006*"understand" + 0.006*"family" + 0.005*"risk" + 0.005*"plans" + 0.005*"needs" + 0.005*"experiences" + 0.005*"need" +2024-07-25 12:41:09,384 - topic #2 (0.333): 0.016*"’" + 0.010*"well" + 0.007*"need" + 0.006*"family" + 0.006*"Leicestershire" + 0.005*"experiences" + 0.004*"needs" + 0.004*"risk" + 0.004*"understand" + 0.004*"plans" +2024-07-25 12:41:09,384 - topic diff=0.811800, rho=1.000000 +2024-07-25 12:41:09,384 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:09.384406', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:10,338 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:10,338 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:10,339 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:10,339 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:10,339 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:10,339 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:10,339 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:10,340 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:10,340 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:10,340 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:10,340 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:10,340 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:12,134 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:12,137 - built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions) +2024-07-25 12:41:12,138 - Dictionary lifecycle event {'msg': "built Dictionary<1323 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2927 corpus positions)", 'datetime': '2024-07-25T12:41:12.138030', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:12,139 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:12,139 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:12,139 - using serial LDA version on this node +2024-07-25 12:41:12,140 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:12,140 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:12,144 - -8.188 per-word bound, 291.6 perplexity estimate based on a held-out corpus of 1 documents with 2927 words +2024-07-25 12:41:12,144 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:12,146 - topic #0 (0.333): 0.026*"’" + 0.009*"Lincolnshire" + 0.007*"needs" + 0.006*"well" + 0.006*"plans" + 0.005*"progress" + 0.005*"family" + 0.005*"28" + 0.004*"need" + 0.004*"number" +2024-07-25 12:41:12,146 - topic #1 (0.333): 0.019*"’" + 0.008*"needs" + 0.006*"well" + 0.006*"Lincolnshire" + 0.005*"24" + 0.005*"2023" + 0.005*"family" + 0.004*"progress" + 0.004*"education" + 0.004*"need" +2024-07-25 12:41:12,146 - topic #2 (0.333): 0.015*"’" + 0.006*"Lincolnshire" + 0.005*"needs" + 0.004*"well" + 0.003*"plans" + 0.003*"28" + 0.003*"progress" + 0.003*"provide" + 0.003*"supported" + 0.003*"effective" +2024-07-25 12:41:12,146 - topic diff=0.804649, rho=1.000000 +2024-07-25 12:41:12,146 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:12.146617', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:13,142 - Inspection date 2023-04-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:13,143 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:13,143 - Inspection date 2023-04-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:13,143 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:13,143 - Inspection date 2023-04-24 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:13,143 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:13,143 - Inspection date 2023-04-24 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:13,144 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:13,144 - Inspection date 2023-04-24 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:13,144 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:13,144 - Inspection date 2023-04-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:13,144 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:14,917 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:14,919 - built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) +2024-07-25 12:41:14,919 - Dictionary lifecycle event {'msg': "built Dictionary<1134 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-07-25T12:41:14.919919', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:14,921 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:14,921 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:14,921 - using serial LDA version on this node +2024-07-25 12:41:14,922 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:14,922 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:14,925 - -7.992 per-word bound, 254.6 perplexity estimate based on a held-out corpus of 1 documents with 2720 words +2024-07-25 12:41:14,926 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:14,927 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.007*"need" + 0.007*"always" + 0.006*"practice" + 0.006*"Liverpool" + 0.005*"2023" + 0.005*"timely" + 0.005*"quality" + 0.004*"health" +2024-07-25 12:41:14,927 - topic #1 (0.333): 0.025*"’" + 0.007*"quality" + 0.007*"needs" + 0.007*"need" + 0.006*"Liverpool" + 0.006*"always" + 0.006*"practice" + 0.005*"13" + 0.005*"protection" + 0.005*"24" +2024-07-25 12:41:14,927 - topic #2 (0.333): 0.012*"’" + 0.007*"practice" + 0.006*"always" + 0.005*"protection" + 0.005*"needs" + 0.005*"Liverpool" + 0.004*"quality" + 0.004*"need" + 0.004*"24" + 0.004*"receive" +2024-07-25 12:41:14,928 - topic diff=0.847131, rho=1.000000 +2024-07-25 12:41:14,928 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:14.928236', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:16,409 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:16,410 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:16,410 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:16,411 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:16,411 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:16,411 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:16,411 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:16,412 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:16,412 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:16,412 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:16,412 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:16,412 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:18,318 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:18,322 - built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions) +2024-07-25 12:41:18,322 - Dictionary lifecycle event {'msg': "built Dictionary<1193 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2610 corpus positions)", 'datetime': '2024-07-25T12:41:18.322805', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:18,324 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:18,325 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:18,325 - using serial LDA version on this node +2024-07-25 12:41:18,325 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:18,326 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:18,329 - -8.098 per-word bound, 274.0 perplexity estimate based on a held-out corpus of 1 documents with 2610 words +2024-07-25 12:41:18,330 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:18,331 - topic #0 (0.333): 0.024*"’" + 0.006*"needs" + 0.006*"carers" + 0.006*"good" + 0.006*"plans" + 0.005*"well" + 0.005*"practice" + 0.005*"timely" + 0.005*"e" + 0.005*"Dagenham" +2024-07-25 12:41:18,331 - topic #1 (0.333): 0.024*"’" + 0.009*"needs" + 0.006*"plans" + 0.006*"good" + 0.005*"progress" + 0.005*"information" + 0.004*"Barking" + 0.004*"London" + 0.004*"well" + 0.004*"carers" +2024-07-25 12:41:18,331 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.006*"practice" + 0.005*"well" + 0.005*"plans" + 0.005*"information" + 0.005*"progress" + 0.004*"Barking" + 0.004*"good" + 0.004*"planning" +2024-07-25 12:41:18,332 - topic diff=0.799493, rho=1.000000 +2024-07-25 12:41:18,332 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:18.332195', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:19,210 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:19,210 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:19,210 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:19,210 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:19,211 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:19,211 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:19,211 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:19,211 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:19,211 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:19,211 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:19,212 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:19,212 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:20,946 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:20,949 - built Dictionary<1132 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2445 corpus positions) +2024-07-25 12:41:20,949 - Dictionary lifecycle event {'msg': "built Dictionary<1132 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2445 corpus positions)", 'datetime': '2024-07-25T12:41:20.949141', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:20,950 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:20,950 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:20,950 - using serial LDA version on this node +2024-07-25 12:41:20,951 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:20,951 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:20,954 - -8.054 per-word bound, 265.7 perplexity estimate based on a held-out corpus of 1 documents with 2445 words +2024-07-25 12:41:20,954 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:20,956 - topic #0 (0.333): 0.023*"’" + 0.009*"well" + 0.009*"needs" + 0.007*"Barnet" + 0.007*"plans" + 0.005*"10" + 0.005*"risk" + 0.005*"experiences" + 0.005*"effective" + 0.005*"14" +2024-07-25 12:41:20,956 - topic #1 (0.333): 0.018*"’" + 0.009*"needs" + 0.008*"Barnet" + 0.006*"plans" + 0.006*"well" + 0.004*"understand" + 0.004*"June" + 0.004*"information" + 0.004*"progress" + 0.004*"need" +2024-07-25 12:41:20,956 - topic #2 (0.333): 0.020*"’" + 0.008*"needs" + 0.007*"plans" + 0.006*"well" + 0.005*"Barnet" + 0.005*"experiences" + 0.005*"strong" + 0.004*"2024" + 0.004*"14" + 0.004*"information" +2024-07-25 12:41:20,956 - topic diff=0.791148, rho=1.000000 +2024-07-25 12:41:20,957 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:20.956982', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:22,246 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:22,246 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:22,247 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:22,247 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:22,247 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:22,248 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:22,248 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:22,248 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:22,248 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:22,248 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:22,249 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:22,249 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:23,870 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:23,872 - built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions) +2024-07-25 12:41:23,872 - Dictionary lifecycle event {'msg': "built Dictionary<1190 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2563 corpus positions)", 'datetime': '2024-07-25T12:41:23.872913', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:23,874 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:23,874 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:23,874 - using serial LDA version on this node +2024-07-25 12:41:23,874 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:23,875 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:23,878 - -8.104 per-word bound, 275.1 perplexity estimate based on a held-out corpus of 1 documents with 2563 words +2024-07-25 12:41:23,879 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:23,880 - topic #0 (0.333): 0.014*"’" + 0.007*"well" + 0.006*"need" + 0.006*"needs" + 0.005*"plans" + 0.004*"oversight" + 0.004*"helps" + 0.004*"make" + 0.004*"practice" + 0.004*"Bexley" +2024-07-25 12:41:23,880 - topic #1 (0.333): 0.022*"’" + 0.007*"effective" + 0.007*"well" + 0.006*"needs" + 0.005*"Bexley" + 0.005*"need" + 0.004*"plans" + 0.004*"make" + 0.004*"10" + 0.004*"clear" +2024-07-25 12:41:23,880 - topic #2 (0.333): 0.021*"’" + 0.007*"needs" + 0.006*"Bexley" + 0.006*"need" + 0.006*"plans" + 0.005*"well" + 0.005*"effective" + 0.005*"10" + 0.004*"practice" + 0.004*"6" +2024-07-25 12:41:23,881 - topic diff=0.781646, rho=1.000000 +2024-07-25 12:41:23,881 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:23.881261', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:24,858 - Inspection date 2023-02-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:24,858 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:24,858 - Inspection date 2023-02-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:24,858 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:24,858 - Inspection date 2023-02-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:24,858 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:24,859 - Inspection date 2023-02-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:24,859 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:24,859 - Inspection date 2023-02-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:24,859 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:24,859 - Inspection date 2023-02-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:24,859 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:26,691 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:26,693 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions) +2024-07-25 12:41:26,693 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2371 corpus positions)", 'datetime': '2024-07-25T12:41:26.693798', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:26,694 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:26,694 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:26,695 - using serial LDA version on this node +2024-07-25 12:41:26,695 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:26,695 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:26,699 - -7.930 per-word bound, 243.9 perplexity estimate based on a held-out corpus of 1 documents with 2371 words +2024-07-25 12:41:26,699 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:26,700 - topic #0 (0.333): 0.019*"’" + 0.008*"leaders" + 0.007*"well" + 0.007*"plans" + 0.006*"progress" + 0.006*"good" + 0.006*"information" + 0.005*"senior" + 0.005*"Brent" + 0.005*"practice" +2024-07-25 12:41:26,700 - topic #1 (0.333): 0.017*"’" + 0.009*"well" + 0.008*"leaders" + 0.006*"number" + 0.006*"quality" + 0.006*"plans" + 0.006*"Brent" + 0.006*"progress" + 0.005*"senior" + 0.005*"range" +2024-07-25 12:41:26,701 - topic #2 (0.333): 0.016*"’" + 0.009*"well" + 0.007*"progress" + 0.007*"good" + 0.007*"plans" + 0.006*"leaders" + 0.006*"practice" + 0.006*"needs" + 0.005*"quality" + 0.005*"number" +2024-07-25 12:41:26,701 - topic diff=0.816465, rho=1.000000 +2024-07-25 12:41:26,701 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:26.701452', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:27,774 - Inspection date 2023-02-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:27,775 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:27,775 - Inspection date 2023-02-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:27,775 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:27,775 - Inspection date 2023-02-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:27,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:27,776 - Inspection date 2023-02-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:27,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:27,776 - Inspection date 2023-02-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:27,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:27,777 - Inspection date 2023-02-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:27,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:29,532 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:29,535 - built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions) +2024-07-25 12:41:29,535 - Dictionary lifecycle event {'msg': "built Dictionary<1266 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2640 corpus positions)", 'datetime': '2024-07-25T12:41:29.535416', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:29,536 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:29,536 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:29,537 - using serial LDA version on this node +2024-07-25 12:41:29,537 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:29,537 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:29,541 - -8.179 per-word bound, 289.9 perplexity estimate based on a held-out corpus of 1 documents with 2640 words +2024-07-25 12:41:29,541 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:29,543 - topic #0 (0.333): 0.014*"’" + 0.005*"Bromley" + 0.005*"well" + 0.004*"needs" + 0.004*"health" + 0.004*"plans" + 0.004*"progress" + 0.003*"practice" + 0.003*"experiences" + 0.003*"education" +2024-07-25 12:41:29,543 - topic #1 (0.333): 0.019*"’" + 0.011*"Bromley" + 0.007*"well" + 0.007*"needs" + 0.006*"plans" + 0.006*"leaders" + 0.006*"practice" + 0.005*"education" + 0.005*"health" + 0.005*"13" +2024-07-25 12:41:29,543 - topic #2 (0.333): 0.024*"’" + 0.009*"Bromley" + 0.008*"needs" + 0.007*"well" + 0.005*"leaders" + 0.005*"plans" + 0.005*"practice" + 0.004*"education" + 0.004*"relationships" + 0.004*"carers" +2024-07-25 12:41:29,543 - topic diff=0.792251, rho=1.000000 +2024-07-25 12:41:29,543 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:29.543851', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:30,478 - Inspection date 2023-11-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:30,478 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:30,479 - Inspection date 2023-11-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:30,479 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:30,479 - Inspection date 2023-11-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:30,479 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:30,479 - Inspection date 2023-11-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:30,479 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:30,480 - Inspection date 2023-11-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:30,480 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:30,480 - Inspection date 2023-11-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:30,480 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:31,932 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:31,934 - built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions) +2024-07-25 12:41:31,934 - Dictionary lifecycle event {'msg': "built Dictionary<993 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1735 corpus positions)", 'datetime': '2024-07-25T12:41:31.934809', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:31,935 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:31,935 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:31,936 - using serial LDA version on this node +2024-07-25 12:41:31,936 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:31,936 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:31,939 - -8.061 per-word bound, 267.1 perplexity estimate based on a held-out corpus of 1 documents with 1735 words +2024-07-25 12:41:31,940 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:31,941 - topic #0 (0.333): 0.010*"’" + 0.007*"Camden" + 0.006*"leaders" + 0.006*"practice" + 0.006*"well" + 0.005*"protection" + 0.005*"response" + 0.004*"needs" + 0.004*"appropriate" + 0.004*"25" +2024-07-25 12:41:31,941 - topic #1 (0.333): 0.012*"’" + 0.007*"leaders" + 0.007*"Camden" + 0.006*"needs" + 0.006*"practice" + 0.005*"protection" + 0.005*"well" + 0.005*"29" + 0.004*"appropriate" + 0.004*"progress" +2024-07-25 12:41:31,941 - topic #2 (0.333): 0.010*"’" + 0.007*"Camden" + 0.006*"practice" + 0.005*"leaders" + 0.005*"protection" + 0.005*"well" + 0.004*"response" + 0.004*"29" + 0.004*"April" + 0.004*"needs" +2024-07-25 12:41:31,941 - topic diff=0.701172, rho=1.000000 +2024-07-25 12:41:31,941 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:31.941946', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:32,960 - Inspection date 2022-04-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:32,960 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:32,960 - Inspection date 2022-04-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:32,960 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:32,961 - Inspection date 2022-04-25 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:32,961 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:32,961 - Inspection date 2022-04-25 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:32,961 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:32,961 - Inspection date 2022-04-25 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:32,961 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:32,962 - Inspection date 2022-04-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:32,962 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:34,707 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:34,710 - built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions) +2024-07-25 12:41:34,710 - Dictionary lifecycle event {'msg': "built Dictionary<1046 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2209 corpus positions)", 'datetime': '2024-07-25T12:41:34.710218', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:34,711 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:34,711 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:34,711 - using serial LDA version on this node +2024-07-25 12:41:34,712 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:34,712 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:34,715 - -7.992 per-word bound, 254.5 perplexity estimate based on a held-out corpus of 1 documents with 2209 words +2024-07-25 12:41:34,715 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:34,717 - topic #0 (0.333): 0.009*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"Croydon" + 0.005*"good" + 0.005*"ensure" + 0.004*"health" + 0.004*"improved" + 0.004*"need" + 0.004*"plans" +2024-07-25 12:41:34,717 - topic #1 (0.333): 0.015*"’" + 0.008*"needs" + 0.008*"well" + 0.007*"Croydon" + 0.007*"need" + 0.007*"quality" + 0.006*"Senior" + 0.006*"good" + 0.006*"effective" + 0.005*"plans" +2024-07-25 12:41:34,717 - topic #2 (0.333): 0.010*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"ensure" + 0.004*"Senior" + 0.004*"improved" + 0.004*"quality" + 0.004*"However" + 0.004*"experiences" + 0.004*"plans" +2024-07-25 12:41:34,717 - topic diff=0.783366, rho=1.000000 +2024-07-25 12:41:34,717 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:34.717799', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:35,860 - Inspection date 2020-02-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:35,861 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:35,861 - Inspection date 2020-02-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:35,861 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:35,861 - Inspection date 2020-02-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:35,861 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:35,861 - Inspection date 2020-02-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:35,862 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:35,862 - Inspection date 2020-02-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:35,862 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:35,862 - Inspection date 2020-02-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:35,862 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:37,780 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:37,782 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions) +2024-07-25 12:41:37,782 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2365 corpus positions)", 'datetime': '2024-07-25T12:41:37.782728', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:37,783 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:37,783 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:37,784 - using serial LDA version on this node +2024-07-25 12:41:37,784 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:37,784 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:37,788 - -8.050 per-word bound, 265.1 perplexity estimate based on a held-out corpus of 1 documents with 2365 words +2024-07-25 12:41:37,788 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:37,789 - topic #0 (0.333): 0.014*"’" + 0.009*"Ealing" + 0.009*"well" + 0.006*"plans" + 0.006*"progress" + 0.006*"needs" + 0.005*"April" + 0.005*"3" + 0.005*"good" + 0.005*"need" +2024-07-25 12:41:37,790 - topic #1 (0.333): 0.017*"’" + 0.007*"Ealing" + 0.007*"well" + 0.006*"needs" + 0.005*"effective" + 0.005*"London" + 0.005*"progress" + 0.004*"need" + 0.004*"plans" + 0.004*"improve" +2024-07-25 12:41:37,790 - topic #2 (0.333): 0.020*"’" + 0.007*"Ealing" + 0.006*"progress" + 0.006*"well" + 0.006*"need" + 0.006*"needs" + 0.005*"effective" + 0.005*"plans" + 0.004*"experiences" + 0.004*"Borough" +2024-07-25 12:41:37,790 - topic diff=0.782891, rho=1.000000 +2024-07-25 12:41:37,790 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:37.790648', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:38,824 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:38,825 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:38,825 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:38,825 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:38,825 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:38,825 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:38,826 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:38,826 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:38,826 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:38,826 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:38,826 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:38,826 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:40,514 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:40,516 - built Dictionary<999 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2104 corpus positions) +2024-07-25 12:41:40,516 - Dictionary lifecycle event {'msg': "built Dictionary<999 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2104 corpus positions)", 'datetime': '2024-07-25T12:41:40.516648', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:40,517 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:40,517 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:40,518 - using serial LDA version on this node +2024-07-25 12:41:40,518 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:40,518 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:40,521 - -7.937 per-word bound, 245.1 perplexity estimate based on a held-out corpus of 1 documents with 2104 words +2024-07-25 12:41:40,522 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:40,523 - topic #0 (0.333): 0.012*"’" + 0.008*"good" + 0.008*"ensure" + 0.007*"needs" + 0.007*"Enfield" + 0.006*"quality" + 0.006*"effective" + 0.006*"clear" + 0.006*"range" + 0.005*"practice" +2024-07-25 12:41:40,523 - topic #1 (0.333): 0.015*"’" + 0.010*"needs" + 0.008*"practice" + 0.007*"clear" + 0.007*"ensure" + 0.007*"good" + 0.007*"Enfield" + 0.007*"effective" + 0.006*"timely" + 0.006*"leaders" +2024-07-25 12:41:40,523 - topic #2 (0.333): 0.012*"’" + 0.009*"practice" + 0.007*"ensure" + 0.007*"needs" + 0.007*"effective" + 0.006*"good" + 0.005*"quality" + 0.005*"leaders" + 0.005*"clear" + 0.005*"timely" +2024-07-25 12:41:40,523 - topic diff=0.781266, rho=1.000000 +2024-07-25 12:41:40,524 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:40.524008', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:41,465 - Inspection date 2019-03-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:41,465 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:41,465 - Inspection date 2019-03-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:41,465 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:41,465 - Inspection date 2019-03-04 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:41,466 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:41,466 - Inspection date 2019-03-04 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:41,466 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:41,466 - Inspection date 2019-03-04 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:41,466 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:41,466 - Inspection date 2019-03-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:41,466 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:42,971 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:42,973 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2078 corpus positions) +2024-07-25 12:41:42,973 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2078 corpus positions)", 'datetime': '2024-07-25T12:41:42.973679', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:42,974 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:42,974 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:42,975 - using serial LDA version on this node +2024-07-25 12:41:42,975 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:42,975 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:42,979 - -7.986 per-word bound, 253.5 perplexity estimate based on a held-out corpus of 1 documents with 2078 words +2024-07-25 12:41:42,979 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:42,980 - topic #0 (0.333): 0.015*"’" + 0.010*"Greenwich" + 0.008*"well" + 0.007*"needs" + 0.006*"plans" + 0.005*"progress" + 0.004*"provide" + 0.004*"June" + 0.004*"carers" + 0.004*"2024" +2024-07-25 12:41:42,980 - topic #1 (0.333): 0.022*"’" + 0.014*"Greenwich" + 0.007*"plans" + 0.007*"needs" + 0.006*"well" + 0.005*"3" + 0.005*"progress" + 0.005*"quality" + 0.005*"2024" + 0.005*"7" +2024-07-25 12:41:42,981 - topic #2 (0.333): 0.014*"’" + 0.008*"Greenwich" + 0.007*"needs" + 0.006*"well" + 0.005*"7" + 0.005*"provide" + 0.004*"plans" + 0.004*"3" + 0.004*"progress" + 0.004*"Royal" +2024-07-25 12:41:42,981 - topic diff=0.759007, rho=1.000000 +2024-07-25 12:41:42,981 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:42.981373', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:44,022 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:44,022 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:44,023 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:44,023 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:44,023 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:44,023 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:44,024 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:44,024 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:44,024 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:44,024 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:44,024 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:44,024 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:45,989 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:45,991 - built Dictionary<1122 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2603 corpus positions) +2024-07-25 12:41:45,991 - Dictionary lifecycle event {'msg': "built Dictionary<1122 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2603 corpus positions)", 'datetime': '2024-07-25T12:41:45.991731', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:45,992 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:45,992 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:45,993 - using serial LDA version on this node +2024-07-25 12:41:45,993 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:45,993 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:45,997 - -7.996 per-word bound, 255.3 perplexity estimate based on a held-out corpus of 1 documents with 2603 words +2024-07-25 12:41:45,997 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:45,998 - topic #0 (0.333): 0.012*"’" + 0.009*"practice" + 0.007*"number" + 0.007*"within" + 0.006*"quality" + 0.006*"However" + 0.005*"effective" + 0.005*"protection" + 0.005*"plans" + 0.005*"needs" +2024-07-25 12:41:45,999 - topic #1 (0.333): 0.014*"’" + 0.010*"practice" + 0.006*"effective" + 0.006*"number" + 0.006*"needs" + 0.006*"small" + 0.005*"planning" + 0.005*"plans" + 0.005*"leaders" + 0.005*"carers" +2024-07-25 12:41:45,999 - topic #2 (0.333): 0.014*"’" + 0.010*"practice" + 0.008*"planning" + 0.006*"number" + 0.005*"plans" + 0.005*"including" + 0.005*"effective" + 0.005*"needs" + 0.005*"need" + 0.005*"small" +2024-07-25 12:41:45,999 - topic diff=0.836979, rho=1.000000 +2024-07-25 12:41:45,999 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:45.999484', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:47,250 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:47,251 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:47,251 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:47,251 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:47,251 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:47,251 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:47,251 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:47,251 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:47,252 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:47,252 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:47,252 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:47,252 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:49,219 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:49,222 - built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) +2024-07-25 12:41:49,222 - Dictionary lifecycle event {'msg': "built Dictionary<1330 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-07-25T12:41:49.222578', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:49,223 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:49,224 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:49,224 - using serial LDA version on this node +2024-07-25 12:41:49,224 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:49,224 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:49,229 - -8.205 per-word bound, 295.0 perplexity estimate based on a held-out corpus of 1 documents with 2905 words +2024-07-25 12:41:49,229 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:49,230 - topic #0 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"receive" + 0.006*"needs" + 0.005*"Fulham" + 0.005*"protection" + 0.004*"leaders" + 0.004*"need" + 0.004*"supported" + 0.004*"2024" +2024-07-25 12:41:49,230 - topic #1 (0.333): 0.011*"’" + 0.006*"well" + 0.005*"needs" + 0.005*"plans" + 0.005*"receive" + 0.004*"effective" + 0.004*"practice" + 0.004*"Hammersmith" + 0.004*"Leaders" + 0.004*"supported" +2024-07-25 12:41:49,231 - topic #2 (0.333): 0.016*"’" + 0.008*"well" + 0.006*"receive" + 0.005*"plans" + 0.005*"needs" + 0.005*"15" + 0.005*"Hammersmith" + 0.004*"effective" + 0.004*"Fulham" + 0.004*"11" +2024-07-25 12:41:49,231 - topic diff=0.798789, rho=1.000000 +2024-07-25 12:41:49,231 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:49.231388', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:50,115 - Inspection date 2024-03-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:50,116 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:50,116 - Inspection date 2024-03-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:50,116 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:50,116 - Inspection date 2024-03-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:50,116 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:50,116 - Inspection date 2024-03-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:50,117 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:50,117 - Inspection date 2024-03-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:50,117 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:50,117 - Inspection date 2024-03-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:50,117 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:52,277 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:52,281 - built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions) +2024-07-25 12:41:52,281 - Dictionary lifecycle event {'msg': "built Dictionary<1252 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2620 corpus positions)", 'datetime': '2024-07-25T12:41:52.281835', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:52,289 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:52,289 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:52,289 - using serial LDA version on this node +2024-07-25 12:41:52,290 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:52,290 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:52,309 - -8.176 per-word bound, 289.2 perplexity estimate based on a held-out corpus of 1 documents with 2620 words +2024-07-25 12:41:52,310 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:52,312 - topic #0 (0.333): 0.018*"’" + 0.010*"Haringey" + 0.010*"needs" + 0.007*"plans" + 0.006*"well" + 0.005*"need" + 0.005*"progress" + 0.005*"good" + 0.005*"24" + 0.005*"13" +2024-07-25 12:41:52,312 - topic #1 (0.333): 0.016*"’" + 0.007*"Haringey" + 0.007*"plans" + 0.006*"well" + 0.006*"good" + 0.006*"needs" + 0.005*"need" + 0.004*"education" + 0.004*"progress" + 0.004*"timely" +2024-07-25 12:41:52,313 - topic #2 (0.333): 0.010*"’" + 0.006*"plans" + 0.005*"Haringey" + 0.005*"needs" + 0.004*"progress" + 0.004*"good" + 0.004*"well" + 0.004*"need" + 0.004*"education" + 0.003*"leaders" +2024-07-25 12:41:52,313 - topic diff=0.796240, rho=1.000000 +2024-07-25 12:41:52,313 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.02s', 'datetime': '2024-07-25T12:41:52.313768', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:53,422 - Inspection date 2023-02-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:53,422 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:53,422 - Inspection date 2023-02-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:53,422 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:53,422 - Inspection date 2023-02-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:53,423 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:53,423 - Inspection date 2023-02-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:53,423 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:53,423 - Inspection date 2023-02-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:53,423 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:53,423 - Inspection date 2023-02-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:53,423 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:55,072 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:55,074 - built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions) +2024-07-25 12:41:55,074 - Dictionary lifecycle event {'msg': "built Dictionary<942 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1732 corpus positions)", 'datetime': '2024-07-25T12:41:55.074517', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:55,075 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:55,075 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:55,075 - using serial LDA version on this node +2024-07-25 12:41:55,076 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:55,076 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:55,079 - -7.975 per-word bound, 251.7 perplexity estimate based on a held-out corpus of 1 documents with 1732 words +2024-07-25 12:41:55,079 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:55,080 - topic #0 (0.333): 0.013*"’" + 0.011*"good" + 0.008*"well" + 0.007*"needs" + 0.006*"impact" + 0.005*"need" + 0.005*"practice" + 0.005*"experiences" + 0.004*"plans" + 0.004*"protection" +2024-07-25 12:41:55,081 - topic #1 (0.333): 0.013*"’" + 0.012*"good" + 0.009*"needs" + 0.009*"well" + 0.006*"plans" + 0.006*"early" + 0.006*"protection" + 0.005*"practice" + 0.005*"impact" + 0.005*"need" +2024-07-25 12:41:55,081 - topic #2 (0.333): 0.008*"’" + 0.008*"good" + 0.007*"well" + 0.006*"needs" + 0.005*"impact" + 0.005*"plans" + 0.004*"need" + 0.004*"protection" + 0.004*"early" + 0.004*"practice" +2024-07-25 12:41:55,081 - topic diff=0.702210, rho=1.000000 +2024-07-25 12:41:55,081 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:55.081580', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:56,992 - Inspection date 2020-02-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:56,993 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:56,993 - Inspection date 2020-02-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:56,993 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:56,993 - Inspection date 2020-02-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:56,994 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:56,994 - Inspection date 2020-02-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:56,994 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:56,994 - Inspection date 2020-02-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:56,995 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:56,995 - Inspection date 2020-02-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:56,995 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:58,819 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:41:58,822 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions) +2024-07-25 12:41:58,823 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2243 corpus positions)", 'datetime': '2024-07-25T12:41:58.822972', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:58,824 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:41:58,824 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:41:58,825 - using serial LDA version on this node +2024-07-25 12:41:58,825 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:41:58,826 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:41:58,831 - -8.007 per-word bound, 257.3 perplexity estimate based on a held-out corpus of 1 documents with 2243 words +2024-07-25 12:41:58,832 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:41:58,834 - topic #0 (0.333): 0.020*"’" + 0.011*"Havering" + 0.007*"plans" + 0.006*"quality" + 0.006*"effective" + 0.004*"oversight" + 0.004*"needs" + 0.004*"many" + 0.004*"2023" + 0.004*"December" +2024-07-25 12:41:58,834 - topic #1 (0.333): 0.019*"’" + 0.014*"Havering" + 0.011*"quality" + 0.006*"plans" + 0.005*"effective" + 0.005*"oversight" + 0.005*"needs" + 0.005*"22" + 0.004*"practice" + 0.004*"11" +2024-07-25 12:41:58,834 - topic #2 (0.333): 0.014*"’" + 0.009*"Havering" + 0.009*"quality" + 0.007*"plans" + 0.006*"oversight" + 0.005*"11" + 0.005*"needs" + 0.004*"effective" + 0.004*"practice" + 0.004*"well" +2024-07-25 12:41:58,834 - topic diff=0.764325, rho=1.000000 +2024-07-25 12:41:58,835 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:41:58.835087', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:41:59,818 - Inspection date 2023-12-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:41:59,819 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:59,819 - Inspection date 2023-12-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:41:59,819 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:59,819 - Inspection date 2023-12-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:41:59,819 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:59,820 - Inspection date 2023-12-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:41:59,820 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:59,820 - Inspection date 2023-12-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:41:59,820 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:41:59,820 - Inspection date 2023-12-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:41:59,820 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:01,620 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:01,622 - built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions) +2024-07-25 12:42:01,622 - Dictionary lifecycle event {'msg': "built Dictionary<1161 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2511 corpus positions)", 'datetime': '2024-07-25T12:42:01.622956', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:01,624 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:01,624 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:01,624 - using serial LDA version on this node +2024-07-25 12:42:01,624 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:01,624 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:01,628 - -8.080 per-word bound, 270.6 perplexity estimate based on a held-out corpus of 1 documents with 2511 words +2024-07-25 12:42:01,628 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:01,630 - topic #0 (0.333): 0.021*"’" + 0.009*"well" + 0.008*"Hillingdon" + 0.007*"needs" + 0.007*"plans" + 0.005*"need" + 0.005*"team" + 0.004*"6" + 0.004*"senior" + 0.004*"improve" +2024-07-25 12:42:01,630 - topic #1 (0.333): 0.017*"’" + 0.010*"needs" + 0.008*"plans" + 0.007*"well" + 0.006*"Hillingdon" + 0.004*"experiences" + 0.004*"2" + 0.004*"leaders" + 0.004*"need" + 0.004*"6" +2024-07-25 12:42:01,630 - topic #2 (0.333): 0.015*"’" + 0.012*"needs" + 0.009*"Hillingdon" + 0.008*"plans" + 0.006*"well" + 0.005*"team" + 0.004*"October" + 0.004*"leaders" + 0.004*"2" + 0.004*"6" +2024-07-25 12:42:01,630 - topic diff=0.794642, rho=1.000000 +2024-07-25 12:42:01,630 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:01.630727', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:02,816 - Inspection date 2023-10-02 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:02,816 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:02,817 - Inspection date 2023-10-02 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:02,817 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:02,822 - Inspection date 2023-10-02 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:02,822 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:02,823 - Inspection date 2023-10-02 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:02,823 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:02,823 - Inspection date 2023-10-02 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:02,824 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:02,825 - Inspection date 2023-10-02 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:02,825 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:04,548 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:04,550 - built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions) +2024-07-25 12:42:04,550 - Dictionary lifecycle event {'msg': "built Dictionary<1070 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2271 corpus positions)", 'datetime': '2024-07-25T12:42:04.550834', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:04,551 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:04,552 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:04,552 - using serial LDA version on this node +2024-07-25 12:42:04,552 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:04,552 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:04,556 - -8.005 per-word bound, 256.9 perplexity estimate based on a held-out corpus of 1 documents with 2271 words +2024-07-25 12:42:04,556 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:04,557 - topic #0 (0.333): 0.018*"’" + 0.011*"needs" + 0.008*"effective" + 0.007*"well" + 0.007*"Hounslow" + 0.006*"timely" + 0.005*"oversight" + 0.005*"plans" + 0.005*"20" + 0.004*"strong" +2024-07-25 12:42:04,557 - topic #1 (0.333): 0.020*"’" + 0.013*"well" + 0.012*"needs" + 0.008*"effective" + 0.007*"Hounslow" + 0.007*"timely" + 0.005*"16" + 0.005*"plans" + 0.004*"training" + 0.004*"experiences" +2024-07-25 12:42:04,558 - topic #2 (0.333): 0.022*"’" + 0.009*"well" + 0.008*"needs" + 0.007*"Hounslow" + 0.006*"plans" + 0.006*"effective" + 0.005*"timely" + 0.004*"strong" + 0.004*"progress" + 0.004*"experiences" +2024-07-25 12:42:04,558 - topic diff=0.784335, rho=1.000000 +2024-07-25 12:42:04,558 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:04.558233', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:05,510 - Inspection date 2023-10-16 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:05,510 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:05,510 - Inspection date 2023-10-16 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:05,511 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:05,511 - Inspection date 2023-10-16 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:05,511 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:05,511 - Inspection date 2023-10-16 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:05,511 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:05,512 - Inspection date 2023-10-16 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:05,512 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:05,512 - Inspection date 2023-10-16 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:05,512 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:07,034 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:07,036 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions) +2024-07-25 12:42:07,036 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1982 corpus positions)", 'datetime': '2024-07-25T12:42:07.036964', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:07,037 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:07,038 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:07,038 - using serial LDA version on this node +2024-07-25 12:42:07,038 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:07,038 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:07,042 - -7.927 per-word bound, 243.4 perplexity estimate based on a held-out corpus of 1 documents with 1982 words +2024-07-25 12:42:07,042 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:07,043 - topic #0 (0.333): 0.011*"’" + 0.010*"well" + 0.008*"needs" + 0.007*"quality" + 0.005*"highly" + 0.005*"good" + 0.005*"risk" + 0.005*"plans" + 0.005*"leaders" + 0.005*"effective" +2024-07-25 12:42:07,043 - topic #1 (0.333): 0.014*"’" + 0.011*"needs" + 0.010*"well" + 0.008*"good" + 0.007*"highly" + 0.006*"plans" + 0.006*"effective" + 0.005*"quality" + 0.005*"leaders" + 0.004*"practice" +2024-07-25 12:42:07,043 - topic #2 (0.333): 0.012*"needs" + 0.012*"’" + 0.010*"well" + 0.008*"plans" + 0.006*"Islington" + 0.006*"leaders" + 0.005*"highly" + 0.005*"effective" + 0.005*"practice" + 0.005*"quality" +2024-07-25 12:42:07,044 - topic diff=0.740703, rho=1.000000 +2024-07-25 12:42:07,044 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:07.044179', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:09,375 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:09,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:09,376 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:09,377 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:09,377 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:09,377 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:09,377 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:09,378 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:09,378 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:09,378 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:09,378 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:09,378 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:10,822 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:10,824 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions) +2024-07-25 12:42:10,824 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2090 corpus positions)", 'datetime': '2024-07-25T12:42:10.824557', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:10,825 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:10,825 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:10,825 - using serial LDA version on this node +2024-07-25 12:42:10,826 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:10,826 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:10,829 - -7.909 per-word bound, 240.3 perplexity estimate based on a held-out corpus of 1 documents with 2090 words +2024-07-25 12:42:10,829 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:10,830 - topic #0 (0.333): 0.016*"’" + 0.008*"needs" + 0.008*"well" + 0.008*"good" + 0.007*"plans" + 0.006*"impact" + 0.006*"Lambeth" + 0.006*"progress" + 0.005*"4" + 0.005*"need" +2024-07-25 12:42:10,831 - topic #1 (0.333): 0.013*"’" + 0.010*"needs" + 0.008*"well" + 0.008*"plans" + 0.007*"Lambeth" + 0.006*"good" + 0.006*"need" + 0.005*"progress" + 0.005*"impact" + 0.005*"leaders" +2024-07-25 12:42:10,831 - topic #2 (0.333): 0.016*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"plans" + 0.006*"good" + 0.006*"Lambeth" + 0.006*"need" + 0.006*"progress" + 0.005*"leaders" + 0.005*"24" +2024-07-25 12:42:10,831 - topic diff=0.796913, rho=1.000000 +2024-07-25 12:42:10,831 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:10.831568', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:11,776 - Inspection date 2022-10-24 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:11,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:11,777 - Inspection date 2022-10-24 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:11,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:11,777 - Inspection date 2022-10-24 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:11,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:11,777 - Inspection date 2022-10-24 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:11,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:11,778 - Inspection date 2022-10-24 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:11,778 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:11,778 - Inspection date 2022-10-24 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:11,778 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:13,202 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:13,207 - built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions) +2024-07-25 12:42:13,207 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-07-25T12:42:13.207393', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:13,208 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:13,208 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:13,208 - using serial LDA version on this node +2024-07-25 12:42:13,209 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:13,209 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:13,213 - -8.051 per-word bound, 265.2 perplexity estimate based on a held-out corpus of 1 documents with 2352 words +2024-07-25 12:42:13,213 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:13,214 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.008*"well" + 0.006*"plans" + 0.005*"Lewisham" + 0.005*"progress" + 0.005*"effective" + 0.004*"good" + 0.004*"2023" + 0.004*"December" +2024-07-25 12:42:13,214 - topic #1 (0.333): 0.021*"’" + 0.009*"well" + 0.007*"effective" + 0.007*"plans" + 0.007*"needs" + 0.006*"Lewisham" + 0.006*"4" + 0.005*"progress" + 0.005*"leaders" + 0.005*"receive" +2024-07-25 12:42:13,214 - topic #2 (0.333): 0.017*"’" + 0.007*"well" + 0.006*"needs" + 0.006*"plans" + 0.006*"effective" + 0.006*"Lewisham" + 0.005*"good" + 0.005*"arrangements" + 0.005*"progress" + 0.005*"need" +2024-07-25 12:42:13,214 - topic diff=0.767255, rho=1.000000 +2024-07-25 12:42:13,215 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:13.215029', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:14,251 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:14,252 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:14,252 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:14,253 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:14,253 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:14,253 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:14,253 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:14,253 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:14,254 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:14,254 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:14,254 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:14,254 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:15,877 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:15,879 - built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions) +2024-07-25 12:42:15,879 - Dictionary lifecycle event {'msg': "built Dictionary<1015 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2032 corpus positions)", 'datetime': '2024-07-25T12:42:15.879220', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:15,880 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:15,880 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:15,880 - using serial LDA version on this node +2024-07-25 12:42:15,880 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:15,881 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:15,884 - -7.989 per-word bound, 254.1 perplexity estimate based on a held-out corpus of 1 documents with 2032 words +2024-07-25 12:42:15,884 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:15,885 - topic #0 (0.333): 0.016*"’" + 0.006*"well" + 0.005*"needs" + 0.005*"Merton" + 0.005*"progress" + 0.005*"plans" + 0.004*"good" + 0.004*"early" + 0.004*"family" + 0.004*"4" +2024-07-25 12:42:15,886 - topic #1 (0.333): 0.016*"’" + 0.010*"well" + 0.007*"needs" + 0.006*"Merton" + 0.005*"plans" + 0.005*"ensure" + 0.005*"family" + 0.004*"across" + 0.004*"information" + 0.004*"2022" +2024-07-25 12:42:15,886 - topic #2 (0.333): 0.014*"’" + 0.007*"Merton" + 0.007*"well" + 0.005*"28" + 0.004*"needs" + 0.004*"progress" + 0.004*"risk" + 0.004*"family" + 0.004*"highly" + 0.004*"4" +2024-07-25 12:42:15,886 - topic diff=0.755131, rho=1.000000 +2024-07-25 12:42:15,886 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:15.886538', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:16,830 - Inspection date 2022-02-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:16,830 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:16,830 - Inspection date 2022-02-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:16,830 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:16,830 - Inspection date 2022-02-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:16,830 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:16,831 - Inspection date 2022-02-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:16,831 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:16,831 - Inspection date 2022-02-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:16,831 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:16,831 - Inspection date 2022-02-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:16,831 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:18,534 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:18,537 - built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions) +2024-07-25 12:42:18,537 - Dictionary lifecycle event {'msg': "built Dictionary<1153 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2540 corpus positions)", 'datetime': '2024-07-25T12:42:18.537293', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:18,538 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:18,538 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:18,538 - using serial LDA version on this node +2024-07-25 12:42:18,539 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:18,539 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:18,543 - -8.062 per-word bound, 267.2 perplexity estimate based on a held-out corpus of 1 documents with 2540 words +2024-07-25 12:42:18,543 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:18,544 - topic #0 (0.333): 0.018*"’" + 0.007*"needs" + 0.007*"need" + 0.007*"progress" + 0.006*"Newham" + 0.006*"effective" + 0.006*"plans" + 0.005*"risks" + 0.004*"good" + 0.004*"18" +2024-07-25 12:42:18,544 - topic #1 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"Newham" + 0.007*"plans" + 0.007*"practice" + 0.006*"effective" + 0.006*"progress" + 0.005*"good" + 0.005*"Leaders" + 0.005*"need" +2024-07-25 12:42:18,545 - topic #2 (0.333): 0.020*"’" + 0.008*"needs" + 0.007*"practice" + 0.006*"Newham" + 0.006*"need" + 0.005*"progress" + 0.005*"plans" + 0.005*"good" + 0.005*"effective" + 0.004*"well" +2024-07-25 12:42:18,545 - topic diff=0.773736, rho=1.000000 +2024-07-25 12:42:18,545 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:18.545252', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:19,574 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:19,575 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:19,575 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:19,575 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:19,575 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:19,575 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:19,576 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:19,576 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:19,576 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:19,576 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:19,576 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:19,576 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:21,842 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:21,844 - built Dictionary<1204 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2389 corpus positions) +2024-07-25 12:42:21,844 - Dictionary lifecycle event {'msg': "built Dictionary<1204 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2389 corpus positions)", 'datetime': '2024-07-25T12:42:21.844759', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:21,845 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:21,846 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:21,846 - using serial LDA version on this node +2024-07-25 12:42:21,846 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:21,846 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:21,850 - -8.163 per-word bound, 286.7 perplexity estimate based on a held-out corpus of 1 documents with 2389 words +2024-07-25 12:42:21,850 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:21,852 - topic #0 (0.333): 0.009*"’" + 0.007*"Redbridge" + 0.005*"practice" + 0.005*"needs" + 0.005*"supported" + 0.005*"carers" + 0.005*"leaders" + 0.004*"well" + 0.004*"effective" + 0.004*"family" +2024-07-25 12:42:21,852 - topic #1 (0.333): 0.012*"’" + 0.007*"Redbridge" + 0.005*"needs" + 0.004*"protection" + 0.004*"family" + 0.004*"practice" + 0.004*"supported" + 0.004*"risk" + 0.004*"14" + 0.004*"2024" +2024-07-25 12:42:21,852 - topic #2 (0.333): 0.019*"’" + 0.007*"Redbridge" + 0.005*"carers" + 0.005*"early" + 0.005*"supported" + 0.005*"needs" + 0.005*"family" + 0.005*"leaders" + 0.005*"practice" + 0.004*"risk" +2024-07-25 12:42:21,853 - topic diff=0.755453, rho=1.000000 +2024-07-25 12:42:21,853 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:21.853246', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:22,787 - Inspection date 2024-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:22,788 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:22,788 - Inspection date 2024-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:22,788 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:22,788 - Inspection date 2024-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:22,788 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:22,788 - Inspection date 2024-06-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:22,789 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:22,789 - Inspection date 2024-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:22,789 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:22,789 - Inspection date 2024-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:22,789 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:24,196 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:24,200 - built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions) +2024-07-25 12:42:24,200 - Dictionary lifecycle event {'msg': "built Dictionary<968 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1818 corpus positions)", 'datetime': '2024-07-25T12:42:24.200720', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:24,202 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:24,202 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:24,202 - using serial LDA version on this node +2024-07-25 12:42:24,203 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:24,203 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:24,209 - -7.987 per-word bound, 253.7 perplexity estimate based on a held-out corpus of 1 documents with 1818 words +2024-07-25 12:42:24,209 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:24,212 - topic #0 (0.333): 0.013*"’" + 0.011*"well" + 0.008*"Richmond" + 0.006*"needs" + 0.006*"good" + 0.006*"team" + 0.005*"ensure" + 0.005*"supported" + 0.004*"strong" + 0.004*"range" +2024-07-25 12:42:24,212 - topic #1 (0.333): 0.019*"’" + 0.011*"well" + 0.009*"needs" + 0.008*"Richmond" + 0.007*"supported" + 0.006*"need" + 0.005*"good" + 0.005*"team" + 0.005*"additional" + 0.005*"2022" +2024-07-25 12:42:24,212 - topic #2 (0.333): 0.013*"’" + 0.010*"well" + 0.008*"Richmond" + 0.006*"needs" + 0.006*"need" + 0.005*"team" + 0.004*"ensure" + 0.004*"strong" + 0.004*"good" + 0.004*"additional" +2024-07-25 12:42:24,212 - topic diff=0.740968, rho=1.000000 +2024-07-25 12:42:24,213 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:24.213191', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:25,085 - Inspection date 2022-01-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:25,085 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:25,086 - Inspection date 2022-01-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:25,086 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:25,086 - Inspection date 2022-01-31 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:25,086 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:25,086 - Inspection date 2022-01-31 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:25,087 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:25,087 - Inspection date 2022-01-31 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:25,087 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:25,087 - Inspection date 2022-01-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:25,087 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:26,314 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:26,316 - built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions) +2024-07-25 12:42:26,317 - Dictionary lifecycle event {'msg': "built Dictionary<945 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1878 corpus positions)", 'datetime': '2024-07-25T12:42:26.317011', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:26,317 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:26,318 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:26,318 - using serial LDA version on this node +2024-07-25 12:42:26,318 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:26,318 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:26,321 - -7.916 per-word bound, 241.5 perplexity estimate based on a held-out corpus of 1 documents with 1878 words +2024-07-25 12:42:26,322 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:26,323 - topic #0 (0.333): 0.010*"’" + 0.006*"Southwark" + 0.006*"well" + 0.005*"good" + 0.005*"needs" + 0.004*"plans" + 0.004*"need" + 0.004*"leaders" + 0.004*"practice" + 0.004*"receive" +2024-07-25 12:42:26,323 - topic #1 (0.333): 0.012*"’" + 0.010*"Southwark" + 0.009*"good" + 0.007*"well" + 0.007*"progress" + 0.006*"plans" + 0.006*"needs" + 0.005*"receive" + 0.004*"need" + 0.004*"education" +2024-07-25 12:42:26,323 - topic #2 (0.333): 0.024*"’" + 0.010*"Southwark" + 0.009*"needs" + 0.008*"well" + 0.008*"good" + 0.007*"effective" + 0.006*"need" + 0.006*"strong" + 0.006*"Leaders" + 0.006*"progress" +2024-07-25 12:42:26,323 - topic diff=0.778328, rho=1.000000 +2024-07-25 12:42:26,324 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:26.324037', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:27,628 - Inspection date 2022-09-26 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:27,628 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:27,628 - Inspection date 2022-09-26 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:27,628 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:27,628 - Inspection date 2022-09-26 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:27,629 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:27,629 - Inspection date 2022-09-26 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:27,629 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:27,629 - Inspection date 2022-09-26 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:27,629 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:27,629 - Inspection date 2022-09-26 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:27,630 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:28,932 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:28,934 - built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions) +2024-07-25 12:42:28,934 - Dictionary lifecycle event {'msg': "built Dictionary<976 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1847 corpus positions)", 'datetime': '2024-07-25T12:42:28.934274', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:28,935 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:28,935 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:28,935 - using serial LDA version on this node +2024-07-25 12:42:28,936 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:28,936 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:28,939 - -7.986 per-word bound, 253.5 perplexity estimate based on a held-out corpus of 1 documents with 1847 words +2024-07-25 12:42:28,939 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:28,941 - topic #0 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"Sutton" + 0.006*"needs" + 0.005*"good" + 0.005*"progress" + 0.005*"receive" + 0.004*"effective" + 0.004*"protection" + 0.004*"10" +2024-07-25 12:42:28,941 - topic #1 (0.333): 0.020*"’" + 0.007*"well" + 0.006*"needs" + 0.006*"6" + 0.005*"supported" + 0.005*"Sutton" + 0.005*"good" + 0.005*"effective" + 0.005*"receive" + 0.004*"need" +2024-07-25 12:42:28,941 - topic #2 (0.333): 0.014*"’" + 0.006*"Sutton" + 0.006*"well" + 0.006*"progress" + 0.005*"needs" + 0.005*"understand" + 0.005*"effective" + 0.004*"receive" + 0.004*"leaders" + 0.004*"December" +2024-07-25 12:42:28,941 - topic diff=0.721449, rho=1.000000 +2024-07-25 12:42:28,941 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:28.941797', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:30,906 - Inspection date 2021-12-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:30,906 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:30,907 - Inspection date 2021-12-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:30,907 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:30,907 - Inspection date 2021-12-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:30,907 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:30,907 - Inspection date 2021-12-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:30,908 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:30,908 - Inspection date 2021-12-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:30,908 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:30,908 - Inspection date 2021-12-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:30,908 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:32,551 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:32,556 - built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions) +2024-07-25 12:42:32,559 - Dictionary lifecycle event {'msg': "built Dictionary<1194 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2465 corpus positions)", 'datetime': '2024-07-25T12:42:32.559383', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:32,561 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:32,561 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:32,562 - using serial LDA version on this node +2024-07-25 12:42:32,562 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:32,562 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:32,569 - -8.135 per-word bound, 281.0 perplexity estimate based on a held-out corpus of 1 documents with 2465 words +2024-07-25 12:42:32,569 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:32,572 - topic #0 (0.333): 0.016*"’" + 0.007*"plans" + 0.007*"effective" + 0.006*"‘" + 0.006*"good" + 0.006*"progress" + 0.006*"early" + 0.005*"including" + 0.005*"well" + 0.005*"practice" +2024-07-25 12:42:32,572 - topic #1 (0.333): 0.011*"’" + 0.007*"good" + 0.006*"well" + 0.006*"effective" + 0.006*"practice" + 0.005*"plans" + 0.005*"need" + 0.005*"‘" + 0.005*"early" + 0.005*"needs" +2024-07-25 12:42:32,573 - topic #2 (0.333): 0.017*"’" + 0.007*"good" + 0.005*"plans" + 0.005*"needs" + 0.005*"well" + 0.005*"‘" + 0.005*"effective" + 0.005*"practice" + 0.004*"carers" + 0.004*"need" +2024-07-25 12:42:32,573 - topic diff=0.770864, rho=1.000000 +2024-07-25 12:42:32,573 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:32.573596', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:33,886 - Inspection date 2019-06-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:33,886 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:33,886 - Inspection date 2019-06-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:33,886 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:33,887 - Inspection date 2019-06-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:33,887 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:33,887 - Inspection date 2019-06-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:33,887 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:33,887 - Inspection date 2019-06-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:33,887 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:33,888 - Inspection date 2019-06-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:33,888 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:35,172 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:35,175 - built Dictionary<1036 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions) +2024-07-25 12:42:35,175 - Dictionary lifecycle event {'msg': "built Dictionary<1036 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2199 corpus positions)", 'datetime': '2024-07-25T12:42:35.175234', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:35,176 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:35,176 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:35,176 - using serial LDA version on this node +2024-07-25 12:42:35,177 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:35,177 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:35,180 - -7.972 per-word bound, 251.1 perplexity estimate based on a held-out corpus of 1 documents with 2199 words +2024-07-25 12:42:35,180 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:35,181 - topic #0 (0.333): 0.015*"’" + 0.010*"well" + 0.009*"good" + 0.009*"needs" + 0.007*"effective" + 0.007*"need" + 0.005*"plans" + 0.005*"timely" + 0.005*"risk" + 0.004*"strong" +2024-07-25 12:42:35,182 - topic #1 (0.333): 0.015*"well" + 0.012*"’" + 0.009*"good" + 0.008*"effective" + 0.008*"needs" + 0.005*"need" + 0.005*"plans" + 0.005*"ensure" + 0.004*"progress" + 0.004*"timely" +2024-07-25 12:42:35,182 - topic #2 (0.333): 0.016*"’" + 0.010*"well" + 0.010*"needs" + 0.006*"effective" + 0.006*"need" + 0.005*"plans" + 0.005*"good" + 0.005*"risk" + 0.005*"timely" + 0.004*"appropriately" +2024-07-25 12:42:35,182 - topic diff=0.781431, rho=1.000000 +2024-07-25 12:42:35,182 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:35.182573', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:36,155 - Inspection date 2019-01-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:36,155 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:36,155 - Inspection date 2019-01-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:36,155 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:36,156 - Inspection date 2019-01-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:36,156 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:36,156 - Inspection date 2019-01-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:36,156 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:36,156 - Inspection date 2019-01-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:36,156 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:36,156 - Inspection date 2019-01-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:36,157 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:37,397 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:37,398 - built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions) +2024-07-25 12:42:37,399 - Dictionary lifecycle event {'msg': "built Dictionary<884 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1772 corpus positions)", 'datetime': '2024-07-25T12:42:37.399101', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:37,400 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:37,400 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:37,400 - using serial LDA version on this node +2024-07-25 12:42:37,400 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:37,400 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:37,403 - -7.851 per-word bound, 230.8 perplexity estimate based on a held-out corpus of 1 documents with 1772 words +2024-07-25 12:42:37,404 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:37,405 - topic #0 (0.333): 0.009*"’" + 0.005*"well" + 0.005*"progress" + 0.005*"ensure" + 0.005*"needs" + 0.005*"quality" + 0.004*"improve" + 0.004*"Wandsworth" + 0.004*"Senior" + 0.004*"practice" +2024-07-25 12:42:37,405 - topic #1 (0.333): 0.009*"’" + 0.006*"Wandsworth" + 0.006*"protection" + 0.005*"needs" + 0.005*"progress" + 0.005*"well" + 0.005*"good" + 0.005*"18" + 0.005*"supported" + 0.005*"effective" +2024-07-25 12:42:37,405 - topic #2 (0.333): 0.015*"’" + 0.008*"well" + 0.006*"Senior" + 0.006*"practice" + 0.005*"needs" + 0.005*"7" + 0.005*"progress" + 0.005*"team" + 0.005*"effective" + 0.005*"protection" +2024-07-25 12:42:37,405 - topic diff=0.758998, rho=1.000000 +2024-07-25 12:42:37,405 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:37.405901', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:38,374 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:38,374 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:38,375 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:38,375 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:38,375 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:38,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:38,376 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:38,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:38,377 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:38,377 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:38,377 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:38,377 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:40,186 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:40,188 - built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions) +2024-07-25 12:42:40,188 - Dictionary lifecycle event {'msg': "built Dictionary<1136 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2101 corpus positions)", 'datetime': '2024-07-25T12:42:40.188891', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:40,190 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:40,190 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:40,190 - using serial LDA version on this node +2024-07-25 12:42:40,190 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:40,191 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:40,194 - -8.156 per-word bound, 285.1 perplexity estimate based on a held-out corpus of 1 documents with 2101 words +2024-07-25 12:42:40,194 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:40,196 - topic #0 (0.333): 0.015*"’" + 0.008*"practice" + 0.007*"needs" + 0.005*"highly" + 0.005*"well" + 0.004*"quality" + 0.004*"many" + 0.003*"across" + 0.003*"number" + 0.003*"family" +2024-07-25 12:42:40,196 - topic #1 (0.333): 0.011*"’" + 0.007*"needs" + 0.006*"practice" + 0.006*"highly" + 0.004*"across" + 0.004*"well" + 0.004*"direct" + 0.004*"many" + 0.003*"shared" + 0.003*"family" +2024-07-25 12:42:40,196 - topic #2 (0.333): 0.012*"’" + 0.006*"practice" + 0.005*"highly" + 0.005*"well" + 0.004*"many" + 0.004*"family" + 0.003*"high" + 0.003*"interventions" + 0.003*"across" + 0.003*"needs" +2024-07-25 12:42:40,196 - topic diff=0.694428, rho=1.000000 +2024-07-25 12:42:40,197 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:40.197092', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:41,359 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:41,359 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:41,359 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:41,359 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:41,359 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:41,359 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:41,360 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:41,360 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:41,360 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:41,360 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:41,360 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:41,360 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:43,247 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:43,250 - built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions) +2024-07-25 12:42:43,250 - Dictionary lifecycle event {'msg': "built Dictionary<1199 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2593 corpus positions)", 'datetime': '2024-07-25T12:42:43.250611', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:43,251 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:43,251 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:43,252 - using serial LDA version on this node +2024-07-25 12:42:43,252 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:43,252 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:43,256 - -8.106 per-word bound, 275.6 perplexity estimate based on a held-out corpus of 1 documents with 2593 words +2024-07-25 12:42:43,256 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:43,258 - topic #0 (0.333): 0.016*"’" + 0.006*"needs" + 0.005*"progress" + 0.005*"need" + 0.005*"quality" + 0.005*"Luton" + 0.005*"plans" + 0.005*"receive" + 0.005*"well" + 0.005*"good" +2024-07-25 12:42:43,258 - topic #1 (0.333): 0.021*"’" + 0.007*"plans" + 0.007*"Luton" + 0.007*"need" + 0.006*"needs" + 0.006*"impact" + 0.006*"good" + 0.006*"effective" + 0.005*"progress" + 0.005*"including" +2024-07-25 12:42:43,258 - topic #2 (0.333): 0.012*"’" + 0.007*"need" + 0.006*"effective" + 0.006*"needs" + 0.005*"ensure" + 0.004*"plans" + 0.004*"impact" + 0.004*"good" + 0.004*"11" + 0.004*"quality" +2024-07-25 12:42:43,258 - topic diff=0.795195, rho=1.000000 +2024-07-25 12:42:43,258 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:43.258900', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:44,629 - Inspection date 2022-07-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:44,630 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:44,630 - Inspection date 2022-07-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:44,630 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:44,630 - Inspection date 2022-07-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:44,631 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:44,631 - Inspection date 2022-07-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:44,631 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:44,631 - Inspection date 2022-07-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:44,631 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:44,632 - Inspection date 2022-07-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:44,632 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:46,216 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:46,219 - built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions) +2024-07-25 12:42:46,220 - Dictionary lifecycle event {'msg': "built Dictionary<871 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1938 corpus positions)", 'datetime': '2024-07-25T12:42:46.220217', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:46,221 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:46,221 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:46,221 - using serial LDA version on this node +2024-07-25 12:42:46,221 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:46,222 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:46,225 - -7.770 per-word bound, 218.3 perplexity estimate based on a held-out corpus of 1 documents with 1938 words +2024-07-25 12:42:46,225 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:46,226 - topic #0 (0.333): 0.020*"’" + 0.011*"Manchester" + 0.010*"needs" + 0.007*"supported" + 0.007*"well" + 0.006*"plans" + 0.005*"always" + 0.005*"effective" + 0.005*"protection" + 0.004*"quality" +2024-07-25 12:42:46,226 - topic #1 (0.333): 0.023*"’" + 0.009*"needs" + 0.009*"Manchester" + 0.007*"well" + 0.006*"supported" + 0.006*"always" + 0.006*"education" + 0.006*"protection" + 0.005*"family" + 0.005*"plans" +2024-07-25 12:42:46,226 - topic #2 (0.333): 0.019*"’" + 0.011*"Manchester" + 0.009*"needs" + 0.008*"always" + 0.007*"supported" + 0.006*"well" + 0.005*"disabled" + 0.005*"plans" + 0.005*"education" + 0.005*"quality" +2024-07-25 12:42:46,226 - topic diff=0.809603, rho=1.000000 +2024-07-25 12:42:46,227 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:46.227089', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:47,124 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:47,124 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:47,124 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:47,124 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:47,125 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:47,125 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:47,125 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:47,125 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:47,125 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:47,125 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:47,125 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:47,126 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:48,508 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:48,510 - built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions) +2024-07-25 12:42:48,511 - Dictionary lifecycle event {'msg': "built Dictionary<922 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1857 corpus positions)", 'datetime': '2024-07-25T12:42:48.511034', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:48,512 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:48,512 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:48,512 - using serial LDA version on this node +2024-07-25 12:42:48,513 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:48,513 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:48,519 - -7.890 per-word bound, 237.3 perplexity estimate based on a held-out corpus of 1 documents with 1857 words +2024-07-25 12:42:48,519 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:48,521 - topic #0 (0.333): 0.015*"’" + 0.010*"Medway" + 0.009*"quality" + 0.009*"practice" + 0.007*"well" + 0.007*"needs" + 0.006*"leaders" + 0.006*"oversight" + 0.005*"experiences" + 0.005*"impact" +2024-07-25 12:42:48,521 - topic #1 (0.333): 0.013*"’" + 0.008*"Medway" + 0.007*"well" + 0.006*"practice" + 0.006*"quality" + 0.006*"oversight" + 0.005*"leaders" + 0.005*"needs" + 0.005*"impact" + 0.004*"28" +2024-07-25 12:42:48,521 - topic #2 (0.333): 0.018*"’" + 0.009*"Medway" + 0.008*"practice" + 0.008*"well" + 0.007*"quality" + 0.007*"leaders" + 0.006*"good" + 0.006*"needs" + 0.006*"improve" + 0.006*"impact" +2024-07-25 12:42:48,521 - topic diff=0.766091, rho=1.000000 +2024-07-25 12:42:48,522 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:48.522046', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:49,525 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:49,525 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:49,525 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:49,525 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:49,525 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:49,526 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:49,526 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:49,526 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:49,526 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:49,526 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:49,526 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:49,527 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:51,496 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:51,498 - built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions) +2024-07-25 12:42:51,498 - Dictionary lifecycle event {'msg': "built Dictionary<1068 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2278 corpus positions)", 'datetime': '2024-07-25T12:42:51.498658', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:51,499 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:51,499 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:51,500 - using serial LDA version on this node +2024-07-25 12:42:51,500 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:51,500 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:51,504 - -8.000 per-word bound, 256.0 perplexity estimate based on a held-out corpus of 1 documents with 2278 words +2024-07-25 12:42:51,504 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:51,505 - topic #0 (0.333): 0.016*"’" + 0.007*"Middlesbrough" + 0.007*"well" + 0.006*"plans" + 0.006*"effective" + 0.006*"practice" + 0.006*"progress" + 0.005*"13" + 0.005*"place" + 0.005*"impact" +2024-07-25 12:42:51,505 - topic #1 (0.333): 0.013*"’" + 0.007*"effective" + 0.007*"Middlesbrough" + 0.007*"needs" + 0.007*"plans" + 0.006*"well" + 0.005*"progress" + 0.005*"practice" + 0.005*"means" + 0.005*"24" +2024-07-25 12:42:51,505 - topic #2 (0.333): 0.011*"’" + 0.008*"plans" + 0.007*"effective" + 0.006*"needs" + 0.006*"Middlesbrough" + 0.006*"well" + 0.005*"practice" + 0.004*"good" + 0.004*"13" + 0.004*"24" +2024-07-25 12:42:51,506 - topic diff=0.782368, rho=1.000000 +2024-07-25 12:42:51,506 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:51.506219', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:52,831 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:52,831 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:52,831 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:52,832 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:52,832 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:52,832 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:52,832 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:52,832 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:52,832 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:52,832 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:52,833 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:52,833 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:54,654 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:54,658 - built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions) +2024-07-25 12:42:54,658 - Dictionary lifecycle event {'msg': "built Dictionary<1101 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2328 corpus positions)", 'datetime': '2024-07-25T12:42:54.658669', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:54,660 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:54,660 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:54,660 - using serial LDA version on this node +2024-07-25 12:42:54,661 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:54,661 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:54,668 - -8.035 per-word bound, 262.3 perplexity estimate based on a held-out corpus of 1 documents with 2328 words +2024-07-25 12:42:54,668 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:54,670 - topic #0 (0.333): 0.009*"’" + 0.005*"Milton" + 0.004*"well" + 0.004*"need" + 0.004*"25" + 0.004*"Keynes" + 0.004*"5" + 0.004*"practice" + 0.004*"2021" + 0.004*"family" +2024-07-25 12:42:54,670 - topic #1 (0.333): 0.016*"’" + 0.006*"Milton" + 0.006*"well" + 0.006*"Keynes" + 0.006*"need" + 0.005*"plans" + 0.005*"practice" + 0.005*"good" + 0.005*"team" + 0.004*"education" +2024-07-25 12:42:54,671 - topic #2 (0.333): 0.017*"’" + 0.007*"Keynes" + 0.006*"Milton" + 0.006*"well" + 0.005*"need" + 0.005*"leaders" + 0.005*"practice" + 0.005*"October" + 0.005*"25" + 0.004*"impact" +2024-07-25 12:42:54,671 - topic diff=0.787914, rho=1.000000 +2024-07-25 12:42:54,671 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:54.671394', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:55,639 - Inspection date 2021-10-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:42:55,640 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:55,640 - Inspection date 2021-10-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:42:55,640 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:55,640 - Inspection date 2021-10-25 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:42:55,640 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:55,641 - Inspection date 2021-10-25 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:42:55,641 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:55,641 - Inspection date 2021-10-25 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:42:55,641 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:55,642 - Inspection date 2021-10-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:42:55,642 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:42:59,274 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:42:59,277 - built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions) +2024-07-25 12:42:59,277 - Dictionary lifecycle event {'msg': "built Dictionary<956 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2076 corpus positions)", 'datetime': '2024-07-25T12:42:59.277928', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:42:59,279 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:42:59,279 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:42:59,280 - using serial LDA version on this node +2024-07-25 12:42:59,280 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:42:59,280 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:42:59,287 - -7.880 per-word bound, 235.5 perplexity estimate based on a held-out corpus of 1 documents with 2076 words +2024-07-25 12:42:59,287 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:42:59,289 - topic #0 (0.333): 0.011*"’" + 0.010*"plans" + 0.008*"needs" + 0.007*"Newcastle" + 0.007*"progress" + 0.006*"good" + 0.006*"management" + 0.006*"making" + 0.006*"protection" + 0.005*"29" +2024-07-25 12:42:59,290 - topic #1 (0.333): 0.020*"’" + 0.012*"plans" + 0.008*"needs" + 0.007*"well" + 0.007*"protection" + 0.007*"Newcastle" + 0.006*"good" + 0.006*"planning" + 0.006*"ensure" + 0.006*"making" +2024-07-25 12:42:59,290 - topic #2 (0.333): 0.015*"’" + 0.008*"plans" + 0.007*"good" + 0.007*"Newcastle" + 0.007*"protection" + 0.007*"needs" + 0.006*"well" + 0.006*"progress" + 0.005*"ensure" + 0.005*"need" +2024-07-25 12:42:59,290 - topic diff=0.783786, rho=1.000000 +2024-07-25 12:42:59,290 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:42:59.290907', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:01,996 - Inspection date 2021-11-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:01,997 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:01,999 - Inspection date 2021-11-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:01,999 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:01,999 - Inspection date 2021-11-29 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:02,000 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:02,000 - Inspection date 2021-11-29 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:02,000 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:02,001 - Inspection date 2021-11-29 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:02,001 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:02,001 - Inspection date 2021-11-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:02,001 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:07,047 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:07,049 - built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions) +2024-07-25 12:43:07,049 - Dictionary lifecycle event {'msg': "built Dictionary<1221 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2655 corpus positions)", 'datetime': '2024-07-25T12:43:07.049960', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:07,051 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:07,051 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:07,051 - using serial LDA version on this node +2024-07-25 12:43:07,051 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:07,052 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:07,056 - -8.125 per-word bound, 279.2 perplexity estimate based on a held-out corpus of 1 documents with 2655 words +2024-07-25 12:43:07,056 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:07,057 - topic #0 (0.333): 0.019*"’" + 0.009*"well" + 0.007*"Norfolk" + 0.007*"needs" + 0.005*"18" + 0.005*"practice" + 0.005*"carers" + 0.005*"leaders" + 0.004*"plans" + 0.004*"range" +2024-07-25 12:43:07,057 - topic #1 (0.333): 0.018*"’" + 0.008*"well" + 0.007*"carers" + 0.006*"Norfolk" + 0.006*"practice" + 0.005*"supported" + 0.005*"leaders" + 0.005*"effective" + 0.005*"needs" + 0.004*"18" +2024-07-25 12:43:07,057 - topic #2 (0.333): 0.014*"’" + 0.010*"Norfolk" + 0.008*"well" + 0.006*"carers" + 0.006*"supported" + 0.006*"needs" + 0.005*"practice" + 0.005*"progress" + 0.005*"including" + 0.005*"plans" +2024-07-25 12:43:07,058 - topic diff=0.778290, rho=1.000000 +2024-07-25 12:43:07,058 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:07.058216', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:08,353 - Inspection date 2022-11-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:08,353 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:08,353 - Inspection date 2022-11-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:08,353 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:08,353 - Inspection date 2022-11-07 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:08,353 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:08,354 - Inspection date 2022-11-07 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:08,354 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:08,354 - Inspection date 2022-11-07 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:08,354 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:08,354 - Inspection date 2022-11-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:08,354 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:10,197 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:10,199 - built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions) +2024-07-25 12:43:10,199 - Dictionary lifecycle event {'msg': "built Dictionary<958 unique tokens: ['0161', '021', '0300', '1', '10']...> from 1 documents (total 2045 corpus positions)", 'datetime': '2024-07-25T12:43:10.199374', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:10,200 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:10,200 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:10,200 - using serial LDA version on this node +2024-07-25 12:43:10,201 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:10,201 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:10,204 - -7.889 per-word bound, 237.0 perplexity estimate based on a held-out corpus of 1 documents with 2045 words +2024-07-25 12:43:10,204 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:10,205 - topic #0 (0.333): 0.016*"’" + 0.009*"practice" + 0.008*"leaders" + 0.008*"planning" + 0.007*"risk" + 0.007*"needs" + 0.006*"need" + 0.005*"2021" + 0.005*"North" + 0.005*"many" +2024-07-25 12:43:10,205 - topic #1 (0.333): 0.010*"’" + 0.007*"practice" + 0.006*"risk" + 0.005*"leaders" + 0.004*"needs" + 0.004*"October" + 0.004*"many" + 0.004*"However" + 0.004*"harm" + 0.004*"2021" +2024-07-25 12:43:10,206 - topic #2 (0.333): 0.014*"’" + 0.007*"risk" + 0.006*"needs" + 0.005*"planning" + 0.005*"practice" + 0.005*"need" + 0.005*"leaders" + 0.005*"many" + 0.005*"Lincolnshire" + 0.005*"oversight" +2024-07-25 12:43:10,206 - topic diff=0.781201, rho=1.000000 +2024-07-25 12:43:10,206 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:10.206338', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:11,128 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:11,128 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:11,128 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:11,128 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:11,128 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:11,128 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:11,129 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:11,129 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:11,129 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:11,129 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:11,129 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:11,129 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:12,493 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:12,496 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions) +2024-07-25 12:43:12,496 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2174 corpus positions)", 'datetime': '2024-07-25T12:43:12.496226', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:12,497 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:12,497 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:12,497 - using serial LDA version on this node +2024-07-25 12:43:12,498 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:12,498 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:12,501 - -8.064 per-word bound, 267.7 perplexity estimate based on a held-out corpus of 1 documents with 2174 words +2024-07-25 12:43:12,501 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:12,503 - topic #0 (0.333): 0.019*"’" + 0.006*"family" + 0.006*"‘" + 0.006*"North" + 0.005*"leaders" + 0.005*"10" + 0.005*"Lincolnshire" + 0.005*"approach" + 0.005*"need" + 0.005*"well" +2024-07-25 12:43:12,503 - topic #1 (0.333): 0.017*"’" + 0.007*"‘" + 0.006*"approach" + 0.006*"family" + 0.005*"well" + 0.005*"Lincolnshire" + 0.005*"leaders" + 0.004*"need" + 0.004*"10" + 0.004*"practice" +2024-07-25 12:43:12,503 - topic #2 (0.333): 0.024*"’" + 0.008*"‘" + 0.006*"family" + 0.006*"North" + 0.006*"Lincolnshire" + 0.005*"leaders" + 0.005*"well" + 0.004*"need" + 0.004*"10" + 0.004*"approach" +2024-07-25 12:43:12,503 - topic diff=0.750582, rho=1.000000 +2024-07-25 12:43:12,503 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:12.503842', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:13,433 - Inspection date 2022-10-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:13,433 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:13,433 - Inspection date 2022-10-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:13,433 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:13,434 - Inspection date 2022-10-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:13,434 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:13,434 - Inspection date 2022-10-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:13,434 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:13,434 - Inspection date 2022-10-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:13,434 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:13,434 - Inspection date 2022-10-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:13,435 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:15,655 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:15,659 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions) +2024-07-25 12:43:15,659 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2204 corpus positions)", 'datetime': '2024-07-25T12:43:15.659748', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:15,661 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:15,661 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:15,662 - using serial LDA version on this node +2024-07-25 12:43:15,662 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:15,662 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:15,666 - -8.028 per-word bound, 260.9 perplexity estimate based on a held-out corpus of 1 documents with 2204 words +2024-07-25 12:43:15,666 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:15,668 - topic #0 (0.333): 0.019*"’" + 0.008*"North" + 0.007*"well" + 0.007*"Northamptonshire" + 0.005*"NCT" + 0.005*"plans" + 0.005*"practice" + 0.005*"needs" + 0.005*"impact" + 0.004*"quality" +2024-07-25 12:43:15,668 - topic #1 (0.333): 0.015*"’" + 0.008*"Northamptonshire" + 0.007*"well" + 0.006*"North" + 0.005*"impact" + 0.005*"Leaders" + 0.005*"practice" + 0.005*"needs" + 0.005*"need" + 0.005*"3" +2024-07-25 12:43:15,668 - topic #2 (0.333): 0.016*"’" + 0.009*"Northamptonshire" + 0.008*"quality" + 0.005*"Leaders" + 0.005*"14" + 0.005*"North" + 0.005*"experiences" + 0.005*"practice" + 0.005*"well" + 0.004*"need" +2024-07-25 12:43:15,668 - topic diff=0.742790, rho=1.000000 +2024-07-25 12:43:15,668 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:15.668752', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:16,577 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:16,577 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:16,577 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:16,577 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:16,578 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:16,578 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:16,578 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:16,578 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:16,578 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:16,578 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:16,579 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:16,579 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:18,030 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:18,033 - built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions) +2024-07-25 12:43:18,033 - Dictionary lifecycle event {'msg': "built Dictionary<1219 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2902 corpus positions)", 'datetime': '2024-07-25T12:43:18.033443', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:18,034 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:18,034 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:18,035 - using serial LDA version on this node +2024-07-25 12:43:18,035 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:18,035 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:18,039 - -8.069 per-word bound, 268.6 perplexity estimate based on a held-out corpus of 1 documents with 2902 words +2024-07-25 12:43:18,039 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:18,041 - topic #0 (0.333): 0.017*"’" + 0.008*"quality" + 0.008*"needs" + 0.007*"number" + 0.007*"always" + 0.006*"progress" + 0.006*"need" + 0.005*"North" + 0.005*"effective" + 0.005*"Somerset" +2024-07-25 12:43:18,041 - topic #1 (0.333): 0.020*"’" + 0.007*"quality" + 0.006*"North" + 0.005*"needs" + 0.005*"practice" + 0.005*"well" + 0.005*"24" + 0.005*"Somerset" + 0.005*"always" + 0.005*"experienced" +2024-07-25 12:43:18,041 - topic #2 (0.333): 0.014*"’" + 0.007*"practice" + 0.007*"Somerset" + 0.006*"needs" + 0.006*"quality" + 0.006*"always" + 0.006*"risk" + 0.006*"number" + 0.006*"North" + 0.005*"well" +2024-07-25 12:43:18,041 - topic diff=0.829075, rho=1.000000 +2024-07-25 12:43:18,042 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:18.042055', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:19,744 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:19,744 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:19,744 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:19,744 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:19,745 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:19,745 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:19,745 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:19,745 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:19,745 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:19,745 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:19,746 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:19,746 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:21,821 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:21,824 - built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions) +2024-07-25 12:43:21,824 - Dictionary lifecycle event {'msg': "built Dictionary<1273 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2518 corpus positions)", 'datetime': '2024-07-25T12:43:21.824823', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:21,826 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:21,826 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:21,826 - using serial LDA version on this node +2024-07-25 12:43:21,826 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:21,826 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:21,831 - -8.222 per-word bound, 298.6 perplexity estimate based on a held-out corpus of 1 documents with 2518 words +2024-07-25 12:43:21,831 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:21,832 - topic #0 (0.333): 0.014*"’" + 0.005*"leaders" + 0.005*"make" + 0.005*"well" + 0.005*"quality" + 0.005*"need" + 0.004*"progress" + 0.004*"foster" + 0.004*"needs" + 0.004*"experiences" +2024-07-25 12:43:21,832 - topic #1 (0.333): 0.019*"’" + 0.007*"well" + 0.005*"leaders" + 0.005*"need" + 0.005*"needs" + 0.005*"quality" + 0.004*"make" + 0.004*"understand" + 0.004*"protection" + 0.004*"clear" +2024-07-25 12:43:21,833 - topic #2 (0.333): 0.014*"’" + 0.006*"well" + 0.005*"early" + 0.005*"need" + 0.005*"leaders" + 0.005*"impact" + 0.004*"quality" + 0.004*"make" + 0.004*"needs" + 0.004*"family" +2024-07-25 12:43:21,833 - topic diff=0.730910, rho=1.000000 +2024-07-25 12:43:21,833 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:21.833282', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:22,828 - Inspection date 2020-03-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:22,828 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:22,828 - Inspection date 2020-03-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:22,829 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:22,829 - Inspection date 2020-03-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:22,829 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:22,829 - Inspection date 2020-03-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:22,829 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:22,829 - Inspection date 2020-03-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:22,830 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:22,830 - Inspection date 2020-03-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:22,830 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:24,250 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:24,253 - built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions) +2024-07-25 12:43:24,253 - Dictionary lifecycle event {'msg': "built Dictionary<1259 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2759 corpus positions)", 'datetime': '2024-07-25T12:43:24.253143', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:24,254 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:24,254 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:24,254 - using serial LDA version on this node +2024-07-25 12:43:24,255 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:24,255 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:24,259 - -8.149 per-word bound, 283.8 perplexity estimate based on a held-out corpus of 1 documents with 2759 words +2024-07-25 12:43:24,259 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:24,260 - topic #0 (0.333): 0.017*"’" + 0.008*"well" + 0.007*"North" + 0.007*"practice" + 0.006*"Yorkshire" + 0.006*"needs" + 0.005*"family" + 0.005*"need" + 0.005*"7" + 0.005*"‘" +2024-07-25 12:43:24,261 - topic #1 (0.333): 0.026*"’" + 0.009*"well" + 0.007*"North" + 0.006*"family" + 0.006*"Yorkshire" + 0.006*"needs" + 0.006*"practice" + 0.005*"2023" + 0.005*"3" + 0.005*"‘" +2024-07-25 12:43:24,261 - topic #2 (0.333): 0.016*"’" + 0.007*"well" + 0.006*"Yorkshire" + 0.005*"practice" + 0.005*"‘" + 0.005*"family" + 0.004*"North" + 0.004*"needs" + 0.004*"live" + 0.004*"3" +2024-07-25 12:43:24,261 - topic diff=0.802076, rho=1.000000 +2024-07-25 12:43:24,261 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:24.261558', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:25,765 - Inspection date 2023-07-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:25,766 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:25,766 - Inspection date 2023-07-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:25,766 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:25,767 - Inspection date 2023-07-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:25,767 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:25,767 - Inspection date 2023-07-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:25,768 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:25,768 - Inspection date 2023-07-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:25,768 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:25,768 - Inspection date 2023-07-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:25,768 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:27,722 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:27,724 - built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions) +2024-07-25 12:43:27,725 - Dictionary lifecycle event {'msg': "built Dictionary<1218 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2884 corpus positions)", 'datetime': '2024-07-25T12:43:27.724988', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:27,726 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:27,726 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:27,726 - using serial LDA version on this node +2024-07-25 12:43:27,727 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:27,727 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:27,731 - -8.075 per-word bound, 269.6 perplexity estimate based on a held-out corpus of 1 documents with 2884 words +2024-07-25 12:43:27,731 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:27,732 - topic #0 (0.333): 0.019*"’" + 0.009*"family" + 0.008*"needs" + 0.007*"strong" + 0.006*"well" + 0.006*"Northumberland" + 0.006*"experiences" + 0.005*"leaders" + 0.005*"effective" + 0.005*"progress" +2024-07-25 12:43:27,732 - topic #1 (0.333): 0.020*"’" + 0.008*"leaders" + 0.007*"family" + 0.006*"well" + 0.006*"Northumberland" + 0.005*"experiences" + 0.005*"needs" + 0.005*"strong" + 0.005*"practice" + 0.005*"provide" +2024-07-25 12:43:27,733 - topic #2 (0.333): 0.017*"’" + 0.007*"experiences" + 0.006*"strong" + 0.006*"needs" + 0.006*"family" + 0.006*"leaders" + 0.005*"practice" + 0.005*"Northumberland" + 0.005*"receive" + 0.004*"well" +2024-07-25 12:43:27,733 - topic diff=0.835316, rho=1.000000 +2024-07-25 12:43:27,733 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:27.733270', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:28,707 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:28,707 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:28,707 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:28,707 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:28,708 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:28,708 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:28,708 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:28,708 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:28,708 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:28,708 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:28,708 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:28,709 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:30,415 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:30,417 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) +2024-07-25 12:43:30,417 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-07-25T12:43:30.417953', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:30,419 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:30,419 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:30,419 - using serial LDA version on this node +2024-07-25 12:43:30,419 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:30,419 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:30,423 - -8.023 per-word bound, 260.1 perplexity estimate based on a held-out corpus of 1 documents with 2316 words +2024-07-25 12:43:30,423 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:30,424 - topic #0 (0.333): 0.016*"’" + 0.007*"needs" + 0.007*"Nottingham" + 0.006*"effective" + 0.004*"impact" + 0.004*"oversight" + 0.004*"plans" + 0.004*"practice" + 0.004*"City" + 0.004*"consistently" +2024-07-25 12:43:30,425 - topic #1 (0.333): 0.012*"’" + 0.007*"needs" + 0.006*"effective" + 0.006*"Nottingham" + 0.005*"impact" + 0.005*"plans" + 0.005*"11" + 0.005*"practice" + 0.005*"City" + 0.005*"However" +2024-07-25 12:43:30,425 - topic #2 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"plans" + 0.005*"11" + 0.005*"oversight" + 0.005*"However" + 0.005*"City" + 0.004*"impact" + 0.004*"Nottingham" + 0.004*"risk" +2024-07-25 12:43:30,425 - topic diff=0.761744, rho=1.000000 +2024-07-25 12:43:30,425 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:30.425616', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:31,481 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:31,481 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:31,482 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:31,482 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:31,482 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:31,482 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:31,482 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:31,482 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:31,482 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:31,483 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:31,483 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:31,483 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:32,995 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:32,997 - built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions) +2024-07-25 12:43:32,997 - Dictionary lifecycle event {'msg': "built Dictionary<1048 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2129 corpus positions)", 'datetime': '2024-07-25T12:43:32.997668', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:32,998 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:32,998 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:32,999 - using serial LDA version on this node +2024-07-25 12:43:32,999 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:32,999 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:33,003 - -8.010 per-word bound, 257.8 perplexity estimate based on a held-out corpus of 1 documents with 2129 words +2024-07-25 12:43:33,003 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:33,004 - topic #0 (0.333): 0.022*"’" + 0.010*"needs" + 0.009*"well" + 0.006*"Nottinghamshire" + 0.006*"plans" + 0.005*"Leaders" + 0.005*"effective" + 0.005*"20" + 0.005*"practice" + 0.005*"leaders" +2024-07-25 12:43:33,004 - topic #1 (0.333): 0.011*"’" + 0.007*"well" + 0.006*"Nottinghamshire" + 0.005*"plans" + 0.005*"needs" + 0.004*"Leaders" + 0.004*"risks" + 0.004*"leaders" + 0.003*"May" + 0.003*"24" +2024-07-25 12:43:33,004 - topic #2 (0.333): 0.016*"’" + 0.009*"well" + 0.009*"needs" + 0.007*"Nottinghamshire" + 0.005*"plans" + 0.005*"effective" + 0.005*"2024" + 0.004*"leaders" + 0.004*"practice" + 0.004*"provide" +2024-07-25 12:43:33,004 - topic diff=0.777263, rho=1.000000 +2024-07-25 12:43:33,005 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:33.005104', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:33,890 - Inspection date 2024-05-20 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:33,891 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:33,891 - Inspection date 2024-05-20 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:33,891 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:33,891 - Inspection date 2024-05-20 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:33,892 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:33,892 - Inspection date 2024-05-20 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:33,892 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:33,892 - Inspection date 2024-05-20 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:33,892 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:33,892 - Inspection date 2024-05-20 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:33,892 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:35,511 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:35,513 - built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions) +2024-07-25 12:43:35,514 - Dictionary lifecycle event {'msg': "built Dictionary<1152 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2441 corpus positions)", 'datetime': '2024-07-25T12:43:35.514043', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:35,515 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:35,515 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:35,515 - using serial LDA version on this node +2024-07-25 12:43:35,515 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:35,516 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:35,519 - -8.076 per-word bound, 269.8 perplexity estimate based on a held-out corpus of 1 documents with 2441 words +2024-07-25 12:43:35,519 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:35,521 - topic #0 (0.333): 0.013*"’" + 0.009*"plans" + 0.008*"well" + 0.008*"needs" + 0.007*"PAs" + 0.005*"progress" + 0.005*"practice" + 0.005*"clear" + 0.005*"Oldham" + 0.005*"leaders" +2024-07-25 12:43:35,521 - topic #1 (0.333): 0.013*"’" + 0.009*"well" + 0.008*"plans" + 0.006*"Oldham" + 0.005*"leaders" + 0.005*"needs" + 0.005*"practice" + 0.005*"PAs" + 0.005*"risk" + 0.005*"effective" +2024-07-25 12:43:35,521 - topic #2 (0.333): 0.011*"’" + 0.007*"Oldham" + 0.007*"plans" + 0.007*"well" + 0.007*"practice" + 0.006*"leaders" + 0.005*"progress" + 0.005*"needs" + 0.005*"supported" + 0.005*"risk" +2024-07-25 12:43:35,521 - topic diff=0.779228, rho=1.000000 +2024-07-25 12:43:35,521 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:35.521955', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:36,843 - Inspection date 2024-05-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:36,843 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:36,843 - Inspection date 2024-05-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:36,843 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:36,844 - Inspection date 2024-05-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:36,844 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:36,844 - Inspection date 2024-05-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:36,844 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:36,844 - Inspection date 2024-05-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:36,844 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:36,845 - Inspection date 2024-05-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:36,845 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:38,732 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:38,734 - built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions) +2024-07-25 12:43:38,734 - Dictionary lifecycle event {'msg': "built Dictionary<1066 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2294 corpus positions)", 'datetime': '2024-07-25T12:43:38.734889', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:38,736 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:38,736 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:38,736 - using serial LDA version on this node +2024-07-25 12:43:38,736 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:38,736 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:38,740 - -7.995 per-word bound, 255.0 perplexity estimate based on a held-out corpus of 1 documents with 2294 words +2024-07-25 12:43:38,740 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:38,742 - topic #0 (0.333): 0.025*"’" + 0.009*"needs" + 0.007*"Oxfordshire" + 0.007*"well" + 0.006*"risk" + 0.006*"receive" + 0.006*"supported" + 0.005*"good" + 0.005*"quality" + 0.005*"progress" +2024-07-25 12:43:38,742 - topic #1 (0.333): 0.019*"’" + 0.012*"needs" + 0.007*"Oxfordshire" + 0.007*"well" + 0.006*"good" + 0.006*"risk" + 0.005*"23" + 0.005*"supported" + 0.005*"arrangements" + 0.005*"12" +2024-07-25 12:43:38,742 - topic #2 (0.333): 0.012*"’" + 0.007*"needs" + 0.006*"Oxfordshire" + 0.006*"well" + 0.005*"risk" + 0.005*"good" + 0.005*"supported" + 0.005*"12" + 0.005*"practice" + 0.004*"quality" +2024-07-25 12:43:38,742 - topic diff=0.787072, rho=1.000000 +2024-07-25 12:43:38,742 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:38.742771', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:39,674 - Inspection date 2024-02-12 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:39,674 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:39,674 - Inspection date 2024-02-12 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:39,674 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:39,675 - Inspection date 2024-02-12 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:39,675 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:39,675 - Inspection date 2024-02-12 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:39,675 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:39,675 - Inspection date 2024-02-12 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:39,675 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:39,676 - Inspection date 2024-02-12 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:39,676 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:41,234 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:41,236 - built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions) +2024-07-25 12:43:41,236 - Dictionary lifecycle event {'msg': "built Dictionary<893 unique tokens: ['0-25', '0161', '0300', '1', '10']...> from 1 documents (total 1737 corpus positions)", 'datetime': '2024-07-25T12:43:41.236874', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:41,237 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:41,237 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:41,238 - using serial LDA version on this node +2024-07-25 12:43:41,238 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:41,238 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:41,241 - -7.883 per-word bound, 236.0 perplexity estimate based on a held-out corpus of 1 documents with 1737 words +2024-07-25 12:43:41,241 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:41,242 - topic #0 (0.333): 0.014*"’" + 0.014*"needs" + 0.008*"need" + 0.007*"Peterborough" + 0.006*"2023" + 0.006*"well" + 0.005*"progress" + 0.005*"8" + 0.005*"supported" + 0.005*"plans" +2024-07-25 12:43:41,243 - topic #1 (0.333): 0.014*"’" + 0.012*"needs" + 0.007*"well" + 0.007*"Peterborough" + 0.006*"2023" + 0.006*"need" + 0.006*"progress" + 0.006*"plans" + 0.006*"supported" + 0.005*"December" +2024-07-25 12:43:41,243 - topic #2 (0.333): 0.015*"’" + 0.013*"needs" + 0.007*"Peterborough" + 0.006*"need" + 0.006*"2023" + 0.005*"progress" + 0.005*"8" + 0.005*"well" + 0.005*"receive" + 0.005*"education" +2024-07-25 12:43:41,243 - topic diff=0.727753, rho=1.000000 +2024-07-25 12:43:41,243 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:41.243640', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:42,188 - Inspection date 2023-11-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:42,188 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:42,189 - Inspection date 2023-11-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:42,189 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:42,189 - Inspection date 2023-11-27 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:42,189 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:42,189 - Inspection date 2023-11-27 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:42,189 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:42,189 - Inspection date 2023-11-27 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:42,189 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:42,190 - Inspection date 2023-11-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:42,190 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:43,930 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:43,934 - built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions) +2024-07-25 12:43:43,935 - Dictionary lifecycle event {'msg': "built Dictionary<1232 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2905 corpus positions)", 'datetime': '2024-07-25T12:43:43.934981', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:43,937 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:43,937 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:43,937 - using serial LDA version on this node +2024-07-25 12:43:43,938 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:43,938 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:43,945 - -8.086 per-word bound, 271.6 perplexity estimate based on a held-out corpus of 1 documents with 2905 words +2024-07-25 12:43:43,945 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:43,947 - topic #0 (0.333): 0.015*"’" + 0.010*"needs" + 0.006*"well" + 0.005*"Plymouth" + 0.005*"risks" + 0.005*"practice" + 0.005*"2" + 0.005*"education" + 0.005*"plans" + 0.004*"leaders" +2024-07-25 12:43:43,947 - topic #1 (0.333): 0.010*"’" + 0.007*"needs" + 0.007*"well" + 0.006*"Plymouth" + 0.006*"practice" + 0.005*"appropriate" + 0.005*"February" + 0.005*"education" + 0.004*"benefit" + 0.004*"2024" +2024-07-25 12:43:43,948 - topic #2 (0.333): 0.013*"’" + 0.008*"Plymouth" + 0.008*"well" + 0.007*"needs" + 0.005*"practice" + 0.005*"plans" + 0.005*"City" + 0.005*"February" + 0.005*"2" + 0.004*"timely" +2024-07-25 12:43:43,948 - topic diff=0.835376, rho=1.000000 +2024-07-25 12:43:43,948 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:43.948525', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:45,033 - Inspection date 2024-01-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:45,033 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:45,033 - Inspection date 2024-01-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:45,034 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:45,034 - Inspection date 2024-01-22 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:45,034 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:45,034 - Inspection date 2024-01-22 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:45,034 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:45,034 - Inspection date 2024-01-22 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:45,034 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:45,034 - Inspection date 2024-01-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:45,035 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:46,870 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:46,875 - built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions) +2024-07-25 12:43:46,875 - Dictionary lifecycle event {'msg': "built Dictionary<1223 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2738 corpus positions)", 'datetime': '2024-07-25T12:43:46.875737', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:46,877 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:46,878 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:46,878 - using serial LDA version on this node +2024-07-25 12:43:46,879 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:46,879 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:46,885 - -8.110 per-word bound, 276.3 perplexity estimate based on a held-out corpus of 1 documents with 2738 words +2024-07-25 12:43:46,886 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:46,888 - topic #0 (0.333): 0.017*"’" + 0.008*"care-experienced" + 0.006*"Portsmouth" + 0.006*"well" + 0.005*"needs" + 0.005*"family" + 0.004*"plans" + 0.004*"progress" + 0.004*"practice" + 0.004*"health" +2024-07-25 12:43:46,888 - topic #1 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"care-experienced" + 0.006*"Portsmouth" + 0.005*"health" + 0.005*"needs" + 0.005*"practice" + 0.005*"leaders" + 0.005*"risk" + 0.005*"progress" +2024-07-25 12:43:46,888 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.008*"care-experienced" + 0.007*"Portsmouth" + 0.007*"well" + 0.006*"family" + 0.006*"plans" + 0.005*"health" + 0.005*"need" + 0.004*"receive" +2024-07-25 12:43:46,889 - topic diff=0.796687, rho=1.000000 +2024-07-25 12:43:46,889 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:46.889386', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:48,176 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:48,177 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:48,177 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:48,177 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:48,177 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:48,177 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:48,177 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:48,178 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:48,178 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:48,178 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:48,178 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:48,178 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:49,681 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:49,685 - built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions) +2024-07-25 12:43:49,685 - Dictionary lifecycle event {'msg': "built Dictionary<1231 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2562 corpus positions)", 'datetime': '2024-07-25T12:43:49.685928', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:49,687 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:49,688 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:49,688 - using serial LDA version on this node +2024-07-25 12:43:49,689 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:49,689 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:49,696 - -8.158 per-word bound, 285.7 perplexity estimate based on a held-out corpus of 1 documents with 2562 words +2024-07-25 12:43:49,696 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:49,698 - topic #0 (0.333): 0.015*"’" + 0.005*"PAs" + 0.005*"needs" + 0.005*"plans" + 0.005*"progress" + 0.004*"timely" + 0.004*"arrangements" + 0.004*"22" + 0.004*"practice" + 0.004*"effective" +2024-07-25 12:43:49,698 - topic #1 (0.333): 0.016*"’" + 0.008*"needs" + 0.006*"well" + 0.005*"Reading" + 0.005*"PAs" + 0.005*"progress" + 0.005*"plans" + 0.004*"clear" + 0.004*"3" + 0.004*"22" +2024-07-25 12:43:49,699 - topic #2 (0.333): 0.011*"’" + 0.006*"needs" + 0.005*"PAs" + 0.005*"2024" + 0.005*"well" + 0.005*"plans" + 0.005*"progress" + 0.004*"Reading" + 0.004*"May" + 0.004*"clear" +2024-07-25 12:43:49,699 - topic diff=0.761572, rho=1.000000 +2024-07-25 12:43:49,699 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:49.699452', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:50,776 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:50,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:50,776 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:50,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:50,777 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:50,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:50,777 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:50,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:50,777 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:50,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:50,778 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:50,778 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:52,433 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:52,436 - built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions) +2024-07-25 12:43:52,436 - Dictionary lifecycle event {'msg': "built Dictionary<1112 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2515 corpus positions)", 'datetime': '2024-07-25T12:43:52.436296', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:52,437 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:52,437 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:52,437 - using serial LDA version on this node +2024-07-25 12:43:52,438 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:52,438 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:52,441 - -8.004 per-word bound, 256.7 perplexity estimate based on a held-out corpus of 1 documents with 2515 words +2024-07-25 12:43:52,442 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:52,443 - topic #0 (0.333): 0.014*"’" + 0.008*"leaders" + 0.006*"However" + 0.006*"consistently" + 0.005*"plans" + 0.005*"Cleveland" + 0.005*"20" + 0.005*"2022" + 0.005*"practice" + 0.004*"Redcar" +2024-07-25 12:43:52,443 - topic #1 (0.333): 0.022*"’" + 0.006*"needs" + 0.005*"However" + 0.005*"Redcar" + 0.005*"consistently" + 0.005*"risk" + 0.005*"practice" + 0.005*"leaders" + 0.005*"20" + 0.005*"plans" +2024-07-25 12:43:52,443 - topic #2 (0.333): 0.016*"’" + 0.007*"plans" + 0.006*"needs" + 0.005*"2022" + 0.005*"However" + 0.005*"leaders" + 0.005*"consistently" + 0.005*"carers" + 0.005*"risk" + 0.004*"July" +2024-07-25 12:43:52,443 - topic diff=0.798001, rho=1.000000 +2024-07-25 12:43:52,444 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:52.444123', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:53,454 - Inspection date None / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:53,454 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:53,455 - Inspection date None / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:53,455 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:53,455 - Inspection date None / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:53,455 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:53,455 - Inspection date None / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:53,455 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:53,455 - Inspection date None / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:53,455 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:53,456 - Inspection date None / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:53,456 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:54,772 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:54,776 - built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions) +2024-07-25 12:43:54,776 - Dictionary lifecycle event {'msg': "built Dictionary<1150 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2656 corpus positions)", 'datetime': '2024-07-25T12:43:54.776930', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:54,778 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:54,778 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:54,779 - using serial LDA version on this node +2024-07-25 12:43:54,779 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:54,779 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:54,786 - -8.025 per-word bound, 260.5 perplexity estimate based on a held-out corpus of 1 documents with 2656 words +2024-07-25 12:43:54,786 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:54,789 - topic #0 (0.333): 0.022*"’" + 0.011*"experienced" + 0.011*"practice" + 0.009*"needs" + 0.006*"quality" + 0.005*"response" + 0.005*"well" + 0.005*"plans" + 0.005*"good" + 0.005*"consistently" +2024-07-25 12:43:54,789 - topic #1 (0.333): 0.021*"’" + 0.009*"experienced" + 0.007*"needs" + 0.007*"response" + 0.006*"plans" + 0.005*"practice" + 0.005*"quality" + 0.005*"good" + 0.005*"Rochdale" + 0.005*"progress" +2024-07-25 12:43:54,789 - topic #2 (0.333): 0.017*"’" + 0.007*"experienced" + 0.007*"plans" + 0.007*"practice" + 0.007*"consistently" + 0.006*"needs" + 0.005*"response" + 0.005*"good" + 0.005*"Rochdale" + 0.004*"3" +2024-07-25 12:43:54,789 - topic diff=0.818953, rho=1.000000 +2024-07-25 12:43:54,789 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:54.789773', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:56,293 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:56,293 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:56,293 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:56,293 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:56,294 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:56,294 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:56,294 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:56,294 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:56,294 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:56,294 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:56,294 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:56,294 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:57,992 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:43:57,997 - built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions) +2024-07-25 12:43:57,997 - Dictionary lifecycle event {'msg': "built Dictionary<1127 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2366 corpus positions)", 'datetime': '2024-07-25T12:43:57.997743', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:57,999 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:43:57,999 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:43:58,000 - using serial LDA version on this node +2024-07-25 12:43:58,000 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:43:58,000 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:43:58,008 - -8.062 per-word bound, 267.2 perplexity estimate based on a held-out corpus of 1 documents with 2366 words +2024-07-25 12:43:58,008 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:43:58,010 - topic #0 (0.333): 0.021*"’" + 0.009*"Rotherham" + 0.007*"needs" + 0.005*"ensure" + 0.005*"However" + 0.005*"Council" + 0.005*"plans" + 0.005*"good" + 0.005*"well" + 0.004*"27" +2024-07-25 12:43:58,012 - topic #1 (0.333): 0.011*"’" + 0.008*"Rotherham" + 0.006*"well" + 0.005*"Council" + 0.005*"However" + 0.004*"Borough" + 0.004*"needs" + 0.004*"July" + 0.004*"plans" + 0.004*"ensure" +2024-07-25 12:43:58,013 - topic #2 (0.333): 0.010*"’" + 0.008*"Rotherham" + 0.007*"needs" + 0.006*"good" + 0.005*"well" + 0.004*"ensure" + 0.004*"protection" + 0.004*"1" + 0.004*"Borough" + 0.004*"Metropolitan" +2024-07-25 12:43:58,013 - topic diff=0.771632, rho=1.000000 +2024-07-25 12:43:58,013 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:43:58.013474', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:43:59,123 - Inspection date 2022-06-27 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:43:59,124 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:59,124 - Inspection date 2022-06-27 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:43:59,124 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:59,124 - Inspection date 2022-06-27 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:43:59,124 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:59,124 - Inspection date 2022-06-27 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:43:59,125 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:59,125 - Inspection date 2022-06-27 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:43:59,125 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:43:59,125 - Inspection date 2022-06-27 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:43:59,125 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:00,580 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:00,583 - built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions) +2024-07-25 12:44:00,583 - Dictionary lifecycle event {'msg': "built Dictionary<1119 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2380 corpus positions)", 'datetime': '2024-07-25T12:44:00.583537', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:00,584 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:00,584 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:00,584 - using serial LDA version on this node +2024-07-25 12:44:00,585 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:00,585 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:00,589 - -8.050 per-word bound, 265.0 perplexity estimate based on a held-out corpus of 1 documents with 2380 words +2024-07-25 12:44:00,589 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:00,590 - topic #0 (0.333): 0.011*"’" + 0.011*"practice" + 0.010*"well" + 0.006*"highly" + 0.006*"needs" + 0.006*"strong" + 0.005*"progress" + 0.004*"effective" + 0.004*"leaders" + 0.004*"risk" +2024-07-25 12:44:00,590 - topic #1 (0.333): 0.017*"well" + 0.011*"’" + 0.011*"practice" + 0.009*"highly" + 0.007*"strong" + 0.006*"effective" + 0.006*"leaders" + 0.005*"high" + 0.005*"needs" + 0.005*"professionals" +2024-07-25 12:44:00,590 - topic #2 (0.333): 0.013*"well" + 0.012*"’" + 0.010*"practice" + 0.007*"highly" + 0.006*"strong" + 0.005*"needs" + 0.005*"effective" + 0.005*"leaders" + 0.004*"need" + 0.004*"high" +2024-07-25 12:44:00,590 - topic diff=0.770349, rho=1.000000 +2024-07-25 12:44:00,591 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:00.591086', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:01,822 - Inspection date 2019-09-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:01,823 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:01,823 - Inspection date 2019-09-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:01,823 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:01,824 - Inspection date 2019-09-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:01,824 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:01,824 - Inspection date 2019-09-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:01,824 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:01,825 - Inspection date 2019-09-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:01,825 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:01,825 - Inspection date 2019-09-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:01,825 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:03,450 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:03,452 - built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions) +2024-07-25 12:44:03,453 - Dictionary lifecycle event {'msg': "built Dictionary<1107 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2257 corpus positions)", 'datetime': '2024-07-25T12:44:03.453037', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:03,454 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:03,454 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:03,454 - using serial LDA version on this node +2024-07-25 12:44:03,454 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:03,454 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:03,458 - -8.060 per-word bound, 266.9 perplexity estimate based on a held-out corpus of 1 documents with 2257 words +2024-07-25 12:44:03,458 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:03,460 - topic #0 (0.333): 0.018*"’" + 0.011*"well" + 0.009*"needs" + 0.008*"plans" + 0.005*"effective" + 0.005*"clear" + 0.005*"practice" + 0.005*"good" + 0.005*"risk" + 0.004*"range" +2024-07-25 12:44:03,460 - topic #1 (0.333): 0.011*"’" + 0.009*"plans" + 0.006*"well" + 0.006*"needs" + 0.005*"good" + 0.004*"need" + 0.004*"practice" + 0.004*"regularly" + 0.004*"Kingston" + 0.004*"effective" +2024-07-25 12:44:03,460 - topic #2 (0.333): 0.009*"’" + 0.008*"well" + 0.008*"plans" + 0.007*"needs" + 0.006*"good" + 0.005*"need" + 0.005*"parents" + 0.004*"supported" + 0.004*"appropriate" + 0.004*"effective" +2024-07-25 12:44:03,460 - topic diff=0.757437, rho=1.000000 +2024-07-25 12:44:03,460 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:03.460607', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:04,666 - Inspection date 2019-10-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:04,666 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:04,666 - Inspection date 2019-10-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:04,667 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:04,667 - Inspection date 2019-10-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:04,667 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:04,667 - Inspection date 2019-10-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:04,667 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:04,667 - Inspection date 2019-10-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:04,668 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:04,668 - Inspection date 2019-10-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:04,668 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:06,314 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:06,316 - built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions) +2024-07-25 12:44:06,317 - Dictionary lifecycle event {'msg': "built Dictionary<1109 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2088 corpus positions)", 'datetime': '2024-07-25T12:44:06.317072', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:06,318 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:06,318 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:06,318 - using serial LDA version on this node +2024-07-25 12:44:06,318 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:06,319 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:06,322 - -8.116 per-word bound, 277.5 perplexity estimate based on a held-out corpus of 1 documents with 2088 words +2024-07-25 12:44:06,322 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:06,324 - topic #0 (0.333): 0.011*"’" + 0.005*"needs" + 0.005*"benefit" + 0.004*"well" + 0.004*"quality" + 0.004*"use" + 0.004*"plans" + 0.004*"actions" + 0.004*"information" + 0.004*"always" +2024-07-25 12:44:06,324 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.005*"needs" + 0.005*"effective" + 0.005*"plans" + 0.005*"quality" + 0.005*"use" + 0.004*"However" + 0.004*"health" + 0.004*"information" +2024-07-25 12:44:06,324 - topic #2 (0.333): 0.010*"’" + 0.005*"quality" + 0.005*"well" + 0.004*"plans" + 0.004*"needs" + 0.004*"information" + 0.003*"management" + 0.003*"case" + 0.003*"early" + 0.003*"informed" +2024-07-25 12:44:06,324 - topic diff=0.715778, rho=1.000000 +2024-07-25 12:44:06,324 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:06.324973', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:07,634 - Inspection date 2020-01-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:07,635 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:07,635 - Inspection date 2020-01-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:07,635 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:07,636 - Inspection date 2020-01-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:07,636 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:07,636 - Inspection date 2020-01-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:07,636 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:07,637 - Inspection date 2020-01-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:07,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:07,637 - Inspection date 2020-01-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:07,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:09,271 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:09,273 - built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions) +2024-07-25 12:44:09,273 - Dictionary lifecycle event {'msg': "built Dictionary<1089 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2211 corpus positions)", 'datetime': '2024-07-25T12:44:09.273594', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:09,274 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:09,274 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:09,275 - using serial LDA version on this node +2024-07-25 12:44:09,275 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:09,275 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:09,279 - -8.051 per-word bound, 265.3 perplexity estimate based on a held-out corpus of 1 documents with 2211 words +2024-07-25 12:44:09,279 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:09,280 - topic #0 (0.333): 0.021*"’" + 0.008*"Rutland" + 0.008*"effective" + 0.007*"needs" + 0.006*"need" + 0.006*"plans" + 0.006*"positive" + 0.006*"impact" + 0.005*"15" + 0.005*"practice" +2024-07-25 12:44:09,280 - topic #1 (0.333): 0.019*"’" + 0.011*"Rutland" + 0.010*"needs" + 0.007*"impact" + 0.006*"effective" + 0.006*"positive" + 0.005*"plans" + 0.005*"good" + 0.005*"need" + 0.005*"26" +2024-07-25 12:44:09,280 - topic #2 (0.333): 0.013*"’" + 0.006*"Rutland" + 0.006*"impact" + 0.005*"needs" + 0.005*"effective" + 0.004*"well" + 0.004*"practice" + 0.004*"positive" + 0.004*"good" + 0.004*"15" +2024-07-25 12:44:09,281 - topic diff=0.780367, rho=1.000000 +2024-07-25 12:44:09,281 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:09.281155', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:10,322 - Inspection date 2024-04-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:10,322 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:10,322 - Inspection date 2024-04-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:10,322 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:10,323 - Inspection date 2024-04-15 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:10,323 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:10,323 - Inspection date 2024-04-15 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:10,323 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:10,323 - Inspection date 2024-04-15 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:10,323 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:10,324 - Inspection date 2024-04-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:10,324 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:11,711 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:11,713 - built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions) +2024-07-25 12:44:11,713 - Dictionary lifecycle event {'msg': "built Dictionary<1069 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2253 corpus positions)", 'datetime': '2024-07-25T12:44:11.713775', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:11,714 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:11,714 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:11,715 - using serial LDA version on this node +2024-07-25 12:44:11,715 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:11,715 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:11,719 - -8.007 per-word bound, 257.3 perplexity estimate based on a held-out corpus of 1 documents with 2253 words +2024-07-25 12:44:11,719 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:11,720 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"plans" + 0.008*"well" + 0.008*"Salford" + 0.007*"effective" + 0.006*"practice" + 0.006*"planning" + 0.005*"6" + 0.005*"experiences" +2024-07-25 12:44:11,721 - topic #1 (0.333): 0.013*"’" + 0.007*"plans" + 0.006*"well" + 0.006*"needs" + 0.005*"effective" + 0.005*"quality" + 0.005*"planning" + 0.004*"practice" + 0.004*"risks" + 0.004*"appropriate" +2024-07-25 12:44:11,721 - topic #2 (0.333): 0.010*"’" + 0.007*"plans" + 0.007*"effective" + 0.006*"well" + 0.005*"needs" + 0.005*"progress" + 0.004*"leaders" + 0.004*"Salford" + 0.004*"2023" + 0.004*"quality" +2024-07-25 12:44:11,721 - topic diff=0.792536, rho=1.000000 +2024-07-25 12:44:11,721 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:11.721529', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:12,563 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:12,563 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:12,563 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:12,563 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:12,564 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:12,564 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:12,564 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:12,564 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:12,564 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:12,564 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:12,565 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:12,565 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:14,499 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:14,501 - built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions) +2024-07-25 12:44:14,502 - Dictionary lifecycle event {'msg': "built Dictionary<995 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2066 corpus positions)", 'datetime': '2024-07-25T12:44:14.502044', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:14,503 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:14,503 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:14,503 - using serial LDA version on this node +2024-07-25 12:44:14,503 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:14,503 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:14,507 - -7.945 per-word bound, 246.4 perplexity estimate based on a held-out corpus of 1 documents with 2066 words +2024-07-25 12:44:14,507 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:14,508 - topic #0 (0.333): 0.017*"’" + 0.007*"Sandwell" + 0.007*"needs" + 0.006*"well" + 0.005*"plans" + 0.005*"quality" + 0.005*"20" + 0.005*"9" + 0.004*"progress" + 0.004*"Trust" +2024-07-25 12:44:14,508 - topic #1 (0.333): 0.010*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"plans" + 0.006*"Sandwell" + 0.006*"quality" + 0.005*"Trust" + 0.004*"progress" + 0.004*"good" + 0.004*"many" +2024-07-25 12:44:14,509 - topic #2 (0.333): 0.014*"’" + 0.008*"plans" + 0.008*"needs" + 0.008*"Sandwell" + 0.006*"well" + 0.006*"quality" + 0.005*"education" + 0.005*"number" + 0.005*"9" + 0.005*"Trust" +2024-07-25 12:44:14,509 - topic diff=0.763246, rho=1.000000 +2024-07-25 12:44:14,509 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:14.509333', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:15,496 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:15,496 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:15,497 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:15,497 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:15,497 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:15,497 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:15,497 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:15,497 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:15,497 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:15,498 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:15,498 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:15,498 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:17,319 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:17,322 - built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions) +2024-07-25 12:44:17,322 - Dictionary lifecycle event {'msg': "built Dictionary<1023 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2300 corpus positions)", 'datetime': '2024-07-25T12:44:17.322222', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:17,323 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:17,323 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:17,323 - using serial LDA version on this node +2024-07-25 12:44:17,324 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:17,324 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:17,327 - -7.928 per-word bound, 243.6 perplexity estimate based on a held-out corpus of 1 documents with 2300 words +2024-07-25 12:44:17,327 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:17,329 - topic #0 (0.333): 0.011*"’" + 0.008*"needs" + 0.006*"protection" + 0.006*"practice" + 0.005*"management" + 0.005*"oversight" + 0.005*"many" + 0.005*"4" + 0.004*"need" + 0.004*"timely" +2024-07-25 12:44:17,329 - topic #1 (0.333): 0.017*"’" + 0.011*"needs" + 0.007*"practice" + 0.006*"including" + 0.006*"always" + 0.005*"many" + 0.005*"timely" + 0.005*"lack" + 0.005*"management" + 0.005*"oversight" +2024-07-25 12:44:17,329 - topic #2 (0.333): 0.018*"’" + 0.008*"needs" + 0.007*"oversight" + 0.005*"practice" + 0.005*"lack" + 0.005*"◼" + 0.005*"protection" + 0.005*"including" + 0.005*"March" + 0.005*"Sefton" +2024-07-25 12:44:17,329 - topic diff=0.794691, rho=1.000000 +2024-07-25 12:44:17,329 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:17.329685', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:18,324 - Inspection date 2022-02-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:18,324 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:18,324 - Inspection date 2022-02-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:18,324 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:18,324 - Inspection date 2022-02-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:18,325 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:18,325 - Inspection date 2022-02-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:18,325 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:18,325 - Inspection date 2022-02-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:18,325 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:18,325 - Inspection date 2022-02-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:18,326 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:21,088 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:21,092 - built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions) +2024-07-25 12:44:21,093 - Dictionary lifecycle event {'msg': "built Dictionary<1124 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2327 corpus positions)", 'datetime': '2024-07-25T12:44:21.093132', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:21,094 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:21,095 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:21,095 - using serial LDA version on this node +2024-07-25 12:44:21,096 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:21,096 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:21,102 - -8.067 per-word bound, 268.1 perplexity estimate based on a held-out corpus of 1 documents with 2327 words +2024-07-25 12:44:21,102 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:21,104 - topic #0 (0.333): 0.021*"’" + 0.010*"Sheffield" + 0.007*"well" + 0.007*"needs" + 0.005*"leaders" + 0.005*"practice" + 0.005*"health" + 0.004*"plans" + 0.004*"adviser" + 0.004*"ensure" +2024-07-25 12:44:21,105 - topic #1 (0.333): 0.018*"’" + 0.009*"Sheffield" + 0.007*"needs" + 0.006*"well" + 0.006*"practice" + 0.005*"health" + 0.004*"leaders" + 0.004*"effective" + 0.004*"quality" + 0.004*"ensure" +2024-07-25 12:44:21,105 - topic #2 (0.333): 0.022*"’" + 0.013*"Sheffield" + 0.010*"needs" + 0.007*"well" + 0.006*"leaders" + 0.006*"practice" + 0.005*"health" + 0.005*"11" + 0.005*"good" + 0.005*"quality" +2024-07-25 12:44:21,105 - topic diff=0.771695, rho=1.000000 +2024-07-25 12:44:21,105 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:21.105962', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:22,441 - Inspection date 2023-09-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:22,442 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:22,442 - Inspection date 2023-09-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:22,442 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:22,442 - Inspection date 2023-09-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:22,442 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:22,442 - Inspection date 2023-09-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:22,443 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:22,443 - Inspection date 2023-09-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:22,443 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:22,443 - Inspection date 2023-09-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:22,443 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:23,752 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:23,754 - built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions) +2024-07-25 12:44:23,754 - Dictionary lifecycle event {'msg': "built Dictionary<939 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 1749 corpus positions)", 'datetime': '2024-07-25T12:44:23.754570', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:23,755 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:23,755 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:23,755 - using serial LDA version on this node +2024-07-25 12:44:23,756 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:23,756 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:23,759 - -7.960 per-word bound, 249.1 perplexity estimate based on a held-out corpus of 1 documents with 1749 words +2024-07-25 12:44:23,759 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:23,760 - topic #0 (0.333): 0.023*"’" + 0.010*"needs" + 0.008*"well" + 0.008*"Shropshire" + 0.006*"plans" + 0.006*"progress" + 0.006*"practice" + 0.005*"making" + 0.005*"2022" + 0.005*"11" +2024-07-25 12:44:23,761 - topic #1 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"well" + 0.006*"Shropshire" + 0.005*"progress" + 0.005*"2022" + 0.005*"7" + 0.005*"making" + 0.005*"plans" + 0.004*"effectively" +2024-07-25 12:44:23,761 - topic #2 (0.333): 0.011*"’" + 0.007*"needs" + 0.005*"Shropshire" + 0.005*"progress" + 0.005*"well" + 0.005*"2022" + 0.004*"training" + 0.004*"making" + 0.004*"7" + 0.004*"plans" +2024-07-25 12:44:23,761 - topic diff=0.741175, rho=1.000000 +2024-07-25 12:44:23,761 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:23.761664', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:24,632 - Inspection date 2022-02-07 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:24,632 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:24,633 - Inspection date 2022-02-07 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:24,633 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:24,633 - Inspection date 2022-02-07 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:24,633 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:24,633 - Inspection date 2022-02-07 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:24,633 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:24,633 - Inspection date 2022-02-07 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:24,634 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:24,634 - Inspection date 2022-02-07 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:24,634 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:26,665 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:26,668 - built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions) +2024-07-25 12:44:26,668 - Dictionary lifecycle event {'msg': "built Dictionary<1113 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2352 corpus positions)", 'datetime': '2024-07-25T12:44:26.668607', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:26,669 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:26,669 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:26,670 - using serial LDA version on this node +2024-07-25 12:44:26,670 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:26,670 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:26,674 - -8.043 per-word bound, 263.8 perplexity estimate based on a held-out corpus of 1 documents with 2352 words +2024-07-25 12:44:26,674 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:26,675 - topic #0 (0.333): 0.014*"’" + 0.008*"Slough" + 0.007*"needs" + 0.006*"plans" + 0.005*"practice" + 0.005*"impact" + 0.005*"quality" + 0.005*"leaders" + 0.004*"senior" + 0.004*"supported" +2024-07-25 12:44:26,675 - topic #1 (0.333): 0.019*"’" + 0.008*"Slough" + 0.007*"quality" + 0.007*"practice" + 0.007*"plans" + 0.006*"3" + 0.005*"needs" + 0.005*"impact" + 0.005*"However" + 0.005*"23" +2024-07-25 12:44:26,675 - topic #2 (0.333): 0.012*"’" + 0.007*"Slough" + 0.006*"needs" + 0.005*"quality" + 0.005*"plans" + 0.004*"leaders" + 0.004*"need" + 0.004*"However" + 0.004*"2023" + 0.004*"practice" +2024-07-25 12:44:26,676 - topic diff=0.797216, rho=1.000000 +2024-07-25 12:44:26,676 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:26.676216', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:27,634 - Inspection date 2023-01-23 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:27,635 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:27,635 - Inspection date 2023-01-23 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:27,635 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:27,635 - Inspection date 2023-01-23 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:27,635 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:27,635 - Inspection date 2023-01-23 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:27,636 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:27,636 - Inspection date 2023-01-23 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:27,636 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:27,636 - Inspection date 2023-01-23 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:27,636 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:29,228 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:29,230 - built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions) +2024-07-25 12:44:29,231 - Dictionary lifecycle event {'msg': "built Dictionary<996 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2163 corpus positions)", 'datetime': '2024-07-25T12:44:29.231086', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:29,232 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:29,232 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:29,232 - using serial LDA version on this node +2024-07-25 12:44:29,232 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:29,232 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:29,236 - -7.920 per-word bound, 242.2 perplexity estimate based on a held-out corpus of 1 documents with 2163 words +2024-07-25 12:44:29,236 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:29,237 - topic #0 (0.333): 0.016*"’" + 0.010*"lack" + 0.009*"2022" + 0.008*"Solihull" + 0.006*"need" + 0.006*"risk" + 0.006*"experiences" + 0.005*"quality" + 0.005*"practice" + 0.005*"means" +2024-07-25 12:44:29,237 - topic #1 (0.333): 0.017*"’" + 0.010*"lack" + 0.009*"2022" + 0.007*"need" + 0.006*"risk" + 0.006*"practice" + 0.005*"Solihull" + 0.005*"effective" + 0.005*"quality" + 0.005*"plans" +2024-07-25 12:44:29,238 - topic #2 (0.333): 0.013*"’" + 0.011*"lack" + 0.007*"2022" + 0.006*"quality" + 0.005*"significant" + 0.005*"effective" + 0.005*"risk" + 0.004*"Solihull" + 0.004*"experiences" + 0.004*"practice" +2024-07-25 12:44:29,238 - topic diff=0.789957, rho=1.000000 +2024-07-25 12:44:29,238 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:29.238218', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:30,335 - Inspection date 2022-10-31 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:30,336 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:30,336 - Inspection date 2022-10-31 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:30,336 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:30,337 - Inspection date 2022-10-31 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:30,337 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:30,337 - Inspection date 2022-10-31 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:30,337 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:30,338 - Inspection date 2022-10-31 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:30,338 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:30,338 - Inspection date 2022-10-31 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:30,338 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:32,448 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:32,450 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions) +2024-07-25 12:44:32,450 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2181 corpus positions)", 'datetime': '2024-07-25T12:44:32.450878', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:32,451 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:32,452 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:32,452 - using serial LDA version on this node +2024-07-25 12:44:32,452 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:32,452 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:32,456 - -7.921 per-word bound, 242.3 perplexity estimate based on a held-out corpus of 1 documents with 2181 words +2024-07-25 12:44:32,456 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:32,457 - topic #0 (0.333): 0.018*"’" + 0.011*"well" + 0.009*"needs" + 0.007*"good" + 0.007*"Somerset" + 0.006*"effective" + 0.005*"plans" + 0.005*"positive" + 0.005*"practice" + 0.005*"supported" +2024-07-25 12:44:32,457 - topic #1 (0.333): 0.017*"’" + 0.008*"needs" + 0.007*"well" + 0.006*"Somerset" + 0.006*"plans" + 0.005*"need" + 0.005*"leaders" + 0.005*"supported" + 0.005*"including" + 0.005*"number" +2024-07-25 12:44:32,457 - topic #2 (0.333): 0.015*"’" + 0.008*"well" + 0.007*"needs" + 0.007*"Somerset" + 0.006*"plans" + 0.006*"leaders" + 0.005*"progress" + 0.005*"number" + 0.005*"good" + 0.005*"supported" +2024-07-25 12:44:32,458 - topic diff=0.803079, rho=1.000000 +2024-07-25 12:44:32,458 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:32.458188', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:33,386 - Inspection date 2022-07-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:33,387 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:33,387 - Inspection date 2022-07-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:33,387 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:33,387 - Inspection date 2022-07-18 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:33,387 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:33,388 - Inspection date 2022-07-18 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:33,388 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:33,388 - Inspection date 2022-07-18 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:33,388 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:33,388 - Inspection date 2022-07-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:33,388 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:34,836 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:34,839 - built Dictionary<1188 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2751 corpus positions) +2024-07-25 12:44:34,839 - Dictionary lifecycle event {'msg': "built Dictionary<1188 unique tokens: ['0', '0161', '0300', '1', '10']...> from 1 documents (total 2751 corpus positions)", 'datetime': '2024-07-25T12:44:34.839597', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:34,840 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:34,840 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:34,841 - using serial LDA version on this node +2024-07-25 12:44:34,841 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:34,841 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:34,845 - -8.052 per-word bound, 265.5 perplexity estimate based on a held-out corpus of 1 documents with 2751 words +2024-07-25 12:44:34,845 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:34,847 - topic #0 (0.333): 0.018*"’" + 0.010*"needs" + 0.007*"June" + 0.006*"2024" + 0.006*"leaders" + 0.006*"effective" + 0.006*"plans" + 0.006*"well" + 0.005*"understand" + 0.005*"progress" +2024-07-25 12:44:34,847 - topic #1 (0.333): 0.014*"’" + 0.009*"needs" + 0.007*"2024" + 0.007*"leaders" + 0.006*"June" + 0.006*"ensure" + 0.005*"Gloucestershire" + 0.005*"strong" + 0.005*"effective" + 0.004*"well" +2024-07-25 12:44:34,847 - topic #2 (0.333): 0.020*"’" + 0.010*"needs" + 0.007*"leaders" + 0.006*"well" + 0.006*"June" + 0.006*"2024" + 0.005*"plans" + 0.005*"ensure" + 0.005*"South" + 0.005*"understand" +2024-07-25 12:44:34,847 - topic diff=0.834260, rho=1.000000 +2024-07-25 12:44:34,847 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:34.847868', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:35,774 - Inspection date 2024-06-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:35,775 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:35,775 - Inspection date 2024-06-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:35,775 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:35,775 - Inspection date 2024-06-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:35,775 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:35,776 - Inspection date 2024-06-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:35,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:35,776 - Inspection date 2024-06-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:35,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:35,776 - Inspection date 2024-06-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:35,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:37,843 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:37,845 - built Dictionary<981 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2189 corpus positions) +2024-07-25 12:44:37,845 - Dictionary lifecycle event {'msg': 'built Dictionary<981 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2189 corpus positions)', 'datetime': '2024-07-25T12:44:37.845830', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:37,846 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:37,846 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:37,847 - using serial LDA version on this node +2024-07-25 12:44:37,847 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:37,847 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:37,851 - -7.888 per-word bound, 236.8 perplexity estimate based on a held-out corpus of 1 documents with 2189 words +2024-07-25 12:44:37,851 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:37,852 - topic #0 (0.333): 0.021*"’" + 0.008*"needs" + 0.006*"South" + 0.006*"Tyneside" + 0.005*"15" + 0.005*"carers" + 0.005*"However" + 0.005*"oversight" + 0.005*"2023" + 0.005*"effective" +2024-07-25 12:44:37,852 - topic #1 (0.333): 0.027*"’" + 0.011*"needs" + 0.009*"Tyneside" + 0.008*"South" + 0.006*"oversight" + 0.006*"carers" + 0.005*"effective" + 0.005*"However" + 0.005*"management" + 0.005*"December" +2024-07-25 12:44:37,852 - topic #2 (0.333): 0.023*"’" + 0.007*"South" + 0.007*"needs" + 0.006*"Tyneside" + 0.005*"2022" + 0.005*"management" + 0.005*"14" + 0.005*"oversight" + 0.005*"2023" + 0.004*"progress" +2024-07-25 12:44:37,853 - topic diff=0.799923, rho=1.000000 +2024-07-25 12:44:37,853 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:37.853189', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:38,838 - Inspection date 2022-12-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:38,838 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:38,838 - Inspection date 2022-12-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:38,838 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:38,838 - Inspection date 2022-12-05 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:38,839 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:38,839 - Inspection date 2022-12-05 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:38,839 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:38,839 - Inspection date 2022-12-05 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:38,839 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:38,839 - Inspection date 2022-12-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:38,839 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:40,579 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:40,581 - built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions) +2024-07-25 12:44:40,581 - Dictionary lifecycle event {'msg': "built Dictionary<1178 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2318 corpus positions)", 'datetime': '2024-07-25T12:44:40.581655', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:40,582 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:40,582 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:40,583 - using serial LDA version on this node +2024-07-25 12:44:40,583 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:40,583 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:40,587 - -8.146 per-word bound, 283.2 perplexity estimate based on a held-out corpus of 1 documents with 2318 words +2024-07-25 12:44:40,587 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:40,589 - topic #0 (0.333): 0.014*"’" + 0.006*"Southampton" + 0.005*"plans" + 0.005*"improve" + 0.005*"experiences" + 0.005*"progress" + 0.004*"including" + 0.004*"2023" + 0.004*"5" + 0.004*"good" +2024-07-25 12:44:40,589 - topic #1 (0.333): 0.021*"’" + 0.006*"Southampton" + 0.006*"plans" + 0.005*"including" + 0.005*"progress" + 0.004*"improve" + 0.004*"needs" + 0.004*"make" + 0.004*"16" + 0.004*"5" +2024-07-25 12:44:40,589 - topic #2 (0.333): 0.013*"’" + 0.006*"plans" + 0.005*"needs" + 0.005*"well" + 0.005*"Southampton" + 0.005*"5" + 0.004*"progress" + 0.004*"improve" + 0.004*"16" + 0.004*"timely" +2024-07-25 12:44:40,589 - topic diff=0.740455, rho=1.000000 +2024-07-25 12:44:40,589 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:40.589748', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:41,964 - Inspection date 2023-06-05 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:41,964 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:41,964 - Inspection date 2023-06-05 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:41,964 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:41,965 - Inspection date 2023-06-05 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:41,965 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:41,965 - Inspection date 2023-06-05 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:41,965 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:41,965 - Inspection date 2023-06-05 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:41,965 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:41,966 - Inspection date 2023-06-05 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:41,966 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:43,898 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:43,900 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions) +2024-07-25 12:44:43,900 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2086 corpus positions)", 'datetime': '2024-07-25T12:44:43.900745', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:43,901 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:43,901 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:43,902 - using serial LDA version on this node +2024-07-25 12:44:43,902 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:43,902 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:43,906 - -7.947 per-word bound, 246.7 perplexity estimate based on a held-out corpus of 1 documents with 2086 words +2024-07-25 12:44:43,906 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:43,907 - topic #0 (0.333): 0.011*"’" + 0.007*"planning" + 0.006*"practice" + 0.006*"quality" + 0.005*"good" + 0.005*"carers" + 0.005*"protection" + 0.005*"within" + 0.005*"leaders" + 0.005*"need" +2024-07-25 12:44:43,907 - topic #1 (0.333): 0.014*"’" + 0.007*"leaders" + 0.007*"planning" + 0.007*"practice" + 0.006*"protection" + 0.005*"quality" + 0.005*"risk" + 0.005*"However" + 0.005*"effective" + 0.005*"number" +2024-07-25 12:44:43,907 - topic #2 (0.333): 0.014*"’" + 0.009*"planning" + 0.008*"quality" + 0.008*"practice" + 0.006*"number" + 0.006*"leaders" + 0.005*"within" + 0.005*"always" + 0.005*"needs" + 0.005*"protection" +2024-07-25 12:44:43,908 - topic diff=0.770550, rho=1.000000 +2024-07-25 12:44:43,908 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:43.908200', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:45,706 - Inspection date 2019-07-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:45,706 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:45,707 - Inspection date 2019-07-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:45,707 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:45,707 - Inspection date 2019-07-15 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:45,707 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:45,707 - Inspection date 2019-07-15 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:45,707 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:45,708 - Inspection date 2019-07-15 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:45,708 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:45,708 - Inspection date 2019-07-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:45,708 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:47,164 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:47,166 - built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions) +2024-07-25 12:44:47,167 - Dictionary lifecycle event {'msg': "built Dictionary<1092 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2218 corpus positions)", 'datetime': '2024-07-25T12:44:47.167079', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:47,168 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:47,168 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:47,168 - using serial LDA version on this node +2024-07-25 12:44:47,168 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:47,169 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:47,172 - -8.051 per-word bound, 265.2 perplexity estimate based on a held-out corpus of 1 documents with 2218 words +2024-07-25 12:44:47,172 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:47,174 - topic #0 (0.333): 0.015*"’" + 0.007*"well" + 0.007*"St" + 0.007*"needs" + 0.007*"10" + 0.007*"progress" + 0.007*"Helens" + 0.006*"receive" + 0.005*"good" + 0.005*"21" +2024-07-25 12:44:47,174 - topic #1 (0.333): 0.017*"’" + 0.008*"St" + 0.007*"needs" + 0.007*"well" + 0.007*"Helens" + 0.006*"need" + 0.006*"risk" + 0.006*"good" + 0.005*"receive" + 0.005*"progress" +2024-07-25 12:44:47,174 - topic #2 (0.333): 0.015*"’" + 0.009*"Helens" + 0.007*"St" + 0.007*"needs" + 0.006*"21" + 0.006*"need" + 0.005*"progress" + 0.005*"good" + 0.005*"well" + 0.005*"oversight" +2024-07-25 12:44:47,174 - topic diff=0.767832, rho=1.000000 +2024-07-25 12:44:47,174 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:47.174716', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:48,210 - Inspection date 2023-07-10 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:48,210 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:48,210 - Inspection date 2023-07-10 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:48,210 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:48,210 - Inspection date 2023-07-10 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:48,210 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:48,211 - Inspection date 2023-07-10 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:48,211 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:48,211 - Inspection date 2023-07-10 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:48,211 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:48,211 - Inspection date 2023-07-10 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:48,211 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:49,917 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:49,919 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions) +2024-07-25 12:44:49,919 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2334 corpus positions)", 'datetime': '2024-07-25T12:44:49.919646', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:49,920 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:49,920 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:49,921 - using serial LDA version on this node +2024-07-25 12:44:49,921 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:49,921 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:49,925 - -7.993 per-word bound, 254.7 perplexity estimate based on a held-out corpus of 1 documents with 2334 words +2024-07-25 12:44:49,925 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:49,926 - topic #0 (0.333): 0.019*"’" + 0.010*"needs" + 0.006*"quality" + 0.006*"practice" + 0.006*"progress" + 0.006*"oversight" + 0.005*"Staffordshire" + 0.005*"health" + 0.005*"ensure" + 0.005*"plans" +2024-07-25 12:44:49,926 - topic #1 (0.333): 0.018*"’" + 0.014*"needs" + 0.006*"health" + 0.006*"Staffordshire" + 0.006*"practice" + 0.006*"progress" + 0.006*"quality" + 0.005*"ensure" + 0.005*"plans" + 0.005*"oversight" +2024-07-25 12:44:49,926 - topic #2 (0.333): 0.013*"’" + 0.011*"needs" + 0.006*"quality" + 0.006*"ensure" + 0.006*"oversight" + 0.005*"progress" + 0.005*"practice" + 0.004*"health" + 0.004*"Staffordshire" + 0.004*"good" +2024-07-25 12:44:49,927 - topic diff=0.801267, rho=1.000000 +2024-07-25 12:44:49,927 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:49.927221', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:50,814 - Inspection date 2023-11-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:50,814 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:50,814 - Inspection date 2023-11-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:50,814 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:50,815 - Inspection date 2023-11-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:50,815 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:50,815 - Inspection date 2023-11-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:50,815 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:50,815 - Inspection date 2023-11-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:50,815 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:50,816 - Inspection date 2023-11-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:50,816 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:52,783 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:52,785 - built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions) +2024-07-25 12:44:52,785 - Dictionary lifecycle event {'msg': "built Dictionary<1060 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2316 corpus positions)", 'datetime': '2024-07-25T12:44:52.785908', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:52,786 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:52,787 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:52,787 - using serial LDA version on this node +2024-07-25 12:44:52,787 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:52,787 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:52,791 - -7.978 per-word bound, 252.2 perplexity estimate based on a held-out corpus of 1 documents with 2316 words +2024-07-25 12:44:52,791 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:52,792 - topic #0 (0.333): 0.013*"’" + 0.010*"practice" + 0.008*"well" + 0.007*"Stockport" + 0.006*"strong" + 0.006*"needs" + 0.005*"risk" + 0.005*"leaders" + 0.005*"plans" + 0.005*"ensure" +2024-07-25 12:44:52,792 - topic #1 (0.333): 0.009*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"Stockport" + 0.005*"practice" + 0.005*"strong" + 0.005*"risk" + 0.004*"team" + 0.004*"ensure" + 0.004*"1" +2024-07-25 12:44:52,793 - topic #2 (0.333): 0.010*"’" + 0.007*"well" + 0.006*"plans" + 0.006*"Stockport" + 0.006*"practice" + 0.005*"quality" + 0.005*"needs" + 0.005*"strong" + 0.004*"28" + 0.004*"range" +2024-07-25 12:44:52,793 - topic diff=0.790834, rho=1.000000 +2024-07-25 12:44:52,793 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:52.793438', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:53,841 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:53,842 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:53,842 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:53,842 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:53,843 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:53,843 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:53,843 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:53,843 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:53,843 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:53,843 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:53,844 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:53,844 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:55,445 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:55,447 - built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions) +2024-07-25 12:44:55,447 - Dictionary lifecycle event {'msg': "built Dictionary<1044 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2269 corpus positions)", 'datetime': '2024-07-25T12:44:55.447519', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:55,448 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:55,448 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:55,448 - using serial LDA version on this node +2024-07-25 12:44:55,449 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:55,449 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:55,452 - -7.966 per-word bound, 250.0 perplexity estimate based on a held-out corpus of 1 documents with 2269 words +2024-07-25 12:44:55,452 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:55,454 - topic #0 (0.333): 0.017*"’" + 0.007*"well" + 0.007*"leaders" + 0.006*"plans" + 0.006*"on-Tees" + 0.005*"needs" + 0.004*"good" + 0.004*"quality" + 0.004*"Stockton" + 0.004*"17" +2024-07-25 12:44:55,454 - topic #1 (0.333): 0.020*"’" + 0.009*"leaders" + 0.009*"plans" + 0.008*"needs" + 0.007*"Stockton" + 0.007*"on-Tees" + 0.007*"well" + 0.006*"quality" + 0.005*"good" + 0.005*"carers" +2024-07-25 12:44:55,454 - topic #2 (0.333): 0.020*"’" + 0.009*"plans" + 0.009*"leaders" + 0.007*"quality" + 0.006*"good" + 0.006*"senior" + 0.005*"needs" + 0.005*"Stockton" + 0.005*"well" + 0.005*"17" +2024-07-25 12:44:55,454 - topic diff=0.771562, rho=1.000000 +2024-07-25 12:44:55,454 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:55.454779', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:56,339 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:56,340 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:56,340 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:56,340 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:56,340 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:56,340 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:56,340 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:56,341 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:56,341 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:56,341 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:56,341 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:56,341 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:57,884 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:44:57,887 - built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions) +2024-07-25 12:44:57,887 - Dictionary lifecycle event {'msg': "built Dictionary<986 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2165 corpus positions)", 'datetime': '2024-07-25T12:44:57.887333', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:57,888 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:44:57,888 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:44:57,888 - using serial LDA version on this node +2024-07-25 12:44:57,889 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:44:57,889 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:44:57,892 - -7.904 per-word bound, 239.5 perplexity estimate based on a held-out corpus of 1 documents with 2165 words +2024-07-25 12:44:57,892 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:44:57,893 - topic #0 (0.333): 0.014*"’" + 0.009*"needs" + 0.008*"Stoke" + 0.007*"However" + 0.006*"well" + 0.006*"protection" + 0.006*"ensure" + 0.005*"plans" + 0.005*"quality" + 0.005*"need" +2024-07-25 12:44:57,894 - topic #1 (0.333): 0.023*"’" + 0.008*"on-Trent" + 0.008*"plans" + 0.008*"needs" + 0.007*"However" + 0.007*"well" + 0.006*"Stoke" + 0.006*"progress" + 0.005*"quality" + 0.005*"ensure" +2024-07-25 12:44:57,894 - topic #2 (0.333): 0.013*"’" + 0.009*"needs" + 0.007*"well" + 0.007*"on-Trent" + 0.006*"protection" + 0.006*"Stoke" + 0.005*"plans" + 0.005*"ensure" + 0.005*"However" + 0.005*"3" +2024-07-25 12:44:57,894 - topic diff=0.778211, rho=1.000000 +2024-07-25 12:44:57,894 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:44:57.894576', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:44:58,786 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:44:58,786 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:58,787 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:44:58,787 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:58,787 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:44:58,787 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:58,787 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:44:58,787 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:58,788 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:44:58,788 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:44:58,788 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:44:58,788 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:00,246 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:00,249 - built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2286 corpus positions) +2024-07-25 12:45:00,249 - Dictionary lifecycle event {'msg': "built Dictionary<1192 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2286 corpus positions)", 'datetime': '2024-07-25T12:45:00.249248', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:00,250 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:00,250 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:00,250 - using serial LDA version on this node +2024-07-25 12:45:00,251 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:00,251 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:00,258 - -8.180 per-word bound, 290.0 perplexity estimate based on a held-out corpus of 1 documents with 2286 words +2024-07-25 12:45:00,258 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:00,261 - topic #0 (0.333): 0.013*"’" + 0.007*"progress" + 0.006*"well" + 0.005*"leaders" + 0.005*"effective" + 0.005*"good" + 0.004*"needs" + 0.004*"ensure" + 0.004*"practice" + 0.004*"issues" +2024-07-25 12:45:00,261 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"progress" + 0.005*"leaders" + 0.005*"effective" + 0.004*"ensure" + 0.004*"carers" + 0.004*"good" + 0.004*"need" + 0.004*"practice" +2024-07-25 12:45:00,261 - topic #2 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"good" + 0.005*"progress" + 0.004*"effective" + 0.004*"practice" + 0.004*"ensure" + 0.003*"needs" + 0.003*"experiences" + 0.003*"high" +2024-07-25 12:45:00,261 - topic diff=0.722914, rho=1.000000 +2024-07-25 12:45:00,261 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:00.261861', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:01,577 - Got stderr: Jul 25, 2024 12:45:01 PM org.apache.pdfbox.pdmodel.font.PDTrueTypeFont WARNING: Using fallback font 'LiberationSans' for 'TimesNewRomanPSMT' -2024-07-15 10:48:07,600 - Inspection date 2019-04-08 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:07,600 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:07,601 - Inspection date 2019-04-08 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:07,601 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:07,601 - Inspection date 2019-04-08 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:07,601 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:07,601 - Inspection date 2019-04-08 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:07,601 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:07,601 - Inspection date 2019-04-08 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:07,602 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:07,602 - Inspection date 2019-04-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:07,602 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:09,011 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:09,014 - built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions) -2024-07-15 10:48:09,015 - Dictionary lifecycle event {'msg': "built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions)", 'datetime': '2024-07-15T10:48:09.015201', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:09,016 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:09,016 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:09,016 - using serial LDA version on this node -2024-07-15 10:48:09,017 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:09,017 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:09,021 - -8.055 per-word bound, 265.9 perplexity estimate based on a held-out corpus of 1 documents with 2409 words -2024-07-15 10:48:09,021 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:09,023 - topic #0 (0.333): 0.017*"’" + 0.008*"well" + 0.007*"Sunderland" + 0.007*"needs" + 0.006*"experienced" + 0.006*"quality" + 0.006*"TfC" + 0.005*"practice" + 0.005*"highly" + 0.005*"council" -2024-07-15 10:48:09,023 - topic #1 (0.333): 0.013*"’" + 0.007*"well" + 0.006*"quality" + 0.005*"needs" + 0.005*"parents" + 0.005*"need" + 0.004*"protection" + 0.004*"training" + 0.004*"practice" + 0.004*"Sunderland" -2024-07-15 10:48:09,023 - topic #2 (0.333): 0.018*"’" + 0.007*"quality" + 0.006*"needs" + 0.006*"well" + 0.005*"Sunderland" + 0.004*"good" + 0.004*"council" + 0.004*"practice" + 0.004*"experienced" + 0.004*"result" -2024-07-15 10:48:09,024 - topic diff=0.786320, rho=1.000000 -2024-07-15 10:48:09,024 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:09.024225', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:10,186 - Inspection date 2021-06-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:10,186 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:10,186 - Inspection date 2021-06-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:10,186 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:10,186 - Inspection date 2021-06-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:10,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:10,187 - Inspection date 2021-06-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:10,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:10,187 - Inspection date 2021-06-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:10,187 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:10,187 - Inspection date 2021-06-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:10,188 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:11,793 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:11,796 - built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions) -2024-07-15 10:48:11,797 - Dictionary lifecycle event {'msg': "built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions)", 'datetime': '2024-07-15T10:48:11.797007', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:11,798 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:11,798 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:11,799 - using serial LDA version on this node -2024-07-15 10:48:11,799 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:11,799 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:11,805 - -7.958 per-word bound, 248.7 perplexity estimate based on a held-out corpus of 1 documents with 2111 words -2024-07-15 10:48:11,805 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:11,808 - topic #0 (0.333): 0.017*"’" + 0.010*"well" + 0.010*"needs" + 0.009*"practice" + 0.007*"progress" + 0.006*"effective" + 0.006*"plans" + 0.005*"carers" + 0.005*"good" + 0.005*"However" -2024-07-15 10:48:11,808 - topic #1 (0.333): 0.012*"’" + 0.012*"needs" + 0.008*"well" + 0.006*"progress" + 0.005*"17" + 0.005*"plans" + 0.005*"practice" + 0.005*"ensure" + 0.004*"However" + 0.004*"quality" -2024-07-15 10:48:11,809 - topic #2 (0.333): 0.010*"’" + 0.009*"well" + 0.007*"needs" + 0.006*"practice" + 0.006*"good" + 0.005*"progress" + 0.005*"quality" + 0.005*"carers" + 0.005*"Surrey" + 0.004*"January" -2024-07-15 10:48:11,809 - topic diff=0.765161, rho=1.000000 -2024-07-15 10:48:11,809 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:11.809429', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:13,050 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:13,050 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:13,050 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:13,050 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:13,050 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:13,050 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:13,051 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:13,051 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:13,051 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:13,051 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:13,051 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:13,051 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:14,549 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:14,551 - built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions) -2024-07-15 10:48:14,551 - Dictionary lifecycle event {'msg': "built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions)", 'datetime': '2024-07-15T10:48:14.551530', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:14,552 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:14,552 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:14,552 - using serial LDA version on this node -2024-07-15 10:48:14,553 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:14,553 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:14,556 - -7.831 per-word bound, 227.7 perplexity estimate based on a held-out corpus of 1 documents with 2229 words -2024-07-15 10:48:14,556 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:14,558 - topic #0 (0.333): 0.015*"’" + 0.010*"needs" + 0.007*"Swindon" + 0.007*"need" + 0.005*"well" + 0.005*"always" + 0.005*"plans" + 0.004*"health" + 0.004*"impact" + 0.004*"many" -2024-07-15 10:48:14,558 - topic #1 (0.333): 0.029*"’" + 0.015*"needs" + 0.009*"well" + 0.009*"need" + 0.009*"Swindon" + 0.007*"always" + 0.007*"plans" + 0.007*"health" + 0.006*"effective" + 0.006*"impact" -2024-07-15 10:48:14,558 - topic #2 (0.333): 0.017*"’" + 0.012*"needs" + 0.010*"Swindon" + 0.009*"need" + 0.008*"well" + 0.007*"plans" + 0.006*"always" + 0.005*"impact" + 0.005*"many" + 0.005*"Borough" -2024-07-15 10:48:14,558 - topic diff=0.845518, rho=1.000000 -2024-07-15 10:48:14,558 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:14.558696', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:15,543 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:15,543 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:15,543 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:15,543 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:15,544 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:15,544 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:15,544 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:15,544 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:15,544 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:15,544 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:15,545 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:15,545 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:17,033 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:17,036 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions) -2024-07-15 10:48:17,036 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions)", 'datetime': '2024-07-15T10:48:17.036481', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:17,037 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:17,037 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:17,037 - using serial LDA version on this node -2024-07-15 10:48:17,038 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:17,038 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:17,041 - -7.942 per-word bound, 245.9 perplexity estimate based on a held-out corpus of 1 documents with 2491 words -2024-07-15 10:48:17,042 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:17,043 - topic #0 (0.333): 0.018*"’" + 0.011*"needs" + 0.008*"impact" + 0.007*"risk" + 0.006*"practice" + 0.006*"experienced" + 0.006*"quality" + 0.005*"experiences" + 0.005*"effective" + 0.005*"Tameside" -2024-07-15 10:48:17,043 - topic #1 (0.333): 0.013*"’" + 0.007*"needs" + 0.006*"4" + 0.006*"risk" + 0.006*"2023" + 0.005*"quality" + 0.005*"leaders" + 0.005*"response" + 0.005*"impact" + 0.004*"progress" -2024-07-15 10:48:17,043 - topic #2 (0.333): 0.017*"’" + 0.008*"needs" + 0.005*"experienced" + 0.005*"15" + 0.005*"practice" + 0.005*"quality" + 0.005*"2023" + 0.005*"impact" + 0.005*"experiences" + 0.005*"risk" -2024-07-15 10:48:17,043 - topic diff=0.820074, rho=1.000000 -2024-07-15 10:48:17,044 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:17.043981', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:18,704 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:18,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:18,705 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:18,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:18,705 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:18,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:18,705 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:18,705 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:18,706 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:18,706 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:18,706 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:18,706 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:20,092 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:20,095 - built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions) -2024-07-15 10:48:20,095 - Dictionary lifecycle event {'msg': "built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions)", 'datetime': '2024-07-15T10:48:20.095168', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:20,096 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:20,096 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:20,096 - using serial LDA version on this node -2024-07-15 10:48:20,096 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:20,097 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:20,101 - -7.970 per-word bound, 250.7 perplexity estimate based on a held-out corpus of 1 documents with 2452 words -2024-07-15 10:48:20,102 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:20,103 - topic #0 (0.333): 0.014*"’" + 0.009*"needs" + 0.006*"Telford" + 0.006*"Family" + 0.005*"benefit" + 0.005*"plans" + 0.005*"Wrekin" + 0.004*"2024" + 0.004*"leaders" + 0.004*"3" -2024-07-15 10:48:20,103 - topic #1 (0.333): 0.020*"’" + 0.012*"needs" + 0.011*"Wrekin" + 0.009*"Telford" + 0.007*"well" + 0.006*"plans" + 0.005*"effective" + 0.005*"3" + 0.005*"benefit" + 0.005*"29" -2024-07-15 10:48:20,103 - topic #2 (0.333): 0.027*"’" + 0.011*"needs" + 0.007*"benefit" + 0.007*"Telford" + 0.007*"Wrekin" + 0.006*"effective" + 0.006*"well" + 0.006*"Family" + 0.005*"PAs" + 0.005*"provide" -2024-07-15 10:48:20,103 - topic diff=0.825432, rho=1.000000 -2024-07-15 10:48:20,103 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:20.103959', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:21,177 - Inspection date 2024-04-29 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:21,177 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:21,178 - Inspection date 2024-04-29 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:21,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:21,178 - Inspection date 2024-04-29 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:21,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:21,178 - Inspection date 2024-04-29 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:21,178 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:21,179 - Inspection date 2024-04-29 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:21,179 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:21,179 - Inspection date 2024-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:21,179 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:22,525 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:22,528 - built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions) -2024-07-15 10:48:22,528 - Dictionary lifecycle event {'msg': "built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions)", 'datetime': '2024-07-15T10:48:22.528199', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:22,529 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:22,529 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:22,529 - using serial LDA version on this node -2024-07-15 10:48:22,530 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:22,530 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:22,533 - -8.140 per-word bound, 282.1 perplexity estimate based on a held-out corpus of 1 documents with 2160 words -2024-07-15 10:48:22,533 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:22,535 - topic #0 (0.333): 0.014*"’" + 0.006*"well" + 0.005*"need" + 0.005*"leaders" + 0.005*"carers" + 0.004*"ensure" + 0.004*"Thurrock" + 0.004*"practice" + 0.004*"needs" + 0.004*"effective" -2024-07-15 10:48:22,535 - topic #1 (0.333): 0.012*"’" + 0.008*"well" + 0.005*"carers" + 0.005*"need" + 0.004*"practice" + 0.004*"ensure" + 0.004*"effective" + 0.004*"plans" + 0.004*"protection" + 0.003*"needs" -2024-07-15 10:48:22,535 - topic #2 (0.333): 0.014*"’" + 0.011*"well" + 0.006*"carers" + 0.005*"needs" + 0.004*"need" + 0.004*"impact" + 0.004*"protect" + 0.004*"practice" + 0.004*"parents" + 0.004*"Thurrock" -2024-07-15 10:48:22,535 - topic diff=0.722700, rho=1.000000 -2024-07-15 10:48:22,535 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:22.535978', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:24,702 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:24,702 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:24,702 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:24,703 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:24,703 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:24,703 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:24,703 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:24,703 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:24,703 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:24,703 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:24,704 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:24,704 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:25,913 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:25,915 - built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions) -2024-07-15 10:48:25,915 - Dictionary lifecycle event {'msg': "built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions)", 'datetime': '2024-07-15T10:48:25.915933', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:25,916 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:25,917 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:25,917 - using serial LDA version on this node -2024-07-15 10:48:25,917 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:25,917 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:25,921 - -8.040 per-word bound, 263.1 perplexity estimate based on a held-out corpus of 1 documents with 2065 words -2024-07-15 10:48:25,922 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:25,923 - topic #0 (0.333): 0.014*"’" + 0.008*"well" + 0.005*"needs" + 0.005*"timely" + 0.005*"Torbay" + 0.005*"good" + 0.004*"progress" + 0.004*"effective" + 0.004*"March" + 0.004*"1" -2024-07-15 10:48:25,923 - topic #1 (0.333): 0.015*"’" + 0.008*"well" + 0.006*"Torbay" + 0.005*"good" + 0.005*"effective" + 0.004*"21" + 0.004*"progress" + 0.004*"needs" + 0.004*"team" + 0.004*"timely" -2024-07-15 10:48:25,923 - topic #2 (0.333): 0.019*"’" + 0.010*"well" + 0.009*"Torbay" + 0.007*"needs" + 0.007*"good" + 0.005*"effective" + 0.005*"2022" + 0.005*"team" + 0.004*"21" + 0.004*"agencies" -2024-07-15 10:48:25,923 - topic diff=0.764314, rho=1.000000 -2024-07-15 10:48:25,923 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:25.923955', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:26,935 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:26,935 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:26,936 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:26,936 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:26,936 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:26,936 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:26,936 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:26,937 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:26,937 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:26,937 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:26,937 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:26,937 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:28,281 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:28,283 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions) -2024-07-15 10:48:28,283 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions)", 'datetime': '2024-07-15T10:48:28.283659', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:28,284 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:28,284 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:28,285 - using serial LDA version on this node -2024-07-15 10:48:28,285 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:28,285 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:28,289 - -7.918 per-word bound, 241.8 perplexity estimate based on a held-out corpus of 1 documents with 2448 words -2024-07-15 10:48:28,289 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:28,290 - topic #0 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"plans" + 0.007*"quality" + 0.007*"well" + 0.007*"Trafford" + 0.006*"leaders" + 0.006*"impact" + 0.005*"team" + 0.005*"placed" -2024-07-15 10:48:28,290 - topic #1 (0.333): 0.018*"’" + 0.009*"Trafford" + 0.009*"needs" + 0.007*"well" + 0.007*"practice" + 0.006*"plans" + 0.005*"ensure" + 0.005*"placed" + 0.005*"quality" + 0.004*"leaders" -2024-07-15 10:48:28,290 - topic #2 (0.333): 0.010*"’" + 0.010*"needs" + 0.007*"Trafford" + 0.007*"quality" + 0.006*"well" + 0.005*"plans" + 0.005*"leaders" + 0.005*"impact" + 0.005*"practice" + 0.004*"2" -2024-07-15 10:48:28,290 - topic diff=0.833741, rho=1.000000 -2024-07-15 10:48:28,291 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:28.291083', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:29,597 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:29,598 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:29,598 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:29,598 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:29,598 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:29,598 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:29,598 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:29,599 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:29,599 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:29,599 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:29,599 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:29,599 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:31,382 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:31,385 - built Dictionary<1162 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2626 corpus positions) -2024-07-15 10:48:31,385 - Dictionary lifecycle event {'msg': 'built Dictionary<1162 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2626 corpus positions)', 'datetime': '2024-07-15T10:48:31.385321', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:31,386 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:31,386 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:31,386 - using serial LDA version on this node -2024-07-15 10:48:31,387 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:31,387 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:31,391 - -8.049 per-word bound, 264.9 perplexity estimate based on a held-out corpus of 1 documents with 2626 words -2024-07-15 10:48:31,391 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:31,392 - topic #0 (0.333): 0.022*"’" + 0.007*"leaders" + 0.007*"needs" + 0.005*"well" + 0.005*"4" + 0.005*"information" + 0.005*"oversight" + 0.005*"Senior" + 0.005*"good" + 0.004*"Walsall" -2024-07-15 10:48:31,392 - topic #1 (0.333): 0.025*"’" + 0.008*"leaders" + 0.007*"needs" + 0.007*"Walsall" + 0.006*"well" + 0.005*"information" + 0.005*"positive" + 0.004*"4" + 0.004*"2021" + 0.004*"records" -2024-07-15 10:48:31,393 - topic #2 (0.333): 0.015*"’" + 0.006*"leaders" + 0.005*"needs" + 0.005*"well" + 0.005*"Walsall" + 0.005*"Senior" + 0.004*"oversight" + 0.004*"good" + 0.004*"4" + 0.004*"carers" -2024-07-15 10:48:31,393 - topic diff=0.816721, rho=1.000000 -2024-07-15 10:48:31,393 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:31.393410', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:32,356 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:32,356 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:32,356 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:32,356 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:32,356 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:32,357 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:32,357 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:32,357 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:32,357 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:32,357 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:32,357 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:32,358 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:33,826 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:33,828 - built Dictionary<1110 unique tokens: ['0161', '0300', '08', '1', '10']...> from 1 documents (total 2187 corpus positions) -2024-07-15 10:48:33,828 - Dictionary lifecycle event {'msg': "built Dictionary<1110 unique tokens: ['0161', '0300', '08', '1', '10']...> from 1 documents (total 2187 corpus positions)", 'datetime': '2024-07-15T10:48:33.828919', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:33,830 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:33,830 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:33,830 - using serial LDA version on this node -2024-07-15 10:48:33,830 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:33,831 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:33,834 - -8.086 per-word bound, 271.7 perplexity estimate based on a held-out corpus of 1 documents with 2187 words -2024-07-15 10:48:33,834 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:33,836 - topic #0 (0.333): 0.013*"’" + 0.006*"practice" + 0.006*"well" + 0.005*"plans" + 0.004*"need" + 0.004*"progress" + 0.004*"Senior" + 0.004*"good" + 0.004*"information" + 0.003*"home" -2024-07-15 10:48:33,836 - topic #1 (0.333): 0.016*"’" + 0.007*"practice" + 0.007*"well" + 0.005*"number" + 0.005*"plans" + 0.004*"home" + 0.004*"Senior" + 0.004*"carers" + 0.004*"information" + 0.004*"receive" -2024-07-15 10:48:33,836 - topic #2 (0.333): 0.013*"’" + 0.007*"well" + 0.005*"practice" + 0.004*"progress" + 0.004*"number" + 0.004*"Senior" + 0.004*"good" + 0.004*"small" + 0.004*"provided" + 0.004*"needs" -2024-07-15 10:48:33,836 - topic diff=0.718968, rho=1.000000 -2024-07-15 10:48:33,836 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:33.836802', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:34,861 - Inspection date 2019-07-08 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:34,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:34,862 - Inspection date 2019-07-08 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:34,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:34,862 - Inspection date 2019-07-08 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:34,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:34,862 - Inspection date 2019-07-08 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:34,862 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:34,863 - Inspection date 2019-07-08 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:34,863 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:34,863 - Inspection date 2019-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:34,863 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:36,393 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:36,397 - built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions) -2024-07-15 10:48:36,397 - Dictionary lifecycle event {'msg': "built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions)", 'datetime': '2024-07-15T10:48:36.397629', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:36,399 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:36,399 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:36,399 - using serial LDA version on this node -2024-07-15 10:48:36,400 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:36,400 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:36,406 - -8.003 per-word bound, 256.5 perplexity estimate based on a held-out corpus of 1 documents with 2113 words -2024-07-15 10:48:36,407 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:36,409 - topic #0 (0.333): 0.014*"’" + 0.008*"needs" + 0.007*"well" + 0.007*"Warwickshire" + 0.006*"plans" + 0.005*"good" + 0.005*"carers" + 0.005*"practice" + 0.005*"information" + 0.004*"supported" -2024-07-15 10:48:36,409 - topic #1 (0.333): 0.012*"’" + 0.007*"well" + 0.007*"plans" + 0.006*"needs" + 0.005*"progress" + 0.005*"effective" + 0.005*"Warwickshire" + 0.005*"practice" + 0.005*"3" + 0.005*"quality" -2024-07-15 10:48:36,409 - topic #2 (0.333): 0.007*"’" + 0.005*"plans" + 0.005*"Warwickshire" + 0.004*"well" + 0.004*"good" + 0.004*"needs" + 0.004*"clear" + 0.004*"practice" + 0.004*"3" + 0.004*"ensure" -2024-07-15 10:48:36,409 - topic diff=0.768686, rho=1.000000 -2024-07-15 10:48:36,410 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:36.410138', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:37,313 - Inspection date 2021-11-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:37,314 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:37,314 - Inspection date 2021-11-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:37,314 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:37,314 - Inspection date 2021-11-22 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:37,314 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:37,314 - Inspection date 2021-11-22 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:37,314 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:37,315 - Inspection date 2021-11-22 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:37,315 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:37,315 - Inspection date 2021-11-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:37,315 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:38,339 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:38,342 - built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions) -2024-07-15 10:48:38,342 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions)", 'datetime': '2024-07-15T10:48:38.342296', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:38,343 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:38,343 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:38,343 - using serial LDA version on this node -2024-07-15 10:48:38,344 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:38,344 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:38,348 - -8.110 per-word bound, 276.2 perplexity estimate based on a held-out corpus of 1 documents with 2146 words -2024-07-15 10:48:38,348 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:38,349 - topic #0 (0.333): 0.015*"’" + 0.008*"Berkshire" + 0.007*"West" + 0.006*"well" + 0.004*"plans" + 0.004*"needs" + 0.004*"need" + 0.004*"2022" + 0.004*"early" + 0.004*"working" -2024-07-15 10:48:38,349 - topic #1 (0.333): 0.016*"’" + 0.006*"West" + 0.005*"well" + 0.005*"need" + 0.005*"Berkshire" + 0.004*"practice" + 0.004*"18" + 0.004*"working" + 0.004*"14" + 0.004*"strong" -2024-07-15 10:48:38,349 - topic #2 (0.333): 0.012*"’" + 0.006*"well" + 0.006*"Berkshire" + 0.006*"West" + 0.005*"needs" + 0.004*"plans" + 0.004*"14" + 0.004*"early" + 0.004*"agency" + 0.004*"March" -2024-07-15 10:48:38,349 - topic diff=0.712237, rho=1.000000 -2024-07-15 10:48:38,350 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:38.350133', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:39,369 - Inspection date 2022-03-14 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:39,370 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:39,370 - Inspection date 2022-03-14 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:39,370 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:39,370 - Inspection date 2022-03-14 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:39,371 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:39,371 - Inspection date 2022-03-14 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:39,371 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:39,372 - Inspection date 2022-03-14 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:39,372 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:39,372 - Inspection date 2022-03-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:39,372 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:40,650 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:40,652 - built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions) -2024-07-15 10:48:40,652 - Dictionary lifecycle event {'msg': "built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions)", 'datetime': '2024-07-15T10:48:40.652392', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:40,653 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:40,653 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:40,653 - using serial LDA version on this node -2024-07-15 10:48:40,654 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:40,654 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:40,657 - -8.041 per-word bound, 263.3 perplexity estimate based on a held-out corpus of 1 documents with 2224 words -2024-07-15 10:48:40,658 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:40,659 - topic #0 (0.333): 0.013*"’" + 0.007*"Northamptonshire" + 0.005*"well" + 0.005*"3" + 0.005*"West" + 0.005*"plans" + 0.004*"needs" + 0.004*"quality" + 0.004*"experiences" + 0.004*"2022" -2024-07-15 10:48:40,659 - topic #1 (0.333): 0.016*"’" + 0.008*"quality" + 0.008*"Northamptonshire" + 0.007*"West" + 0.006*"well" + 0.006*"practice" + 0.005*"impact" + 0.004*"NCT" + 0.004*"14" + 0.004*"needs" -2024-07-15 10:48:40,659 - topic #2 (0.333): 0.020*"’" + 0.009*"Northamptonshire" + 0.007*"quality" + 0.007*"West" + 0.006*"well" + 0.006*"practice" + 0.006*"needs" + 0.005*"NCT" + 0.005*"impact" + 0.005*"need" -2024-07-15 10:48:40,660 - topic diff=0.759948, rho=1.000000 -2024-07-15 10:48:40,660 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:40.660179', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:42,100 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:42,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:42,101 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:42,101 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:42,101 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:42,101 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:42,102 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:42,102 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:42,102 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:42,102 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:42,103 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:42,103 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:43,432 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:43,434 - built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) -2024-07-15 10:48:43,435 - Dictionary lifecycle event {'msg': "built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-07-15T10:48:43.434980', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:43,436 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:43,436 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:43,436 - using serial LDA version on this node -2024-07-15 10:48:43,436 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:43,437 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:43,441 - -8.126 per-word bound, 279.3 perplexity estimate based on a held-out corpus of 1 documents with 2720 words -2024-07-15 10:48:43,441 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:43,442 - topic #0 (0.333): 0.014*"’" + 0.005*"well" + 0.005*"plans" + 0.005*"needs" + 0.005*"number" + 0.004*"West" + 0.004*"education" + 0.004*"good" + 0.004*"health" + 0.004*"13" -2024-07-15 10:48:43,442 - topic #1 (0.333): 0.007*"’" + 0.005*"needs" + 0.005*"well" + 0.004*"Sussex" + 0.004*"plans" + 0.004*"West" + 0.003*"health" + 0.003*"24" + 0.003*"practice" + 0.003*"education" -2024-07-15 10:48:43,442 - topic #2 (0.333): 0.016*"’" + 0.007*"plans" + 0.007*"well" + 0.006*"needs" + 0.006*"Sussex" + 0.006*"West" + 0.006*"13" + 0.005*"quality" + 0.005*"supported" + 0.005*"practice" -2024-07-15 10:48:43,443 - topic diff=0.832550, rho=1.000000 -2024-07-15 10:48:43,443 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:43.443202', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:44,308 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:44,308 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:44,309 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:44,309 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:44,309 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:44,309 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:44,310 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:44,310 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:44,310 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:44,310 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:44,311 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:44,311 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:45,823 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:45,825 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions) -2024-07-15 10:48:45,825 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions)", 'datetime': '2024-07-15T10:48:45.825469', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:45,826 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:45,826 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:45,826 - using serial LDA version on this node -2024-07-15 10:48:45,827 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:45,827 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:45,831 - -7.969 per-word bound, 250.6 perplexity estimate based on a held-out corpus of 1 documents with 2451 words -2024-07-15 10:48:45,831 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:45,832 - topic #0 (0.333): 0.014*"’" + 0.007*"Furness" + 0.006*"plans" + 0.006*"appropriate" + 0.006*"Westmorland" + 0.006*"need" + 0.005*"needs" + 0.005*"protection" + 0.005*"3" + 0.005*"quality" -2024-07-15 10:48:45,832 - topic #1 (0.333): 0.016*"’" + 0.009*"plans" + 0.007*"needs" + 0.007*"Westmorland" + 0.006*"need" + 0.006*"appropriate" + 0.005*"Furness" + 0.005*"quality" + 0.004*"well" + 0.004*"leaders" -2024-07-15 10:48:45,832 - topic #2 (0.333): 0.009*"’" + 0.007*"Furness" + 0.007*"needs" + 0.007*"plans" + 0.006*"Westmorland" + 0.005*"appropriate" + 0.005*"April" + 0.005*"protection" + 0.005*"need" + 0.005*"progress" -2024-07-15 10:48:45,832 - topic diff=0.798428, rho=1.000000 -2024-07-15 10:48:45,833 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:45.833034', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:46,845 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:46,846 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:46,846 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:46,846 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:46,846 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:46,846 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:46,846 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:46,847 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:46,847 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:46,847 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:46,847 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:46,847 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:48,524 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:48,526 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions) -2024-07-15 10:48:48,526 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions)", 'datetime': '2024-07-15T10:48:48.526840', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:48,527 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:48,528 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:48,528 - using serial LDA version on this node -2024-07-15 10:48:48,528 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:48,528 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:48,532 - -7.963 per-word bound, 249.5 perplexity estimate based on a held-out corpus of 1 documents with 2416 words -2024-07-15 10:48:48,532 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:48,533 - topic #0 (0.333): 0.010*"’" + 0.006*"plans" + 0.006*"Wigan" + 0.006*"May" + 0.006*"practice" + 0.005*"quality" + 0.005*"needs" + 0.004*"identified" + 0.004*"appropriate" + 0.004*"leaders" -2024-07-15 10:48:48,534 - topic #1 (0.333): 0.015*"’" + 0.008*"practice" + 0.008*"May" + 0.006*"quality" + 0.006*"plans" + 0.006*"9" + 0.006*"needs" + 0.006*"appropriate" + 0.005*"Wigan" + 0.005*"timely" -2024-07-15 10:48:48,534 - topic #2 (0.333): 0.012*"’" + 0.008*"May" + 0.007*"plans" + 0.006*"needs" + 0.006*"Wigan" + 0.005*"appropriate" + 0.005*"leaders" + 0.005*"quality" + 0.005*"practice" + 0.005*"increased" -2024-07-15 10:48:48,534 - topic diff=0.794111, rho=1.000000 -2024-07-15 10:48:48,534 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:48.534442', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:49,465 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:49,466 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:49,466 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:49,466 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:49,466 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:49,466 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:49,467 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:49,467 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:49,467 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:49,467 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:49,467 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:49,467 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:51,084 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:51,086 - built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions) -2024-07-15 10:48:51,086 - Dictionary lifecycle event {'msg': "built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions)", 'datetime': '2024-07-15T10:48:51.086763', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:51,087 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:51,087 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:51,088 - using serial LDA version on this node -2024-07-15 10:48:51,088 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:51,088 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:51,092 - -7.954 per-word bound, 248.0 perplexity estimate based on a held-out corpus of 1 documents with 2600 words -2024-07-15 10:48:51,092 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:51,093 - topic #0 (0.333): 0.012*"’" + 0.010*"well" + 0.006*"need" + 0.006*"progress" + 0.006*"needs" + 0.005*"plans" + 0.005*"risk" + 0.005*"Wiltshire" + 0.005*"including" + 0.005*"supported" -2024-07-15 10:48:51,093 - topic #1 (0.333): 0.019*"’" + 0.013*"well" + 0.008*"needs" + 0.007*"Wiltshire" + 0.007*"need" + 0.006*"risk" + 0.006*"parents" + 0.006*"progress" + 0.006*"including" + 0.006*"ensure" -2024-07-15 10:48:51,094 - topic #2 (0.333): 0.013*"’" + 0.009*"well" + 0.006*"needs" + 0.006*"need" + 0.006*"parents" + 0.005*"quality" + 0.005*"including" + 0.005*"ensure" + 0.005*"supported" + 0.005*"progress" -2024-07-15 10:48:51,094 - topic diff=0.830868, rho=1.000000 -2024-07-15 10:48:51,094 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:51.094286', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:52,099 - Inspection date 2023-09-25 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:52,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:52,100 - Inspection date 2023-09-25 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:52,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:52,100 - Inspection date 2023-09-25 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:52,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:52,100 - Inspection date 2023-09-25 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:52,100 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:52,101 - Inspection date 2023-09-25 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:52,101 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:52,101 - Inspection date 2023-09-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:52,101 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:53,883 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:53,885 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) -2024-07-15 10:48:53,885 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-07-15T10:48:53.885320', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:53,886 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:53,886 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:53,886 - using serial LDA version on this node -2024-07-15 10:48:53,886 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:53,887 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:53,890 - -7.906 per-word bound, 239.9 perplexity estimate based on a held-out corpus of 1 documents with 2233 words -2024-07-15 10:48:53,890 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:53,891 - topic #0 (0.333): 0.012*"needs" + 0.012*"’" + 0.008*"ensure" + 0.006*"plans" + 0.006*"practice" + 0.006*"18" + 0.005*"well" + 0.005*"number" + 0.005*"2023" + 0.005*"response" -2024-07-15 10:48:53,891 - topic #1 (0.333): 0.013*"’" + 0.009*"Wirral" + 0.006*"needs" + 0.006*"plans" + 0.006*"ensure" + 0.005*"practice" + 0.005*"good" + 0.005*"well" + 0.005*"risk" + 0.005*"number" -2024-07-15 10:48:53,892 - topic #2 (0.333): 0.009*"needs" + 0.008*"Wirral" + 0.008*"’" + 0.007*"ensure" + 0.007*"plans" + 0.006*"practice" + 0.006*"response" + 0.006*"29" + 0.005*"appropriate" + 0.005*"number" -2024-07-15 10:48:53,892 - topic diff=0.802121, rho=1.000000 -2024-07-15 10:48:53,892 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:53.892346', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:54,848 - Inspection date 2023-09-18 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:54,848 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:54,848 - Inspection date 2023-09-18 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:54,848 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:54,849 - Inspection date 2023-09-18 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:54,849 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:54,849 - Inspection date 2023-09-18 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:54,849 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:54,849 - Inspection date 2023-09-18 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:54,849 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:54,849 - Inspection date 2023-09-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:54,849 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:56,174 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:56,176 - built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions) -2024-07-15 10:48:56,176 - Dictionary lifecycle event {'msg': "built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions)", 'datetime': '2024-07-15T10:48:56.176462', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:56,177 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:56,177 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:56,177 - using serial LDA version on this node -2024-07-15 10:48:56,178 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:56,178 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:56,181 - -8.058 per-word bound, 266.4 perplexity estimate based on a held-out corpus of 1 documents with 2214 words -2024-07-15 10:48:56,182 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:56,183 - topic #0 (0.333): 0.008*"’" + 0.005*"plans" + 0.005*"provided" + 0.005*"effective" + 0.004*"progress" + 0.004*"needs" + 0.004*"experiences" + 0.004*"6" + 0.004*"well" + 0.004*"ensure" -2024-07-15 10:48:56,183 - topic #1 (0.333): 0.012*"’" + 0.007*"plans" + 0.007*"needs" + 0.007*"progress" + 0.006*"effective" + 0.006*"protection" + 0.005*"well" + 0.005*"impact" + 0.005*"experiences" + 0.005*"17" -2024-07-15 10:48:56,183 - topic #2 (0.333): 0.015*"’" + 0.007*"plans" + 0.007*"effective" + 0.006*"needs" + 0.006*"well" + 0.005*"progress" + 0.005*"provided" + 0.005*"17" + 0.005*"quality" + 0.004*"parents" -2024-07-15 10:48:56,183 - topic diff=0.761405, rho=1.000000 -2024-07-15 10:48:56,183 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:56.183861', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:57,239 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:57,239 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:57,239 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:57,240 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:57,240 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:57,240 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:57,240 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:57,241 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:57,241 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:58,726 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:48:58,731 - built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) -2024-07-15 10:48:58,731 - Dictionary lifecycle event {'msg': "built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-07-15T10:48:58.731668', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:58,733 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:48:58,733 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:48:58,734 - using serial LDA version on this node -2024-07-15 10:48:58,734 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:48:58,734 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:48:58,740 - -8.048 per-word bound, 264.7 perplexity estimate based on a held-out corpus of 1 documents with 2233 words -2024-07-15 10:48:58,741 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:48:58,743 - topic #0 (0.333): 0.012*"’" + 0.008*"needs" + 0.005*"plans" + 0.005*"effective" + 0.005*"risk" + 0.005*"Wolverhampton" + 0.005*"risks" + 0.004*"April" + 0.004*"education" + 0.004*"28" -2024-07-15 10:48:58,743 - topic #1 (0.333): 0.008*"’" + 0.006*"effective" + 0.005*"needs" + 0.005*"quality" + 0.005*"Wolverhampton" + 0.004*"supported" + 0.004*"experiences" + 0.004*"risk" + 0.004*"plans" + 0.003*"well" -2024-07-15 10:48:58,743 - topic #2 (0.333): 0.019*"’" + 0.008*"needs" + 0.006*"Wolverhampton" + 0.006*"effective" + 0.006*"risks" + 0.006*"leaders" + 0.006*"receive" + 0.005*"plans" + 0.005*"quality" + 0.005*"education" -2024-07-15 10:48:58,743 - topic diff=0.752295, rho=1.000000 -2024-07-15 10:48:58,744 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:48:58.744044', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:48:59,817 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:48:59,817 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:59,817 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:48:59,817 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:59,818 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:48:59,818 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:59,818 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:48:59,818 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:59,818 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:48:59,818 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:48:59,819 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:48:59,819 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:49:01,460 - adding document #0 to Dictionary<0 unique tokens: []> -2024-07-15 10:49:01,462 - built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions) -2024-07-15 10:49:01,462 - Dictionary lifecycle event {'msg': "built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions)", 'datetime': '2024-07-15T10:49:01.462800', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:49:01,463 - using symmetric alpha at 0.3333333333333333 -2024-07-15 10:49:01,463 - using symmetric eta at 0.3333333333333333 -2024-07-15 10:49:01,464 - using serial LDA version on this node -2024-07-15 10:49:01,464 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 -2024-07-15 10:49:01,464 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy -2024-07-15 10:49:01,468 - -7.947 per-word bound, 246.7 perplexity estimate based on a held-out corpus of 1 documents with 2343 words -2024-07-15 10:49:01,468 - PROGRESS: pass 0, at document #1/1 -2024-07-15 10:49:01,469 - topic #0 (0.333): 0.021*"’" + 0.010*"well" + 0.008*"Worcestershire" + 0.007*"needs" + 0.007*"progress" + 0.006*"ensure" + 0.006*"leaders" + 0.006*"plans" + 0.006*"appropriate" + 0.005*"experiences" -2024-07-15 10:49:01,469 - topic #1 (0.333): 0.022*"’" + 0.009*"plans" + 0.009*"needs" + 0.008*"leaders" + 0.007*"progress" + 0.007*"Worcestershire" + 0.007*"well" + 0.006*"ensure" + 0.006*"appropriate" + 0.005*"PAs" -2024-07-15 10:49:01,469 - topic #2 (0.333): 0.011*"’" + 0.008*"well" + 0.008*"plans" + 0.006*"needs" + 0.005*"progress" + 0.005*"leaders" + 0.005*"Worcestershire" + 0.005*"appropriate" + 0.004*"15" + 0.004*"26" -2024-07-15 10:49:01,470 - topic diff=0.811008, rho=1.000000 -2024-07-15 10:49:01,470 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-15T10:49:01.470222', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} -2024-07-15 10:49:02,664 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. -2024-07-15 10:49:02,664 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:49:02,664 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. -2024-07-15 10:49:02,664 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:49:02,665 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. -2024-07-15 10:49:02,665 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:49:02,665 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. -2024-07-15 10:49:02,665 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:49:02,665 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. -2024-07-15 10:49:02,665 - Index(['judgement', 'grade'], dtype='object') -2024-07-15 10:49:02,666 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. -2024-07-15 10:49:02,666 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:01,584 - Inspection date 2019-04-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:01,584 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:01,584 - Inspection date 2019-04-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:01,584 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:01,584 - Inspection date 2019-04-08 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:01,585 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:01,585 - Inspection date 2019-04-08 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:01,585 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:01,585 - Inspection date 2019-04-08 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:01,585 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:01,585 - Inspection date 2019-04-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:01,585 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:03,412 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:03,415 - built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions) +2024-07-25 12:45:03,415 - Dictionary lifecycle event {'msg': "built Dictionary<1128 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2409 corpus positions)", 'datetime': '2024-07-25T12:45:03.415245', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:03,416 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:03,416 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:03,416 - using serial LDA version on this node +2024-07-25 12:45:03,417 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:03,417 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:03,420 - -8.058 per-word bound, 266.4 perplexity estimate based on a held-out corpus of 1 documents with 2409 words +2024-07-25 12:45:03,421 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:03,422 - topic #0 (0.333): 0.014*"’" + 0.006*"needs" + 0.006*"quality" + 0.006*"Sunderland" + 0.006*"well" + 0.005*"protection" + 0.005*"parents" + 0.004*"experienced" + 0.004*"robust" + 0.004*"TfC" +2024-07-25 12:45:03,422 - topic #1 (0.333): 0.017*"’" + 0.007*"well" + 0.007*"quality" + 0.006*"needs" + 0.005*"parents" + 0.005*"training" + 0.005*"practice" + 0.005*"experienced" + 0.005*"Sunderland" + 0.004*"council" +2024-07-25 12:45:03,422 - topic #2 (0.333): 0.017*"’" + 0.008*"well" + 0.007*"quality" + 0.007*"needs" + 0.006*"Sunderland" + 0.005*"experienced" + 0.005*"good" + 0.005*"practice" + 0.005*"council" + 0.004*"robust" +2024-07-25 12:45:03,423 - topic diff=0.780946, rho=1.000000 +2024-07-25 12:45:03,423 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:03.423166', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:04,614 - Inspection date 2021-06-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:04,614 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:04,615 - Inspection date 2021-06-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:04,615 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:04,615 - Inspection date 2021-06-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:04,615 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:04,615 - Inspection date 2021-06-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:04,616 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:04,616 - Inspection date 2021-06-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:04,616 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:04,616 - Inspection date 2021-06-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:04,616 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:06,167 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:06,170 - built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions) +2024-07-25 12:45:06,171 - Dictionary lifecycle event {'msg': "built Dictionary<1016 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2111 corpus positions)", 'datetime': '2024-07-25T12:45:06.170990', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:06,172 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:06,172 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:06,173 - using serial LDA version on this node +2024-07-25 12:45:06,173 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:06,173 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:06,179 - -7.966 per-word bound, 250.0 perplexity estimate based on a held-out corpus of 1 documents with 2111 words +2024-07-25 12:45:06,179 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:06,181 - topic #0 (0.333): 0.015*"’" + 0.011*"well" + 0.010*"needs" + 0.007*"practice" + 0.006*"17" + 0.006*"progress" + 0.005*"quality" + 0.005*"However" + 0.005*"carers" + 0.005*"receive" +2024-07-25 12:45:06,182 - topic #1 (0.333): 0.014*"’" + 0.010*"needs" + 0.008*"progress" + 0.008*"well" + 0.008*"practice" + 0.006*"plans" + 0.006*"effective" + 0.005*"good" + 0.005*"However" + 0.005*"carers" +2024-07-25 12:45:06,182 - topic #2 (0.333): 0.010*"’" + 0.008*"needs" + 0.008*"well" + 0.006*"practice" + 0.006*"plans" + 0.005*"progress" + 0.005*"good" + 0.004*"carers" + 0.004*"supported" + 0.004*"Surrey" +2024-07-25 12:45:06,182 - topic diff=0.758750, rho=1.000000 +2024-07-25 12:45:06,182 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:06.182943', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:07,671 - Inspection date 2022-01-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:07,672 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:07,672 - Inspection date 2022-01-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:07,672 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:07,672 - Inspection date 2022-01-17 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:07,673 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:07,673 - Inspection date 2022-01-17 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:07,673 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:07,673 - Inspection date 2022-01-17 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:07,673 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:07,674 - Inspection date 2022-01-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:07,674 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:09,329 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:09,331 - built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions) +2024-07-25 12:45:09,331 - Dictionary lifecycle event {'msg': "built Dictionary<951 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2229 corpus positions)", 'datetime': '2024-07-25T12:45:09.331405', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:09,332 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:09,332 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:09,332 - using serial LDA version on this node +2024-07-25 12:45:09,333 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:09,333 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:09,336 - -7.823 per-word bound, 226.5 perplexity estimate based on a held-out corpus of 1 documents with 2229 words +2024-07-25 12:45:09,336 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:09,337 - topic #0 (0.333): 0.019*"’" + 0.010*"needs" + 0.009*"Swindon" + 0.009*"need" + 0.008*"plans" + 0.006*"well" + 0.006*"health" + 0.006*"always" + 0.005*"effective" + 0.005*"Council" +2024-07-25 12:45:09,338 - topic #1 (0.333): 0.025*"’" + 0.017*"needs" + 0.011*"Swindon" + 0.009*"well" + 0.008*"need" + 0.007*"always" + 0.006*"impact" + 0.006*"many" + 0.005*"Council" + 0.005*"plans" +2024-07-25 12:45:09,338 - topic #2 (0.333): 0.019*"’" + 0.009*"needs" + 0.009*"need" + 0.007*"well" + 0.006*"plans" + 0.005*"Swindon" + 0.005*"effective" + 0.005*"always" + 0.005*"Borough" + 0.004*"health" +2024-07-25 12:45:09,338 - topic diff=0.833238, rho=1.000000 +2024-07-25 12:45:09,338 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:09.338458', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:10,399 - Inspection date 2023-07-17 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:10,400 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:10,400 - Inspection date 2023-07-17 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:10,400 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:10,400 - Inspection date 2023-07-17 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:10,400 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:10,401 - Inspection date 2023-07-17 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:10,401 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:10,401 - Inspection date 2023-07-17 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:10,401 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:10,401 - Inspection date 2023-07-17 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:10,401 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:11,885 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:11,887 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions) +2024-07-25 12:45:11,887 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2491 corpus positions)", 'datetime': '2024-07-25T12:45:11.887689', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:11,888 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:11,888 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:11,889 - using serial LDA version on this node +2024-07-25 12:45:11,889 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:11,889 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:11,893 - -7.943 per-word bound, 246.2 perplexity estimate based on a held-out corpus of 1 documents with 2491 words +2024-07-25 12:45:11,893 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:11,894 - topic #0 (0.333): 0.011*"’" + 0.006*"needs" + 0.006*"risk" + 0.005*"experienced" + 0.005*"impact" + 0.005*"leaders" + 0.005*"quality" + 0.004*"plans" + 0.004*"practice" + 0.004*"2023" +2024-07-25 12:45:11,894 - topic #1 (0.333): 0.019*"’" + 0.009*"needs" + 0.007*"quality" + 0.006*"impact" + 0.006*"response" + 0.006*"experienced" + 0.006*"risk" + 0.005*"15" + 0.005*"practice" + 0.005*"Tameside" +2024-07-25 12:45:11,895 - topic #2 (0.333): 0.017*"’" + 0.010*"needs" + 0.006*"risk" + 0.006*"impact" + 0.006*"4" + 0.005*"progress" + 0.005*"experiences" + 0.005*"practice" + 0.005*"effective" + 0.005*"2023" +2024-07-25 12:45:11,895 - topic diff=0.825456, rho=1.000000 +2024-07-25 12:45:11,895 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:11.895437', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:13,374 - Inspection date 2023-12-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:13,375 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:13,375 - Inspection date 2023-12-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:13,375 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:13,376 - Inspection date 2023-12-04 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:13,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:13,376 - Inspection date 2023-12-04 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:13,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:13,376 - Inspection date 2023-12-04 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:13,377 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:13,377 - Inspection date 2023-12-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:13,377 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:14,728 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:14,730 - built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions) +2024-07-25 12:45:14,730 - Dictionary lifecycle event {'msg': "built Dictionary<1077 unique tokens: ['00', '0161', '03', '0300', '1']...> from 1 documents (total 2452 corpus positions)", 'datetime': '2024-07-25T12:45:14.730699', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:14,732 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:14,732 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:14,732 - using serial LDA version on this node +2024-07-25 12:45:14,732 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:14,732 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:14,737 - -7.965 per-word bound, 249.9 perplexity estimate based on a held-out corpus of 1 documents with 2452 words +2024-07-25 12:45:14,737 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:14,739 - topic #0 (0.333): 0.018*"’" + 0.010*"needs" + 0.006*"benefit" + 0.006*"Wrekin" + 0.005*"Family" + 0.005*"Telford" + 0.005*"effective" + 0.005*"well" + 0.005*"understand" + 0.004*"29" +2024-07-25 12:45:14,739 - topic #1 (0.333): 0.022*"’" + 0.010*"needs" + 0.007*"Telford" + 0.007*"well" + 0.006*"Wrekin" + 0.005*"Family" + 0.005*"benefit" + 0.005*"plans" + 0.005*"effective" + 0.005*"ensure" +2024-07-25 12:45:14,739 - topic #2 (0.333): 0.023*"’" + 0.012*"needs" + 0.010*"Wrekin" + 0.010*"Telford" + 0.006*"benefit" + 0.006*"plans" + 0.005*"well" + 0.005*"effective" + 0.005*"3" + 0.005*"Family" +2024-07-25 12:45:14,739 - topic diff=0.817826, rho=1.000000 +2024-07-25 12:45:14,740 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:14.740007', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:15,808 - Inspection date 2024-04-29 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:15,808 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:15,808 - Inspection date 2024-04-29 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:15,808 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:15,808 - Inspection date 2024-04-29 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:15,808 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:15,808 - Inspection date 2024-04-29 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:15,809 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:15,809 - Inspection date 2024-04-29 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:15,809 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:15,809 - Inspection date 2024-04-29 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:15,809 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:17,400 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:17,403 - built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions) +2024-07-25 12:45:17,403 - Dictionary lifecycle event {'msg': "built Dictionary<1138 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2160 corpus positions)", 'datetime': '2024-07-25T12:45:17.403463', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:17,404 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:17,404 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:17,404 - using serial LDA version on this node +2024-07-25 12:45:17,405 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:17,405 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:17,409 - -8.137 per-word bound, 281.4 perplexity estimate based on a held-out corpus of 1 documents with 2160 words +2024-07-25 12:45:17,409 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:17,410 - topic #0 (0.333): 0.010*"’" + 0.007*"well" + 0.004*"carers" + 0.004*"need" + 0.004*"practice" + 0.003*"needs" + 0.003*"leaders" + 0.003*"ensure" + 0.003*"protection" + 0.003*"parents" +2024-07-25 12:45:17,410 - topic #1 (0.333): 0.011*"’" + 0.006*"well" + 0.005*"carers" + 0.005*"need" + 0.004*"quality" + 0.004*"ensure" + 0.004*"effective" + 0.003*"needs" + 0.003*"protection" + 0.003*"good" +2024-07-25 12:45:17,411 - topic #2 (0.333): 0.016*"’" + 0.010*"well" + 0.007*"carers" + 0.006*"need" + 0.005*"needs" + 0.005*"practice" + 0.005*"Thurrock" + 0.005*"ensure" + 0.004*"leaders" + 0.004*"effective" +2024-07-25 12:45:17,411 - topic diff=0.741642, rho=1.000000 +2024-07-25 12:45:17,411 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:17.411293', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:19,636 - Inspection date 2019-11-11 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:19,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:19,637 - Inspection date 2019-11-11 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:19,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:19,637 - Inspection date 2019-11-11 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:19,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:19,638 - Inspection date 2019-11-11 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:19,638 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:19,638 - Inspection date 2019-11-11 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:19,638 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:19,638 - Inspection date 2019-11-11 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:19,639 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:21,054 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:21,056 - built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions) +2024-07-25 12:45:21,057 - Dictionary lifecycle event {'msg': "built Dictionary<1054 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2065 corpus positions)", 'datetime': '2024-07-25T12:45:21.057088', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:21,058 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:21,058 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:21,058 - using serial LDA version on this node +2024-07-25 12:45:21,058 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:21,059 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:21,062 - -8.040 per-word bound, 263.1 perplexity estimate based on a held-out corpus of 1 documents with 2065 words +2024-07-25 12:45:21,062 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:21,064 - topic #0 (0.333): 0.019*"’" + 0.010*"well" + 0.008*"Torbay" + 0.006*"needs" + 0.006*"good" + 0.006*"timely" + 0.005*"effective" + 0.005*"progress" + 0.005*"2022" + 0.005*"21" +2024-07-25 12:45:21,064 - topic #1 (0.333): 0.015*"’" + 0.008*"Torbay" + 0.007*"well" + 0.005*"effective" + 0.005*"needs" + 0.005*"good" + 0.005*"progress" + 0.004*"plans" + 0.004*"team" + 0.004*"21" +2024-07-25 12:45:21,064 - topic #2 (0.333): 0.015*"’" + 0.010*"well" + 0.006*"good" + 0.006*"Torbay" + 0.006*"needs" + 0.004*"effective" + 0.004*"1" + 0.004*"ensure" + 0.004*"team" + 0.004*"March" +2024-07-25 12:45:21,064 - topic diff=0.748704, rho=1.000000 +2024-07-25 12:45:21,064 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:21.064814', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:22,040 - Inspection date 2022-03-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:22,041 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:22,041 - Inspection date 2022-03-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:22,041 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:22,041 - Inspection date 2022-03-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:22,041 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:22,042 - Inspection date 2022-03-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:22,042 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:22,042 - Inspection date 2022-03-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:22,042 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:22,042 - Inspection date 2022-03-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:22,042 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:23,641 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:23,643 - built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions) +2024-07-25 12:45:23,643 - Dictionary lifecycle event {'msg': "built Dictionary<1038 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2448 corpus positions)", 'datetime': '2024-07-25T12:45:23.643460', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:23,644 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:23,644 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:23,644 - using serial LDA version on this node +2024-07-25 12:45:23,645 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:23,645 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:23,648 - -7.913 per-word bound, 241.1 perplexity estimate based on a held-out corpus of 1 documents with 2448 words +2024-07-25 12:45:23,649 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:23,650 - topic #0 (0.333): 0.017*"’" + 0.009*"needs" + 0.008*"well" + 0.007*"Trafford" + 0.007*"plans" + 0.005*"practice" + 0.005*"placed" + 0.005*"impact" + 0.005*"quality" + 0.005*"team" +2024-07-25 12:45:23,650 - topic #1 (0.333): 0.013*"’" + 0.010*"needs" + 0.008*"Trafford" + 0.008*"plans" + 0.008*"quality" + 0.006*"practice" + 0.006*"well" + 0.005*"team" + 0.005*"leaders" + 0.005*"impact" +2024-07-25 12:45:23,650 - topic #2 (0.333): 0.019*"’" + 0.009*"needs" + 0.008*"Trafford" + 0.008*"well" + 0.007*"quality" + 0.007*"leaders" + 0.006*"plans" + 0.005*"placed" + 0.005*"ensure" + 0.005*"practice" +2024-07-25 12:45:23,650 - topic diff=0.823372, rho=1.000000 +2024-07-25 12:45:23,650 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:23.650897', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:25,082 - Inspection date 2022-11-21 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:25,082 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:25,082 - Inspection date 2022-11-21 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:25,083 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:25,083 - Inspection date 2022-11-21 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:25,083 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:25,084 - Inspection date 2022-11-21 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:25,084 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:25,084 - Inspection date 2022-11-21 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:25,084 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:25,084 - Inspection date 2022-11-21 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:25,085 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:27,079 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:27,081 - built Dictionary<1162 unique tokens: ["'s", '0161', '0300', '1', '10']...> from 1 documents (total 2626 corpus positions) +2024-07-25 12:45:27,081 - Dictionary lifecycle event {'msg': 'built Dictionary<1162 unique tokens: ["\'s", \'0161\', \'0300\', \'1\', \'10\']...> from 1 documents (total 2626 corpus positions)', 'datetime': '2024-07-25T12:45:27.081784', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:27,082 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:27,083 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:27,083 - using serial LDA version on this node +2024-07-25 12:45:27,083 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:27,083 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:27,087 - -8.050 per-word bound, 265.0 perplexity estimate based on a held-out corpus of 1 documents with 2626 words +2024-07-25 12:45:27,087 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:27,089 - topic #0 (0.333): 0.020*"’" + 0.007*"leaders" + 0.007*"needs" + 0.006*"Walsall" + 0.005*"4" + 0.004*"oversight" + 0.004*"Senior" + 0.004*"good" + 0.004*"need" + 0.004*"2021" +2024-07-25 12:45:27,089 - topic #1 (0.333): 0.013*"’" + 0.007*"leaders" + 0.006*"well" + 0.006*"needs" + 0.005*"4" + 0.005*"15" + 0.004*"information" + 0.004*"Walsall" + 0.004*"risk" + 0.004*"records" +2024-07-25 12:45:27,089 - topic #2 (0.333): 0.028*"’" + 0.007*"leaders" + 0.006*"well" + 0.006*"needs" + 0.005*"information" + 0.005*"Walsall" + 0.005*"Senior" + 0.005*"good" + 0.005*"oversight" + 0.004*"plans" +2024-07-25 12:45:27,089 - topic diff=0.812971, rho=1.000000 +2024-07-25 12:45:27,090 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:27.090053', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:28,090 - Inspection date 2021-10-04 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:28,091 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:28,091 - Inspection date 2021-10-04 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:28,092 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:28,092 - Inspection date 2021-10-04 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:28,092 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:28,092 - Inspection date 2021-10-04 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:28,093 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:28,093 - Inspection date 2021-10-04 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:28,093 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:28,094 - Inspection date 2021-10-04 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:28,094 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:29,394 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:29,396 - built Dictionary<1110 unique tokens: ['0161', '0300', '08', '1', '10']...> from 1 documents (total 2187 corpus positions) +2024-07-25 12:45:29,397 - Dictionary lifecycle event {'msg': "built Dictionary<1110 unique tokens: ['0161', '0300', '08', '1', '10']...> from 1 documents (total 2187 corpus positions)", 'datetime': '2024-07-25T12:45:29.397138', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:29,398 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:29,398 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:29,398 - using serial LDA version on this node +2024-07-25 12:45:29,398 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:29,399 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:29,402 - -8.088 per-word bound, 272.2 perplexity estimate based on a held-out corpus of 1 documents with 2187 words +2024-07-25 12:45:29,402 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:29,404 - topic #0 (0.333): 0.010*"’" + 0.006*"well" + 0.005*"practice" + 0.005*"number" + 0.004*"provided" + 0.004*"need" + 0.004*"Senior" + 0.004*"plans" + 0.004*"progress" + 0.004*"improve" +2024-07-25 12:45:29,404 - topic #1 (0.333): 0.017*"’" + 0.008*"practice" + 0.006*"well" + 0.005*"Senior" + 0.005*"home" + 0.005*"progress" + 0.004*"good" + 0.004*"plans" + 0.004*"information" + 0.004*"number" +2024-07-25 12:45:29,404 - topic #2 (0.333): 0.014*"’" + 0.007*"well" + 0.006*"practice" + 0.005*"plans" + 0.004*"number" + 0.004*"carers" + 0.004*"needs" + 0.004*"small" + 0.004*"protection" + 0.004*"high" +2024-07-25 12:45:29,404 - topic diff=0.724572, rho=1.000000 +2024-07-25 12:45:29,404 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:29.404895', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:30,373 - Inspection date 2019-07-08 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:30,373 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:30,374 - Inspection date 2019-07-08 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:30,374 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:30,374 - Inspection date 2019-07-08 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:30,374 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:30,375 - Inspection date 2019-07-08 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:30,375 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:30,375 - Inspection date 2019-07-08 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:30,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:30,376 - Inspection date 2019-07-08 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:30,376 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:31,911 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:31,913 - built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions) +2024-07-25 12:45:31,913 - Dictionary lifecycle event {'msg': "built Dictionary<1040 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2113 corpus positions)", 'datetime': '2024-07-25T12:45:31.913895', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:31,914 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:31,915 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:31,915 - using serial LDA version on this node +2024-07-25 12:45:31,915 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:31,915 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:31,919 - -8.005 per-word bound, 256.9 perplexity estimate based on a held-out corpus of 1 documents with 2113 words +2024-07-25 12:45:31,919 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:31,920 - topic #0 (0.333): 0.013*"’" + 0.008*"needs" + 0.007*"plans" + 0.006*"Warwickshire" + 0.005*"well" + 0.005*"3" + 0.005*"good" + 0.005*"practice" + 0.005*"clear" + 0.005*"effective" +2024-07-25 12:45:31,920 - topic #1 (0.333): 0.010*"’" + 0.007*"well" + 0.005*"practice" + 0.005*"plans" + 0.004*"needs" + 0.004*"Warwickshire" + 0.004*"good" + 0.004*"quality" + 0.004*"supported" + 0.004*"carers" +2024-07-25 12:45:31,921 - topic #2 (0.333): 0.012*"’" + 0.007*"well" + 0.007*"Warwickshire" + 0.006*"plans" + 0.006*"needs" + 0.005*"22" + 0.005*"practice" + 0.005*"carers" + 0.005*"progress" + 0.005*"Senior" +2024-07-25 12:45:31,921 - topic diff=0.760788, rho=1.000000 +2024-07-25 12:45:31,921 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:31.921297', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:32,898 - Inspection date 2021-11-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:32,898 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:32,898 - Inspection date 2021-11-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:32,898 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:32,899 - Inspection date 2021-11-22 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:32,899 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:32,899 - Inspection date 2021-11-22 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:32,899 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:32,899 - Inspection date 2021-11-22 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:32,899 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:32,900 - Inspection date 2021-11-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:32,900 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:33,923 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:33,925 - built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions) +2024-07-25 12:45:33,925 - Dictionary lifecycle event {'msg': "built Dictionary<1115 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2146 corpus positions)", 'datetime': '2024-07-25T12:45:33.925355', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:33,926 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:33,926 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:33,926 - using serial LDA version on this node +2024-07-25 12:45:33,927 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:33,927 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:33,931 - -8.108 per-word bound, 276.0 perplexity estimate based on a held-out corpus of 1 documents with 2146 words +2024-07-25 12:45:33,931 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:33,932 - topic #0 (0.333): 0.017*"’" + 0.007*"West" + 0.006*"Berkshire" + 0.006*"well" + 0.005*"plans" + 0.004*"needs" + 0.004*"need" + 0.004*"18" + 0.004*"agency" + 0.004*"early" +2024-07-25 12:45:33,932 - topic #1 (0.333): 0.012*"’" + 0.005*"West" + 0.005*"Berkshire" + 0.005*"well" + 0.004*"14" + 0.004*"agency" + 0.004*"working" + 0.004*"March" + 0.004*"18" + 0.004*"needs" +2024-07-25 12:45:33,932 - topic #2 (0.333): 0.013*"’" + 0.007*"West" + 0.007*"Berkshire" + 0.006*"well" + 0.004*"need" + 0.004*"practice" + 0.004*"plans" + 0.004*"needs" + 0.004*"early" + 0.004*"progress" +2024-07-25 12:45:33,932 - topic diff=0.712619, rho=1.000000 +2024-07-25 12:45:33,933 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:33.933066', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:34,944 - Inspection date 2022-03-14 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:34,945 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:34,945 - Inspection date 2022-03-14 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:34,945 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:34,946 - Inspection date 2022-03-14 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:34,946 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:34,946 - Inspection date 2022-03-14 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:34,946 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:34,947 - Inspection date 2022-03-14 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:34,947 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:34,947 - Inspection date 2022-03-14 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:34,947 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:36,640 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:36,644 - built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions) +2024-07-25 12:45:36,645 - Dictionary lifecycle event {'msg': "built Dictionary<1087 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2224 corpus positions)", 'datetime': '2024-07-25T12:45:36.645018', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:36,646 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:36,647 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:36,647 - using serial LDA version on this node +2024-07-25 12:45:36,648 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:36,648 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:36,654 - -8.043 per-word bound, 263.8 perplexity estimate based on a held-out corpus of 1 documents with 2224 words +2024-07-25 12:45:36,655 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:36,657 - topic #0 (0.333): 0.017*"’" + 0.008*"Northamptonshire" + 0.008*"West" + 0.005*"well" + 0.005*"NCT" + 0.005*"quality" + 0.005*"3" + 0.004*"needs" + 0.004*"impact" + 0.004*"practice" +2024-07-25 12:45:36,657 - topic #1 (0.333): 0.014*"’" + 0.007*"Northamptonshire" + 0.006*"well" + 0.006*"quality" + 0.006*"West" + 0.005*"need" + 0.005*"impact" + 0.004*"plans" + 0.004*"practice" + 0.004*"October" +2024-07-25 12:45:36,657 - topic #2 (0.333): 0.019*"’" + 0.008*"Northamptonshire" + 0.008*"quality" + 0.007*"practice" + 0.007*"well" + 0.006*"needs" + 0.006*"West" + 0.005*"experiences" + 0.005*"plans" + 0.005*"NCT" +2024-07-25 12:45:36,658 - topic diff=0.755884, rho=1.000000 +2024-07-25 12:45:36,658 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:36.658374', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:37,662 - Inspection date 2022-10-03 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:37,662 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:37,662 - Inspection date 2022-10-03 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:37,662 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:37,662 - Inspection date 2022-10-03 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:37,663 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:37,663 - Inspection date 2022-10-03 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:37,663 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:37,663 - Inspection date 2022-10-03 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:37,663 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:37,663 - Inspection date 2022-10-03 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:37,664 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:39,128 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:39,130 - built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions) +2024-07-25 12:45:39,131 - Dictionary lifecycle event {'msg': "built Dictionary<1233 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2720 corpus positions)", 'datetime': '2024-07-25T12:45:39.131070', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:39,132 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:39,132 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:39,132 - using serial LDA version on this node +2024-07-25 12:45:39,133 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:39,133 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:39,137 - -8.120 per-word bound, 278.2 perplexity estimate based on a held-out corpus of 1 documents with 2720 words +2024-07-25 12:45:39,137 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:39,138 - topic #0 (0.333): 0.010*"’" + 0.006*"Sussex" + 0.006*"well" + 0.006*"needs" + 0.005*"13" + 0.005*"plans" + 0.004*"number" + 0.004*"supported" + 0.004*"health" + 0.004*"quality" +2024-07-25 12:45:39,139 - topic #1 (0.333): 0.013*"’" + 0.006*"well" + 0.005*"West" + 0.005*"plans" + 0.005*"quality" + 0.004*"needs" + 0.004*"Sussex" + 0.004*"practice" + 0.004*"13" + 0.004*"number" +2024-07-25 12:45:39,139 - topic #2 (0.333): 0.017*"’" + 0.008*"plans" + 0.006*"needs" + 0.006*"well" + 0.005*"West" + 0.005*"13" + 0.005*"supported" + 0.004*"Sussex" + 0.004*"number" + 0.004*"health" +2024-07-25 12:45:39,139 - topic diff=0.806627, rho=1.000000 +2024-07-25 12:45:39,139 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:39.139601', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:40,095 - Inspection date 2023-03-13 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:40,096 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:40,096 - Inspection date 2023-03-13 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:40,096 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:40,097 - Inspection date 2023-03-13 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:40,097 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:40,097 - Inspection date 2023-03-13 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:40,097 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:40,097 - Inspection date 2023-03-13 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:40,098 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:40,098 - Inspection date 2023-03-13 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:40,098 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:41,654 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:41,657 - built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions) +2024-07-25 12:45:41,657 - Dictionary lifecycle event {'msg': "built Dictionary<1076 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2451 corpus positions)", 'datetime': '2024-07-25T12:45:41.657228', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:41,658 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:41,658 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:41,658 - using serial LDA version on this node +2024-07-25 12:45:41,659 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:41,659 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:41,664 - -7.967 per-word bound, 250.2 perplexity estimate based on a held-out corpus of 1 documents with 2451 words +2024-07-25 12:45:41,664 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:41,666 - topic #0 (0.333): 0.014*"’" + 0.009*"plans" + 0.007*"needs" + 0.007*"need" + 0.006*"Furness" + 0.006*"appropriate" + 0.006*"Westmorland" + 0.006*"protection" + 0.005*"quality" + 0.005*"progress" +2024-07-25 12:45:41,666 - topic #1 (0.333): 0.011*"’" + 0.007*"needs" + 0.006*"appropriate" + 0.005*"plans" + 0.005*"Westmorland" + 0.005*"protection" + 0.004*"quality" + 0.004*"April" + 0.004*"Furness" + 0.004*"progress" +2024-07-25 12:45:41,666 - topic #2 (0.333): 0.013*"’" + 0.008*"Westmorland" + 0.008*"Furness" + 0.007*"plans" + 0.006*"need" + 0.006*"needs" + 0.005*"quality" + 0.005*"appropriate" + 0.005*"leaders" + 0.004*"response" +2024-07-25 12:45:41,666 - topic diff=0.801129, rho=1.000000 +2024-07-25 12:45:41,667 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:41.667070', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:43,102 - Inspection date 2024-04-22 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:43,102 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:43,102 - Inspection date 2024-04-22 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:43,102 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:43,102 - Inspection date 2024-04-22 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:43,103 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:43,103 - Inspection date 2024-04-22 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:43,103 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:43,103 - Inspection date 2024-04-22 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:43,103 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:43,103 - Inspection date 2024-04-22 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:43,103 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:44,515 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:44,518 - built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions) +2024-07-25 12:45:44,518 - Dictionary lifecycle event {'msg': "built Dictionary<1064 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2416 corpus positions)", 'datetime': '2024-07-25T12:45:44.518181', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:44,519 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:44,519 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:44,519 - using serial LDA version on this node +2024-07-25 12:45:44,520 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:44,520 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:44,523 - -7.958 per-word bound, 248.7 perplexity estimate based on a held-out corpus of 1 documents with 2416 words +2024-07-25 12:45:44,523 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:44,525 - topic #0 (0.333): 0.012*"’" + 0.007*"May" + 0.006*"plans" + 0.006*"practice" + 0.005*"quality" + 0.005*"timely" + 0.005*"2022" + 0.004*"Wigan" + 0.004*"needs" + 0.004*"appropriate" +2024-07-25 12:45:44,525 - topic #1 (0.333): 0.011*"’" + 0.007*"practice" + 0.007*"Wigan" + 0.006*"May" + 0.006*"plans" + 0.006*"leaders" + 0.006*"needs" + 0.006*"quality" + 0.005*"appropriate" + 0.005*"9" +2024-07-25 12:45:44,525 - topic #2 (0.333): 0.014*"’" + 0.008*"May" + 0.007*"needs" + 0.007*"plans" + 0.006*"practice" + 0.006*"appropriate" + 0.005*"Wigan" + 0.005*"quality" + 0.005*"leaders" + 0.004*"9" +2024-07-25 12:45:44,525 - topic diff=0.793934, rho=1.000000 +2024-07-25 12:45:44,525 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:44.525626', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:45,636 - Inspection date 2022-05-09 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:45,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:45,637 - Inspection date 2022-05-09 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:45,637 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:45,638 - Inspection date 2022-05-09 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:45,638 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:45,638 - Inspection date 2022-05-09 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:45,638 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:45,638 - Inspection date 2022-05-09 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:45,639 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:45,639 - Inspection date 2022-05-09 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:45,639 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:47,229 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:47,231 - built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions) +2024-07-25 12:45:47,231 - Dictionary lifecycle event {'msg': "built Dictionary<1090 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2600 corpus positions)", 'datetime': '2024-07-25T12:45:47.231882', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:47,232 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:47,233 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:47,233 - using serial LDA version on this node +2024-07-25 12:45:47,233 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:47,233 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:47,237 - -7.954 per-word bound, 248.0 perplexity estimate based on a held-out corpus of 1 documents with 2600 words +2024-07-25 12:45:47,237 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:47,238 - topic #0 (0.333): 0.017*"’" + 0.012*"well" + 0.007*"needs" + 0.007*"progress" + 0.007*"need" + 0.006*"risk" + 0.006*"including" + 0.006*"quality" + 0.005*"supported" + 0.005*"ensure" +2024-07-25 12:45:47,239 - topic #1 (0.333): 0.015*"’" + 0.012*"well" + 0.008*"needs" + 0.006*"Wiltshire" + 0.006*"need" + 0.006*"parents" + 0.006*"supported" + 0.005*"family" + 0.005*"risk" + 0.005*"plans" +2024-07-25 12:45:47,239 - topic #2 (0.333): 0.013*"’" + 0.009*"well" + 0.006*"needs" + 0.006*"need" + 0.006*"Wiltshire" + 0.006*"including" + 0.006*"parents" + 0.005*"progress" + 0.005*"plans" + 0.005*"ensure" +2024-07-25 12:45:47,239 - topic diff=0.831852, rho=1.000000 +2024-07-25 12:45:47,239 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:47.239695', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:48,654 - Inspection date 2023-09-25 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:48,657 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:48,658 - Inspection date 2023-09-25 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:48,658 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:48,658 - Inspection date 2023-09-25 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:48,659 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:48,659 - Inspection date 2023-09-25 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:48,659 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:48,660 - Inspection date 2023-09-25 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:48,660 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:48,660 - Inspection date 2023-09-25 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:48,660 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:50,090 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:50,093 - built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) +2024-07-25 12:45:50,093 - Dictionary lifecycle event {'msg': "built Dictionary<1000 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-07-25T12:45:50.093210', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:50,094 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:50,094 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:50,094 - using serial LDA version on this node +2024-07-25 12:45:50,095 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:50,095 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:50,098 - -7.908 per-word bound, 240.2 perplexity estimate based on a held-out corpus of 1 documents with 2233 words +2024-07-25 12:45:50,098 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:50,099 - topic #0 (0.333): 0.012*"needs" + 0.011*"’" + 0.008*"Wirral" + 0.007*"ensure" + 0.006*"plans" + 0.005*"risk" + 0.005*"practice" + 0.005*"well" + 0.005*"number" + 0.005*"good" +2024-07-25 12:45:50,100 - topic #1 (0.333): 0.009*"needs" + 0.008*"’" + 0.006*"plans" + 0.006*"practice" + 0.006*"response" + 0.006*"ensure" + 0.005*"well" + 0.005*"18" + 0.005*"2023" + 0.005*"small" +2024-07-25 12:45:50,100 - topic #2 (0.333): 0.013*"’" + 0.009*"ensure" + 0.008*"Wirral" + 0.008*"needs" + 0.007*"plans" + 0.006*"practice" + 0.006*"well" + 0.005*"number" + 0.005*"small" + 0.005*"18" +2024-07-25 12:45:50,100 - topic diff=0.804334, rho=1.000000 +2024-07-25 12:45:50,100 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:50.100682', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:51,050 - Inspection date 2023-09-18 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:51,051 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:51,051 - Inspection date 2023-09-18 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:51,051 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:51,051 - Inspection date 2023-09-18 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:51,051 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:51,051 - Inspection date 2023-09-18 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:51,052 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:51,052 - Inspection date 2023-09-18 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:51,052 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:51,052 - Inspection date 2023-09-18 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:51,052 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:52,705 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:52,707 - built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions) +2024-07-25 12:45:52,707 - Dictionary lifecycle event {'msg': "built Dictionary<1096 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2214 corpus positions)", 'datetime': '2024-07-25T12:45:52.707660', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:52,708 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:52,708 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:52,709 - using serial LDA version on this node +2024-07-25 12:45:52,709 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:52,709 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:52,713 - -8.064 per-word bound, 267.5 perplexity estimate based on a held-out corpus of 1 documents with 2214 words +2024-07-25 12:45:52,713 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:52,714 - topic #0 (0.333): 0.012*"’" + 0.006*"effective" + 0.006*"progress" + 0.006*"plans" + 0.005*"well" + 0.005*"needs" + 0.005*"quality" + 0.005*"Council" + 0.005*"6" + 0.004*"ensure" +2024-07-25 12:45:52,714 - topic #1 (0.333): 0.011*"’" + 0.006*"plans" + 0.006*"effective" + 0.005*"provided" + 0.005*"needs" + 0.005*"progress" + 0.005*"well" + 0.005*"experiences" + 0.005*"March" + 0.004*"good" +2024-07-25 12:45:52,715 - topic #2 (0.333): 0.014*"’" + 0.008*"plans" + 0.007*"needs" + 0.006*"17" + 0.006*"effective" + 0.005*"progress" + 0.005*"well" + 0.005*"Borough" + 0.005*"protection" + 0.005*"provided" +2024-07-25 12:45:52,715 - topic diff=0.755295, rho=1.000000 +2024-07-25 12:45:52,715 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:52.715313', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:53,776 - Inspection date 2023-03-06 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:53,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:53,776 - Inspection date 2023-03-06 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:53,776 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:53,777 - Inspection date 2023-03-06 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:53,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:53,777 - Inspection date 2023-03-06 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:53,777 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:53,778 - Inspection date 2023-03-06 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:53,778 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:53,778 - Inspection date 2023-03-06 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:53,778 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:55,239 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:55,241 - built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions) +2024-07-25 12:45:55,241 - Dictionary lifecycle event {'msg': "built Dictionary<1095 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2233 corpus positions)", 'datetime': '2024-07-25T12:45:55.241517', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:55,242 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:55,242 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:55,242 - using serial LDA version on this node +2024-07-25 12:45:55,243 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:55,243 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:55,247 - -8.047 per-word bound, 264.6 perplexity estimate based on a held-out corpus of 1 documents with 2233 words +2024-07-25 12:45:55,247 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:55,248 - topic #0 (0.333): 0.010*"’" + 0.004*"effective" + 0.004*"Wolverhampton" + 0.004*"plans" + 0.004*"receive" + 0.004*"quality" + 0.004*"City" + 0.004*"needs" + 0.004*"supported" + 0.004*"experiences" +2024-07-25 12:45:55,248 - topic #1 (0.333): 0.016*"’" + 0.008*"needs" + 0.006*"effective" + 0.005*"leaders" + 0.005*"quality" + 0.005*"Wolverhampton" + 0.005*"plans" + 0.005*"strong" + 0.005*"receive" + 0.004*"risk" +2024-07-25 12:45:55,248 - topic #2 (0.333): 0.015*"’" + 0.009*"needs" + 0.006*"effective" + 0.006*"Wolverhampton" + 0.006*"risks" + 0.005*"well" + 0.005*"plans" + 0.005*"education" + 0.005*"receive" + 0.005*"risk" +2024-07-25 12:45:55,249 - topic diff=0.743938, rho=1.000000 +2024-07-25 12:45:55,249 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:55.249145', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:56,346 - Inspection date 2022-03-28 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:56,347 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:56,347 - Inspection date 2022-03-28 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:56,347 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:56,347 - Inspection date 2022-03-28 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:56,348 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:56,348 - Inspection date 2022-03-28 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:56,348 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:56,348 - Inspection date 2022-03-28 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:56,348 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:56,349 - Inspection date 2022-03-28 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:56,349 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:57,820 - adding document #0 to Dictionary<0 unique tokens: []> +2024-07-25 12:45:57,822 - built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions) +2024-07-25 12:45:57,823 - Dictionary lifecycle event {'msg': "built Dictionary<1041 unique tokens: ['0161', '0300', '1', '10', '11']...> from 1 documents (total 2343 corpus positions)", 'datetime': '2024-07-25T12:45:57.823090', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:57,824 - using symmetric alpha at 0.3333333333333333 +2024-07-25 12:45:57,824 - using symmetric eta at 0.3333333333333333 +2024-07-25 12:45:57,824 - using serial LDA version on this node +2024-07-25 12:45:57,824 - running online (single-pass) LDA training, 3 topics, 1 passes over the supplied corpus of 1 documents, updating model once every 1 documents, evaluating perplexity every 1 documents, iterating 50x with a convergence threshold of 0.001000 +2024-07-25 12:45:57,824 - too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy +2024-07-25 12:45:57,828 - -7.943 per-word bound, 246.1 perplexity estimate based on a held-out corpus of 1 documents with 2343 words +2024-07-25 12:45:57,828 - PROGRESS: pass 0, at document #1/1 +2024-07-25 12:45:57,829 - topic #0 (0.333): 0.017*"’" + 0.007*"plans" + 0.007*"needs" + 0.006*"well" + 0.006*"Worcestershire" + 0.006*"progress" + 0.006*"Senior" + 0.005*"leaders" + 0.004*"26" + 0.004*"ensure" +2024-07-25 12:45:57,829 - topic #1 (0.333): 0.022*"’" + 0.009*"well" + 0.008*"progress" + 0.007*"plans" + 0.007*"Worcestershire" + 0.007*"needs" + 0.006*"appropriate" + 0.006*"leaders" + 0.005*"ensure" + 0.005*"PAs" +2024-07-25 12:45:57,830 - topic #2 (0.333): 0.017*"’" + 0.009*"well" + 0.009*"plans" + 0.008*"needs" + 0.008*"leaders" + 0.007*"ensure" + 0.007*"Worcestershire" + 0.006*"appropriate" + 0.005*"15" + 0.005*"experiences" +2024-07-25 12:45:57,830 - topic diff=0.806639, rho=1.000000 +2024-07-25 12:45:57,830 - LdaModel lifecycle event {'msg': 'trained LdaModel in 0.01s', 'datetime': '2024-07-25T12:45:57.830338', 'gensim': '4.3.2', 'python': '3.10.13 (main, Jul 9 2024, 21:32:52) [GCC 9.4.0]', 'platform': 'Linux-6.5.0-1022-azure-x86_64-with-glibc2.31', 'event': 'created'} +2024-07-25 12:45:58,967 - Inspection date 2023-05-15 / Column 'overall_effectiveness' not found in the DataFrame. +2024-07-25 12:45:58,973 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:58,973 - Inspection date 2023-05-15 / Column 'impact_of_leaders' not found in the DataFrame. +2024-07-25 12:45:58,973 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:58,974 - Inspection date 2023-05-15 / Column 'help_and_protection' not found in the DataFrame. +2024-07-25 12:45:58,974 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:58,974 - Inspection date 2023-05-15 / Column 'in_care' not found in the DataFrame. +2024-07-25 12:45:58,974 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:58,975 - Inspection date 2023-05-15 / Column 'care_leavers' not found in the DataFrame. +2024-07-25 12:45:58,975 - Index(['judgement', 'grade'], dtype='object') +2024-07-25 12:45:58,975 - Inspection date 2023-05-15 / Column 'in_care_and_care_leavers' not found in the DataFrame. +2024-07-25 12:45:58,975 - Index(['judgement', 'grade'], dtype='object')
      SE E10000014 Hampshireofsted.gov.uk/50083968ofsted.gov.uk/50253183 outstanding shortDonna Marriott29/04/2019Kendra Bell10/06/2024 outstanding outstanding outstandinginspection_pre_dates_judgementgood
      80473 GL E09000003 Barnetofsted.gov.uk/50088889ofsted.gov.uk/50253182 goodstandardAndy Whippey13/05/2019shortNaintara Khosla10/06/2024 good goodoutstanding goodinspection_pre_dates_judgement
      80488 GL E09000011 Greenwichofsted.gov.uk/50143727goodofsted.gov.uk/50252576outstanding shortAndy Whippey09/12/2019goodgoodTom Anthony03/06/2024outstanding goodinspection_pre_dates_judgementoutstandingoutstanding
      80496 GL E09000026 Redbridgeofsted.gov.uk/50083969ofsted.gov.uk/50253184 outstanding shortLouise Hocking29/04/2019Brenda Mclaughlin10/06/2024outstandingoutstanding outstanding outstandinggoodinspection_pre_dates_judgement
      80513 SW E06000025 South Gloucestershireofsted.gov.uk/50074950requires improvementofsted.gov.uk/50253185good standardEmmy Tomsett04/03/2019requires improvementrequires improvementrequires improvementinspection_pre_dates_judgementAnna Gravelle03/06/2024goodgoodgoodgood
      80557

      Summarised outcomes of published short and standard ILACS inspection reports by Ofsted, refreshed daily.
      An expanded version of the shown summary sheet, refreshed concurrently, is available to
      download here as an .xlsx file.
      Data summary is based on the original ILACS Outcomes Summary published periodically by the ADCS: https://adcs.org.uk/inspection/article/ilacs-outcomes-summary. Read the tool/project background details and future work..

5H<@a8-oxAJ0jaX^69 z0h)5FztUN4YCe!(s9y(q@CK)Eb9igtkcr1xj&KY)s@Ys_@Rj?3@B>P7LGI0hu&(y> z|M9Xpu3=d5T5*UP@B?83H@E-rWGVM`4nrAG9Mie_=u-ZRT8i{|QuNmpX!(dIseq>{`rs zI-qT{%iflwL%blJO?kU1z5>5)46KiM&s&D&_o+|0FNbg;oE^k4_5lKThgQUqjgjdd zPgp-X$jJ{5qv*e?{74YPVI#tk2Y#FWN8~>>`k&2rkKPZ=l#hzx&n{o(KpZ!FJVF04 z#E0GwdKA1Tv*zKRkGsv5cEsRZADys|iI%0v|Ja3(DPRmCwNtf8yB|1?yR=&dJo`%g zeaJ|R`FN&3xYfb2w*|5Zv3EO9Q&;S&f?g*QMmi3-*Y(Q$y!T?gHeV(~daV3t5!YAr z2Fa4@H#>Uxfy2gNHaUx~3Z!|ZioIoc&pOuv?QAaaLC*0j?)}z|#|D3~-Px|y`mPsQ zEos+#E{vg#d!@KG(pc+EGn%(Wu5c99h* zp)^wX{lr>RinO<1WkxdMloGp6 zUc?>IW-v3>g z1*%+K0o9&rdS8O~ZE(d^cIR(M5*=TNz2<9uRJEcQv?fhFhm5gG%9yGxHquO>u;bmp zIfE(P#@Q2C=_bpPNO+16k7-3%f`NW$9y4mktCZ(gGZ7~@II8NQ)sxiVJX7UCxQBf> z`%0))3a8S%p<#}{8vk67=N+r??a4^&*A~_bv-)OKIeV={x~Gd?tb5@pAsV zmdA}SadA}(*3D7btN63@N1M$|C#+QVTi)&y2<4e^f>1%i0GKo~PI8pW#qD=81WPSm z1vDQc{LCcgY6Fut$%J>dot)B6i|!T+Td&MD#N()y=CZv`ZDn0f(nyEn)^^rO2_qaA z#|+eL$C)(7@y2u&UTi+jiL%s?J3`MQRl!|RmE$Zt84%IfgNsVkm@LyKX2)ht>om)@ zk5}(OkEfeZGk6Df{SC29%~c_S-yV$4P3B=thM+unnycK7+0ZcdW~RT%a5$95=(m*7 zm^E;f_&*}i2kQ?gIE}o40z3{1*F<5R^W_WFY++qO+xz0T6l zzi)J2BoNDQo|3Z7`c)E#ebCZ!mU`*jR##M&i>$e%fqghGsPW79Ybe)z%OW{`AChmR#vWar$Fe8H| zdX%MHxJ4v+e3~)jk;vNbzSLg@*P*|Fs1#+84Fzs6*hWzQkrV`M)DHZZAAZ?MXPEqAAU7o`C~w{So_ zI47W?XW-L2v}2l+pYy)uCuL6Ij6MiAQB@$(b%}6`44aU(xwE~~&sR%k&@52Imv#aZ zB>0L?r&-j|M3cdYH0oj?1qc0Uuk$%fWB^L~{SE{&7FJJNO;66@Ym(C=sdz-2U zR=+H_YjN3+b6On295$x*E_HeonBC?g1(^CE&H-E5bshC+4UWY`&$5qBQU+2)ScPT8 z%or@|6fO`)vLQr9jOeo@72vW?oEo_eT6DIIf*XsWt=K{;X8e;cTC64I!|u(U6~p6! z6=SbFmOiYacw!JYzm)Am1$A!;a133ED2;A-RSq(LK>9Aebm{P%nzm%=oO*s&gU6{h z#a+y3_;CW22R*T99TD0e-JC?SPT*>HdU#tva!Md3P7AXgdJ(srJ8^7#Hqc5cWqjq{lF`Zadc|US*W3+@PH04d{%ac z_MM2f2^VIVFAT}BTov`k@3Bx)$MG_tj<)t+wc(WsCythiI{Mdwf%U$Q` zMZCQ`Kls{mr*7zNtM+BN^~S54SELV&Vg}wcDi1m1?kI&rAbF_wndr9#AF&Pq{_-|xO>vM|*v zIsEV@^h`of!{RvxN`+F9A27K$!^nFnx>c)o3_I!oso#9lm*Mq+Qx?8w{lL0^#Tp5p z2+s~bL2?=Cidj2B6z&AM5)ej1>Vj2*QYfY)?2dZm+$Ey?3?k%Nj9m{tn(@`E>L88i z7W4xjHNPUd1&i*M&Rsf`x-G$aVOoR_qbJ5blJS3fPD#Er75v{a|bX!R7#>`{tkV_PNN5AAld8SLsUC&FRdaPSSmS z0SFtl^=OHu?9P5LOd;w1buJh~(tTnl@VTX`7Wv$=q!J7xZ`Lo2)D0|kgL0%i?l%I$ zB+_^<3o5V96F5>4+lEBx#He&)RNHZ?oH;IU9q)S&xUqjdyf`^d8$M9HM{t}2Hf(YT zes~Z+f*_v~{IC+g)I_c%{xL{=NG5;*Wg3?!7ziOwkwGY)^y8-9L=qaRTRc!MPM;3y zS)4u-v_V{+ltePk^Vtm5qELVcgvEM};7t}y6d(I8PlV_21}_Q_)#vHp4ta%Y2&xda zn$CXtt7$&e0?&|T2YJBe&&jiDFH4}Pj)A?SwA#CzcVh^W8#FR^a5*|KEW{((zMJqm z>wNBtQD+jz@iiV+^NWPUW6oY}C61}N(nmsJm#Uztt)!_5iWzL*T(^7`)IZA zCa{|fVH*Ua`z^O3IB!C9BdTZ9E2@1&6nao3Z%kwD=EAoH>$h(02gJI1&6l;@4%v1- z=Mai|{8sqZ&A5KlPA*Lv4>h4Ni5#N>58f9lEDnW6>$3)L+1991;Q)toKFI}R-_ zs(&8!woAjj8kDQTvJV zIA`-&c@pN#N+TFE5S6>>Dbrz}6zHN8m73A>Hy5Yc(3^X58+iJ3X~5n2XlP`}*28vX z$lBF=S5HQ+lqP0Z9T9_Vi^v=d76RrJDwxqyVN@8kGoU3vQj2#8EixoeG?F{h#$=2r z*(`V*b}M73%8fV}K2readk==E<(n^~Jkp`=K=;t`E$c17wVX|_nK5L2WUu?2|MZ1M z?_l;kIcg`HdF!l9t)uJCQE%|O9U`6K4z!&QKDDK}#feto?fiopIU3wX^>c4;c$pjTT5C#nWvA=BgWu-Lzf-ub5tF1F#1+mnUMSymSM1_=3^hT%BTY%jsS~D z5@a2?0aRkj+$0|bNmEA`5_)MkIQeY@NVYchQR2cJyUyU{4RHb_^M>4Z73a5M^D=6| zOon=q+dQ#RZ`2-s!!l`=#zfY;hz*OXEoCYMi@V#T80RO2qcB7qrj2`W+sUbMzy?uj zjnt@1tER#&wi)X(h#s^o+@h}_ZtMjB2Ds+kfryH!{N~-e8#T+PKMy;Ms87c&p!x&F z9?@4&)~KpPpAYs+hsr|#n?2eZ9M@%`^>9L_J|6Fvlua2$qM$ekugl6c5HWc-0&NhX zIAKLX{65y@$*ylr%|T#{4vZ7E@U|ovBCP#{?2~#BB=$(!&?ge~v*>L!j%vGnTL#Nh zU5FeYq~bxg-Z8?w$i8S#G+6pb-U#O*zjtZ-=koOF1m<7emLVS;aJeHY!@UEDE_?Ub z!9Q=DksQOH>+bN}a|`1tS~;!v^24z>qBLm_{gdtSVdE)`vF;!v2^$E-08lT>fmItY zZ?y=y^xQCZ$PMsanNn_AO}p4HE}{~Bk5LR|1O%-Mgt6E!5*oDRLn1QmY=l_qh3nW@%Hd`@DFNOXq0}l#+gsJIaJF^cdth;H!yC;vCN@18(kE-s zQmf{!{TN}dX}0KxK?h6ccQ>7$#bg)VI}%OACH5=^PGl!USWS>4@CdIKQE<^`#!~$t zd)r#FrD7=ht0*2vQG`}-oSL9w6ucgc#)GFVmb)_gP2w8%^R@#`be{z7Yq#h?;L0(^8U-}5QNw#^i6}X#SWWlriS5EC!odbcT905~qAR&`UcN8(dB;L`99XXhr5y>@R zwSKr-0!JEawADwwIJDk))sg-Gi@mpwinCevMzMt8gb*xPa0xOq%nXAE4Hkj~m*DOW z0fIXO2$G<|g9dkkyA#|cxCD2&ll`5uzrC4vpZlG2?;m&FwP(#*Fu$j|x~sans`{B{ zy5!zD)P=CF^1rImRZ{Zh>ad4T7~Yrd5hZTLKXAs~7tTj!`-HY2tiT)g8=J3yI8A!L6Rh0L zVbiE0jF(J2)pinAAj~@(q5RGZ)eF>-ns|-_f7E^525avknZ%m1&EtqapDQfP zu^7)eNW-(u`Q4qC#3&@jv2-6p4A8K zqW)&IyNUqH;JVv$serT(StZ2S4VRs1j4c{=qa1tT6d~VQYZHr zmAxS^P5c>Lbc`*PtJU+}J3*6HOuPx(C|!t^PU6-F1Zh8)`#vj7*gp4VCkCgjQ1yj_ z_scjsnQ+LnY-V*y?!yv2NTMSaw&|Wjw;9ks7&ys7$`;4u3p5}!&!>B`+bcVc0+$xM zRGcfI!ncpu*Ql)HJx|v(s*#1o!&$44nEIK*sz5wnD#%If{@`17T zTL%x`HmN9S$A5{A6Lw_Cm@)y_)wX5&W!g$64Rq7H2epPshHM;uq|2D|RpH}u$8D*| zY@I?^NMI$?M5U3G$o9hdT8(yVCde)nHK&-6^eJiel}wuQR{tsCYqrlkj#4Go^@H24 zAKu@(T!Fo18_J5SkGf8y1QeXsTOZ(*?WuvTf}`U7zqTER#zm0xUvG4E;niWLCa4en zUZVYR$HnN|@O-~z(yH}oOtn#^HmY6(vzbUppJ(L@k587_H`L++@-ls@>0^31SSH+u z!_@jif`SSRoC7=W^qP&IMrTqy~&X5EU=DFXqPoP@Q~@H`})mGkVGSXP<-N7 z{zmQUSJy}rjJ;Bkz)by4+$oA~L(d;;S)MlH&ehA~y$mr{-mj%$Y`-d$h7SgO+`z^Ij<1krpIhuDsP=`aZ= zPb*wR3a(@!8sb5j%LSSCqv+aSaPRB)o93~yX2fg;4Xh=pJjyA>$(5B!dmZ(o@4fHE z1FkIB0M~%<#4ckEyF$y^_G`m9ws8ugVbKRAeZVoEK#1*$n^=2>g%uxVvVrAfhVAwJqB0`fmaKrU>^QU~k8=UbM3i#_X_m&bYl3DE zrYf~*6cQ?LUlH;6r#0#B%<;Y}ew2Bx2q@AskcG8YPS~jDafQ{C+m|x(s*>mZ)EnQ3 zVZg!L$7i^5*7R`cTqP98JUr+h^t1LPJzqO}kwB}H-r0!Db?9blYWjieo6#rPgqfld zp0}n}5`mSX0^4O|pWnD+l#6Q5tTUIbx%IrzHIVKp@TVucI;MM(tVHCVI9>e}72@zQ z0;v&q*-cHxrGapgSm|f>?l{fvw}?H}=udnV@Ddc-yp4}0otFw%m#;H_GP|S_;)azA zfJYdxJuc#TbD&Tk}q}fqDGYKW#*s*JBer11U%lC5N1@8h+Pyv z9PyBcZAk-qR(r4wN((_+pkEi+Vnr22;Q?&pg_XM<&n(YWJx#D?1im*~$Jm5+J8AgL zS(VN7Jw%`17>y3&3Dhc0@F(yk#SNNk_zcJdI}og zWd{zx*n#4ap*b3$_v2TNOI_&dB*WnW&JN1ip=%>Sql?BqAmv+NUp8PIkV2ZROB8Sk5nFcu~!CcpyilS!)xWvuRms zd^Iq2#>W-Sf!*(_yM0rfV{F_%&sXYAsOcsBP14H1iu~CO{7SbhI^E5J&3CrrQG{TMu*6Ngp422`V@_rq4?7I2#yVv%Iw1@SqJ4R0Q zUBadIC5Cfb@~YF-C`$~>=$Dc4x_z5%#?cqOtC@B@?IWVkUW8+SG_k@9@{we1CtKhmI}i{Dt|>k#Zfj{D2< zD!V%MJ7ot=9m2-tgI&>)3mzZDf2#%4-j*8!&5Es{1uL zwP~m)U{oa)9q}t;J>271vxJI-Vy;p7iXo7s?v}d`ukfE6vf~qgwvXQ+wF$ zjhB*_Ce`qfl}CkVM9Qe~ciT|_2#af^7 zfbDPu4oOYavSZmH-O-UQ-!cB~PI|Cyt?ze|t(_HuR?QSW&DPIBW0>MGPs)7FW!w^- z4vtlbVLj#fk;WkdiJM2V%uX_FEHY9ZiCmJeSXh20aVU1io|4a>_V(xN)D_tq&o_}? z2tsvEf6ud4?bIxJYc#$$fi4N#o9CW{if_4Gv{MP*t@Q>@6&mwuE2pmKH@!ao^5gAl zI4yx({d<5;=iqw$QKCz7Gdr26uVK>MJLK1N4Dqk!9NuxsREyB*W%EUZWqdvz-q5A0 zXz=)XdTN2PBgOtymQA4Flkj;ffZMy6!{R`^m_H<$4f;D{iOvaKFCV9mG1{WCq}MOk zKW-|*G;nZUs^YS7cW24?kN-6WUfEFdED<-D@W~05Me+f5^o$5xIbB#}j@JJPA*?q0WF zTfFbAC`n~&b?NdY$PF+(hcw{FHDRiv$G1XUUT$jFWY=UF%Fo2*OR-K^fB865^I|)F z)2Kvy30a?`dbOZuwxD2Es;K{MQYy71bI}xtW2V}6^RQ#uyeL84Wz$Szq+U6Xwb-nk z(cacwT>a{4{>+SuPBYsem%2TJ+^HdZV0~4@r(YB>CqFHYqr<~YeThuk4a_bI-JP1; z&8T{&Snc2~owRGPN4by>H0B2M`vAbhE*_)rpj7mO+Ut448&6$RZNeO3~lpHYwYkkt`9IkeE7{{$M1y3+Ra1jOn~(YhH3yc_e>O48vY{fu?X z*o+eAg(mb~!R2X)ZiT{+h7X$BLJX^MYagn3M_%chnX_2FdOm}*YKQu{DgN-M z8lA6P3KAs7!n>Q4J+iZ?_tkQNgAeIk*5z;A*$puKJPr38PS^UtO7w8G5HQjo4V+0;^v1upae}|kn&hIj zt2@eBV%{yy$U0EJDbLYWOCu1sz1r zDb9S@Tf~3-Zn0s%oT4L5A6qoF_rCkf$=M+&sPCB~@DER9lAXqM4bK!nt=x z>_#mAN?&NXGVSnqe|LKkEnn4`_xMiTsY7!|(}wsOUaYy*@bB6Mp#L_bqH9~mR66ZEM z_cXT%h=v0z%s9rxG{5dt7_Ln2;E6EvORq(+U8ss->``uyUS?2u&<*r&>nLrC8pkRU zD7NzOd9eq0@@`AjqHh)m4Ar7L}=1SpVcLdgY@s zWFxcxxbnZQ{|6Os|9hX3n@G#{4kL?>(^M$d^n!)0PC1!YnFI81eE!f?-g%J)=IfQ-cbZ-YyoA?LVpbZ#F!SCL+U`Y&!!wcl|{amn{Fg!7;jC` zM>~*(#zYOnH-T_+iFCXC@Im&-Bsj#5-4Sv8uA&&Wp>3?5Yy^vnQDck@1w?B zKXfV!07=YMZS`@+QFf5qSL)>LYP=(t09h_{gl&=Fc{L}zMlCPUB9LD|JKog{NN;5R z5}(mX`i08(axGVo;)D$;gW}r{^Q%nUZh>zirE*&zcSdpEy`qTrPzW?wz?ODqo;a2K zk53)r&A<4!G{}BiKX5%N5%Dnhb=8YvkXkI>3CQh+cZO3F&f$rTa@&067eA2x=I%q$*DoUTYFeufU{QUSZdK`(?>y|FF07lL-T6m{JU;LcX!FVJ z6IG-Q$FWEsz{BO2k2sl-U*K+FB2xs3_!*k(UVV@!O7PFG`5;lD&5(=E94&Ghe{Ddm zwWvx*lH>c7n^p9S2{Uc5#Mf9t2_?Jcyhq(w5~N7Zl#}_wpc*8pFs?vf*JS?c4~)4K z%+rh#wY$Nm()fO8y~tc&v)eZ)ChRhO+lTAP`h;$nPlznyP>alwh!wso;*>Xuf6Nr+ zVfG7R+(6b7eSDY{p4odIS-)=IMah;cOx1&S`SCdq_u7NStXC-h@So$WvWbI5Tv zVR@vHDxxgz+!dy3q{k0W+*O@l#(NG~WSOjDxFRXz9wYB2Ab(L}jo}z+K>1B8Mo2I$ zMU>z@twcLR_gqfl>r>{C=g2PBaTHr&{{DK;o6>dMxIgg{|4tWGh(0u;_5^o%qJE69 zB@DlKm6M6fe8O8iq`Rnq7D2`zWl_$@Z!x}B&*a5ckONVzKAbP4{FG7W|u z(x-=o&03p5c**>NRpH`wzQ=@P#2`{PQj$yCGVAx>DCo&Tn<*cYfXY2lR-!U{hej_n zQAYG!U&+xB!gNN}Qj`^#LzqcJD77-ZirlLu0^GEb=Ii{6Jt=s*TfOo$T3-!aL_gU{?%!M9e_=emtoagot#8buW{ASW%qR~72YUuT)b00qO-MB4cqd7=+P zj7Xyua(=~W_Y1{6PH$A*M%OVaAEa%@GIU}x#_Pl5!szMxC=Th-ATW6QJi(W&2Mxa# zEXX#Xn`$U&ZFvka#;VZP=drp?<~fEQ3G5w`Mz~Pm&c5C6r)?rPWlWxU^``%m>9$yz zvsZrHX8mFDHfgzLw1C~uhbj*<8zebCnwT2W=){@t4hRAB%N+yy_&Gt3qHZO5x33e9 zS+gL%F@*0ZsJBBj_nCzYYEryX25*ryHo$bErL5&(iFm;_69(dqfUu}Fb8_;x;Lqd6 z^$vWu6_xH+)45}!Nws|A?ZThJRZI=$8Nxwo#6z(!UwEr>`B~|i+ zeUKng0Ye66Gb(RJR3=I$e}uB}n`sv=v$&9QCBo>3W>2@M$&Q~iu__ny3b--4E&h@r*phf;(7nUP*AxzAsIcbM)TW%@woSNo$E@Y9~tfN37<*67;=AweW)Gn zp6ndW_(ei_9lo@j`MJ#hf7M@+}%GiQGW+ zA_iuSa7^*1MS09vg|7r=nV7IA#=QpII$u6#$*;T*R!=9Re+;sHmdGtxD-|7h^ohU~ zIQxX7Pi582<}-~VON$t$VI$^V^K&;Eq7-;%GKA6bRZQ5r6p|)g(xXxwWHUuxj#S3aK=#MzY#8_e4?OPE|tI- zYrI?^hTTN57kcz`QvsI3^wf~qKp2cFM_{I;5Tz7^<@ZV)Jb;OFFrnBqRwI=qgPGa; zrVA|d{sRs1;N!KG8ll%XKbev`z?hnu(T~6c5831LVugCKHJON4q+$sRLXd*c-eZnc zE2Q^CnQI7V>uTxyS?Mj==>a72cjrV^ncuz&yd?nte8!~+Lax?|%x4_= z5Ks7K_?2Cn>{|t)w*_4>y@bNH(z_UvZ;^>nmzj{5f2ZWjqo_QUPD{XNkfu?r{K@o) z%C(V*oD7W`?Xo*MTN-&#=Gn6iRZ`5)GTxd(`DPDO*p*PVpV~F>Zig+#W(_mBpI=C> z_VJlkDltEn_LuQz8O4jZMq1@8TyaM|qN#c#(n0;DSYm5}W~ZKrhEiDbgBj&lB;d=j zSK^We)R!M?H9CMwhM^{vC6YcJ^0fQtcBoHZH5JLk;+u%~HG!0r!UW)d7Rq$g<+_>J^mqsQf$Q#4NhYbm~Vai+Keh>PH?e-1ZqytOO;yD}p zP<9N~d=PC3+8XKzu8x1}QRbHy+?I=0*oAd3_Z)kH%)b?*A#GVSPgv4E_&k#8YO*KP zGktjdiQ1pZ-dkwv1>tujM>lqCZE(_0H;j)%c#n$WK49Z;3Tc>E9KTiW{(w%`oi=Pn z28fE!>beLB|+oY54!oO{^GSBGiE(yW+>L^(+s+YZ;@98 zNq|9ABnCZ3a>MN3%KU`#93(@#o{~Mv^I07uTa@8E@L8lsz0tt@a6r`A{GdKzl?#&U zYyZH7AT_=xd`)yE#R8ec9r&Be%8s0ao)jJby_4P{QWCLm*%S0dkDB0N?4(h_;K9d_ zY$&PL8R**WVecXmNuH(>^vi~|(>6DXQZfl>;s+y{0`UUTDsrpIkwxR0mL%G}pYujP z8r~HV8v;B&gLFw?bnLFosYsNz3`gN=SeBZi4p!3ewt_xZ@6e|tRe|w+Z>7LEwy#6k% zMC-63?vNf^&b=h1o}@d>95){|kbaicInvtX&h&xErw_e&wEKOm*tc}05zbG7OBc%i zjSn8$n*0!q&`sqlQP|n`Vw#rYIJdMakxBWs%loa{liS5nFW+tzn~z0@UVpKKMG}G< zNo=-i5zCqE?N#$|zb^{^k>G=2B#wz+i=*Cj>$O2lcFD$O!-d>M=dn2LVe0a$>S);v zZA|)?86Lg*0|lBF zeM{dT?>+3=z*SkB=AEgq9pJO`F8$WHH9gQQEe%yBgkc5IxZ%i)&Zxf3P{>ufLTXx$ z!VJA!ls~)U^CuAyp4_O(NYiRYKtSQJ6R%e`<9dggG5ocny^a@SdF>~=F>(g zj~wO4@pv?O_gNQ;S1mqeCLg;_tb~vNA9V;*GWLlypxH$1lQKy{RVI-<(`0F)?oz93 zmhuCUyZ1n?13+HCg3}KzLy(%8%JykIs#P-XoI7TsrbsBBTjL9Z75S@_mpEeJ=oEp- zXTWDhuV?M;&c0wAEnwx{lDOI_^t8{(%n&PL((Lxot&>cCswydwEcTUAsjf2DjC!%& zaV0p-TQ|@Uc*PiQ^xkDdy*n~Fdwj1i5|HQ-S-1UqJHRM?3ncQ-6KGlo=0Car5{hkIv=D+P^DyXX8y z9`UkY|Hx&|4`m_}qGj-7ee*4!Z7z7vrcVEM>eSx7+=#*Epo zqE>SH;#$-McULGYQs={lLb`&Q7(XNVZCIP(wv4p3g$aM{eBu$rJ(rM1bT&fJ)!TbT zh8(>0ECKAtzgmSw;g&{3-+x_ZllhY408?h5$m|5Le(Cvs^I*)<Fs((^_!-)79P;oWnsQ)yrm(aRL&v6_=Q>y#L*76NS#qcGB|(0j&Y_!( z?#PWCQ}7t6SwALS3C7*4yx%mn(J%Lns@dZfQA`=!CQ-4mQYFgXuwyX@tG@6;DHj69 zgYhu>1zS>`l23`Z?|{!_6B~2v3#XC}ecpGTX$AgJk=3vFC~-R|A4!c|>6W^My$5g(v!-TQo3qi+d6@gyt{4D|8e);ec-S0dA&Ef3qsqb?9^W!r-%s%{zSKhXE2Xk~W zSYitmIJkS|tj4Venp^2VUVH2GzroBRGkm$o-W2IgjEWv`%ZuH3K>&~akEFbXeF+nU zKbSxDCG5J0M{`j7{fv&w4{R`-B77m5LojK)B*U7nz^TYswQVX9O~&Vve;M95a(vnP z4K*HD&|~y@h2#)*IJid1d3m_-%+Qwz$DCr>aneu!&fN93{Dw5KXy5&n?7<|(8sJNE z*~y8b#bQh8COab=Q8JrzFaxB>k*5~wG$ftcM9R8;j8`P#u^d zR6=dCl#c!*rVCX|XNOBI`%cdj0aP_#VTn&xsv!8`gwhA)R@=U)NtKMFPq3Wnt0I#d z3@it9Yt|!+`RB;K{0>(hlatek<){bi)i@{^p0UEtJDKAJ#`e@^=a%&oMEVH=!vjO* z1laSYK8?V7TvcX24YwOFB+s|)eQ=$F|GKg&&sVl8C&kp+cA?k5GpCl1mE`4; z$HLb)4J$2auOIVY@-8HuN*GZ%H!KWl8TsMxUommIrEK52j%S3lP)%r^6lN+KcQ&}b z_jL=X#3V!py+Nal5o=P|`1CZ$?nm!B@%Pp@JQd{$3l#>YM8M~F?cb&k7dvZkYC)TA<+=hIeQV2 zJ;b*;U#RoBRk`pm%qqBCJE^{y>o5e(fGMjT>lzDEB}U>#p-E48t1ee&FYOOBxX|V= zzfNVXibc%&Q_!qiYXK8BE}z8RTuq`zO7*EXlxA_bD%g$eiVCfN>rHLwa?q`(a<~4n z?du+#&uY$x)@j`EE2)H=*I{NV@6}}BNIFv8@pMn9Lf8QekE(Vm91w!h!x&q zS4rGDD~_|uN!t4fy%>EKGfi6^%l^X}g-lJZe8iaiiO)j;?86I{Vs_n2Crhy$)H_y& z9T~QAaB~!jF=x6B#^*$=bprn~OmYh-G0uMSR?WE;@zvQJ8QX)|UXYhN&SH8p~rhItf!CdQk#3!fLc!k*D%ccb0>Gcxe^rC?kh(#%B0@w0MKR97IAh zoks0<%{$TdCW47zd!e54VQr-bUxO1TTkTc&6>rt5mSFM%hqpri&oJ^&`j$U7kDE*E zPdPa%)xaP|4>__EQ5vgMB`1BEeGSvA$`cM}Q->@<>v`zqR9IQ0o5F3iqfJDXWNSgS zh8$W1)Fp9kp$2N+mgVzhfk*&!k|uV zPmE;>@D539FNa!hRtjl4wFz@)@2Dg8pRtkh1&xf4G@o9};Yw?tUOvyb!`1oWZkN@8y?H@YDVdbew z4X@p|_gV<8jtL7@xxrela|+$&vsm=~*}3h>tl?Q7xGeNFr=$FYDq|LpjVK;!;cmmm4on=!Jzw_+=ULFto zG>m6zl_v3XxvTEj^l+k+(xLK-Ej9>2$K3pHO<2B{K?C&2E!W>0WVN+@3tA^Xtv@j zd@;?@pZ>(fw@*x|e>+vfS*024rD70|Uwt-pb~C3U?z9o-;q`9B*p4&N*3T z42}bcW{N)HatqWqbl-%@|F}A;t30Ty>gL<*i`bYGDH;cu)+Cmuq;|Q^>)T|Fh9)%p z2nd4qw!h4ncpIdCp}oF90y>ALq)%S`0gaUesPx&#{u7A@JCLvt)I9z-7S8Mj%7I4+aeZj_auBbd{pqz2N z1N*RU)m8(R`SwRbJwBwo(p~$ztzs+AHKezlasD7E7$$ zke-SJaIoO5KajcoW~M%)qfFPxR5(qg_*}#8cA|IGXv^IANpAAl4~5$=q3bGx^t;E; z$a5XGBjOT}_yt2+CfT;Ph{dLUw`CmezBKF)zie)%D>-Ps%qXy@r1x$UDy?pQmRld< z7t+{1>$RPY7o>q-L9Kcc7_BSX#OdXwv=%`22__IFN=Nport62wTBEm)2w{<5-^y`I zyXcZ|x=o6n>6b5#)DEWUe=w|98EaSPb?=n_%qw@y zF!59~*gQYF7`Hd4YfT9IJyDTo4~r3?3_G7YbQu&Wd8Q&5uT4y`MOf~1fZx4Zvtryv zm!(;eBDnYds*!!rU2I@6wea$z2k&gyX2WsScU*IhJ-dDl61VNfb5)1Q4FKifZf9{~ z{%5Z3_TZwQ304x>GrJmP!)uW##+@Y`%g@1jbTu7;e{fh!thWhUfnUHys0CK(M> zDdwYom)Z`968o>X3|z`PyF14e6j8LuaTGZ|b=1*(f0VOcoCI+*x7TdmFwLHe- z3wI!TWjX5Qv^_udtut}o6MsDp-7iJ2z-X4f?V(12+BZ=^<>+g6m}?__Mcpb@^L$`vR{Z1uxx3UAe{$^tH8{-S!y> zEZCPiTDgCDxiN(+IqF;sw0>+K*)G49spC%J6mqv$^I3njr6^X82G{DalpoR;c&e2; z#npL}Jb5i?+yi!%+5Bj?NjJ_O*bp~C%Km9Kf8_DX`aHC*QNSW{zZyNPPX&&1SwNi?cc<#oDN3F45^4xc+N0v;a4sZSH&>oq`H0jX?=uE=2~_Y>I?tz z#oX9=Rz&is?s_Z^US#%MIs5@CnVw)X>;v^mD^OvBapXfMw40|tN-AeZ&H8brH1%e4 zC1a%RaU}*dUEVFX%`=4gJ!im@^Jf^6>wmGtHd$gdwDc=$pS_TGEqT7dp=f^)%Pp}j zdHr%!KW4r$zxGWkcvt1E*zr!$Y(X;Kyygqfk50eTOs621UqrODi{7O0y59Yq%kqrO z9<&zaz@RTd5pSz935QCy}V|fx#?sGpHe2?<$hnh`oZ9`JNcFv zVr{cq_Ivqu+ZeOx%t^8y>N+qf9a$&mHN6$g_x}3}#>K1hs3xR4bh&oL)qioe+n*D6 z{(ZLFzt492FOQA-R~P?%`qsbF%wOXFR@YyuTBuXu%bgGq=d2gD# zt(^i4#oLxTCbng@Y_n+7lvHM(42fv}S`D~7Jt8Jn38|{6gj8|@?$Y1fIUZR{&CZCq zksj9=;}`DZ&FEZYO&~WVJQ*`OqpCc|MB=GLruN#$OB{cWL?`B9PIbO4z;#ehhk-`w zl${Mf>6Aeew^vkiXyHVV;x?esB{lfGdZAaud4-PC{~JnewN=6KPlxBJDY4B4wi_K@ zl*?Y^=M%0Z59|rJ-{Z;=K4$*{Wap6oX+@dHx|n^mp*inmwk(K!6+^VHPA7H4C=?Dx zRzOwya6OCuhLA=`4>!aqZQ*Jy5D(ou9V~2VXS*keb$O<^q<26Yns^Qy0CRsDAUG@| zK5I**7eYn(h^CZ=q~y&ogxb-BGKu8Ah&Jnu_Xz1LHD&?Ii;rj{NK~sIPTpa4q5Hps zPNK8C#K}buPkWGrM6t+Kjl}M|z4(v><*b=00co)5g$vHw^G7Yh20r5RYCM zC%y_DQm{AyzCh_?W}%*sJedzRh25ewx|o2z^&-0P&M6GTN+n#sw!C?v#9&67_vmdf zPl%bsNt)HyjyGkwawb4^Qp=!95%&z*;ouE&2Z37bxerz%I>LBg8Hb7iB-l6^p(V{O zy6K$V362RgeaJGbYkWrdpoq_{dL@{uA_b@rq~12n?-!GpJAfV7j_eNFDO*I4VyoIB zpUp5gB|EW7fO$)D`&^ss^4fudi)B590McMbaWnDC_JP(p@->=g3bpJIJvY8EMzI5%!VCBd#M_BhtXn z1tLx~5-|@}wN}Ls#SUo?H84W_g8iz{H1uLbV@2!QWP{hET_i0fjl17Qo74Bw$w}e9 z8hEvo<&deFm7wq}D=+i4WcaIoNyW_mEY!@=%+Sol%wj3I?stX`2D65fKv!U(A$w1l zB7O)%du&U(Mb=M6c6o+el05dY#4j>znVurMIRiaCUFtmny+v__(fqW$QX(ciT-NF= zg$YhR5E*xl9GdkPol!H)6Ex0>d*Sub^)Y-BjY5rYJzw26plCH~Jr~oB6b@_=5&M+x zt@lwcV)DXUd4-=D@L%8>}HvAitcr64qtUK0 zlQEZE$sq$129r25C-VWbZ>AUKg%f7uwK?GvMkb7=`xAR(o*5bWPrjCE<%k$dsc27V zI2T%#?V<9QretVmYbVcJdV~px2#Vc(xWz%8Z0e!zPV0Hsgbyi)tddc3l5+_^n<6_1 z+X@p8lk6DinCj^7&}ZO!A{e6?gB!D+t)4v$f6(7uR`9dh=d3SdiF43+z!_i=ybrt^ zYiaT^lsB|>$8ZhqjFy$=iLd|8Rlcf9SzfO%R&rQ1Z8c_jGCbY!#d=PU-!jASiLs(3 zs3i@ELMj%c`@$8EoyjH(1MQsf40Jcqk)eIcf6HoU}m`6?oRfRx%>xSLOJ3EYh0(o zXCrYB}adaVGL}3{*_LbW%#+R^|C{>zJl5a_C%~kw@1`YtY*wL13mSx zS3SaJqGsk~>}>42gmMA#E!&bRvO38E3AzbUsemu0@iiRwar?d2T|TACMvj=d>8alY zzNXkD+PrXAb9#F^lk__&CO=E%NcpS~pju|%zp5Ttp;IhUs9(6PUEJu|ds%`r@XQP< z{A>m4WIZzbsmfHZY<(?5Sge4(G9)`DXFI2GV2%JucHHfKZ!>9UZ`0G1u z2ZsqZqbulF+;7e*<42^iq;z&e=bS70N(+nxb${60nbhdG8v84^?}gySO2&%3Wq(^Z z)-%SNzd-(us@ipE^PP0Kl&o(5mB_4!vl+kn%(lZ;53WA0F_otRmG;6FcxAieVS7MJ zK%|6=gm~mbs$J7^Qws|PD;BGOMF0NLPQ8e^^N!ub0iu<-X=QcuC0iR!m+Q?c+XdXz z-~7WK(YB?(cz5^nW|%A=?7q4Bayk`}88JMNJJ75skW*W?Q#aiRy}0c%JsEv#Y%oZe zN}trvTW4dnTT^pHx^B!)r%kdSvD@ecI9%RMNlUqvZj3L|Jgt6TGEs9j`!tX>r+8Y6 z-!a^_aHaO-Cd?jC=Lq z#&-O?EVb10k~8Ye?>f^$!Lro0M{n!6yz@9bhc)FjU#|;9Fy^l8cyMg+B*p72bd1--lhSy()9|-u98&ISnaZiocbYc88tAoE!FO=j8_0-#2+O-R0hu zY{%^9pktY0Vf{cp^EgvTK)s&|5WGj0m#b! z*J`n}{7=ou%JPU>>pT9L4M|Y}M@Lfw9v}n&g>rEN*~9=4Q8q3pK$J}w$}Pgi4FU;6 zML3}^#ldj%_**ak*!GX0aBh-T_71vM`iB1#ZvW8se=0oOYIXlqiTH>54Z5bLmVYz6 zKi4>{>^V#g{&PjZNqKB^?HmL^f3x?$fBdsr{(R84wt}w=%Rll6y!<=KKcasz&cEDd z|Gy0W`zFVKOQHW(*T2>E-_pQ;i}>Hx^>20kw>0qIBL25^{eMth|10dnYeoscGok-1 zIwkPG_ZEg$@EpV$UXtoxY+<1P@cpT%slAPbt}8qZQ!;h1Fr;>{b2R)@o&?V0Z(p&x z*clq(U~OYtM;{||o{qv%>`a1^CP13?hR0)cSe*9#B=`%}8+pZWj+AmICLxd0#p*|-2);QMXi7&jsY0pFL63jhV) z*F6^iQ3qT=z@KtC|1>@>AP7NTE+7%Fh>x07x!%l0s=tq_W^-#LGJ4c0_EnsZ&y$tC;0ySLV@rB-qQ;d$_Ybg3*`db zmzNt}=k2~da|1zu`)%Pxgb?KA1_Qb7%f`*k1w`nB8;sZoHzz zi}t5#;6K?j3;+V%UvDq~7s5J+0l=X9a}EPQK#2U{7K6|SH-hhk0bmHW3&)`M?EnTZ zErp;1AOL_cW*`7zeqlhkhq*r%;NR+5{j&~$aL<82$Avf_Krk4Q9|UnefKV<(I&L6h zA281QwhIHopa`;oIJpop01!b}AOOM|gn@uigg!tZFv1+c{m^}X0E3euj2Q%mB4Q9k zc|lMBf(}63oQQpJBlr>+2!`OpU|gJtw#Eg3N8@|;40rAb@^S&W5HZkS@Z&;=Gw@}O zs8e|8MwkyS2;$m;-`qi@gCh7Q7#H_nj2Q+-m|rj_f^UL>0SG=Djv?}c`%Z-Q3kD(D z5EwDO!N6Pyc@7Mo9U=H3@L$*g+*}as1q_8D%m*0J-^0K#2*TQj01#p=3<7{5$OZu- zLSWnoazHr|bq@s~ z#2$F|g6MalKt#PjL5Q{i8J7oJKXjt{;sK%j#n##(M}#CXXK zkD>@|VK4-r2;)S^9pO}naS#R%diVML2_Og<2r;h0{$kEyU?3tt2*Tb427_=T*Z~ZR zxK?4@h`9v}!MDSmI49tq4*p>G=NFCvAotb>90T6ZrQjIoemsI>2zeqLLx^vGFz$P{ z0mmTs=L3#G@8|7sjQjq4{K4+$W^fFKCAJZ%fm5v=6=6l2q&UHfai4xz6k=jzkh>!N#Org*cq!f z5W`@259A$g$(-meclJT)loUD@(y?^tkRebAgiL+%$+66lKx+^Nxa@^ za2!F$wcd%1lP;scJ$+q{s+ z=W4v1XY&XyHD|ev{N(jQ1~QKg08>8RKs3iu1C?xhl5FlzGT$i9&=OJJbAna=hodUa zaTx6p1{7ySuySHkMmC5L_An$LVoX>T@H)>2I3|AqQN*9gu!;|=Y2~^IicZZ}l-KCO zDZey&n*E-o<(i$PVVEqV4{?y_Y1rwxLHU4gm~uPqPT?;m&9x+t@kuiJaVpu@dT=ZI z5EXs!ECUDp8OoBE3izA@rj3ng~**gMff^5D+1BkQO>93etNA z>5xc^5W&C?O2XX^;@=8?cXHUK@b^>Dlm@wmeSGW7BCwevCZfBCo>*Mbw#GVJ&45F+I()IOu>FcBA;REsT@wWKy5dZTo$PlDq zWN3q%)q?=NQO>E`Jr=IP~#Yx8#^w^h9$wmzO-3Ot&6Jbw=zTMu6cTRR_LFNl|dmYV86 z_dM+(ZVLbD`4Pn1=ihnhd3icGyFqv)W##@7r>tzn1JZ%`*xKV5gS+`J#U{=We~6c! z7sLVL1@W-MaY|C|-oMSM$RQr~|FHBg^Zx&M`wve+s-C_cK0M+QAZ=%RZwnsDzpwF# z%l>nc{Dfa_(|2C2Ow~5rhO{D*6V#TAZ{C{TgxBve& z3!Hdy^Y;0Vd<`Jpp1xidJCMr1C)IyXT7PN4vEAO;R>d>G0{7}YoU%!Y$;~#RbvGR8k05q9r2##GcsTkv@kohF%Km)|r;!j_cPjFL4;@xZNgFcM zFq`K$B=-gT69-cfG-_eFP`Bph4(nQqMb)wBC+qy3I_pxe96YdBe0N~|shp0y%|s3o zwIT+Le;Bm%=dUiJc`ZhM5nY`xTwSP%=fEe3t~RjRoi``g;bG;Dn+vz}LkG2t<0EiB zHw9*I+owsBW+ilx8;Z_bf}uIev}-9D*72)d@e%r>z3>^ z3ecoN>|F|>$XGQ@fCN|bMa3T}1Up>hU(|E4pTJjOn6NJw`3`MNIVEjvG&B%YV}5@LCp2`vGG8 znwCM9a!TT_zI@%Tr^?BF{o_S0uvFJ6tA zmB5y)YOi~osoXM@aO^PAY2u1ec_ePvN)C_lMI2kmsbKlLQ#24xIRDs^t6EM(IL~o? zud&>Nm$`R8ES7cfRqMpdp100YU)e&6;31f9sQh6GCz58Z=r&l`DX3SLY zVxPj+>CS{Se=ZreT)qpx=RlFMdwM&6Irgiqi%p;k4aS^7yD42Lo^$lkzKvWD8@1vB zljLM9!F50O%ScjAmeo_jmX9eZ>HbZzf1CD=?$L}AlCen19 zul7F9sF83ve*nVxh0Hzcpzqz2{wz7M$7DdvPiouL(t`z+_1|6UAy@D8FVs8|9Dfgt zdBL!oxM|+gOR4_O@{W?nTg&J(hwKnjIj!gHJtTefmdlQDMs!Q=K81x@)en8PzmfzM z{hGasAj)2=gE1ex+~Lz3TmICxj)sYQgQ0XL^?{gA*21?Ezqjc zCBTc_DWFQrNz%Hx;6gFs?h74R&Ce6%uGiH`q;s3!M^-;pB0jne6pT>TJYz$|uuJn& zUE)7(drBw$tZC^@@WWx=RiR(j0O|}kRcdf(hbGPD?06cNV$pEsXkoNl)P1+f$SvkP zq8Qdp&&cg<&KAXxM(wIpS{6CDsLNIFq^lMYuPb>#9?HAc;a<=a^Mc#Vv#EJUtbtu^ zM9S79_wZ*Oawx;^28D1Yk4r$}JW`!#Qx`tRqa+AzO1nQUjunhNp@5Nfy_E^!5q*?k z$y#_}OxRsT#z)otuwX%jBcKi6u#3F54wDLIK~YKjoLP%wuXpx| z1cNpKvJ>`ogJ3e`eD9sR$ZXx?7jHA}slwO>pTz#Oh!T0hGNHPceE68T{(TL=iodvL z%lDhxw;t-f&pNbKMmAmmvXm= zs0ps6Dps!>$x!iI<~82YYE-z@qU1UesU33`s5h#=WCXYU=yO>xBDR`%?EiV=_|34z zEHl}+OMFWQMVWm4JsB>5@5ho8(SzRrBjesf2x;r%hfmm|ALd%U=23eHRWv4RRyZ*c zlb!Q`5SE(O(yF6Vzx7BLL^wSAq7wDG#cdo&D|>xP)OT&wm|V1F#-_4lV1K{BNOlLW z^kZ6FK?Ivb49J{9!=_06J-u{qP}}pBf{?M68Y8|pemBDdJneD=lOe9O952#8Z;{Cf z%tzy`m9!)q1#snjxJne3ax-Tp*-l}gE+{TqO=ou|Z;d|l!y~a8>qg>L&kEnk=zOn& zx;x9@aX8KzQd_5m08O7xY{#AX8{4HU_$5wXlJtFofFcIkNEZZE|t^IjmT2%v7vn-EcQ+?eokajFG54i`a|FnU#=I>Jjp- zL@_hV_YsTF)CA1M!|CC7tytmy0YHAu};uS=~t!GNz#*bU2u1~*+ z;n?#1F=3`BY?9@VDMw+DK! z%~q+4EEdE#wJo3M?mcqMdiuJN_b%50{S*4{Pe1uQZ<1&BvTrkdyO1O`X2jGx1g|`J z7JfudWfE@Wx<6iBOK4P4?sZq*Y$ll6yD@xSU6|;EaYI+lIbDt~&n4Y)VRN)j;cHGv zV>`KRww{w&O~-s--o|c}%d9Zi!AL$HM)u6YQY_|5p^X<$5v;F+H|)nRb$4^UVIrc! z?3wrXwcLo+#oy~J{bu)NTaoSWi$Ue%6}h*DFOSs&UOXuEcg&*ZR*jYR$@qhr6#3Dl zK~mEr{YZ2MaAhVh-syq9CAX_U-~q__TxpFkom&(m3FD9}d}^VtGCVu@?m^ts;i~T! zMoDHuV&8Nev-+OrFe*PP&~5j+{J7emT+roR+y33_ZI7{sduFz33;q7itRF{>guH|n zto|!|{+c}B$^+(LUloAY9h%_pX)|3mm4Z2kE;Qb{jyy71mW(9Lr9oeZq1WD9K|G0 zlk96Ekv=CX565fY-}m@v{L6uVk><8>6|;?DT~dbo0!o2}JC}4v?<3P7g>!$PU7mEEjowav9KFFD7I3cmO^Ep+B{**~s&kfsjG zR$A6rm=^|p(BExVsc>rp7p#4YXy0Px^h`hzP!Tj`TA5J=loYDg2c>e%k8?^od!4XE zjeVo1JdsPtnSGR9u2i~6W+Jj3MCego&e{CXq!H)Y$)}~>D;ngV2{*(H7}qrzhtU-@ru=9+Bdg8ek6F9 zoN+?HjGS#jpTmD$PgUK+^N?n@b(t%@EX-n|^!Of&I8f-vHwGGbq5-<@17s_p!n7cD zm;affhMcBcPC~pytx0LRp6j9Ds8gu9JyAoKKqYa3aqjY*$MDCKKU(Tl(&ZT*ySHm1 zN>y{;d&C|jleAW)0{dtlO#t#B(%XF07^Btoh56_kiUHrdT&?RwGx+Te-||Ih{#5hm z7Wqzm?PN9$*6lsFu4Cahvnh!`*`Q`y_@&XR9+A$i#zq}sP#mmb;@W+Cf*$p2UO z;eL95lWy|Se*4*6wVpil0y?MVJ&~UL{`9@sr%UURiLp^fq+g=VWILO_xP~X`pXUaD zamo#@qIICWX#0#ZeHKWF`1IL2+4`0m@$(JCPxeSbo3G!zmA(q^e`2Y0=`FllP{ZYH z;>QrtBIM7#_+mm{)ZUNfNuj`>=uYO%_6Ykg4Y{{ZlgZLqh6iHG974Fb_GNj;bY9)f z&0u@|=+75TVPt(gSUhU5nC4kP580Qf5%0(Eix*~`g=aS?$RV$HjeT#M_4d~U@d`z{ z%X2n0r!t5gD{?&xXCg-9`!={I8@Q6nn3l5G-EaIwP6b&gWF`a`CXSE>D(VV-)lJCs z`9(ecBh~F(B<-Qyrp}ns&ucw112Kt?tW@B-j_uu2HNTS2uYy6-=X<&=Iu#|tUtS>T z-l=$c6>V#kyRZ!TF_8;x0xix$xM_dytMR1R9DUD_u95sfeR;bEAL*u+v#>qJ1+H)@7|1sTpl?P;Ijj&g2Dre5rnO2}GR&)cM}RcJ-hciz0LT**e8_df& zeVRyTlrp=R4iJ%6v;BS<3O6uhR4_2iSR(Yv6|b$T`E7kx8y!c?O2V!%y05U-PyXR~ z7AO$U9xyoW^n46va zDPzD*vMkm%hdiV%<2ens?+?nxf;v7G56sq{wCi8~NKu}bQ0Pv+yFs?g88B!Pm4 z`I;lTYD`CYHV(a?6g{3^g-Vx2Qj&0_=_QF~l=>7Nw#OgqHw5Yb-YmEQ-e-K%`42er zU)12gXwhGs<-eH2KN!Y;kQk7m?+c&5$lO1849L{k9tS;0$Vq}UAX#*qAyFTBFZ$eCGK+1LdHg>K)uD zD<`j@`bbS(LsRRqp^>qPso67gJ9~(Oqm#3Xw~w!%e?VZ+n~2D$=$P2IscG-hGcw<2 zWfv8flzuELulQ6~-_Y39-14Qhr?; zN8um$cZyAmd3XqB{r}rnm6nBnmAd3-3Db}~ zN#Wne#yZe>?H}alBV3)3{)Uu~8(|p+#4rU6D~dS1d?)DeS6t=Xuw%LN1&yb#yToCD zz53m6y_2+R&^NGdng%X|i5?hjh}J7t{vf{!e_K~)Nio8@2hCJGHkN@XtYGKC|7JxI z0(=8lZOl_b2_%-Sf$*F!bNfFg1v-iqhEmcqvUu>%hCd12vikgBH)E8a(%}Zs%@pFl z?u-duw~5X)FYOF%RL@T6fv zYJnBg=Bg-Xa@*Fr#aIupnTDPS(W&0a;~KZ03VHb1`BEp|W?u|`luBy2cl3bkzU#Jb zJh<7j3qc&%)GAmUx?7$P=3k*Wo%*T$dV04) z(~~JU<&Iv&#X$FN-q}Td&kcZe$A(s!dskT!IW=tQY(DjA(Lzyd8i3S~mV-S1)~m$C z+g$!Xr1k@qh$sm#?a9uJ^}U*`8$Zo?CUz{wNzWV0SkFnB`ce)+uM1$X246`+r&cJS zasdNZJmvSx7jLmBw<|d1 z?Ox>;9DN6PFbEIvsUK5PU2VIPYrH1EBRW5RuFC13EKiBwLgHFU5FbxF$p74-48!1g zZjNH<+COycUzS7ErddrLG7l_&8!+TG?`~Jj^a40KJX#CD3(B1Znwd(XDAqx*L&!Ki zH^6K=<}|t33STZ2Icwbu;}}siIcD?*5dJRYE{bSyKva7J6j7`!gp`e=R~(YA66l=q zblYbiD|lCzZg=~Y6LzN??bsUU7*nEbGtxFclYYCh7HhL!i-M3hVc*%hrUBsr_LGwH*=-$+%P86%4a7UiS2glqwFq&MkxPSX)7<} zHiHX`ry{8CNXY4&(?q~60N9f!h|1_-j$P9s(VK20iy?Eja~nqpvE9=6*8ck`;K=pd z;#?fP zyDo@Zfb(TN^N0k5Bal77@IkELl(Y_WfZMtwxj>qSu|xn-OqWo6o+jr^uMJY0CLG9! zQM}TTjZ-pS&2{X(w2mvY>=l`BOq>5RKGep6Dt2vLEinCVU zRGo{IFWGeoOADQ|0fyjhJp{&$#(d^wWwyQ*zf5ogaQ6~qJ*Bt%YXxvNi-;3xQnqCt zqJi`)Ef|?K=@?(Mws35d;Hu*}x4AcY17Ja{7F*+uhYagRL+PiKv=p|~wyxqhY#j8X zQU+^{E@y^;tT1<)q&(#l_nCgxUWJe>pgr=`VKVFnU{&X^i=E}3S`A9rS}qI~J-nWr zF_ruh=$NPSTXV3&K`HIX^>hJCI}#3X|J8XH(B0nZy@8olEvFUaka64 zWR355tEm2$4W?5t9IKwg;yPt(8>TR-69W5DxfXb4WwJM}MnDINC zrc?Q(u;-rP%Jfc0?V8#7@t%f+Hvp&6%>`nvY1Z15gM;{J0UoR`vM*I9E9Pb!Yp16iGj@ZY8Dx7M0*LKiR{3exB-PUvIi~I< zFPw)r3^1~9qS?}jz<8r_R+C~%YQ}vLi~$OlEZ^sS)-{cqU|XdP#dff+cQfN)5}ao$ z2GU9;2~MmFMfxD<7pj?#MJx_v9jD#{#>CIb^UY63V{DKHU?K}AR6bzAQOGpK=+2@gc7Kr!w`U~kG`sl4Op9ptWEobGDC7YZxn;*e@jwO4y;~s~uvkRR){5 z8vsY=Ep*a)S>K`QAorawC!S~Waio*^V)HoEfb~8d3&3CQ>sS5{$HZuGA66vVB&Ro9 zV7Zh#x~#LfLb}z1d3xx9Gsmob@Y$(!tWCiU0I3C@zqi=U(sj&cgFR<*Kz2+X4;Qex zO6V346`wD5B%3au{?FjZ1eDNzYt4quS?CGMGwQU;>-!C0m`Z&_F@j{0goI?#OZc}d zmRz(Xgc&(Act=ST8LS=*JV-|E!*n#Ifa(KUbgJq{P0ZrL zFlnB+i25VpU$^*)Ezd|uQg&@V;h3BhonH@&!P4w1D(W!E}+po++1!d1!o>{cPwIaxR+1V09rOphO<}I1 z;g>UAEAghC^oSD=sX6etl)Kst{`qA7yAQ8Ao*EB2uyNAr{zM?PZUFPLSUNEMAkurl zJj{y5yk#WJTN2YGn;7^;sKhHTHzF4i&!pW2oQ}>4OtdB-&3s?(xHPmO7u{CXzOv2SGeL6w(1S(Wg}!mNRar zR=gt?KUDQvw1X|2Ouc{b)fgLdmm~|H3!n3$sY)?aXi4Tssh3s(Z%im&ty9zxkU@mQ z$Uk^9K2In3BC_bg+llwrOG8JhkdEtmD50p&-_XK+_4UsPfnvF@!be>~S=gLz0CR-i zHEAc%%+SD(E*bL~`M#o6TOYpO@8}aV(X=;UvoiA{<)PJhWm5yIF&$h0C$5m%wRL8& zwwo43G|#vjQhXWuBSxq3C>j6N+#ApXvI_;Aff5Fr&otcU!>Y`W>-1Wl zB9ZPsTej(v>3_0fy6GxNNCYzZ{QH)9ufKquMRoOEb38fBclB!(-9P(SsImtWh`X&ISAo#6peNrhmU+gd8!e&7dSivgo)xdvVdhsFSh9_)#{p&MZ<y=7?_Y>bX6ccu%ZCEsgz8Q1&E}W!baq+PG zY7|RObtS%=&(KLRr@I;|NTExQzB~AB%)RR8-KA$mH-N!p?k)$VQ@2EdTKJnAfNg%_ zd}bFoemFQp4A>h~ELs-h_CPV5cpakqXP1sYY?0Yo)*d>@CtTozi(h%(B&!7s9$ule z&CqIBlKZ&GY!BAA{7dt6pY7YGxt2KJ2;UcDN>e3|g=BR#sKV}f>qi8<7ve}YQdqHP zD$J>0Afe+emGGLx&%y4Df962wfDcJMxT?{^dLULD<;l2@CnkM0gmoLjTfmnM*r0rH zCXj=!kpjExhPCPrdcJ8^2EJ4CtlnKa^5M7uqK;oBwG6^D1@W6#X9d)tvgjO*DU9U0 z>k@@|eU9#wR9j|qYjaw3xRIO02Y*6eU?lVltXl>vyr0hkb_mw7=_@RmYS7-53a)G# zz4T1yd|D4YfBU$wN zg@Ncvd9MB6)(ADkY8tpc>0Bn0X5g4@)=m!*lSDcH{lmh8uBcX?Q)j$e_h~b>0|u9v zzF}O@p=+aW!IWpZgaIFCMkdZQ{g^ESGk#MWn0?*Z>!J;<@gifwxwr=*k|>%U(A)X4 zun=vQOOt#-+ZH2U#UUE;AKb9W=uIygo|$4;x0LS|GD@Z8@Mu0ySw7U&Ph7L1ZQ{tZnCZypDci-P=8qOw-DzWz@y=ZH-N4` zh@K>Lpl$+qC(8+p2FjvMcMbz|4->BR(R{07*&<@5SDyX;dVey41lkK9-`V9q9(|X! z+wE|0j|})Bp9A3vN(3{29IjyT)u%c#Dt^vEj0ukT64 z&0*CVJkC54{-)jA)paeOMJJ-kCpnHw=LXP5=k>&kd#qL-%glcWuPpxr<((`TYX^r` zF2Twt4(-2W0+-Z8U=Li8NrQQOQ%bfQ?iT$DOTCsZ3jGJonG)h7R zO2gcJ_r$#q#LVF1I%V5Hlr4ZFap=*RC9W-GfVBL2+%uc;a9>e8QACL3M<4B%m( zyw1bY2Y^-wd(jxa)toyo8c&{F$jVBPiGc)o2>7c3gsXU60Kh#Wf9aE%KF};;H8Z|b zQVYdlQZq%rx3_7vvgbIo?ZRzz&i34S=zoX$>Be zM=+_xwSFiqO~q#z&yTFV>qQEI*nX?4A*37PF-^jbf@^1bfN!wMH-L!YM^=s|Q-w?C zY|?S>w=B52!e1CA5FgOX%BgItH+17?`tx|K>>f`)qgSl#;Ql3- zjWV(gnM##4=zgHrMerJrA1}!O4MyGodJvS#z*)3pclL`}XA{7oLH}m@>{dz2sK`Me z{}tYA0M~s8dZITQ7}qWgTZ7X(C%c$GEh7s*8h`aJoyJ3+M2;t(_5n}0@UI&HCAP~3 zPb!~HtW6>y&agSrRwPL6ydc5ho)=ToK%K&Nz5J+Z_GQ%a?SimdQBsL=lXrP<8ygb< z01ALRr=}Uu31IzpFDxa()+#1UWTM7PC#L)~|(zW8aWIWZ7>q1?|U1gZD5q|>g% zvBUY~SmHgyJuGwMq%@VwIv?4TwDYv{M*PMdRyCssFC|nqPech$e^P<233gKMCSkK#W2k5LvD59*~^ED>IAtNks&=35LdIF9j! zGY3@ap+GT>Y>iZ=MlG&!Z5279e6^cb)Lqm7041LF#T7a9o5J>B@HUFL(f3tRz}*2) zG1u9jffv7NI+$8)6Txp)NDUs~B|f-jKzm++Fht0wIb79Q$WfJ!6cSnUj!!Ei+ijlj zWyWE1U8nes7=0wgYG#bjOzo61V}M%ms|2Jo?ZUU>>#P^Xz8F$?EX*T+)(=RCcDY)o z>0xPa9T%Z1n>-bcmeg^k-6{>ko)jfMvk(D@eu*Ynm$Og3lVO%yoGL?^SVp9|^YFm+ zEDlSSdG%m1#13sJ8;#Kq+zvqWd`hu?yuCdsnnY&_G+iw|+Y|iJx~65&8}eyhXv z7cdISGO6T_Vo*gw)58L*_wJc>eU~U7m(v-XbrhOqzwSfZu2C^`foXhT#Av@+i`{I| zA`6Q$FTmF9g~N+yNnU*yReN{1jDHrFLu|uIhj--2Rn9Bs^6KBGOC3|*$OjSpuPnzq%nL^Xz zHgywPocax^twpzoB{>22e*^*#@1wwLjnQ2<0Cs2pJTS6PcE*|u5l*2owaTE)XEF5Y zZB8>YKW_c$KtVIRa0~;<`XCPZB7=Sna)?{ckLhF@^Sym0JQ#dm!z_FmV)8CsfGez< zi&}Wc25o~NfbG-<(A)sX6?L)lR?ShqRlq)TuFl2+myDo~IRT|r$0B9V3bP*ayz}M1 zH^ld5z5taJi_2I=>2>V-*^hFHc2O@c%p=Di(kkbC2+Q~Q*lyYfY=R%)oLysEh{~1y z+m}7VkK58=By{fJFlkUU*bNtkHk)PfB&{o%q<-nLIFvae0-8EC(Om6y_;+EYk+Ap! zo$ZJa!{Ytq+rwHPS2SL-?ALsNN;gZT^mAwlf8vd=7w;lioY~gJFe7Y!Hs%Je9k8o6 zmhI8c^;U#_RMaj>FIb#j@Q>uL_G^-yAsO$~yv_%GZa^gEkxZTmm%ED`wCj}VdcTs4 zNMs%VCFAIzL(9eb-+m(D{l}5qLNkY_U@D9@G6Vj} z>geizdQ`Kg(uuplk4Cy-&bzg8TzJy+M(pW_dAVgjLd&hXon1X5f8_-dz8Wa5l;j3n zNUtl)T-PET!IU;y5MLDgGyjfsP!&08j1=6Bq@bRTd-jQB5!rT6lrQ{_X5DzzCtr+oeR zbZF0ul{JTudmTZ1yL#jNJ&FPiKaWBoVxC=87p`-B<&_`dJ$bJ#c@U~wAAYL1NbzqhJaAS;Snv?z_&mqG(rFExL?c9tesC} z>>#&PM} zha$ETkN1AvF^l9(CU8K=`+Ck@Y(O(hE%$i=$#$ye0ZY8ICVB001rJ zsb5oz0W7OC{hsUrq0%d4nENQ|`j482>{fGTO0|-AdI4Q_Jkz5XN&i8_CBHHVht(V9 zui4;2c#04wn4>OQNc{~wU|*}XezHMFx=@FA>xtnHzmu<9Di623leGrPSvTHdzM;2J zrh`D15NA+qyLXi~%&R}L9gyB!7yseU%fS!4$onG_TJqA~YoKnLI2#6cs_n3LlFGel zmwx5hTGFaGg76||@tdfun8N;=brtWWxh~N#Y(-pi@U#js3ts~z zxg*?G@OGgBNO(-UlKYu%^W&LmhWRbgu`)gpmb=R)E2?drzdF3JrB8EHb0me9RARR=BefR)Ymy2$F1wEMKwscO z+-TftL*Grq2+!fZg)cM|@dO0?K`JRC|%+v2GSW!lz2{}30l ztTeE>8y;&dg*M&LRMKA!_1bvS8IvTf9~-rc_chV!QZxGJwK^#=!WL`~i*E%Fg5LO9 zOH34LTTI!xSDKM5x*fg4|3+g_Li;ValJYkx{7JUvdSq$(wA_Zl$iYiS>XN)3gb-}C zAiq(t5fwck3uQt!6~A&^y{}-$c&}#*+&HIu`KR_GIpv*d7l2;Y=TAnXAaW(9XhOYE zEbNm&4rN?aeX_bn^}&k{j#b&iTPV{t<$Rf>g8k9pg2f)>aM7OH$42tia62|)!Oaha zfV{$1)6_8oD;s#913dhC{rgO+quDs^QGF|nr z<#Iem9!I-1a8dVAP{}?Gb3YV)u2b8~9)CCNv~p74CJ#rMCHxOXi1ZDhn!OAg>1@LT z{f_wU1*Ab7xJ`ghtM6V979r$es|`TLBWW5gr+hN0{Zx^L02ZSueO-FXA<|fj>!G?{ zY+Eon4x$W3!-7%T8>Z1p1a^Fn=BIx5OMR1%0#FR|oC&kH;Vs6S9%lBAk~?t|<6^xv zFvaee^X1btj~erZJ_Wp~SgfF3hJ#Wq|A#aS<3Bj_NMwz6{D=WxmjMlb9`ZF#gjl_3 zElZO2pE%mo@t2Bh{0*eiTB-*fYa^eTV}wJ9~`v=QW$mrO;eo$^y$u zLm{}nw9s+hxVZjYXNqT{%*mIA$x<+upyE%eJX5wEx}P&PufHFvKC@efq2E7uMXp45 zvO2?BE0HN?Dwz;0bYz(mYwuSv&NgeRUrkJE2{zrJVzM)92&OXM8+f2PKZ3f)_o0#& zmL3|6GwFuyW(a3px@VHNuXG~?AS9KHtxc;?O4!|Nd7O%^t)NBE=7oB7@n;!MMk^P; zlay;30k2twPZANh2*d90{)aRu=Y##mq{z<#-Qbll;0?f`D(U}|p4H>n^?a#p`IWpP3q{(!6w;g5r47?SyKK|LbmaM-AjDZZy@{WD zf=@+b>lVBWyxP**mj~F0$Hv>ONR+6e;4`hb zh(#9Xxth5J-=3_Og=6?Qjzak~^Dgxi2)u7Upy?E?KjoY5ygeauBU~r0B@jyr#1@BLqZ9adER2;q=@F*a4Kr9mqd~fB!{WG~9w(9eHb ziYo%FkL)dd)A4*om#8`G2XUhfO$dS=l;IZjAP^tpOkG@HqwQTZDv@jYC_}~lm~UwD zff9cUP~=U@3Lg)42u;%$WE!u;RD!Nl%^#ict;B8k;^!kA4+I2Eu0NKEif!NnVl~lnLW~0$cM77#tbR!X-0Q=a{q6 zdHx?k-~(YK`S5u->ZpEgVTIvGL3R2^im42ahw|_Ke9C$G?4`2Xug?4%K(x~i_|&8k zh@ls{0dN;%xr%X!)tLDt45^uq2}(lyCE~zVHCKJyV&a9N_I8zVIZ!va!4ogU2zilU zi_QrR6^cHS15HnzMyS0XSZm6l|KP|vLKO(Zu;2>;>Do!;fqc8BnlvrxWH*4Hks)@g z^2JT4k+@fq?ulILOG`=5`3-cSr~1#VafUku_zdU9aCLx7(MqKG+bc&b#Y5zXmC$-r zEb8&V;&oh~Nw4lCzkbhBkFv_()LIt-_Pun7>zdUI+y?f%XuYyN4e zQ5rP#!g3m3SUb_M;QytqHLIyaoHxV4ZU-QZF1#`d(QZMvp-%dsN-5Tgq3ZjP2+%Z# zSyv(xU+pXon(Q;XfIq^e*Do*(|i@O!GR^?+TZ|FKxddQeKGr#*0;w!q{_1vD7HNkow`T8 zp5MN&9kz@x#T7HqHdu<#wXb4IWUF9iepuVY8Ap|}DM34`BnGD$&5oEKP@jrhb=0Ig zYS3-yXs1*oIu@zXvn<_^Zg1uII4ZElyUx80q7rJN=BvEtTJsssbpsem`g{YJRe)VH zPoYKCpqtpAE0m|exE0bf7=A#QUw3(bPH?(q$A|sz-a@TSaz_$n;jXB(jp$w*CX5g| zA#`<=)l9nTEXP5fk%4OQQEvUCmA-^T8vP+2+6M%T%EosF&%)B|@Z@kXwuv7QQ z|K5dom1{udIrci=r&3ZZCwQI8%QB>9&RLXg^vj0<0A_#vctPmA9R(j0c0g|B79dw5 zOmwz&!oB&MOE@bnwZd8`@o51Czx`=Rk)EVG>@#mebnMnvsCS#$Gb$>c)R>!FeB4eS zeGWFz1>ipgz-Pg;Hmhp+U9dN=b|&6?C}~tmEV<64c)?}v)fDd8#nY2ih|F@-T2ELy z9^%+2c(O5i#ncG87Dz=<37=(R$!_6p+LYjUYjAY~&|trGXdgW89`AAigbhC z)&}r7pGw?#!U?p|5Fwb!y;r_BC{F-n3sAe-yc}Hjo=i9UXXA zrs9(gPoj3C26e3(EB_}C;}_pmIqjU-Mh82A%M)t6;U zyl&efx5t#5l4L32XP7h^Dt3ADWJ@5HGZ z&g&Lkx><8Ik7Ge-N4+$?Fnk$!5x+;X8TJm3pH9M_Ub3#5et(cjDbB!u+N|Ygh(67T~Gb`654hW&I3MmcY$>)+yGowVr-be zPWw1yEJS_kP_TLG^b7yEsCyMX>EU+7vHcUOAMe|H{3U@)Z!f*iN6^+#5OxI0i-a^d z&3{Oys1o?F;l8L5Vkh*PgIFS%L>gTi>i)_xP&#+3z3GDax0JW)UB-Z=r)4IRd~Y{^-f3^|>-X2DTDFPP_W z6*^~d@8$PO_DzPtjM-7^Gt?5()wLzfApz2L?FKLa!&$87=zTSdLS~)ZQ+^Hq7lW0m zVq})9kf+8q5@q+%`0^|1OC?rDk(6I4|12_`comjA! zDMmCS9dFh^7zSMZ$uYLND6PM$G(e`m#y+?*vhB-!@MpbRgV3z;PULk4E|_15TERaZ zUuLfjKJ*GWx7yD{2Uk4Yiw%oO<2x$fCV2Hi(z;vCJD;_|b%hSYhtiF1=vVKUYET?j zwB>U*)3wduoY^|Y+%rAI?KpWLiu)nCcLPWWJ;M=+LnmC<^CNBm^&a`FD{K}E z3wuo$Glp7R?fVjuffS(c?LKf6>=H^b?6@nNDghyhmt{9+W^NdOLT@{ro`M+15Odf7govQ2$VHGVS5cRr)JHLJ} ztg*yVII>wu&qD3q9w>8T`*29O##`JjqY&0?s>=NA<7XX-OuC<4%x%63AN>vNz{sSo zt9K}6ct9sVDzT>mI_B0~W5Nn)j^8}uNw)XUTqPn3yL{Z@IWM{97!8#O5t5j4pA(Z-uYPHVd!u8cB9kJ2Z zE}V8e)sjE+8ovj4pFh7YXdI4=8eRj%7CG*CRw)l4;-2c!^v!f&=x|FuFyu+wq}!P% zXF$CUGQ0cklbTsrnKj=XN_nCehAF)yA>4zAU9PRtj-!0h1Pq;(#p0tEd3TDbIEQ*E zKbM7*^3w)%!^2=M`Dmg39|Kjs>)>$H^RJW#_AshF`ae+p{kXu9hc=JWSh0UrX);38 zaOIw#3IZGE%OU(IrRr$H**T6r3^&(a(7AMQ53J7rkZzqL^6l`Nb)#q6@Sd_&YWbO< zpY8+_4nyOjG{QC1{nO+nj1Ht`q9#<-31xL-rPFVt@UrpYfK**-jl8^M!q03J9OQ@61G@r(Bc4)MB>3DSM* zL42svv+CA3#YuA(7Jd08hVz5Fcevk&TC{f`qV5K8NL1*e0|`Xt^wn#YaU6&$&#_%< zk@;S`mZKq8OwgZs_uAsMSI>}#IUl5dwRvT%Dc4es=XVPqfaV6ziO}w=Sv*tNTUJ00 zm$Bsad9(H^1;NwbUQZB6$%Y%iOVi=(!2_-BCm9Ea%=~rJ-8@b3W^NI6OvYM(7@HM@Y+26KUWVZ0pyx9tdgb#Qwz5Zfk6-Z@Pn6F&pMh zRZ*DD;Y{-}{B1;=KD@CPK$6WL>2I7c2b;lfyIA5+*%-|EgB1-f^oe~p`pRmoL`~?# zpXz(w8MktK-DZYLMu#I|{ZOVh;;Jw?^wSP@#Bov}$a4C@lp3n;8~yV`6#+$ExB}VLpE&B-9TUIGTUUS)00b`|Q_P?>;VTM$)7S}1d1N-w%?UZt4>v{uh)+ya+*!Eb z$G0x&4-Cn&SN+8fCSd8{lXMesLtGk`7r@_qKtK;y5f=k~!PnUX2aj3`n%zlP!WY+V zMQ-+zczV-6tCb;$5NJb7UnqvDA{hG=q|NhC>By@1(@-b7@Ye@im3qkgBBUG|W+T1y z^0&0F42`*ET{gFcZh=X$Ge2=~{e>xmb9ARA)~V5na^a>^OSaW(173m?`~HG{e0krrlHyPN$PUC&c@BoM6lENlG@w7*zHpCJNBcriGqI^bwg|WteBu~tD5~BiY@3JxDM`KNZ?!dy49<_ zIaDMGfeDPz9BwDlVE{%j+Ik#=*O7(xL%`rpv5Hp@*63Q$XH{-26_~vxop|B8g*Q!8 zuL(7;FPdQB3*IKe?t zTbFuTM#hNj8h6O5=&E2f9pSx{*#)s7X%6*)$IOZj8(KlASajxvImQY>91XbzR0b7F zTv(nZeO@=ctUoNg+H%uWb^Rtt|EV_-g*|qLgW~d4r(+7SHoE=|b`o+8nJns>Zf51u zQuR^@aS{JXSU$amwnQEG{xPAB&za8PcnZU>S->GQEy>M+ZCbNrS*O%Qeb>E_5tl%{ z&pL~+S4t$X%#QwB6;Sw%2G@=Edl7y4iNnyQ0)W{vdm4XWly#@;lI~?|+Q(p>lX_~^ zNXu@`EzrbHiI3gsL$lg#U5aB#2N_^Uanq@@D(Yo)z?6lWRzxrR4Ah>(tcDt|+1!&< zYPTd@?Ls3=7F~wK`=--~;2UtO!g2BGI(U1nAUo&k%8;>#L#FR-n;=To>BR5)sMiRi zLD*tkZ-`F679T1FX_Qo$W|%m2qCLl(U+6LXiA;_6D^KCVqhvg3Jj%zQ`;cWz$$5#i zh3Gy@8AL-#K+(QOsqxCvs+mTEvHWtLcVMGe)&fLw+X@%Lft?03$P;hCIM7L`Cpq_~ zI!4?AJl?n%etjWqZGIK?4u8N@1Lu2)!pGxF2b;u$Ua?j+ok=R^gOBAOZ<5$FV5e)4 z6whGpNtZX-Q@q4A1nd>Z$OxCrk|QnCiZKsnur$!_n_&uD;j~P}vmRk`PF^;3w zUu^{}O1mAw+iGY(AgwI`lN_&+B)5lQ!Nuwp5$8R*=pvM- z)sh;jWLgp&AGFST3q!csdBiN_F0o2E8WdIt%o4gW78^u?j=a)1c9K|pw2mG^2SXpV z+xw$2Su%~mqIWYeXf_~-!spf=50?geoYIkn&JnOYx?ze2ik{Yh8HJWc<&b$$t#C|- z%&N;8Cw8$DF`nfAh@|u&8{hAJ+^sV1Z3fc*7x!ywviTIsdd%QPNAv)q#S#IFf!spp z4i0vZAyqbN>t`0O29d_y3tGDa6%FgNtzpI|kLcP?sY3HNVhYp_mw^^Pu=-(TX9(V? zU;pY30Yduf9;!>8)~XMJK#VXYd`|qeD&=?m@M|cLHN8yMgMJBE1+sckZY_(D1y~(J z=35Z@MMEQRG<3~g^PrH2O7}tf%ZtP_FZ9hI%=5t%@cMM;>86)uLTAxzp1t>2_Rq+Tye!GBt%j-1SJ%(9}6UNHz2R!dh>~EM=GfwL9`G zNT7A=guqUMw0I8UsW7*#lO?CV9}ik~ij77}_MQq_-t&DMK)!E)?_rZ=jG$E2vIlw) zo5$L;Cc4DsT3?PZar{9d_3&iiE2%>z1f<&a*huTQ;}@UfjhY<<6=r3x*ui+RyM ze;Iq&d3wE)3QMX%KLbN(t;bb)vW~=VsfNCU`dug*FaveJ8lyQFo~O_)>=pFwU7f*2 zN5olDciJ(lzrYXM4wJtwit50w;|ai)tTu}aOBZNuWA_QI8Ctg@adm&GwTDF~S6sk4 z%a-15G2*%4QB;@zHxQcNsk@3jm=Wc{a*_m*3$7iwsLyjwg+X2mD1533gDV^ck^7AM zS$@0lh7OCL!7gxIz&{?k0j{Kketd-iqWJ1SpbIHg6+kx%GSoaSf*}(OjECU5l37p3 zB%klecd;IQp^&ejsrF1PsS}VHlG_^pu?c)AnL8a{gmqi8qmzKJ0E2)=VT|lhqkKk) z85(nyRyT6?;eBXKR+ceGze;dtk|F_Q0$Ljs6Cg|*Mu~2hs@k-mz2UWsSgWVDW4l70 zL7+;(n%|m4_w_}qU!;{fWMG{UwB^;MB|KKl?P2~F1@j$|yoWVwgCNuM3aD1y zoWH;-2Nogw|f7>_(U$cbraNGwRFDWo?F^`64TNdbq2a(wNK^e@cw{# z-KmN2mL2GJ^&_oehI>QTLNY=@k>J{@{&h0!!aAZ66TVd;(4XK_q)@*K@AIf6A7y!a zFH%>P$D)ZqgqQq?xjz8P3?V_c_FFZa_l_sEc#J*ErHXL}YG3+e2fl}<8`vW}dY<#L z*|?B}%R*KZtPWXc^b?0@3&DzuXx;|A3dGuXk3Cb)J>t^a~`$lbn{I@qok zrAhzt)4A>|my$(RS&ROtEKac~*2EttD0S5|lo8ssvegVreJKpv0UUh6dc|};= z#fJl{2&;XkbrH5up6k(G+LN#IX}GeK@ns6A$Rkh*_8v6Q0$xZ%h0SB>T??)ucl&f` zmElzE=wT~yz2*kukCB==_Ih`Z1-EGf-?AD!vbIM+sTIi~6A*&S5AvGG(2c}kBZGQm z%=_K|kBT9q!{YeHW8Fuv0?y&#RT4sNvGA*KQ1^QLIuqFb(yR;2D6a%0n9!QSo{)LF z(4spBPL6xS6NTjXBAc^$%uBn>JbdGd^k{L^Rs*6S4{?0bZ%Kj}NGUQKbO6O?;D(3I z?G@5-gR&O*aTp)*F$)#A0dT3Pa104Dt?LLp5ZEC+>%Xc|e`Ij0;+Ej&pvN@IQB$!h zOS|4OgmIRxUW-+L<1qL@okI_uR>{ynX*n(XFN( zTO|Vl0%nZ_kw1_}RCK+_%NL~kVk^nsKKpw*({6!G#W+hCcMWp)5%##l0sT9Ji!;Q&L$EpfY0jTa7}%o zL_5S6%#Ou_%)!_oEcI1s@}V2cjAlcn^@#o_6zs3lo0zXPU77O2LA(gql_l^y28J9I zNOx1C&r$L-iVS=6EMXzDb2)ZyY>i?y%W<*B>^0q*b~I9oR@wsZF7q%v@6f~>!cQ>F z6`F3h3Jbr8ELkX&)!rK`i~jIIPi=-20b0^Tg`g|mK&J4w<`2)xzcjR*opKA=-S4zc zU&&8=Qn~RkYxb&d!xXb}>P`jtfwbO&aj-)X;Th)@Kn^jA^KaF&ZA*7h z1-UdWjj|*&^oU0p_{yc(A#$P=1<)Xr+(a1JMv8K;H+olPx}qZE^JQ^H?+s2d->W_= zkrgh_a0fo<{ljip_=L8;`26m9Wjmp@ihqK>#eN4A1FZUphc#W(;<()1HDT zF|vq9(&;PfWO56YZnrdW>tOfpOEWr0h_C=*$o?R7%3 zoz9TOdyC)j(=Erz@6}3D`5M1lN7x|Yp z=GagzuHEZPB;+i9jF0wM#fJQ_i)WSRaHl?4GK=t$&89FOu!}BzR-U5FtZcu7li{26 z;`1ExupPxmW_X258#${nJlyT?|4d3%5ni@-$N`CZyf*NrhqBV7|Ekv6k@4b##{RC9 zyT>c7S9T99_>M}DMh0k61eGrGIO&bazI1kwA)=&x(}tDg+7*o@r45kjS1YtdXMIje z8<`E?N+!UiI*jgYkL}PJ0 zJb10?wFZ#rSyOm6WGJVe)>v zyA^YA(8gd?g@oDL{?XLDx8|M8Zz7VTM~B1u{8!?2K*Ewh;9CPaB5^^E^!%7DMG2t2 z1|Y0Ym-m;1z6f$YJvQ(;H-2;K;J_)C#d)RweLX+P!%0+6vuTNFeicahT3XQFOF z4$k9^BXT)K89{>S_o=*E56qwqy8~ruk?X{8BuCa8v;Ew)l6T#uUjn5G8#H+wo0pb?dRBiqSDOH!g2~?$k>l;%fScR-MgAOm=EV|4y zOn%CN@Xo-g{F(7RQ$dQ{iGBl`KB;cSmvNoWozxi9`8KT$aJ(f$BjO|_j2B2HHlSLc zi1YigZZbbF;)$U8)OAe2Qg&ehnF1g@mB)v+jf`byy2uUK||np6V9z7jbaDor_v{u zMbWuGcu+3L{`0=7NJVDkT#1vHQ&6RGQbNVi2tZ%=Nu)JFW~)6&5((^B`u+<&iX^0(!x|q(P~{k1{3Rz z7VTayXodUwjSW3*#$P8JY=6vmIFB6HN9r6_1t81dv9LF2KdqEXPi`}?Xk=~tA*FJL zW?d2|PQZ7cxwgS>Fb7azNM>N<5JoE?ih2SeR97`PV8RKWR!1zc1Dsg`5_WI9yOvma z9xwUqL#s~)-*w#TuR?qEE3$c!qj$T{xtGnSG>`9SIMCkHxfaBOC+73@t1@0#%^)fr zeTEEzQ^gB{opj!YrEj$Ri!noUKVn@u^!i=~olap^Lrd=<)Ks zmZ#|PjS9xzkeIr?Y^`Fe1bEwB5~t<%Pr)*54ca>RY(IV_sKcy)^y~9q*pkih%j60G zh1DMfMHr@i7Xu)@JyPHwy7dR^wZfP@Xz$4d-RbxxZ(;`!+C(Yl&;7)qU&e9j8}hzQ zd94&Xx&Adr2UtC#fF#%9Qi>XIS^!Cw`Sda$dgzb|1cayi7k4{&fJ0sGwWuA1U)(`M zwU;?wcvar7?q})|&IdJ)4 zgHLyk?LUrRsLhqTG649@Vj$cvLj`@rrU47eq$R(57|5Zelo)YYUVM@45i0Y*%!&;# zHl`bB$905o@9ZTi0nyXlrc(Cy;`L6VJix=XZR#B=cQF@)q0hvs3P%A=mjYchcFbV76373of3CjedmGD0?-}89BgJuSnY*C1bE{;j3t5z*f4Ge-CMptdYRTW z2i|xGW0CaGeVj8#ZDF>Qvt8`wM{r;54NnT=o_ZB9fkwpuWq=&a9pFsH01Rmo2&Q#T zzKet7I#I-+AEE~fWn0h~(AO8^37x1LfZ@eU7HSu2&|!;Tu%v}nU^(h4>4hb2-@I7G zo9_a1w1K_y^}9k2xp(H#uUr_^&kOdiCEo&nX+AIo?$E<^4sbl!5lR-U*6sWKN8A9# z-GOOM0~r?~`>&q`MHjLob?RcPf!p}zhdY!4_#YM`9VtORSlS!@X73~tTf<-USZr-) z12|47`~i6`Lygl+b<`>X45G z0!RV?;)RiQLSEg(RtI`fz9f-uSiQrFOUrzBQZl2*`%oX6@Z#RS z#+8U_oPe#wGw|Zt*on?13`1rE^$@C`t%{Y{bBeOR!K)`!Zj<%w>lMx@s=ETaQ1mtF z82N{rZqS4gxEIC#l4u)}R>R}6(C%7iL4;%6H@YV^+PzPE`ws^O#sbCjVgRrq~6N^Om!egr69T%Q%fN`(=^?$srJ(@!#O4rO&I zUSyk2O2TImhh7ni(6M$aLJl6KZ;ewLn>(}Q9IkH(fLJ|5%}l911uf03Z)>qQJ{qH> zrVb%ucLTr?QLbUENVQ%lj@z0rI`S$IdvI6@on5vyeG}T!J51taBVjJdS_oWu_4P_Q zcmdY4#y8pNA)I!5plWl}OlP`Y>rs2m&T4YHa^RcKfuFR8=?AXJ>IHMR0{Dc|ZVIa{ z;U2jgZQKT7W}9Zc&|-W}9eHYkr*ZNEQZv>%tVO!&1nE6{oej{0Qy67`5qcT`4L|9S zjN+o3%g(hUb9)ytu;a)&YgUP;DBkT^UwT0RWbRL)bZt%-cQD4&;2L?2Emh}o|2R-v zb-j}jSNBeEDxCpX#CYu3ECr0dao*bw?S~Qhr!k>#_Iy3*FTkHGoT;0sj(pQ>?_}^) zHIal@BvxDQo+}v52ab`~2V?kP%pIK0(z((J5Kgzs1G{if3}^ zT&Lww;LI@?Ex1WH;YXXTBMe|v!O?xd z>LoeXDYi~Q)1(8tT$g#+5>T8&d&K&6nfhvE`k35&a~M}+!Stqd%#r7-43dpW!L95Y zx@7}B1cb&MN(9tORe4ayP7-vf7T~fRj3ttzXmiwbTCHd3G20dNk!2c*G{6tZngy9uB?EY4W!x@*oHMA=u%!J46u?njrsJ4 z1Je=#7MSeC(V;*}*ayg8ab4tH0^*k9jJVmkZ*0*W@YA>TWz$$)ZAyZ zh2_iehHnCK7%YwBNo zZ-jo>Lqu$S(H;Ql@F&XyhN}Rxjb_;kJ|B*$eSG?qE>;a3Gu6=f+4Y9Fo&-g4$oTE` zDEFO2cD*|}rjKgbxL5j?pNSqadEWK*W-FNe<^_~tmP!XZNig`OVZy-8RUXK>eI6$? zty2fnsTV>G6|r&;@est2woblO6kqFzz0AX23o}BeRa&@m2%r_fk@7+)g*n>&po^2^ z(zPZEqFLu@8@q49x*|F<-`ed^<60~()Ai>u2nxeCM2@{T?HF__hGgO;0)>gNT)t2hM<=njTFe2m!%LVN}Ln_ea zt6xkt#28kj#BH4IXCrgF4Sfg@=pBIghY2sFIq?Jmg$%N!dC+Qx%h8M27ie*{EcMrpQ;YRceRAIy?i}v z+=cCII7R=ehVVf<+G;V)4RK>R`Yu8p6=@4vVUuo=Tp6F8}=b*8zYAhn=sBH=x_W`CHBcU@P?X^H+AZ z@#Pd314Kyv@mW+%^bZz9Ky*XuAL@!$lUR7_X{ z&_HpqQ}T2IbU;LemHg~}u_ua(h=>66ihukdBqkyaXr*}ngM?99N>W%U(CH6yMoAGV zKnErGPo_p$iQgAB`h%`f8aRpZpVW<#B7h2ogNGp}@Zr}Txcgh|LP$zhhV$12IK@N( z!3*HrfZD~cUjyuo4q`x~{~@LEuSWk;;P_jk|D9WvmHzJ5-`X61JLDT|ZOGST4&FKACK9!RFr%$DSYli%_1O7hrKUw-;IQ1{4{crN8goMOj{3#(R z_E&!bESdktpTH4+^{0r)AN~}Tkrewk{`@VM^0x;6^6-CZ@V|x}KnE)FH-D)88-M&E zpX2{nNc|tZ*4_r_LO?h2;}rcZIwSnZ%fQp+m!b*Kr+&-1{LO}c3dfjnivE^ZvEcky zkNf@2pBDag#Q(*TKYNn0#=T#c{WVF5{UOityQ2YLKk`!3xTj^~E&Qjg!uO2+7-zsQ z^&k5IW8;^c52xtwVgCD;{>$r}qJK!x7y;J*LxScn_WhMkRma!f!55fy`2W1jU!;Wi zl>o6G2jC0+0B>)12ajJP{cl<@zpwIVOMg#vzpVe48NaRib4K|~>;J#o`To;<|4X;% zzpWS~D$5D{``@4$B*7{6dnOQ8mE;urM+cDN6#vI}|3?*tME`jH{4Yuh{p}(8`;>on zqyJh{NK#Bn?AIv#lXdr(rjS|MvT6-PdgJFr+LUcv@A37#ZSJASe3?Z-DVfDHobJe4 zs=9j`Pj2XGYKXspLR;QzB=Q7|h7`S~wYSw|F$f3>u;^$(U@b!VjlRPQtd~9Uh#C^S^`KL=>71@h~ z6ILV@W=-VECQL$d0BiYDMal6V%c9kzA}`2KYv?)gjVaFLzTW*K)&%=v^&ZY7?(|q6 zYF4DR#uHl)@Ws|3xhz$Gn%8<*Zo>D@zTWk>)+l!d8A00`GDy9ZJ#}- z2Vv+%PdOj&lf2%-#VMzA1?BXb=|dHPoU-u@pyB-Y%yZkgIi(tG~d z>@$U4HTkpClc)5Wb~y#j;EfP7>LfL^zDpxcVDWQJ2XNP@Ap=o{^+6ix$IjL&Q4?x2 zUqjNAS)PY<#8dlAocC)4`_rnhPpm$@GYkl>CYS9@a@;hJ)o!8W^!c!e4v}cXN((>+ zLm;KA+FNd=VmG6yE~bumDIlL&G%#dQf@f$*G27%(z*C&6^bx!i{-9l8D8{^Yff_-&{aUc zP7Np1<0LYy#YVR?3^LGv_+Y6du?!#i8oghN`^H;bPJ_KNL#q2uChwJP&hb@A|G}&beH^?@9xs65qDp`r2%5 z?&R|HX=!hT$lU|N^uFh5yrdqyW7^5OIwAMZ=$6U0$;L|cbSy*k-|>N~iFH-X998U3 z-ae#LX|pg`BzEtRYm0{p~p@5KVRV9(xY1?-#VIU9y1nK%EEq-Edm}DJ(uKLpH?o!(;5hC(f?B zx?6!x5AdoPz8Ua7Gm;lFW^{VN7axiv%JC_mzkKk=1trjkPf_Jf7oO|Hk&+Rc8mzMO znwZluNQ=i@1pKVv7;+*JnNr@*-?|xrwZD=p%FONBm8Zs8*glZ=dTBFg*H4WRdKP%2 zXI@IgKq>5t)3LY5DDG9pNp~NdfJZ%)<~bjcKHNM*BDyaz4tOEf9Q+~kZ|3ArZRzdl znh(6`gk=w|T)UxC<-%#%dLL`amH&}5Yei1enW6WU$=j93Y=e;+V}_iZB{n(rXo<}E zciUtq{8^F3L)x3{>24T_P@^Q@*64CiM(tDZ@Sx>vwOtF**ZTzEWxJi4gE^%2o4gx$ zOs}*At@M$<>LU<6EuB+o4<5K&|1LZl#mCt z{PMf8e+H3QkxZbqNXTH?URlEh7s1hCp#!b_U>II{Lh??Etw*GzYm8W{;Qm@p{vN|( zngIOHLCM}~#QNsR9N~=%@rwMaigo!pTf!I5mj%s8$f2>$nrBZM5$m9!hPOB2z+)Y37 zY8Wz8Yb&qtb8UGvX6tRgc#=&yq|EwJQrwu%fh!~u($fEQc}d$p?dY1uEuMs9*Fa;X z1J|&+-d5JPYWn%t+4|}fA4!=WXQqC-uKAHJ0zYaofMVAc-)ExP)zH8eH^%IY%Zd#J z|ET&kyGX0_>3PJ(7mo9!i4P*MxA!{d$KB+#S2th+kK*AZTV?%@cps0`mcEvpmMp&2 zzDwl&Wg+mHfTI^q7hy(bO|83+oi?j`%M{Ymfxp{*n`1Vhu+V`sUWs; z)SqaPrA@7N!ZqQKSCw?ySWMg`2p|QyJR;(+jy^STDw}PTe#%#j-oCEk&aF13<8E($ z01p~6@MdKwiPBwlu81(0V!S9(uC-H~;h%e&(lmK@i}&dbmGS|63%ao+@uI0`s24eD zG6XmiBLkZ2*)PiL437jFmxwKSuSPK%Yx-3)^C9kP;adiO)F!l~?t}P5`tHW>(AUn+ zkFl7NwT;~3 zGrj!Up0XNke^2cxFQsTKqIu7GJ?Ald+X+{8Bsd^XVRkBZI@jC;DdxU*K1-W#VVixO z!l95?{P0$`!t`@)Lk=8=eNUkvc0;;il6SHkNex1iI##v{@^5!=ihtnCOyyN3j<=v$ z^gd-WCEkm|>G18&-m$ZKO|-&RK&aX)fF@8KT-IN)!LKEXKFnAQ(x0n~I7a%7RD_nh z;I3}*&D~}A7R>)bGE$60!ky-xg#~S`*IPZpYf92fGcyES&F}clMtvx{$0E(97oPK6 zzu{*U93#~D^SddH^pGXYS9mz&;pp_DkBML*L4JF1V<)EiY)YJ43Fj?Su=to+-@HgK z{0<`yCSsGwz^RcTxOx?D@VhSQdWpiPJukD}n?7an4+`I(RVA3^ibrcl!4|w<+PS~K zW84A|4l^-vTYREE!f9y8m^gAVY7e*WI8IOHoH+j~?;yyuIKJ3)aX>l1Nd88jDEc<} zX}{;oC?$o5B6~b?CL()$C>rie;gaZ{(s=D+yolw_UY^Gn;-U6TcROAhOWv$Gs+7SA zsdzIKHY|8gbGLN7{LG#~nUzSXJd&yI6FUcXCPx&?e66^DV)hAZZDq59v=BXSAqi2l zo%9QvCw`gBB^AMZqAKM=7xoK`)xOLch%ZQ-l`);@2{kT5VOn#AtPu{&{?AgOOFl-Q zQ}0d&;iXc{OWf8Nu&xl!SZj7G*$NCOA;k^4{#H!xrJl;f9X0B$IjPDAS)8${#Rh(Z z*FFmu`A8SB-F(<|aD$t_=(^1Q`#W4tU=56ark2rMD9*~L&SA4`kE2=EQg20UXSb%@ z#?WB5rql7y=On!|^uAv_ciIT_Q|_e0Hf*0b2Qj2r)Ny;@`Su@<`Nr$k!i<-@DhLs{ zNw`h*_V#wCGVPQ1LzSuTPcUGa{L>s}@q>?TwM6N#-mQ9unFDmnvQSn5Yhj43vNoc8 z!2iH?*TU~cBet)@G>Yr^5#9`6M&CkKecz(fOf#T7Cay@W{DMI#Q+8}B`~H1eza|u1 zCOG8U^^((fo}T#6p^DGU6m2v<5)E=Ehh!J#zc5){h{g^0Hr)MS>Mn;_)OMf`Ur#R+ zk#BH9Vg9jqY;Pj7K|%j^tmHk?nojD)&C77c{r&un@*eVA;3cO_T4hSKNN9kt_o_py zjOSzv=oRVO4I87ctD7TwolMWY%PSZsbexnnn75snKP|3C@KfSzRBYJ19qYLUP&hwm=R)IqzaU7%=o2bFr_ni+IE%;`h=Fyt^ z4OB1&=U{uU2oWg9aj`nHTFjR2X=*cgh=cfO_-@}6>JG7TSJpQeo#qYrsn=UhoQR-a z!NXg=eF(8w=wx2F<@idw*Pln2$D1qPcet61y$%=l%os}`dCFDYr{h%N6ilxZ?(~Vv z6t5XCg9>%KO0XzCK+3nEI)~0B{|+kV)d<_ho_c3Xk*;uU^bf*&86rnDf;!Q%2*TrT zn&CTJ7!O`nT6xiTDvDz##hRWC-{km*P0weqWCkU=us(JyP~6GMw_V8p7W}n`O>A=X z*~e-`U%%$q9oxuzCTZ8lWI984I=TZi4SGhi>-i2|ws>-CdRbmDFxP1u*foEuSlz$X z)&&+OE}dlVdgW6&GlK<~$ox(2JuRc%e>?op`uk)4I>8^;eT{xLyXGBvW1cev z(YmDwtIv=sFa+ToKw`FN!1`C>?q_ng_Prgmw|Q z&Z)s~JMy~63@h{XEfNj3OW2Q~Yf7(L&^l`2^YK2YCc@yvnW&VeomI59!z>$K-vsF_ z#*Nv<3$qa&Tb7U$M3~Cft|k`3^LeGx?fI4%^K75Y6x^qg(yHH%&39nCn@8H+y^Ht0 z0!A9tbcmN9S$|!fQMtN(8lhVsZNxIbA@kAS8Q%2XX;R>Q;1C6c&5k}*&Les}XJ=j_ zx6r$jeXn#>8K{$J%W85iHJ)&ez0w;#DCB-zw^KPS8DwoEp>?A!Ss!Pmja(~XMm_rS zX`gCX*JrLAcx5a_1VH}IwJJtfoW2pQaNO4|Mo>L>t-QmVIEprY)j9GZ9q%^YWa-s_ z$lBTLqPeR&H!M$ zGF2}ZCGI*3h)Li6X!&pvKjl_+O(D)2zBlr-Pq721BmwB^wvYX@S1G4e%a5ln97Xv* zSF`&{U6}-TO}vWXIt~-tHS_9LS_R#?Cw?KRv*SAB9I@WsyS)LyAzUOjEakt8oz)Wg ztej!?y%#5=rG3$B6=L{W(Gz?glbbnIHyq{@QhQtAsy&T!T7-%-8uP%L(Y|Gunx=1I zRg-Yyh7$Rbfv5z>XYF3QZYdQ>>-8Mv(hB1{IupJ!r0S4-TiQ8~c;viGr-iYnU%T!hL-gR)bzRbcd*ZEV#g7h-ndh`eqWm<<#9cCiGMKUU`Uq7kw z_R4$MkBIXAeTrl5&*bkpNP46u)Y3zVK)dfi!>2ps^734Am>aAPClWX`5bVo5eMyXi zo1VUeg|2rGtSR)matceAPFU1-d`NiExX+86S;ity!sC~!bf#H%NUtkmNW$T|htO6(GxEnt zlUXLI55MPh?=-CdJe%g(d?`a!KPBbWWqIb%ws+@myanZO&cYWeOF8OqQqWa?FY@(z z)V~(Y>{2Fh>HbpcOYzGEn7RWe&ppp*r0rFVIQUh0Pe?jMajbC3BJF^D%kcU~zIPIM z?l8qX{TpLOr^&unl?1mFF>PAZEB2!D_?KB*%;Q2$tO}xU^USCteqNC6@!lzIY%P2h zlxxP`-(iE?#eZg%#~?p5h0^etXjYc`rkV4FiQZoHJVYIVXK5DKnzJRkc8i@#CkiLk z{C@5F?lgA-t*fXp-jhca#503etXkq8J@C^r{lUSc=gH39D)_BqbA^3mKq%+J$5?}0 z=4v;2Z5&@Fok2cqVP3|9jjH}y{;l9guY^O6+ir=c&+qWay;$Dii>+n1oZa5lH~m!B z?idxml72>S?_1QammaBS6lJ`dD?^n0RwLLar|RU)`Z;~vBvvO7HMKLCs!XU;&l@k= z_-dFM_ARt1tNTz%nZ}Og;!epZ=259;9!=Rc$0gn?UX5ghG8^|j&50$7j-2ScTps^t zsl9$-x}N&Y8d1w*?-A#8rMyYg^3E?g=Yl4Vi9v0Ho2t{2FUksgyPOk2j#WC#W+m#j zhiM!doaQ|7mx+d7RJ@lM!AG6O0tRq<0dcdtHZ>d2I-79%vn^PVHj9+6S z&-um3Q~&t!osLnC-n|NS{l1Weh&>d%@@Q$8em+Sb_Z9Db|7&W}aT(NQOF zy7>NE`uZikuw$+7y3edF!j9cT$y3Ry-BB}&@;IAWLdPNBRxLFJ$UdEFG1)homL(t_ z?m=vgIo0LgkyXF=N&KFk8UJ^F{m<0opTcFov%P<2Hh(9`|EJ1jVj_Pkmx+r08|5-U zoBe-HxJ*_;`u~z{86bX!`%CeRkdTy!h?IefoQmQ9@e2??qq&0PiL-)_%Z-CagNsjt z`~O=BG(g%77YF~BuG{Yy&hOWMkanX1q}}ic2=EDre@VOH;spV3d>R5mE>R*{rH8~e zK3BQLBCpWhO)sqOCgBm+L(tp$PLeY4N^D+3{!(}QE$;T;({_vceP~U>x^y z-zE2@v>;43S-mnNLQx37%8Un}_hFgQZUD35-tCeBm=oNrtoEH`U95CIr*T7{vEPRm z2|OK>mcTwX0x0q%;dFgT6^yU)ensPzTS)lGxD9X2YYjUcQ3n-y0ZfSoyRzR)^6(%4 zu*Gy)P!CPBqCAa3^aI4X@$%Asf^$BWvg)2iS&uZBttsa&R~$5$HlmZaAA4c0!cg}B zWNc@mZKqCzmWlONX?FG@owGuamxwL@oUmDHxWIZpaT z=zTEEYFfgK{=o0;nwl3iu-#4;FG7;P97c#P?Nt<>jIG+#q5cxG6D_I~@McZThhcLz zh>Me^Am7b2f|URDe|`&y_hY#y!ftFHqy+UXji#o*F^zC)>u55zP2?6;(gWoLk z7Q+nhBoFS?u+Z=6;F>yXz5Wv?C*?Ns7SDJgzcy9%D{^60j2YSufcUbx6i_0;$)^>< z=5tb)i34zV`Mf;W%mHd~JX~8bC49*xqaILW&|xjo4h}u?v4aCZKjXy}XVYW`AM~XS<~NUMzZeJ zD=>m>g80iWhAwY2ClPWJ`zgniD!RNMRRO?(-wrym39OXc%%+oYdiKRc@Z~qLrCUk^ z{U{v(__J>A#>?x&PuPP)4wT|_YZ3>B=gtCkL}|T(7H1#XsL6~4e=(Qt0X8@SFw(=Y zGMxlV;_BJgOcdco_dOi(F9!HlQXw&f{xAmcMscpccYSBCPTc&}p^>j^!BIXeg#gte zbu9x3HR+6hV)|VZOS>WIhKe%zowSTD2;kf_o`?ndofK zzZY&0$9XBR)5ZBRv4gI#mDk~ zuMJM>y6tW>wVki5rSIg|dhzMEd>6UEPFga+vv8IudxB-b+%>pI7?T$Nx=UB~^Jgy1 z7RDL>9a7c9*i)eAjGt1~mk!apsrKbp6ho4*xPU{b;b?xAruNQLs zjy)SI3_Pa=d5mfFhwEGjV0&5``@#5MEM?~uxm=`JD9fmGubjSJI^Is+OdoMqe@U$b zQoO>MctN&Fb!dYi>w-Mm?SUdPtOnCgJE=8L<**-HkyKb&SP0Jd9PE|6lHh&_PjIbi zs=!+e&-DzUWA;dDosetF)aHm!)!!Ef?`(mCjrL}hOBa`njR&3V+$bvQ1RD6Qlesxh z4cKr`-@U~FHVys#-4O(E8F+xAtw`Hcd^SIN22jx)7<$^Z)KA)K&@K)>$}n=c(_2Vt z9NmpG{}KS$A@o2oe&z%-7%KRI@y82H;$0~H zS;e-`?84h^@83Th9Sux)AGrS0fqQ~+}>hbH#s|z2=mJ_7iKl0c)*l2=sSuyao2J zxuBgk>=0W$(#!HDa5+2Fi%l=sgIf1@-f9}W-3G@*pEr(%h=)2rmyKZOpE#6z(kz67 zi9#oQ5BeHS3v%dk0-vzawBm?6$$q0x;fsZ^U}s_VS z{Thj4cQ{3O&eb0iwOB2tp#pq*EV7jo^Z){& z4{IdXyR7J~f(QE)h2jk7s!pe^g#@|m>l;pUjmv2CurI=gcj-V%j(uN&$4LKic-ICtq9T5h*=yrbM zu{&3$^~UAn!%wYMue%H+ob$g(;EM8>4va|_)8J6DCs*RXzl|TAyi3%P3p|$Xv13l~ z^*&*=mb`(jS$79(lOA%Y^LlBZ$Oy5*!(b=W&CWjc^E9*ot>Y_{!lo&22}z_y9HYlA&$i4W1@mQCpx9(ZeUtN|Z)&r!VkF&?&QB-wKDE|y3n_^{cR`RRuzhR)B%@^8Dy^NAE(*>Q5BETcwBM7 zn7O_ml0ULyVSYbIL%wp+QE@vLX9lgY0j0*MqZ3Mk1$yQj4<5~y(%h3>X4;>UJxqL6 z%hAPh0(I|<05-UH3CBD znw^W;)h)V#>I!PtjDrk$qN8xY^5Bi<>%idBK@wxBq4ewS2(N@&bj;VhG9R?c7~~bi zuL%6GF+*!Z4IV``6LX$&cM?Oc1*=&iK&kaQSAq-r%g;QxH(xc!wAlMQfcwg?I4E4< zJg=HsNAto4!kysKJql{w5FVFX0aW-&z|+PryQ%J(I=7L+qWl~4bBp|LUi<@7fe}SH z$RwDggA$!FeHR@Gzfre*aG(@K;PYjk5%=}l$5wymuCSpMj^IijENc$R6`-v63;>M@ zf;us-5sLA->YIP#RnMF->b0tm!_X0pD9u*3i6R_(#*LdA?by~h+X*X_DXA8>2$+2? zQCz_rBHd+H2xF?$paK@eDy;j2!m^IB<+5?9e(|-tm`V1{r}qBen2j4RZW42ihG|>~ zVmRj^(qY!s2<;@k#n%DSELj)VcWUbOq=(e}GTs-piX}&8;7DLxF0{iSNR{RBcVUJ| zUe@s+?NW#ZRfVYT4~B|a$mK1|Jpcbe+*^jlv9#^lxVsbFA-F?u2?Pih+#Q0uyAxc3 zyMxGvO6*m)(jHx+ zE3ULB*RWe6cD33#msVWBH-2N^=FM=hm$3)LXWtjq%U`+BMZI|CttJIFi1f8m*4`LT z1z`}pM0Uqgz{?Z8ybVYojT_(gf}iz^&Ss{ft(7Ssl>~ul-FGleI;9ex!JS+vv`?hj z{z99D8`Y+9mph+?uzcQWO4)AhXBy3OVxjx846jk z0Uze9OVS%^zm<=e+zu41tdJ}APYVMbmvYXkuXU|pc*ee8rG3$D>9C)vgo!~wP2hMt zA&7_i>NC^xw4PfM<>6+MBy%{W%ZkycG7JXyxK%1cF8 z40Pl_`&A_Pkb}`ONE~)4VAtP4Mir$!QHO(tch4{P_Y=_bxt*Pr@2Ka7P$Iw%sHy{haUy@+hw@)z%)dKMpKdxM4Q8Lc4T?gUc6zfsWc34iI~1+zn?IXtEX zo#DUSuJQV-!wfZ`1HYa6<94Rywm322eEE)+fE44!S=s(=8bGcKeTt z-k23cpj^wg{A*NmGVuG5FbT*%1pUIgg$nb+I?d0y$ypEVn#s8?Ctg=cH0k17%XD)! zTUEa|wEU5Zp`J#ks6!-OT{)=l5x^IIsrNvQ`;s!@-?7>bG6_D1-w%U5s>#0w05LVZ z>>>t|o|67R7Cdx>_T-x_#Vb5_!}ed$vXIbd+k+75Dp(4zLRU&%x*$vtCtmM6)d@pC5Oi55xo0f!Jk@j?U^aTiJ3_p_}rU(=nW4FxY!q#yUya0m^t; zk3=l+$4pRtfgpbgL6@Ku2q3p|q0&OX3c&USX9OsR+1&x4uK*^>>)|WF76VswS<(lD z>dc~@kEqzhIloz*$+=xKPQ(!lfU9>sCFog!3`^Lc9M3y48>Kb;aMJ~ouD4f&Sp=nYH7AG;2nWgz26dEQWPe91M9OzSaRFh%4*wu{fJ#&H^${jv&!D!fsG_E8!K`uT+wZL zVqSLfqqb2rL2Gbou;@WU4(_GT=Vf6l<_y^)Nrlv9M4gm`{oq z`@@MZ2-;6A7kA}uMKRAw1p6sqT+4l*mL{IQu$ti%oR<{#{>5^8V%ZZg^x%J0v2`{O z!0C(P<|s3D&P1LWRp7|kf4Jfhbw;LbRxzZf1F8gStJ@ANVDHUWLDCt9Ivq}a&?_Lx zb^eH-jrrUJJg!SA#OnHkpGCzBHo;ayPX)5iVDpdCtqHIPJ;{!kFEz?7Gq;wW?unms z(1_5`;7-QCe4M=SuhwfWC$?P@b}CSN%(x2khNoAkcC9X}Xa`;2SI4sqPoRJ>67R*hx%SA4tIG>r{waInBw7C(YuP-7GK zM^8u83>r@$C|C^)5NVTz+Am1d$z4kEDCW+<$g6RhST^6bpVadv5gd zbz5);=`Fsc_R_U08`6vavOe7`?=UT^$l0ASDbp(H(iB=0*AT3c*%PN(pekQmoih82E^2`KWC&A`dyHe`Og1%x7azfTWY0khwbT-@97{g83`W!Wq z4-HiXuIA@n(PZsIWrXZiVN8TmM<_AD zjB`1c7-RWaNLJE#v~sZ_1p?kyjDp8OIhfbNv!2hY=0&$q)YC;z6z&!<+nYK9VE>xy z{@%-*p+FR7ky6bw!-Pp`T zJKheF&^SS_ftd2a=yIX=!|ZZ@$K_3T^RIlzhKbhpDaL~|of2$UzFebV1sHiy?;E98 zXA%{i{4Dz-GUGJD=gG$>k7a?jvZ5tk)rVwhx21?KjF1Bc1_|LOz`kjFmVafmCEvZq z+$l&f{X)-`Tmb*EHF=(Wi1mibUCWVS7iLdAno`nY?6W=;ViFNzDCQn?SV zg-7k!GuUAP8k<@p3&dr5tiL?Y;Ot*_v_nD9-}dW4ukSLq!sS}w3JK~1liG~cmg*z% zo*WZ3MGG!8IPlbHcA>_%i_X`y0`UZhEQIIfo3C{YniDp;IUynr1|=O<)h{$U@$=y# zmB4kM(!`5^5u+9YS2}9zGB>m2!_e2691I$#tm?TNMlj+Y(Djsk280@dLu2@5%{Dv2 z(@c_rOZ5gT7mw#ZkC@og@u=@gQudD8LE5~R8W`#KsRuy<_$juTQHF9X+wrHJk(oY? zTASIM#^9_P1yjTr@)DI^Z2(puG^{Tj0kI2SB!#I$)nZiV-;E75toL+=3$o<;S5x^j zQ!j)`Y7=)!>S50ix0wBO;Um7xQ&`Jr&bl%sd*H@ zviTwV`Tc`s@4LdTY?Yd*+cjxb&}`A~6lI|0gS(CQ;=Fl*9DV z)f#6~bb58wQg5HpGM~-f#IxKi_@OTEYfHyhZ%4KG1L-T`OwiVfrRWK{>6|!a7w7{G zyzGHX?0GMO-;Jg+X}cY|4U_!Ctwx>_-Xt6wWZFG0$Ge`GEE3FX_I;p1J@wtPC31uK zBOw>Ven-_TrG5Ta5bcqdLgKwyN-mPaaF;R~OA}upm|*sm*{SU_?@65m0|$^C+ry@MJ6vad>9R)oJ`J37r@xj9?^Iy>KFl{IH+OpUbR z{bD!lP#7xUu`rH(A#|x=>+eGX%5Y#QcX<&~=PjvFImc1ulf6uUREfzDcgo-|hMK^; z{9z$b0eS*`QL4}l2$o*BADFlG2-XL~nz_;$u3&^tsQVZ5iO-%7-NXk zmBOoGJ(fED3VCM)gaffGsIpI8k$Z{}e_A%wu3E@#uS-ruiD5gPP{M`I7{yt|F2I z%9@#<&SD{p^s;@vb0rz!L-26Dp?A5S>z-@5 z{CO1PqfWJW&-=l{9w=v|GC2MK`g@Poo}JLso6ErM8G(t&7XmZEyb=Er%>-*VKBN(1 z#GOj-o@GBlt_RRMAvD<)<9CH+kamcY%1R*GfH8K~CIk18@=fZm_|V?Y&mVlIK`V?t z9D@w4G!>lfRh2Cu47=g_1(j+=D`_m?7(1l6b z?jGWv4Sa_dyre*oxrQ&Gx=W=8AOh^KGB(iuKq~e(d@6P>H%HUfd5=V!ZbP{&z#TGB z=OYMQ)Vp@x!0Lw_pVXmXm@CF#A}lH^SeYS)@3;NZ&~ zlQY2(QZjA={|xW(_^8IWr+7=ykTW2=p>Cr`FL0gs5-0ic*Z8&oOc!JO9CiH&AQYdG zx(jurDT2^=M?lugVR*Pt9c|c7$ps0I}@EDrFY1mR?1e`&wGzx;SNb{|qk+0>NX z1E`i_*f0~J;KLf>x?G}(cN8XJ0_Dz;_Oe-eX6}(k9XQ(G_zX&C!3cUwt9qHwg8+%2 z8m^Ms^39ud=IYalv&bqps-`I8dWcTtF4p6Y{OIpGfLJu07f%#f5Fkj6#S93?J_W)+ zVQ#v=C`xaU z!58|<9MsW^2gc-=44PoyQ#HNU_gU?16*az_^?KKKS=bLe5oj-HmTlejMGz1*#u z4joWF{QT9^r&qhsiHd4o;pus0*?kWek(uWFwDHM1K&0*43;p#3AnY~k#o*FWHGZI1 z^H->c(XK$ybiJevF=y8=%&m(cXJ)(;`y&ryK$R>7G_u2KX~KDl{E;w;Fi6cJLYDAA zo-x#*Rw_#nor+yPdz^d+QLu<*P=iw8ld^VZal+85d#5IdI%&HEeBR#ZJJG|m1``mznsz`S=|Kn#hVbG)y1sd-|Cg-&Wq26%y#>cTL+Z0U>5Zv@?!4*lI+6VCns zauC&?yjbxVn|%W5!@}A+?Bzh{3&EC_5VD)zr@HCdOhF;0<>@7^JQUz=LcG)vWxN!% zA7|;l?E}3lDC<%=s2i3cc_pMjN(1#EE9sz&mRAV?@AgaXkPD|30nvTHvQx5R+%#I% zAYOnXQB8D)0_;90?w1Ud*XtCzdjn$zCdlYjt6b8YWUfZP%C~I8!=kV%&hx!=vM}%JNj~71OJh3aV@24l_M;;G`yQ z=otqyuKMA|BAd3fwJoF0PD{M7zxrSiT`dJ_TTiFTu-_&o z)-)Ai@8SM|+lool#S;L@lOUki{*=L&elW4 z?A~NYKM6q%V>Y@MvA~CgGZU{r1G@1_+b;R`S2A5sbl%f5`!T3sw(NZq?|CzQd6_WB1{B!<|{c3birkklM7ZO$Eg z%r&nm&@yVa+*QwC9kdKLNJ?QRPXU@3^*wugy>EMvf0jO3wq4Q`AW?7hR+9M6JP5e1 zG7R@NG8~lD`%b*wb^?U&dDeF`+XBUx4IlKbq_?*xWUCTaBk&JB*3p~;eJ^@#fI+HMQI6c3iJRJm_2?L$VMn16Q5a7 z*upHr2T|KQ@1S>?siJUHsxFO{K@F)1$TOU%bnB9XI`s&`B{MHw(=*p`_f;ULTxC!V zfjaDVFvcgfXyE( z7DhJBL4QWQ?w;|!?sS?Q!dqGbB&S+IB;PI`CmCMD_J`aZ^ExhVoEfK2qi6|-GmT80 z&*UT?U{9q0{f9z>tD?>5gq;%^aD7hZ4}1}j+!@vd(Gn7(D-!2egqy}J+Z|*b79FA7 z*$6&DZpmG)XdEs8*9q#3UVFxZP%j2l-&j9yJeD&(&?*l?D%>Y;kGFEnVp$n zhbC@ZIbKo~3H%221v3WF^#|jSuhxioQW-|Stsb`6RMqx_FAZf;B^zeS_jOcvwA&gj(;qbwENdv`P#_w>Xz@24EJuX4)=2O>4y`Yl zfiR$zo@-99|BeFj+gJNfJGOosvj6gH|FMVbpY7$J{$?-#7mUMShU)*qW6t)c-~S&y z=D&~pqsRRBZ+;gTI2swk^gm} z{x9nCPeb~@>hibG{tsPp|GO^#IODH+{h#Ub-{>O$T#SDLApF-A@t@Vn!^`_Ot_m9q z=RaaqxLN;>RpH@f`8$S#m7SCK_l5sAR^`9OaPa*3n?JECEFhi$CkTDP$xF)3&HB$s z74CmSs{G~*{8fK{dm8_)%YUZcaQzdFLmDJe5eIVvD_P~g3-kX#ykY-OcoYzl<~L0S z1gGKtH{#9jGykom{|%txAB*;%TZI?Y5`X;3A3zL7wm-J&{+)Ki#`E`P;oxBXd$X`{ zfj~Ha$m73hmd_>ze>}IO?Ck#=eDg1$6cEqnk86Qi3WQAIX5;ynR{A$c3H!f+QvP4F zD*ob9FiZT!st^=pR&cO2QZjMUVpb5BU{*G9b7GdV1~D~6|NId9^FvC96!cSB6Jv9O z-x#1jKo^|6984et5Dy0{6E7R6GQ>bt3u+LM4*q;m{SOHhzflu^?c@Iamw)N#KM*Q- z**O1|P;nNs!ZrOyO!^imxExxhN=YT%jSZc)yKH%d)hHHl61wUQ^7`T!%0ydTtOM^+ z&3oKl0-p5*5B0s>UXM>s)aRKzKG;o*BKS+U1LKnflsVSEJ)yB82K9%Bub;%bmieDY zLJ4_e0`zn{o;VQq-{1v-fTy{Q(fb!>r#Dw(6Vif+9uC~xXi1c{NNC^ZH7mZW?RBmJ zqniAUwFy~A!gZpR`82g+=0%`0h)U7(!jyhCVn{rJL~`S#IuXo9-z;Mq_4sI!^>*Y< zlZx>rRI@qNqvb0ytcU9O#qQ~#9Iv9mHuY%7FeSVrclnw2);Z4pgrOxc@VSkL$l!uI z>d{;)RX#?3-+MD=vr86Qo=NLQX*J{NBho-J(g+Xg$K&0HP+E^tU*mPs)G!5vdldYt zS<|DYSHxcp&{b}J9V(`X`jW#sZlmdjzkor$4CK+ z+c=I0I>9m3qU7R7#Afm@24!nbLSu5)@D7CSpEvX{5;bVq!VmdO4d26KOCccz^VYN# zDlpe#CC@5>@2BUCw^bBtSV*InCQ%(1<=g9(B-SA}>D;oVoGg`?r#{A2q2vc`o6T7@ zj8U-naUfGkT}7v+Tmdj0TI4-1ahhB?Cc3|CZ$Oldg6kf3y(51~?-$~uUmJjAmmE$x z3R?}DkO$`(*`I*nglE6vncl=g>rIx>psp#>_ovr`puy!Upm}Qud@E1Iwj!Tqp_)Uz z@wrtMPa9zV+NC8-)+xKV6~Bb-NoX3M^LDZHoGqA!dws#nJx7TeC3E;AJi^+3%^#j5 za(;!Y&oC=$#eW#pb*D;`s6l>|MwOsL1%1@s5;ju=r&|_LZLw4Hiie3*)vp5@Z5&{V zCTN9!n$xU+N$ms9xn+2^2R>7%8nDRe8V_mveta^0dm)(ZGj!FPGcVjKxN`hyp@W?O zaip>;)!+$55L&)n9#SC0O&&uY)=U1u>A8QosldhFR;q?bJ2AaNWqSXiMosjd_DVLs zA{!Yh+bb5EOyd=Bi=)ZiWiKg<_o6%WW*s`_LxeDD+;&pC75i-;B35qB;1e4oR23>0 zqzMOOJ3yr2*A!4|BcCv1!sE4Cytfc~5MwZU)szOxDmX7pL&&V9Rtija3wQtOI}W?s zYM4eJVfQDa*_~a9bb2xl%K3+4SIX4D?*zlqkrhKI50ax>v3_=k5|%RNSN!)qjYfG; zhU5V@Q+TPxBrwp*JCE9I1U{ID)D7`uiQ>7GCWFgoYwc?FtH82hCAcQIW821^mc!vv z6IAM`EQ-B`8|TOdujKJ}w9rEu&OGcccT)*tbMG9S#xb2UQOKfA9!4FuyD!XvNK$zW=}sn$f6EJ{H%$nGBw5ExM*$~ZN}YbZgi z49I^3Fl}loU&%v{|LY^InfY?B0~a;nX2}rx<-fCVt-q*&vyh zub@y{(%jkLpqaE9&doMYRdm=*ua`nmQyPg7;JvOKs!Nwk%MWdrmqymPbV0WGRhTjg zgZ-@>N8RqI&~v0*LM4SR{F&wkntsz_<=_+I=6q#_hqOs*4(l`)-+cIz<66Kq>n(2f zme_fKFa{Z91Nthkpky|Yke-E}On~|zk(C+CSvih`mAjj$oYFnTJe;Y;M!_InvA5)1 z@M?*vX?MTkAk@bccNvp{$!{G)NyDG?G?uCv%JlS+2wg8@Ls_MgTN({!jY?<@=OcZK z(X^`e0S6|uLq2~!o!Xd=Y0ORvm+eLzeWIXaVRs`R zQ;t|N{TTnAw2pCG6Q_+~2PZZ4@pK_IzlX4`gI!eVUEZ5Pu)&Y343ek=4I=JX={0T% z0_#$y?vs2@0{^IQkAe;}PMa`tO|?J<3!W2$yf39mCK2uK2Z!@qa<@!!HAS+%WQ~~DP@i{?55--J@73-0joWXz78fS;+~NzJgb{>!SKiC()Bjb4bUx$IU_60dW*U= zWeh-S|LFPdUfsSd{@q5esG{Z6Wv}|fy=OpA)hbCqv%I;MP!-2Y>TNN~K4HAX>$&N? z>icJeS;~QN)KusrXLi=9FxO?7%Zl$R@=Q;H`MxF${*()^L|Yx#ctDzc`j)?f`kGTCEjLzK3DY?7!9ZF<)v1Wn==L+h2S$Tr=^^z;1^k z#GOFU3Lma(*JI*C@YA!S$$UsK_iagt;GlC=*JvZY9Ly)Bs$u}{qb5C=o`NatA@YTc zBC9eqyzX1{-kPKp7))4`$?ll8dk~wjFpPb8dVWPwu*z=J5`~SOCLyF$Ks78ZqE%?b z;w=`}s&fk^B-DBoPBC=<&4Qe0_L&j$QXi$k`6hGtud->#aWsc}8^gtbnZ;`f1#Y;D zo=ptoH42>2EU(!tzD(Q$I=cg(nbI=_=_Wrh|NUR#vae+~Xt!juWvbw5LFZfF3}_p5 zq{Rc!Mk)nGEL*H5lQ>pE`^m=e>Nbr#En8`*enJ~=3Eg-m!#9mQm@d_oLr4OaJ&{rP zYKK;=6|!Bjt?y!pek2Fexl5;Ed&299-qVVV3)zvemxOCGaxboYB^ANgSzpu!gNY&K z+MjB5Vz@2gQre`^(Z4P`*Mn*~o;;bVs@(vS#!&=gv@@5CPWd{n9z_H2$%lGcf#-s? zn&mhe(;ex|)s%ZWt%`c+H!K&n3!F2d?((KN%+p=r;&dGnhr1NW5HI37M)tg;3`7b` zKTmn(vkRP1#(M7%)3oq)yDCgQzXgJO?An=FkKg`bdVS;M^2)*#oiU~HJ}=p6UmE|O zH@`1dF|~JdA}ukwi19urO*`aUp4$%7w}W?2`*4Pbu>^AqJzoJ-%|v>UYKSFnJ!>}^ z2%qBDP4^~ylYK6@T1sH521>x)#J2N7*p89W?URwG6=VW_RaAqEoYEX<cRC5v|){dTHYn*)ios1?ndzd+J-xB@{Cw|s7e98 zR+-LnxZNjW?!cnq^_#5x-sYoaw8He>fwf6A5&AxB-Jg+$hxDXj$VcvoGu>P7blR&V z5brj8ZklFP_GziOS0GpD<T z9Mu`8r*_b?DN;)7`NrHjgkIQeUZe_KpjD@y$~8~Sd{Le|T@Zt)e=9)CaCOD7?xJMb zfrKgwxqwo|)R6ZWft!_ZImnb`t~Qgjp3~m#g#qPlzl_g{KXbGxFqGPXGaS8H?IX0a zh87C)`;^z=%)N7}bp|~>Q$3;Vk~0kZ$)Sd=Ay|sjUm~0IPSP%OE}sK+Y_NPBmh&+= za}+#qf0S}^_8^6OL~S(f6AR$V>=-Mg`+E^dXpipABA!FFh47LWP>&PWcrFE7TcXqdFaL*=x7PR!g0&NLJW zT@%WDKbEMqBgpG+1N`X|e}EvEMTV|9Hg-4aVUN^;+Ik!*05zT3O;w!);ZlW{9CmBR9>IaS$XCs9^FEx`VKh(3`)spkPvnue0y50)VJN{T7pQ=tx4SH4I5puOkec%y(=5d_+`S8$Zw4)d2yiZETOA%jqXCK;| zBu4SGm%V4Wk(14$OsL!0aHO2F&-cZIy4UP>kX&)dL&#yf?s+~echfIETPj|m^;!$R zu}GY{gcvFkhwvu298)w%41?#m5mYJS&*NqER#GBQ;KD(h*h&{3UgxtQC#HCf?c5Tk zNVj_J7*TrXU3KelLw-c8yuaNRg%gsVe8R$YTd|qmGt4jvzfmm53Z<*k}S ze+#QxY3=-VcKj?Kg4&^I@{YxlTeFJsDd7U+%fZL1GPhM^u7G(YQ&Lkar$Ev~nwGjx zIr)I)E&GCZt-989Gqj(XBgD;!r+K<^ECOL82J~SlM2I7{_pZ=7p#_Q@!N{m}KdWyw z^PtBQu3E@sGqeIwf>I-&&a*h+DV%h7cYHRZh1Y%SV=y@6z!t2Z2$srR7^wnxt@Q6ywNF*uOelKE=m*AuPiNHWkgpE-WV;94di8g-#TP3VDs5ASRfbnzn{>cS#yT#<6 z9s29$iif( z_Ec?yI*yxJhbAj!Hnqjn+F?>;0F={jQFIiAbCA6dAzO-`e3@`P>l1~Onf4dg^`MlS z_3(~Cw`TxGV_fUaLBha3{B;~h0{n;@xHfR^s%-m=e3~BG_{-`H+akzWmn<-Y_m$Iv znN30yi@AlOV5`Gp6t2{B6f4IMP@gbU%(%bvdLliA zao}qaF3cS;dU^{q)Q=7Un$mMWfYD1c`J%`kue8#B$`#Q+FW?NmV~`lzJxJ+pJBj9- z^!(h@O-}!KB(|ERw5x+}#7Elx;ayZFDw^K<3gQEi|49)uYOd% z$_cT<5K2R2CE>PlKjP{a2&5^giG1dqQODwkkkJYS=4w5i?;m%=1+Zugoz7N!R|VMJ z^4hcZ1?sy2UC6AM+PYmrlSN9R5NSUMLvv7`T&!#=^;}yBMIKPk%gE&7slqa4N&2RS zU4{kShHyACz{?}*9052*}xrWJoCXITL*B- z$dV)LQj3g=x(S#sVZoB|^#t@aT)WN;6~cm%uE408;%cXjvC5%$(Ydm643n`?gjGqJ zB9OBOsFQ@1`n2+bR%b$;=tR60x^%`Rito{LM=(P}ZrMvYRp+0{mId&xP9;iP4E#zu zN`u7XL*BP5lg)Gj#uiU2vre|&b&yRie-8LH0r#E&#zGlDAZND)7zSjiV7eaJv->w# zg`n6}ZZf){n!hWZ&mCYz%7*ew?}OXFtubPa{^8zkG$sbm2=l5OM-@b(ULHPiLA;ut z7_Hh6@r9a#_~}>iRlNh^Po|ZUjqG0$h8}^vlN!`ZV`-nnwsdPJ_y}?saAhoN-WHv1 zG*in<5R}3xTcG7D$}Xze`(kKEkWw1qPMK^>5pd4XL%yO655nePdwehvWu24cT3zag zJAgnFUy4c#vIm1=mB)pDkE{d^m$v3rUrnUB$!{Nb;0H@cvHgxT#{X-KCwV4>L*McM;Df? zO(<`9;kwYquOp&2gj`o|H1!v}G9U6KF(9N-sB~0f=CW3T?6M=wgj?EMwPx*a-oxT`ucZqJ4za_Yp>qS-q_ zwC7@s(bc(xe$LA$>e+<%9d{$B?#{t8(zOZ*ka`2Qw&@h8pue;B-A|Hm*q z`#xtT%&+9NH+o$rd z9oovOuo+>k+!@lUykSsC;W=CU>M7Be+v)8|Uao_Equs~(&45qKgbn*b=1T2l?GLUt zBBexnn7dwH76Ub}c)}ZhG5&xQijL_EJgm>;X>{G& zQm{Fyd9GqWJzJ`>F6SFQgg8T0;-dr1v=~>9>?^U`yM5k~Voh8wKOC2nzJGK`18#ZK z#KpfyAm@ynZPD0c38P-Rm6Js|jV(txWzh$!Xc83kRB|arweY#Vjd7i$u3ju%fq8Z? ztre-9uM6-u-E@LN7S1U0Oz-dMY~-%UgT|=3hYS28VOfDpNE;tF*llC0*%TbyLJ2h_ zY>tY3{ZGpM7}~o^SFOQMKXD}v3v@=QzJrMuK8e8?>Nv^%Hr@HbE*gP?Ml!O>->I65 z#XgPt;o(~Tp(n#oB@}lgc7~4~zKHF1))_23aIF7c_8B-4{Sw`GEBBn)e~;xAuBQSt zu=&L*l>-~+llsu`1y&lK#=R`z+{a8gvdG@y^MuE*DUA30k{!V2dB5RD1Sam2!pZOO z#^S;)s}&tC$5N}l%VP+WvLwC_m%2gs9i!oiDaL(k@)tjRKR?GxD@pn*njONc%a99B z5V0O_eiX;b?2$Dr(t&GaPQ1a5_>AEZr$>F^7^~)~pNn5P($kL*E;lzWlF}k?VNNWI zU|MUO7dZLlt3X~fdd+*tB%J4+o{s8A@bwQoNzAGCirI@}Ibn!)KcWk*|?I(;zBaeyx zR*EaEwl>7cCJc{U^|(ZnEA$wk`s5qgvMm2 z6lO(16vG#6*!4JcM+fvVj!_Wd$#i;*`U4g!H*5mAA>JnF@omhF11YI1d1ij0VB2&N z@M7*rJeM26gQps(N7wQ_;mWK6%C)@M+%ZtkA+^2E8Cvjd27hEspy>NYc4rw79_}Le zhQA^KuUBaRd#jmpf{rA%gqUek@I`mn*<~qG^BVI~(qw~UB;zDOyVvUNTF#!WG06yFssPYlIiooRp9C`)mS#hLTQ~Ktgams zNC@rYwVlo43firny-SPrj zO`|g;FV>-#*0^BjMDY{59F_yxxw_&fh{e$D?}x1pVsp-n?}wO46KDPBpwf)sKACBR zBrW4qAhb~)8DrPfFm&CJqHRV)h;y+}vH)0w5r+667BleGtw`HNz{E=CUe!N5bzxH$ zw?dd7xjV0t_Nk@QRAoyf$lZRxiJPwJ`N5C^+AoYf7}PD)8Tm|O8jI$WN17CSKB1^$ zBM~ny4Z9`04PL!I_l>T3!z9x~vajv#3B#`UX3_u1uFOHXxOBft)z@d_>QVCi#XkrP zvkFE06*=cRC4cOq>WV&K=QKDxS?8-)f;{Gdr`>?R2_a>;XyTf0l0Vf%gANz_GhQVv zTuNw&9KXi5B`*-8US2!jo);xJR7#(j*V5f!gDB#o>KOq^&3bODI`qp=kyEtG!0_sX^kIGNc=5%Vif@w}OZh3Pv5FZ+HShF+{= z)cO6=V#Yo71S9;Zw?3C;|1#I*slRtNZxK^~EtU@Ylnj$y(OqqyzJH3fmt}JhiZt2N zD+Tv#NKJuIZ9&M8qW{;H`}!LP|OT*Fn;%$-wh zNC;!aJYsywZF950VFPJiCdG@#Fqvqk=Puq|(s%-)wz_Cdx-o6l0#W2ELTXE^x@ zUjmj@osgUP#1!wR3S#cl1s4H|id!20+C0P#llM2U}uIqV`bI`HzRY*E| z4;sIq;ZmD0E6;iSn*EHv3FZlqjjm&ktj(*gKi}65>8h6zLKHGH847^{|EWI+&6vv1 z!&)<^qjj50h2p0vHJF*TL}*)>CiE^VyV;JcMPN$6UF2mMF)Kgf-5Q{^vz8<)svmv= zrJIPJUk1!buB}O_|GeEmpOlFOPNQr+GMCi^O#;h`#8x{ijrmoYz;r+U8#K+yJFbtq zSc2k?5i&E9 z5_|e>W3i~&eO23N;6+{}9tZd$_rD^xs|9cxlBHTwTJ3Uc!ce2Pn%yp+iI9Et~#4+Sl`5 z$7X|cHeNsYnJ&HeWA3UusQZK2De`7ggq)h>73Zv{l*9SM4+JOaY4~fZLvlUwp>?p+ z$WMlA0`x)&< z$?zu_WzEhHNNmNQ>YZ7~E1VY5(}W zGp=p(qgYxJ*#3#3S`D%*wk`yt6t`xs;@22tNQ&26KP^Jx=d6NB{qel7*f8O%`rSz9 z+&KOe>lcV!M?%iFirg|38xt`_;L0y{-!~0=nxc6POX_!H>%8fS(^)gP&8faaV}wPb z&&7}9#A6Acr+7qSh9A!H3JChB%N+42&;>)c_{B~>h=JXZU$UI3C^^V4erx3*44G)F zsq)_zg1~b?m>R;~#`@^=x=whf`ozK&Q zy)9NJ5-x9Q8r#?%O|EVbs?>?Aq1i#0iXgvxS-HiZ^k3Q!IL<68a(L_xE-kT3XW&jJ z46q~4C3W4Ea?a=UQFaRbf7l&DA2oG-Xu{LPusJugs9;BeJndu;v)~JDGoD(ePw8A< zG8=uehl1+mI-fzAe^>0LPM`BqI_tVT$<3c-9yOgqP_&d-zQU@-MX+zLN&7C0^bTr| zN3}SCc-*9@6ZQ7?>Lv#AbEmI_cNTt?AZm@i+O!@Uagm@cXlTKT46!({vmfhd7Kiln zBLr!K7DA0jz;JKu6y33h%Zt^9N z`|-XFQ-?f#7P3k8(+VxoK0+28?e?&nU0r zQON)U+*2zGM!)8e!+9eC4sBYfbvVur@{X$A564Purh8?lWsa#~p%mdb5^rQ}Uvz^h zO53-+A@3S>XA>5R%v+C44c>gNZR+on+&aeGkXl-o#OS(Aa#G`$NR(rJDEz7yWF%NB zW556@j}c^zVstS52^(Mi`$_Xb-BgU%@_CvjoY3?dY!!~M-%1%W@|Vv6JB{Q0d>2HI z^S5nFodq2(`(NkSh;RZO@56a9uT8OxH|IqI0{ZDSIlhs{IFIJ_X_5=qwKcD5W*1%? zJBZKorhf?xcS@*BbYU^ak;Hh+JDo4$$Fy8YvI~cNMzeGE>Hk7+=nBr!+YYZ!67Hfe zaaS$}{%FBk1sHqb`)bYpYDG%HkZJ^yi_!MTRCc(Y9 z$ao1;Xz)^L95pnZ37MJLX1}gQdCnwzVQ0DD30ZBc^-jd|kJ=^kp+Wj@S-Xqh-8g&8 zaDr{+sFo9Y%mmvKs@um(eOW^mlV;XGDjJQm1Y_jyI#f;I(Z!@8*I9{ z%LXMcINg(0(HBEaTnxv<$V=2NBL;IjYNJ8yrS*nuSXdSnDPiDwdV=`b_7LhcAM_h0 zXx3FJR1HO2H835i;)=b-3BFdz#9)sG+U6XM;5S1tjqVAv*b2vWE()+Onj$RDuS^K; z4Q31uoT7p!w=K`QOR_>+&7LwDt6(~0(x}bq#+mzAF{Vweuv_;Lh4ePFgcCMftfr0i zhu!1-oXl0Y6k$+M*P(DbSt@U&hakYG#MbV=Up@P}XW%&0`({wmG|ht&)VW%EjqGYM z*^jnIsb8&@5Nv0S173!l;<;}_k)iYU_Kr}b>VJ{cQ@eF`Yxlj`%l!xX;@j2L-48yGfbmr3Bi{-@S?kPBOY~&mzWc~@oeT_CDhy9Ck`AwSrarG=J$VHZ2*<~gw z_=I8UK)@tyRfC_KP;09XWYg*-(1Ls+W;wGaf_ZhtnKWFkwJ`X4U%40m!tC_Do zwN6_9(>rAkMSK#HsrHG|?sLWx@jkXmflQ_j*%;qK*QESb6TfcUNmkteLx@+Cyn29g zDnSXz>=LZF&OcEVt-8m5j|OL=Qyw~DV?%zE1sl+Q%wR9?)5Pi*IkE~~ABr=r5~PET zqS!UAVB64DdVlj6StcY$2LfJVB#*ncaCs|8|EH0%*i1)t>45R(q#=568C!5;30^Yc zl=`W4qVadi4_gf;y~9Am-PmO(JG(o}(*hOb#^S^g4n%%l5Ri&6c|9P3d)&3>dO`Y7 z4^`A!^%v^O&x3##F7XSq)uJNyf3H0MkCw|%Y3ctd<@rAU%2}E zyqce{_IQ3CY`4W2ZnxR;=Jn?9lm1qwQ(OExuSt9+?2_I3yqTpq?_cNW?(!~#jZdK% zb;``(9UWIm7frS>Nbr7qn(Y2cVzt|TQD=Fs@jbp{8NXcTxc1qgUrMG-M6|j4S$3qI z+{rDdUGknv;-<4vGJh80dOLc~-7xFMl#Dm!es%tSiWX!h8Et4>;HF|u#L4t>B&#>R z%=z3k3ePedMf_Qneg2x;+U@NQ}e!|DlyFnj!Q@k#Bz<6lZI+ zK40Fh*q%1MciF`Duhq#`X-jzyKE*n*SRveZ7&cd=IPp1oP26j;V2(wfOigG#e|`S@ z=)ad^CNGk$f@68~sdK|y(PZmRY#`+^DO5tGm=KUMnq!u+Vo~Spkbd4a-1ph>VvrM0 zdk*bb4X}O8%htzhxMdjjJ38#dMF=KR;O=K_~nwQVKE~ zv5`Ix(S6gi|L3`a5qqP3Sqx-almUB6uwz;=p(IrMD9$ljv$?#&%odZi9=tS)TqR4L zRVnMDn*z@7^9}egl&dSRuP_LE&CW4#ihtd73Brd=jIKG~ee7<(bhA8i8=GeBqS)2> zD1AV5%Ei$sq8@oTALvG=PG)vU80I{^GW&JZii0`+P;l%)N8E6H;YO$qqw$9y#EC6n zSt*elJtfbTPw$(vqU2z6c(VX_^I^V4z(=Cq?YqN#X|&Sv%Ew*c+h{FRC1b2ui{FUB zzYcA*62Ch+6W6CIQdpw6SL%2f8w1c8~~0me;P z;I04Ahs-7M;%Eu_Yk2U3-mP5T&2FRRY8mu{`(Ja-reRx+W)Jel^{wxu2Yry|`c!ky z%x#?4mB5UOz3a7AjY`w|9G}&FJOv^UlS8+WVln0expdM4Ai?)j5zE^gzt89gW zh1~33j$Da!BeA)6nL@LjyJUH#go(TRX!g6QiK12U1gUCY5xehdWe6=4@@zouUrAMm z{s1Hg+AyL`4Gb`$3)B%+-WJJ0I+bzO1~eTz(TnB4&3dmrj5E2=BQCLAO~G*Cq6jiq zZbw8p)4idcR&v9XlJxvAofU`)PpAi6zN!tUv#8F>qOe8CTF?YB5W}{el(G7mGIEP; z2UI73vckaA7P&lv`RY|KIw8jLr}G!MzSwvu)KL^QQY{hIx_{z4|5AmnDWjbe-MDjk zXK}XtWz?m%_}Q0_?Wf&%Vdfo9KGo4ZcyV`znk#on5#+#pSHXVZIxv7yr>W!-LAv=XdG%-sPRBaxlnqH(6^1!3+(f2f<3vSZ7=PHbEy_40^yF6}ihQw(G6>&?V?MZ` z@yGDz<`VoKF(Ob)_RYbopB%Re0_ydOKqbD^`{uV#(2 zZees^Z$|tiXwe}Dv|b-n2^TLMU<^?e#>U%Jv6fBx?^c^gny-Fwn)~^Qe293Se+-=uywVin`>p3Im@Zi7M7(ap(HI7@RcCa z@vv&uv*c!_>q6yLy)SbVC`Dy%22recK8qVhKts6+Z&ZaT>fiRNjH#qJe z-~7E^-JAM8LOs{z!il*o<1o*MD+gJ*KbxEmj@wr)6U|MuN-T>|$q9aE-&gs21cklU zUExFKsu_o9OmWI@N?t0HJ8JkGix_$kiBRw*8b>iyHkQ>wO&*_&D=QOnS@tn;Bq#N_ zYV7C>Sb973w6Tb5{is`}7c}LynlxhTFF&H1J2U$OE>oMWH3Yr6z=|X*c$wK7V+%k&ax-GzJixfFfv(b!nNGvhV=Ab$QBNQKxU3Bz_LUaR{~BA0 z|6HIj8o4|{Xu9en0doed+?jeTy9e4q#%=|2%Z;d2pyK^IG*k$%39MxyDaU6<5tqPD z%vgu4U&~{^Iuz&MS+`g5APZ5~NFt#F8^mofrbgBPgt=fdPf-cbDT=}sB=Fe$s%WGH z;50ZBG>`*03s{@6NGVRf0@(Focatd+c1u)JU>s9YYty}D_Tidb-8YU#y?Ktzmrg9b z{aH`2aD}W&rJ)?LSWd+=;pVWy(_if&?9N<3>n$Ca1nS_NpWTc5fJY8RV5@H^R#no- zJGjYWN6?7+0J#*PJIbj{pyF5pq0<}tk>{uf;%}D-Gc;j){m=(%2t75()q@u{I4Wej zz3^c~46>9bL>4(Zbu4FYzPgUxS2p`4n8i>a;8?fZ-Pjh8g8ctpK0iQYjy@*fyr2T> z*aIM4v#{>Npba-+md8u zfgfGuD)MCiNdjFA8$E!PaXT*A3f5PhgWk(fmS_n=1*IDy)Kl6hj>$4#jtL&3iCw@R z2=c}D@*x&4!Jk1TIdllY6y%jL&~-~B$Vrs4bx3iRrsOCC4AbR{P=Lx&ozw4Ef|x0- z`UaZ$g@YW5O(%1;VTJ`{(sjlR5(I=Ux;6t@PJWAxNd3O7SgtB1k%H@6(9>(dwkNG$ zz_DyRHm15}-0DB04-pl+dQf(Yg5$cMV63Jkhnd5?EJJE7$L>)LGeULA!P!$=R{H>G z_(M)CdFYfKvF*;a@5`e2*a$tc@x}K_PFEg>;oIArz%tWL(IQ(UXdq?_Bm#uV3z3h$bwgqa! z_OdyOqNM%w;i(K;auUI)4%DM%GV}Kf_B+TtT$hcBm~NzZ9y#@}6^Pa&ID-KHV!5mr ziG_ltY;UU|$d3iNP<&0JRKB24oLlaJQi4P6A&dy4oTU2pq$m9D==5f(?c+Xb-E}ZF zj6OG}_Ojl969kU%Z5t*jDc2VCfqL3k@r0n9^v_F!9pu#|DGVQzoeG2}nra^jqX=`2PzF5q6 z1Ro_M7Ytww3OnviB zlDuj7IGXTcy)=r3?Q&HF6H2f;J$e4c7E=bCi|OJCV9_?!W82&k0lQ;wcqu1dd$Xww zltY6wI$N_fsiaT?LxP&E3k9e2u7EAqKgFD1_#b>yrF$vDT9(YTj8UUAVh000;+^C?<3_(+|biPG+ zV;_HsFxyj!C%CBJhTsa1U-?kBmNHAQf*(mla0O(#W8=Fdr$>FV5e?EsTq zS?Yb%gg-d=;l?T%E&1z_xUAR3ioRQ5sz8MM>G3xw6@m~dmm}3Q@Lhg_JNSx0Uv>>` z1l)mb91D;eEI#?QtYBMr9>u}+q7P3HUFU^OiuWK>B^JdXLNxehqA!7E)ilzDg&xPv zfQS3_$}yO)D=z4lJ2!y$iDD0?VLk<)xucxDH8H0ZkhhK89CV7P#W)#^wC)`3-;QDluW7A) z?e1)KE^W&bI^bP-OFZz?3^lS?j4R%(G(wYpkT!%{kO@-iT{G*rXnc<9$L?H-8MQo- znKwAFrQJv;Q%Z`16ucSVM3yXXoS-sfVv#IL)<-~1YEy=*3`S4~tHUh9S_wnuEKQxr z#iiVb$_hvIhnDxnRh*KG)6 zBBwKnZTk>ls4t8NO%L-ob3A|5k^0X_MH6j!vg~j8d&@WtjdGyt8!bGWZP*0yb@GRj z5d}cokrptdx~b-6!W#>*Zj7EN`7<5*-JXrQHn(V`Mri&3K~Qhc+yg4sHh$`h{>R zRuMwkCzL{Ny{L_41jxjA@7g5dDYg?7M#>7Bi!)66h88S?8wB@s`4{9N6ObnEdWryY z;cXff{O}kaVtXUS5`aZE=B(EBOrBpl0~pSS`*2(h4&@`G9b+_0MbF!|7q^CmLfqyC z8V%qZh$|tNY_J0}H!Fd6Tc`Jz?T6~yXzd!Xezb6HcGcSUjv;czINW&7Ge1_8V-qD6 zOh+DQF7$DVZ&Wo9Hh0h?)G>N#aUC0X?xdMEU21nlu#VN_c5~%3-%tdVzM`~*r~-#7 z)&n9xM9wF(fYFZ$NwCJFq>|vkND@VYC3CtrWq~Fq_GFUb7iLdXxN`V;=a{R8t6Ri(`!z)V z)4Lhr2IaQakw() zk*KA(m51N$LB{L50-U4NoDdhAmah8~0q&VV9}<2iN({>sIJv4agnE*!G6X|DJf zoNbgn$Z=>VV0pqsiP-^UE;K8H`9c+NBJN7(dBBR*Rh=q3=vl^hm85-FZm-67L&8H- z*3U6e=8~cLS0h7UMwoL=FO!pI&;p4dQr+^}c32YDY~}!1F?0M=(2|sb>;1^rFy@|x zCHzaV$l68{$hK~s=VLrC+D1ToGIJ)^&{jlz(L_UA=*^;mbTXCGPX=mdAPnp|re43c zHQGEnL?Y2H8$?ox!Fu7Yys)4T!@*Ef0mahu{)G!a;Vg9+$hfzXQT?^2o?{{z>E7 zVe$l!x6tv?COsh*oki~3RtCQ0t;&;IKcB4a(vfY2L=bn>fOMR&){}(1!y2vo0tZ!> zPsv}V!^d5OMxI)M35JLwl;&r+N0aY9n^HhJ4613BE-wRlE7TM<_I_>61R6`($Y_Lr86`kq>0Zv(4y5LO{4 zoZIYkRZ+qw`h3U_s~k-r9XUiHuyqwcpxys6k(v1ZC7~V%4)-9Wz(r&k#$ak#U}YAdj;!M&K%svIGswV@F&t_AXOKcKQ z=O(dDtoir{PCIGJ(K*;PD8+b&4Y=|`(p1MX(=>$S>4I6ob{~u;WV8yd=jytmAYZUP zGN+lx6j{R*Nh8CQEy?qDT*d7msI2zW#Sk8GkmRq@O)AVHi9ZAhhF4QWf-EwuQyYQ+ z;sA}TUs;_>DC|KvZe^k$okV0qp-|-)w+vB;$O95aYpap^@+@X=u;$o&v#rvB^pd?^ZbvNJ<5+_Nmi#1zTOiTLCYrpl5ruSjy<2Tyu*MJy<^L6O#<@T>jFt9^eU zcnIA~J(r0i21bofa#ox&#{tt6_sOmHV&#o!E>F0O%#;iyVesC(w~%BFy%Ds?5*s^L zH-LUebuN*xS`{?yjjOsF1dlYV4$sONzOK5Kz2A-{Y`>)>XCAW?-6H#6g`2JntMUur z`lRG-A#1n2L-9rIZXf?y5wti^BPnDWKcfFW*H9Yp@?K6o?^t-hp<$`do9TnTXYRpa zqEUped0(655(>ugNOo6XXzQRdNr6Gw1&j=ho4- z+aIa(A=Ll+5!Ll44Yu8ZF+eXSOrNdoF#w}4JG?S?MAAvJaAKBJqcPu~r{xq>V`p>R z=a%ID!&>2Y>fRNes=hDz>+0u&j)dOdpP__LKk|D1Z!tZAjplV;UJOb3GkT4|$1F->F|)H0GO z*@fim?a%Gpf}>BKpStt+H9yzql;i!^W~d%}>*k!zVndYCtp%_;vP%yy!(DYxc$kTAzBfs%NhGufwr zpN?Bvh@0k^!?D>+oSmB8NB>I^2Nlz&(xckmHTB6%aoyLx3p12&;#0&*;F9|N>T9(c z(gzHYU*+bYydih*fYpvfBNvs{1vzp;`u17!j_PxSS7l?G<6Jhe>S6lkfGucnBJNfE|L{oUL@h98| z_nkv{Q0Z67J=XZ<=EMk``o3|x?&Ag#x$#}X$JeaBy$&l;rqAccc&y^xZa3znH!DqMX0E{GciIDSaIusTon9Pfug2Yp>#GaJ{flfS zrFVFynOZwitKH$fS>S||N1UEnuD^wL44b_Tn^ghey?#wVRBex5`+eF}JM~-GbvcRr zL-(>kZ2AV}ncOtP#L`elfz=Ml(T-|AWRgx=742e^Wdh3Z80cLdt!U_I8;% zql5^l@&?TNuhvi6^)l#86BhNODu|;!JCm74DwhDy47Pr6j^BqJW|+R}sS`B700ooN z51j?MPa;iJ02%1r&q>i`qPFvJC-{)SFlV5?m2-O0E_5F|JtqgwY~w1;vc-?%y1YF= zvu=I#pP~_Gp)wUVZiL(sm*Ud}rI0@U^b`tu@#WT3U=y7^Sa;45Qx^S?IG=-AZZGF}WaS`Lw>=|d{;CqM3mLOuy%thAqiPQXxNho(kV zRdu%O^*_{qv?>}VYYJqvn1cONZ9;-hmb2X2Of@Yss#yv5Jre-q41Zhi>`8JKgFz(l zqX*`WmbllgMOCM1THc`W2CHaQXqvK-Is)=V2OcpVs|jjGQ#On70Fv#1ThC=rkxS3W zVMRmLC8cV`warD70lL#@nLXO>xexdW_HiNex1*Z1Jcb@w8LMOC$w@acYYCXvKe^0x zGE}uD>bs2D-p!!L!$!dqFwKKLwE^woUXA{Ku|7t4yB}a0RXt~x z197c3cFKbGcifSG{Y1>rR+O7UiDZMmxosYxb(@=bYOK&mGs}HKwzt8#IZ_7pcm>0K zhT2`LkvLg44ejMMT_c^fGSk+*NfmQmsSKad|LP;5=+i}Y9CuDc1b(*X>+{soHQTeU zv*8SND8^%TGP~Dr{=#0MF_R*lc6%@NHJZh@$r>C1al6+gx`5cG{K9OP!u=5Df-Fhf zw1+qbIt)W?=XrUV31*B9{Vavet-)M2WU7>EtViP_SUv|L=e|xkzRJAb`7HBH)K*p0 z%rZe+b!$yY3|@T{Z_9nPbbf0OJ}`Av8sd_~<7fy>QxWoymb2koe|oQ9HCi#;=q{x4 zS+RvgW|NydvmqvowMp}{anCNBO;5IerRnvWWk+UQOOZkcq!!qSrI}}9a-?~jK;FN2 zZiCfKEwVv(K?;1VJCX68+Z_*FRJ1UGF4*(+b; zk*3htzw0=u&{WrNl8LT@fgeF!wdz1#An0uoT0RSX;^C9F%E1q(${$9gtF9N?Nl>SA zRn{=zZBPKlv)~d<|z|bI2MA^*BzOX$`cI)o!SD zi3eX2Fw+$b*L(gl3eql|B92^V;DU|DO8T+ecJ@|a9K13E0c<6|r8<}V#8xt+r&E9(1CbT*@yn|>Bj>k^spgtgg z=T?~fNhPk43t`MA-tuN2HS9u?Pm)%G@u`v^l7y1cd5cR=wuzc&81DSdhBd1WUDf!( zL#wMm`Tc(M%d1&H!24hPjcy9rkeA90^S3)_cQg=&u`f#laachj%K*W$++I|lWemV~ z(8eA9H&wqiWX*_f&2V5Rn7q>?XL%se$BSm1T-6OJB~JFpEagS<8P!YRT#kWSDckdg zIs7zlgE%&7scx(2nQK%;p8ArQLY90)_Me_VPlUL^RG(ALFASXkvIyPiV#`m2nUyUnoX^CxUb-ZWbaF@d|@TnV`=;>2mpUQI0evCe(`4G>fKRAh*Tu2OTC)0clpnc*T3fGSXkkGdJ zm$*!8K&weq&_mU%(xt(9OAa{X;L(jC3pGRNjjU>#yRK(a<6&q`waQ$#!hdiQDqAah zWU_D~GBDGDH%9+JueE;X-~WvYa@?-KXB-)j8g<#uMw9iw`e)lVPsQr~FcMfh_ovY(R6oxhEH!Xn{aA0@jImn8&b855aUNnm@f@vydIy(v}RLPuvtol=x|Xgk(qB zlQoI-$S%g1QVH+=4viBNt~~sT{2GOlY7Xe=2Jq2+9 z(>^fhd6Onk8kgNhjukUfyeFdu>Z|RMJo1~5vfC>o^$kHUE^itx>?$}=C zpm#Rr)48>FY9@d8ma5o;%dbn|v9^N6I$HGfK9&YYimD}QaIp;<$4!%--)``u&Rxl8 zsD)Lv@CoNvgYeDxpZch(E-LT}Zs%%FY*jIEajNFBDgov9c&bO2Y32&sH4Q*>j@ke6 zdf3gV)H)KG>B7uh7JalH=R`a5S){J!hw6E zr17L=H7^x)o_6|c#CWVUnBik8kPFATC<(sUSFVY0=eBvrBDpXI6#P}cI_4O>_}yz( zldN{2#B}YOEJZm%(X#>{gVq*9Xst@WiL&lJJb8H$rButYq17D#L;<|yiA=MM$(id= zvAcvNC-L*`&6r|}q;GJr)FY&NbU!<1ZS4R_y=)+WrXKs-gw432RSnjqqsb1A++hP) z6&+S=cFG1(kQ)qo=&CGeX#{O0ZUH1)8Iyi&k>6k@BehMimsk>v1JD2|i;k97!)oe$ z{vex?h0#>Y3#3}s+`BP-0rx*e(ADPQ3DP^P3t%Pf zJujD^JsO;-HDT}{rL_ub!gKt2eNH}PwGY@hrMHeyn!AG5_}MmtX*~B8o7xej7r2~4 z4!?>mxtjmxFmPIveIb+62amBL?xgFmgxjanY0zesas&SOr)6=YrH2I!v6NfrnI;@& z$SXDy^<;l6iW>$`jPEHT|*w@W`IUndtMXx7qR-%8ZG@+l26 z#Ru#_@$(afGRKP{SEJd>_o|B+L#+XPPJOxRI^^DLzU@y@*69_fr%`invosQV0r1 z@o)&lw-H#;8@C13o=k_&i+)xwtIZs6=K>NMY#xdk^$zb};f&}Yl7xY8-gi0Dfw>S7 z^W)->8MeV&KVDdbD3#5M1I4=^8=ur^)0!-?0rafO z$5z0lr-;bMs$y5orX!zNYmKqUAB1W$JT34F@nQPM=+N--S+$6SXtZFbLCCD$t@?n> zo4mQ5LGiB5WAtNb%d|1@C~Aoig=2v~6F7D0TK2}6z}MEagAUaL@UbrF`<_8Jhz#y% zWPyWp(1ITy6zI|`T5mm8X`*d7W2qq-f|m{XEY!wy7qTUAvR+TDMp%9x72K9xS#+?K zaqb5bw-u+BQcSUkgl+j=`)4_v;v7YaopeBL*@h0~l3DkuAO;BYJG4?OseiD4W5~HR zlO|f73fhX9DOH??Q#=^#CXc9vO#WSAXemmtwE5`gxtz>mW%;mWaOx$O9k5F8Uw<44 zK_lP{X zmO}fsj{Z^*RvQ5f�d%fak!@q-J}>47S$I{HA~#lWzLsVgcuI=AeCfQxuTVRP#$Q z(j#hX_T-M)_ak@NK7FOV>NrTNQ)!`pBd9Ifi}yDTlP?+ZoI1ubSOd; zNS2}+dwnQLU=D@OtPs6Fy)cvx6ulb;La`U#ZRwcvcj~3!0~-a5!G2146%Qx|VcZty zqnBH~<=O#$mjzrHDYYCxk_wuDIKb+dIKtvFa}~{lRMGH9$I-$$D?1p!bAPm9VE_E; zkpVkP(t>GDAK%d=+$69>ty5>x=7dOQf*+#R5+t^I0N!g+C4&~Xe8XpAts?Uca1Kvf z`4s=L3e7>KZR8>yXUkP6uBitA%gvkQNFNmxdghsSl(JTFZ1>*{2jo1FPBn{y%^%H# zx8CAl&kdtS6qN+XfK7%_im__~;3t}R2n@)Uy7vNeIcW`ho?4U}9Z#Wdx$A%J=^K8* zhWcS_4&rg-%tY5@U@9qZmOO?8y2u)f!#!u;J_ZPtQiXX<0{9xq1|Su>8|srG(8#6) z2w}P9gy}ARv>4FPA;Ue7>^^w?U4hkT#W<{i#*hJ7?d>8)#p^~mCu!LSqE=~O17Hc3 z&>qDQ#~}EhU#2tF>8|YN*=el4Ya^COITO4Db{X!QPd+?q2y*No7nJgEr{!re7q8tY$57(j|ThXCN zGju;E2Y4j*w61Rqd?C!n1gq%C{#Ny^}j)jcZ%uua8k_C82%> z5GNe6E4%tVhEE9gy->57AvMgSXXt;ln;f<+QV1OTx)xqDu%QHmMI)kDO2vx?P!)M0 z;dlG%?o?7pL!^ubIcmoR?Os{#t_DmiHXx)u&dq&BH;t6nc9UOyKO z#JNB(La+c=i6Hp~)z8E2dSaDj*_bkM7@N!9HJ(iI>$TSv5S_JCa&+aO1vR46HK)Jp z;7Is>HJw$85B^mfnvtD)LfyY?fs$A#APJ3lNIh(YJMV-rXZtq8-%tUvu7#X;u}ow@ z%?vz5U>~Gn3^H!gxIp(i051JKQILz18{jk4J77Ops^QT^b$M^0r+;lYqPS|W{xyc@ z;fws>q&IGJOikLWyNe?)0tVypJV;nV4Xc3(QHTDQA&5aG?IswLBMA@y1iN&Chtpt; zb~baI#rMAP+d^sAkdTUsQQqhf(+!beu{AXtyVN!T(TUi@$R<+fH86;S7*ZpgMz$b8 z`wAWWsY?D}1@FvzunKDzy#cCm=Xd_fQisb{r78HUy?uUsK6 zZ6_2FxwJk*G)1xhuo}=Tt`Vny(OJqWS`A$rgInph;0t1%Bpf z4n}Mgf#cy_?ds{2A!IP`^5gN({w?T{Yxj=ESx1OKLr0@R@DNj`zb!1}yWX?eC@|4K z!m(o_PJ2bSO#|Yi?GXLdDx=cDMN0v^$)iqCtG1?deqvnCMvu55Ce6I)U`VOdTJd?& zs*FPG2T+SYe=oD@b-$ihPKzy+$UCKN`!}IaMct>Ku1pT&jP%lrSD1cGUp5@PH{853 z?_7n0v$XvX4DHUdLP_@q4(tZYXseseo`@Nf4NJ|3fX+JM*+=HSJ?4^Pu~R!Ykh2!% zs)5%c?8e58)^=^AjB^3W01iw&tSqVT{j?!^bVgFO`Y^J^RVMg&j#HST;7ATdYm1N3 zj-a3cQ126f_eSi(pS~U4>?!M@v)6WYzmKw_S{s%tUUy{Cz1q5PLw=fS9)oe`=azYf z+6;2!6c&CV0dgO$;&3`&k!s_a^-G6O0};#2<#f#y7TQSzY8aM+x(Q|p>|;|50f{#7 z@#VBl!89nH@9d`o2InsP4C=I&8{7C4DMPb#fV$~=FO!b$pW;<*82J37k08|pPNx;` z%=$b_qQzYo5d4#;6BHqsWb^{k3OqQDsST{a8z7PAv#I*shEnS~nVpl+Uq@7GFpU)- z_fN>L&A*=G3PYdhx0%-r`S1Ase%5*Zb!tCO^av2sZcq435*-UEy1==EH}75gd4(NK z(jJfH#&HIMeL|rzF-LGJfz&BU4ymGjlS=RYhJ@}xeA950gNKZ99Uh$Dv#$Euo0KfG zs!Iy1r^v-i5Y#KRGLUD946jDQWPGT#7yhyrYr=lfF@!BR*+z9UDnvZxEFv~{8sf;8 z2pzrhhgV)9ehOhJ3@~eOun`_tzrp%v9&2ZM|8Kn>*8dOA|NkPohxI>a zD*i9Mp8sI*{CBVCKQ8&-&+`B5^{}zBasAI;Pv=j8Vx68>ufpLDPTIc>PvYwo& zx)pxi)$yHwuJ&535xIR$n9<*TO{j}7_-R*Rqgm5lUv@2!OTgoPS~F;=)A)n$;s1J( z-1xrZ!dTyb|5En zGf$Nz_Rhu8+jRMyfPI&G3Br-j@`>BJQukWt$zxB;POlEMe6{u`y`0=9MM%F@h-%s& z<~qlZ>}%hsZnGRBbV+&1cQ}i>sK*(Wd)Szt$pOxOyT3UgY4L_s$v%FWRTIx-y-T_1 z2@Idh1L>F+j#@BARpNb&cSTE0x@pFm5wUjvIXM9OZHeXh2b2Ee??be+3y}lk>Wc?w z*B1w!Pl?AL%(V2OWwd{hgsMjdS30Q0y80$>HfI6}{v}B>8GyO9&50-}dp7!%)65*) z%AmWSVLV@6D8J-oQix^=grY)P2&%!^-eq1Y1HUUlwKY#?RYr}8sPR9Ak0Tsq2ga1O9Rq{M88(k*}f*+yAj~$fdL>Qo< z#t27#q4)Nhnjy9n}iLcacvvNbBfET7Mi2vjCYnThz$Qqw5Pm-nM zuEN4`H`I#)0dF94boQl2D`<{|Ui}O+kk<^|>q&&_>$wNDJhNA7G~+mty4*-U5sN^V ziZy@WU0jCxBy!vk!C8ZJpc-4tCX&F65BI1aQu5Q!i*38))4U3hW%*8 zK?#1fBY(O$XBman!xC{S7kQeUGLN8c$0uXe6yV!!4~ZtU=V>AAVBCMM2TU?YOoSp{ zDqtZ<<_H?5amuZ{;%X>RaDgK^DMUZe@a2!NhuT4~NPsmev4x@afU+MzT+ZvJ+ZNb8 zpo~2ju4ulvO9=$fY}vt?YI!u@x98l{ebb=|A|0vxhGKK{z8xa1)?|#Q;@g?kEuHA61ZjSIcoX7bNLf1NzNIcgnmZ0 zF6z0kHHsf*$RW;9&SVtLi@a1f092Fe7RP=YgsRt4!w$}PVdfPW1( zfZEE*Mm>^5>|aQv60!mhMmNu4@XNUh=3Fj(#kK$6KscsOD z@e86_McFQtYL?KEl?oXovJw64R>f3ZC0N(61inKt15dr_NbV~HXlga|g6tF5Q&CFx z*1_2`dUaFwi^6w_H8?>g0C`}H6;T5sPQBzYsS7<*IkV($;zgLSG;q$)wVO(&oZx%qvte6|k6&+gi4LcaC z_iRO3JW5@)oeTFlg~UNpy1_!x3^?M#fs74bn$a_^(r3He3A!M?es6)#=;nUmF+mfy zhX2j^Svxon1QMyPp=Y2!FjDPX`=wSp6Fo9mMt62fqq(;Q?Rhr4>ZpxN)G}c z`_$)0@`PPPxy=@LSRI2YREGN}LYOncp6v%Z;k{*G;n2i@JhsLR$;4#(R`qZ!MC#_R zLIV6w5i*HiN*<4CidHAWva(%2Z>szjxakFEA<(IIGF;8(B9J&+!!uFOn=^4$3F)rg z&GD|^9qP$g&(z%RNG50Ral}o*ho|S!R;_Qno;pj)B-kzVbl)e0(9G~oj@55r34AKl zQp^M6*J=%JX=>SvI{%AfUg!=@4RN{$5Bex^I?mT}F+Ym<1PHr-#Kf||B)yf^H$uUdQFhl2;! z-nHsAu@q6M$yidYb`7=$QREw7Obv{k?M`)ndeKvsfm4VrE*QSvels$-As(VWtezh< zvHvy4R&B!`vrE&aIASj)IB@@fxsZY?<;l8oMHLPZG&ng?bYKB|nqv&TAS zW)*XW?jD4r?S>0Sz`BRif6}lU{+;nd;8_*7IWHB>2eCJD~!2 z3Fz9jn3mBA?WQg+Wl1eUP%19b(?QML`z)9i17e=i36B$MLg@u=@rFgymjq+FLTe;n zf$F5p8_9(E7vgC}wLQE==USi~-!h7hPkrSyNlbv%J^5D7_}CXl(u^y-eKrFCF3v+u zG^U7Wv6up=Fi$o>|G;!si%_DVSF79mblkZw_(=P3%pz@2U}N22l@8p+5Tu!@Z9o4@B{Wz@+fc zb~89BrZ;fY5mmT^9~(8-n&8Aqf#qq**mt2w+X`^U1N9P!^dToLE$@i7rb;J9(+5B_C7#69NZSHb2bta!TCh#BdZ}y!R^R}++>+^Eu@gg@ z!;?kE4I;?cdjzhA)uh!#l6ht@LfNau!oM-&nZ5Az2mkblHRA3=q@YIi+ZM11+rStl zV7YPD6ju8+N=y+uCGW=XRp{T}2?j)>g~J(9wg9m7hbLH0f`yPg=@mR^uH4t2Nen}d zhe=k)Ur}Xpkc~cRBvf+AqaZQ`PHP<^<&&Y_>yp4?I_;0gj7}cKZq6uh@n5h{I0KGw zVws&Q&Rj5XjKD;1@8{6i!@SHAXysFbRVy$o@k5kFV&po@RfHtpn=*;j_UpdCu;wb` zQw(6{{z60r=ef+=mqdJGIb-({cPt-@m~jWBIrSHjfCKRh<*a8%ljJ!ThDS3~vXh2A zYA5ofr^F|6EvFIUnG^pv^6u%mw&-sce9RTwc6Myrwr$(CZQC|>Y}-zD>>VdNN$2-= z)v4}N@5Q+|)zww!4_I@}i&>-Qc;zu>D{{Hx@EGPySX;cQ_@W{dZdk>`5@W1e9Sqn7o*Yb+qa#e$LBbjp0f-r@Zj@ z?N2kbG#{jpPF{Qqec6SJ=)(DM!)Ge8VN!N%Vp8hyP#zrXS>0_UW10*cI0YJFN%;B1 z@I1+WCOejX+MpCFLBPM8A95`0-}pZpbboYeDN4Q$1ij~*1z9r&ldZ%gJVZvKh>H;oLDp!$26s3z&j`8GNYxP{e-?# z@TCJ$#P0>33QAyyTtc%r4ZKYwcGsEt_ZeK>d7?H(&F!ZMK}#+ZukFt| zXkmQ&`#xqI!06sghE|8%$fF88@#Zkz>3o~QAp$u#3(`J@Wv<{YgBWbd#$nYXD(>w` zaeVn~JME@M++unfzEeSwph^;v88MkcD==2$v^p4^8BZHpYzao7-x0`jjgmYpXDsMz z?;)crGvOyF5aUYRj^q?kp!{>dq9aaR3ficCj^06h9tJ*G+j1_>*$HP}A-uK)`9KWX zWgR;ayQ_wMJ+ds6l*b*-JfwYKTg*(@7W`lKOl6!Vij!O}j&|g)wfeZ~L*O^(w~M<| z7mkC&{;Fhr`AG!C#gh%eDL{xQo+r>N98j%v=Mo{N5|E&PF6L`scpswxjoKw==4oNc1rDe zfd{3WZsrymv@?=42tF1g?UmT$5?1GN8eYR0=>cQ>GP=cv{Fr7TUb9q`C0j?dY0LYR z9cg{Rr;(F&8XnsvbEgOUJ3ZX*$9L?Ax3|UKZ?Q%*2qn`5fmXmkU@%JA=5L>$rzZiM z8%&9;UrxXCN$BAQOrmws6}$v__-87#?kZ2Q+{xT02xu^W3xFoVMI7!`A>*&(OlM-l zv%NMbxVB;D&(QPl#*BA&?TC?#`*706vW4J;Vj1zum&UBTF}Ec?ydw8x!tncbKE6OE zjnHPbQr!2c-%~O?!}p2CV({bE& zfo3>=m>SyAhN)ZXWx@RODajTlT9>Yb?T52hF)#*<(j~vb5FPkUMJNk6A!c;=aNekZ zq}nx421+WH-7c35R|<=vF-G)VT#RS8MJvv(d1PjisvumX!#-@`#tdpWEbzn~ zQt~(3GB)$|R2HD;7n_&IRW$u6w^lTGHy!2-Dakkp!N#`b;sJ%=;DRxD*RqT~}i-WyQ6c!SZxs6CJnREzjv6Ms-%;IDxaMmZf26gp^ zgRArl|E%d8gubTXSPmzcj8c3FJ1ygeW?2;|%ec*UaI`5b;ho`9bD70|P~-W9_9Wa7 zSrKCrN4;(eV|pU@6dL2|7H7|;&y+#iwKQ*$`jK-_3uO&e{D_0OX*2f80*ko)@_{Y? zOl58b&`WXD3D44J7T7W2#zAe}!k;BWd0KR9#$mUwcTNiaQ#4Gj+BOkK{^08H1n7)I z4lWAEZf%YX^_LrX$tP3Ps>c!rb54-m^cooHoUAhZ^VAtprB8NbC@izFDAJ|(ZTCDc z^rJ*ynT70?F~7f!tS?u=FSF-2<#A_ZK;tQAV>p7K%}Fi$x~!cAnDb7a1+`m0Oz>Aw z)nW=7(+3%Kpj`;q+%}#i2y|*qyJjqqL)#TjWTEgkLGc~Z#eW}l|NpLH_x~fMp5=c_ z#V-5*(+c{pOa3oJ-K-zKLs$KeaIr{Z}>EM5Pf4-e3=zX_rnvPtgq>en5zu$z=f0F6iE?%6Bc7C2%pT2*{ z7dCVE`oCO$xC_>74|6D@c9A<34X=zYMB?C-OYQZ2yyWK`esX_QL4I$z&-OL<`hVZN zhkvZlsYX7?p8reEyX?gOqK_Lw>@`p7mldLb-;e&lN=-#8EaO>%R`|bNJhlF`7 zl9vq@h~hoUTKIq^;4ur&_wiXC!tj!F`|}r`2ejXpK3_lgus7)Jhp@dDUwljH4>Lrm zXovZTDMxbR^Fcz(-R#(Ye6F(l;QgYjnb*~WqOG+)=@9aaAl*zEH&yN7D6uwW0PI0q zEZV4oP1(g1jl8=@m(2hBhE{13VP`&H?7~eI7~+6fSMM!4nZu-5ml;kYPs(`P1Y50l zxuwhcwR!S@Uh7uXcd&IY{mw3Rpt_u59l;Bhzhmw$IU8oTbcAX*#DPI<9RXQgG#S(X z*t7j0_73Dttg|;ukBB3UC?Rj1AYvCLegyO@WdM0UszmyD2(n~BibtK%;&Vaxuk}L) zgCkr(urg*4E;PsybwaBhBAKKN!QNLSJ}s46D?739ulk_Sc9lF{T?!t@j`c^c`JOLz z4nNn%--~Xg=d1*KrS6)ynAkpX zL_3{96qgCFLuhLZ8e^1d1ThvCMBI>0015+* z{E?88q}_jL9NlELMVN;P5*1RwQW@sKY5*fZr7OSE?v27_dNIn@#PQG>3)o#R2s=v| zrWHEFw2dv_g^u1&N=tX_YB#|AYZVntO*$5D32+lEKg)`*!K>O=phqD5b&6A_oRKHo zDM4wxQ2H1=k{+Ps=@jGqCnN-JOGLqabR105SddCoJu?jL#6O~Sar%W_dtkcp z>nI*zRJkGWUugthdJeGuy zq~6#++)AYph+8w)FzBr{=h>nIHI*fU2h9O{y1UCrw)Yq)6UFN3XAzdH?+_oD&#mx} z$ft#zWOU>3paM5$!Y~54XKc2W_G+z0vAI0hw9lnx?asp3zqqfBm4{_6|7y#$r&!}` zLUU7CgUdu(m5PV7Nc}1@m2G9~7zC0Fb4&%lSr)dluw#0)GMJ{JwPdqZL?|D}+WX(K z?hCjk-y?BK|?R%Zi$T&9yFOPE{O9*D<{e7x#kTMQ#%`R@x zY0-no!q~3WY%`0{laU-X_m^6`BBWD#ntJ3;_E$tAX)_=bjoVUsS)6RHfc8c={A``M zAHPP)FR4ukWvvf05JJW_O<+pz%}^U9ny+0hj~+(3Al$7t(b>F8EgPPVBAB-9;fq)`Z)nT(MWDGd^D80Ba{gLl#A6ca?0aEnQZ z@p~dpV}qls;t;p>B$q-C?N-SkC23-I!)YyHbrRbLyU0m`8pU*g*@%qHt#{oUo}j%; z!?US5ehzk}L2Ud?V##ioH1Wo5LCDngk%U%2RPkDkNnvi7y7OcO?5&$b*a>OuATU9! zq$hmZBNcp0HHzJ>LURD!25swa#=-&Bho{gA8GxF*>`>Dv70l=r%QTYIX)*EitA5CK zKjq^~xnU}Tr73U9j$hlf4Gl66^KqQK$NZq8`E@4}=;yU4pYcx_cyD0gs@6>mDQpGX zOhh&>v??nTrmX5;UYb+|kWyrglR=fs3`(I!X12t68QYPLk8`W|hgn!5X}IC1ZOMms@O3p7z*+&cvv(Pl494~>b#xyR=^TBOaB zSXF-G3(#5ze$0zKg?HxG(65*kx=|0zz~gG&pHEeE$quJZGgt=vhn^Qq*(9U0%1Q*W z!BL4KG(i1VUAhNIcz-tCYFXv_6icSXRO47X+^}`K$%oDMbo5$f?*5>Gx*H15s{X?;W346LnCiL~xN4kFFqI0-_7f1N43 zG@Vzkx_}FQAcVXZD-0j)FNu*5uo=f`0O^7mrV{S#u}FTn@1F!AHUI*Vp(<&<0UdQ? zz_Z-jC8>?!oNcUfz%JvobNt-AV`%Yb&?^^TyK=?XLVr(j;F7S_aH^<=Fgx7c=QykJ zVoEXtsS2U?y`4xN!}3++U|PAy%G8wpdDU~HNg%jw(Uy87N={qFXoePtjW^L|y!jB8 z?}Y=jbrV*nn8PYN3;8|(EaM|A*wXki_zG}R;P9}t3N*=Y@O%FXs=sX*)x*AJgIU?F zOd#l8oo(aZpmJh-zZwkSw^Zx)DiDy;4uMoT*hJISCe_G^d~R>@QAU~4#P+RJ1HClr8N#eA@ez0ZHxwJil*HXm zHMhxiwH5klL{1Y}PS$?>KnZSA0%FC7_ulq+^+Bm`bbQ3sK7ua$*H$TxI~6|B{CX^+ zBWWM;O_e!d({L~TTWOvygTjIx+MUfT7lQoiH^pdMn;a-gn`rW%Qqz(p8yv=xSbR~| z9DvUL;*w4vn<*;!6z2Fh;lzu?FP~tbjF$THhSf-27ZQ5<#%cjk+;M-!jkO2NbwG&t zog+HzIiW^P1AIO(8xmM@-5Eepu5VZqRMu9uqHeo@{sR2duWpd9rLmlMwdW8)n@KFY zcWHyA_O^S0BW>M#o((E2udq~#0~R|$m@PJ>C1jqF)8uF6EZ5K=f72*`0T~uUMW-U8 zU>6S;i{`MVsW^eEV$)>?$jKt3gK7MZ#fbsV=lxnd=Oy^12ET5CWr+ivM)zPX zT8&W*`Zc*<66^Um)2OP>vd1bkZN~l9Oa93l%V5ksbNKxx8S;q?AQ$!?1vtL3^lgrD z>CO82BNAHQX ziENB7xgDJ)3VZqm(AmQQZ4J!*5KR!a>%KUI)6Uw--IrF?l$CrEKOg|bf!{jNhar~9 z1`x)C%K32gV9L4avqZ4>sW>i!cBt0rs&zlh_15GZc}*&mwE?{d&ATgYEt_X#ZDK9t z%ClHedyX{Yx${+qi=?H(i5Z zWAA*@c|Qf#$6!+JnrhcXm@97+NPjVtAVe_k5_ntkABiUc&Ag$kmr^>i>tz0T;0#iY z%J0R)X*Al!g3w~ed21aFq0(Z3J`Vx12niXPqlFY^gFU4U^46@RFhhbXlhOfz8Ph1I z(GU^M4ToojmRUgVN21!aN+ud^Tg#N2U*iVT`QRSmXvdyu8aV?WR#!a;TdD!9nM^~W z&I&!*`ZN!8n`B3GChAhZ-#ex59;jSV7pkok6|J*b0G!dO>xyeRzLx#j-q-dE zc&CC~T`kB@~*t?R!?Wf>9 z?ezxsw~MyKm`YHhFekbu4j%dHuXzBR`27{c1mxIQer$`10te4ClMAF@z>WYt<4$9B z0nSSH?xy;t8TZ1oQE+bVHq-RHe$0^&Tr)E0gOXQ-1C0l-l?wL9jISRJ{YZF|5v=@D9RWR3jSN+A)-7d zXwB8;nbZ9&BLXu3SI3j+xLE|=nlR+Rib(;hW054oHOT!{=Oo5RU%m*7F@z-J{(&%j zb&=Z=1ikL{58WOqJ#IGW4DZj(zP#-gDkV;=Bg(6%zn)S!D2B^kA@$YC$9mG(t*Eni zXv+{*fEi0oid|T=>keu1&d$R$sKtu71bcnVbM2^P?u>$IHKz@hV4}Hbx^N=CQ|F5<*i=O({XDBH+$hE4!j@|qclj!PY5j}c#Zpge<-WnZz^o?bvcbk++Sj~t#QNNWSgrhevR2YUec2F}) zFJggYB=dZz?=P81NZJPV4*r9jn|S%1*WVu~Gk?Bh26AUUGa;S{c#hLVrLbE>ud^l_rb2NcQ{Rn2voF8??r-hP& z`!=J^NW8k*?;FFnW>uayS4(jtPTuql&9}EEg+B7DFO_pHyg^cj-_Dv7yL#im+rizs zCAyWHCdumUH0H@QW*xb3HINW5hPOo>IEbRS8u!tDLca$ifW?j?o12JttbL8TshTsw z0LY8Y`L&iFna3k6Wk&G|?4?)KdfOX@&MCWXFGQR#y7wEFsoItd21%OhEUOuz{;~*a zEYj92ZXJU!m^@u#Q_WinPPmQi;^!4npog)RCS8pRM^|rvI&A@G6fBhzS7XGZ_2P84 zgHXwurhiAF>tn+O#Mdl`cbw=M9>zQ?NlUI}*6kUzoojQdCR4f$^Euw1&M%nI#I@I*|uWXqPX^^l- zM`uDb^#?84A)sb7lGxSqUA=P#ywITQYzywi@^9B#Ppy>?xRNq5v9}}C?d8vTNIBhN zSo}(?FFhna;^~3B)tec7RlzsHQRP9Ni5un!Q>M9)m*_nBrM@6=UTDWxERFtx1;@tH z4#A({WS(4urcZon{EQxt!hiioNHv`^$#y%-EHzeXKW@jA*;Vn>%6n`n^Er|;V-r&> zIJgkpzM0?qb@Qa`bM4PYl_BP~G>e=84RzG5msUl90it$LgAzC-w0%TN2n@$9LSlal z?Da$#dYst6ZoT}HgP}nR+D0~Bhjjq!wv4VR@beOrMNPAn?jFG}2z6QJ*^P1D^I5Oh zuHbhYD{`13={7&FT8k@I;) zr^4gW^Z6|BRTiAb;(IFkUp66Qqz>gs32x5D1Qe(G7M4edkOK_;A?7;=q2|z2Y{xx# zIX-5*h5|WsL9S6w8x~2uFRp*WXNY%`hgo;mf$&VGyST~D-4;LZn6CJM-Nvg_y;B+V zq&MZOta6n<8hW!1|3%HKdCNp3VPX5Z6wTk7Smc|&lW+x6e|=B=%HTxw$&3kuE=UK!zNdg$WkI0=? z*{+=`c0_v&A!*Vng!`)J9j9|1FKK z|7H37kFoIo#YR`w|Cs>#e`n=#EH5MCNSGbnfBp&tm+@k}Ih;dk7MTzyRVXFtet+Cd z|0UAoo@LEa1^Fe-&6s^&VBg#Ry?0yQ9PWhg+u2#&{@vT@y_?3~ zCzHNn)>VHoGjlrhiBI>bAa`o&?2Y65`fTj-@OjFjb+g<1Hn+w8-{?OnKi>U&y2ZnD zY1A4Tr8O=4GsxEaZYGib#9kzU0FW^F;Rgf1FHFVt;dYeVqS@`d2Ui z_#M9eaZO1}5Qb_H9jhP#pAn*apEeV6HrwG|ef4XPyS`PIzJ2aCC9T?-d4-=x>oIKI z_oM{2QyUubwD?ChEm*Lo>MV@Ko4tLQ82(u|q)I|%j?|wLz8P%j!7eIs6izMX;WjEZ z{{r6BEoF3G4QoeXD!H5amr_4NAM@~^1wO(zd$&}cFTOTzAbY{t`BWTEe>dI|JF;OA z)yyHKbw!AtjJ#%(z9sB3p-5mONgtFam`*Lz^*GQw^uRTYko>Nqg$^J-){yW9W!L(l ze?V&ar%1mo`^bM884qaE$<*R5Yz_}jZfcl|CLUc!_w8diN2#Xf{1T3#@JfjhJ?yYX zz=a$hz3l4yN;d5qGUHKlaaS`dRyrrmx`H8FXj^o-UNkg-!*0oul`SxvcE+;K{ucVE6uZ6u&1nF|${e zZOTH;o_xz6^PTfdl=@%rPXWe&*55O`XH%2XSy7pk-jE;oryJ4Xr_`hT;hj%9;8-uawdD+>p&YcGy|PNDWmlDp67;Oz z(k^swnA7h6A5;lMPpz41UAY-~*hnRQX@S_Q4&hm4qkcW@X|>mzh`u6STH!fjB1U8I znCm0PggV(#O@UOHShUu+NUWOb0=?VIdhgI1VP$m()NEF{6|$IoaF1+Ti#2eztff8Q zusb8jw9)LOvINNUCS0R7&+zG%cnT*?^GbTm1kOTPJcG(=i*viNfxMvA^)4>Omr%!dMd&mv;XM+xwu-8bN`?RaPDiWn%U}m860)e7_TmixbAGjNT)(+GhV~#Ax-q)q~02Kh) z<|#73XxzqK(&m$?=)r^ovZx^{3}Up z9vpE9k$v&=wQRkQWQ)6SbDA69L`)DCFFQwQ;2ifRxm*>ZA1dQJNY!pZ3A+1H?zJQh zcCM#mu4fi|mKBP`jwodqD|GN@qx)0_K@XxfM+pObGh&vu0|#ycYt*W@cFoDp^uDw3 zkR?o^*5~`{kA+``BP=8eMZLX}wG9b=1s&qYlN&OA)++yMTTw%VN769j#2jc9bZqxBxwikDq8ezj-2TFTtZoB{D1VG}Q& zNISQP0NQVk_OZ(5Zhgj~d%YH-g&yrRB(N#;KnXLlq_IY!$FD8h2I18t2+H6hOHDg7 zRd=RN-M=~on=gjwvRCTWsBrxm9|>AXCE%io^$lUB64n|K9G+w)rkwmStXIJ})7a0T z!l5elQ$UI2q5~#rB|>J7bW{cj=7CFlAFMRkH z1W@zo*tuduaTROT7n?@w%_HM*2ixp|Dci#@D@m#Gs{m{n9MC}AAX4{oU|JTJ`I^kI z#FH`!V`saV70l1g;+~c&ZUl1%FKdxIjE`q;bL^e?B}EME@Bkz5lVTW88xyVJO+;9M zRn1x}iahTJC|P!q4n7v zz2yj@8RqDNCgylGZDhgJ0Diqpfl`3By%mdLe6G7aLx-@y=^;^7vtQiLU^ZNMlHU!h z5f))aGfKJ~rlg%97>J547aK}MH}bby3sq8A!UpiHyl_~qOxDPWju;PbOBsFp@h?J8 zSs*;HC1=z>XHeapL11$|t1R&kDIjfi1T@d%(JgIZ3VsRud4t!?h_c&pBFN>3t-7@z z3X}gD25svE$>uVZEt(oG>3g00eFZ_$7%U8~t|Pt3EC`3d;C?#@gTp}?+!pU(r@mOB z*}`9b5TUEncN~eWP9UpmwTwrvQ^KqRh@m$e2?H~?QUf{$T+^si;~s)Q*hDDXO_fuR zh)8?6Sf@K>85DuIz|^c8z%IvuMJ)!5X7NhggT_Hgq*} z3$V__5AzW%#&&#hrPT63CNL;dQBS#fMP9Y*i9#kwX|Z5nz-iH(Ly1;?|8WZZ#%I9)#=xoA%`w$BhlK{apn*uIS~=2i`Wqw@(P*b`*w5n zfr#vJ(7_90I4?l+R1PY{K(f+A$Ao1Ne$7fJ27OM@1hK@|MUbdJ?|EU~La08dS2OIKf2oxz}Tf!%ipdvT)g>Z%Am(t3CV!OlRr-n!#dh7YPMmI^H=jKALh?X)CE%+0v{4?TwmbdahxI*gk5x$01%T9Wl>{k!dCS+hBo)+_^YmUqYVOCf#KHMFgHd+^37gqL@{;$LZzGK!Sy z4@_D?rQmJf3JpL{&?wG}KlkWPpFLWn8VP+PZr;)1u!i!={-hD12t96E5 zq}5-E@m;Jt$9Bu>$~t%_vr6-MZ(69Y6jv)(8Vs(CrsB=cUue|}rq3Dj5STpwVixSV zzXCp}?RL@BcV=)f@@HZj!gDrrG(-liiX>Djz>|#TAgdW{!_mW|8rCz|t*5T}?e2or zMeSGx{oX2k4(3zAsS#Kl2bt}&qJXu2|J=a89G;6~+r;B^Q`0uJeK+QoP>|!HwAjKc%f2Fb`?bs3&jl2X&LPyFAe2%*F-{$*BUs zm)u1gg&0;EFgz}cU>1bxmNlrM@%C(x&5$O9SyBNA%GaeK5zbB%ag$R+RuwN!YUNX0 z*X~F$l{i_3aZE~f%Z}N9&t)}FfUK}#VV=MbI|V^4m)PYYIJ=rCedsQ`2n?B1b|E-L zrAC5;4l9O-Geb237EWR5^TKXq-AKVhXO$zFVb%Yk1#}h~IH_yWbup-N9vBshRT`u9MGjUzpMUPHtHQ*m%xgFlW0H& z9W^EQF+0I~|Myv6P`J*@3n0Ss18E+oH_K z+#GenepCyFL;;3320eApww*fMpu7qF{_;ybVpQeE6dp?0Gl=6^&CN~P6lPFihp@JpBjW?pD z=@7PzCr%Pf9Si2$pwBMIQ$Ye@9~o9~L;wCYtWNt*Fv%9k|3Rq0y}nz9!`h4Kwi1R$ zDM!TzHp8Q|V&1X?!Q}+TKR>^lM4-bz_5hUUJ%MWp4hN!zMsdZVi-urXgwVOvsKAe~`Dxga0Ulz2Koy%WX=nc!aJ?JmV$*FWz=9IbAZ*Bj177AqQw1uU z3D~q!>3(XhI)?V|mdTw~4n{wzG2=ud3-lZvFtD*L#`|D!tg8u3rD_qTdf2?BH*)%z zb}qOtYQh?sxJ}b(_WtzmB|0{qkK*mUHC4yjz&1&xqXCvg2vIYQ5LjE0^P;lJWHTh}4S4vxgbeFUWA`sjhIPdI=-4`(VtFg1c* z*>2D>I6>;P-CVY1^4j@e@48CBJspJc+>2XI*)ppby8Q~Bng1To%MKbWqe<+S>JfPl zG%Pj6vHk76U)PGpNHtr9*q9^td+5*QgLqGY*dnP@syNB&P`9%b82>+?RAEv z7>{7gM!|Bz68SuW5F_-6J{I_23yz)NCjM?j5`waWc2mWMtH>!5@}0$Tvr$h&W(bbd z8L@(mrkE(m7b;|ux+g~9s{1VrR-rveoYRC@les&_O&O*LDxR=P$Y6*Ko>IWxgC~%B z6V!-{u4-%0s+XD+ArTJ8@-NfJY(gdq!B^lhUNp|KTiec3p|tzJsKY_QDym2gdTScy zBrpyPZfoGzO=j!vC)fqIGzylc5epVDR_x=dkJl|P3=t z;M|d`kF_R(`2V0}r1B<<&*Cow^g<(IT#^Kj9{bmf1sNSqC~lgQgDoZd$4HjoPn|rc ze|<0??_{Wh0N?y+Wc}&w)hN&iAy`*%^5Vcr2T^AiZ{0>%N!zlKS;+cZJepUL)JPoI zXkMjsW=tI58oGgCi=X$+2n7Q}9<4t2V5RzeYUye5V^GCQ^fys~z)pv)-5ean`x;fr z>i#`cjCj==lf{78?Ec*k!WS?|%0-UgNoY!>{MXWV_sj6cr%0spWGsl+GqZ^Q7V>$X zRkg_)y11@IU>%MmJ?b!5R_A zf7g`P5kXr5#E z1&#vouVMSK$PF206gxgMaEoJPEae@^(RtOttA4;1 zvLK6;&{%zi(c`MgN!R7&3IT=@`NFua`9L8i83VO}0n0BFO`%J&-^3sB!5X#(ds`(3 zd6v!U3kCv=ev5yApgq-LP#;PM5Zjln~ zLFxCyar_wMaL*2St|dDko9m1HsME$cH_ex}O#)1pS6e|>Bgx)4f4kbFG-pSEL#O$Y zf^0_A|7?c_#T^1al$X@E^CS`yf?;GpHVi@L!kY-W1)a#R0(6m9jpAGA$fe8wlNDVU$Vi8_k$NVIZrkhSPbxv(Q;5-=Iwj zar6IuUjBb-4=v08mLA&w@=*RqUjDz>L(9(aKhKu`kolLRNPhhNZwMb2XpA#EWa*^X zVB?ZmETSMS91!n_kAi8GksPR%3Q4-3|4GcrEyW$2!=w<$(kOkK+kaA(rI(pPjTsEc z`|Ec3Jp%ZL5pw;gz5Kk(9sj&M`R;$``46s&GYF!(yuN(BxcjAjrw^vPJ}_7d2Sk#t^>0qAU3P9O}cK^d+n682TrmMFQS3R`>TxDN@7mlyi5PBBf~TI(F9C`~ z6d6JjHIgMJcs;@#7AdOr2g{$sQo@hQ=l6U46rBDd$@{*)AKLp*Uf%J|A1ftsT+A?G zVo($)#BX?L-?w2&fqtXx%dxEOb?sMmDct8~qimhNsFV0PMeA4b+&uPZm`-oD5L{}U z#-qYqc^!d&^pkq`WtsYW?MfDvFa;|9VEHpR(t)1i=J6K?{c*ULgwLQ4@l0{S)A6da zEVDO*U+nbP2syWJ_dw2lmDk;}hWflYS6=(tcl%`l6zQ?PKMl0+)Ir78L8>X>O!rFv zY%%?q_88?8qD%`){KKx=SlrGsKfuSf`rAB0_h9~`<-f^L|3}N$#FY5a^1CI!Ec!-G z1Z@tk=vdO?MYv#6&u+3!3ode7l%8L3%7T}|Cg5kRN?=M+pPn5JOR4RIWs`{&rvvB9_%CYI`ER9a7`_nyIy%B3 z#78!abiDA}49s*KgQzho*<_3}o0ny}xB zO$H5}xn>=)!$x_pX(iaY{kV)`yLCbz0&c42z>;7ECAHhO0anHsm_|=K%#}4?phUVR zatK!FC8?U_h&lZftQm*iP1<}{ph2lt}wE(r!SMX3R)LetfauOwtXN= zXrNcORG%eq%_O^p6*+fjvW1URj;LBZQ#E|a%g(H>FIHPTsXFJXT683LEx}t@Pky#O z96vud+qQ?@R|F69>lm{^9rn6mF+(9?ehjvaFNO8gTJ4X?-oYkqXH3vc*%G(TRgXr= z%lq7pb2D{kp?i2g1FWRY-7lhrlP8d7XGfHeKHp!u1WJ<|p#jXE(M<&{C_UWdO~9C? z0vfGH&Yns8wf1s6JthQI1bHfRj9+uO&k7ip56D1Cd^Zb-P#d^mP$K60?CX5h3bPie zRqk7p{cO<6P&7mNwkP6R2(Hxi7(B8ds);nmsHTnlZA8gJu+T+Mty%zTsNUV*i37Nb zfd_0xCQ$b?AJe@_iUlYz(|J#;YQsx6fDx&Ho3JYbWqWM`a;RKY+dXmHS(H|wUf?gK zr+&POm>Me7a`&uy39`Vlh8)&|?STY`Wx%dwjGpS05A+hVXhku%m{O4Y(IobaBd?U% zTy9HNZ5cx+S&FL7fc+8VN6fkOWtGMOJ*>Hv0ZX{%dGczC0;8z-)8_f=$87G3sUFa; zY)(?xj-$Veyc_t4cc=ydE25BToyVM0baz3L5Jnrmf6%bvr>+oHzs&k*{W{id_5VU2 zwkQ&VO2YXK#D;FffMGUa&Y)wisC(6_2wFis*2`~ouNIpE@Ga?gCDxrO(p!8;+Ezt< zc*mv}*+;K<_|wqHwqaV(0Gd+$j?O|7)Wr=QoP}v=m+ysnL=u~+~#Z$skSB$qobC1LWPMU1~ z!ubBR?{BmQ3}W!=LyDSZkw85Gt$oR+pC76@>s}#rYAc+GP>ff$VZ#Z6b~k1QP6YrR z$$54jUQq*xXoeB^fz8zmSCXK3SgcT3p{>J7I!k0L68|Jp%i4G@I00ikcs*q zxiHSv^wD*Lz`f-PiB3a#0~Z7~5P-u__Jv*%T)(ioB2i$NR(nOYlK-KyW zqfR@92adUdG67sZ$e1k7$d_XTe9qp~%>kq~#Cdi#S`NR;HwB=W)!~#C(xD~XtYrjQ z12F)eTGe$V#FQ9pw8hv?|*?F2aSnxIJZ%lqqAv|9us2RBD(U3O( z{m|&VQaL5V74_r|(XAPdfy7%_Y5}r8ai^dX*#?R5E^JvrCVc1p?rHJC=oTKg+8HUXa685fD zMqV97VIE}!rqh_!iWz~U2TtLJ+-QI2l4bXIPOcnE17GE(r*k?Jvlu4W3>Spn7 zQA(Nb2UR+x3Hdy`p2=hAtB+mH+{mI>dBoj2*el^-X>fofYjegkNt6=z=TsL~GdaM5 zOsHnypc!g$Gs`b}nEYGjz;eQ_5pHj+8Fnlx);hJ2yvrjeQ#|gTvT`YxG{T<9r4Fdu zCbCru&X0oLCSpoEqkf9tv_$#v0`8>7bfpFVcVlF|KYk>~nE)a54aT`m-7;MO5(Q*T z-@d2-BNWi-a|wg6(nUk-bvY<;EmI8n2G=2QDd+a3Y=xn$u2`dwz z{mslCks+`lGfv`g_Gx_9V{X=|aVbi8^d}GUq1?bj(JZ#>61(20+gf13ZD5AZW-|ZO zgkM~tUvIBcAVXnD_e8b)wZ+gn#aeoeB8+#2WC4|I%6KRby@GhUqi0T}S_2q?qW_Ku zt?ph@u@lI%*8)w_4jfq%OAyL^CnarvtalF88ZVe28^{}9meJkL9@8Xg(A6eM6ZLF3 zAn7U;mx9Piz20I9pK2R=`w@ovpB*mN^qrFo<|mi9pJquvPv4veiM1J3(mjFKN08>O zhytk#y(bEp29a=p?d7K-v1gtY<^FGPLiGy<38+UZ0EX?1s%Y$LrL5|1=YG2PLMitk zj&{ODPw~*3;DJtMo4u5NtqR^GO8ZJ8xga&wV5jMi)NCvtzwCKQ`OQRvXTLk)puTAl`vI&PdeH zVD7l*=IZHMr*y*Mk=^=-%z$>i&#-=UW&Li6|E{n#)Y`m-CR%l&Qy_EY52{xWqRZpN zZXG@N9TD)(`5lm^UL0vp+ckt(B1nVsOZeLX$81BEyn{gzN6E{D^v+v){3TqsHG%di z()g9#LLB3;B4MOL!$YhV&L}*_O4`XI+%vAD=PoS6Zu?nVYO#&azH@M-{~$)ZcH^x` z+EJwMbDs8G=jWDam`;21ni1z=%2CP-(f8i{wsB;UUEHQ|Jll+ppz?&aBF5f)hq6Gc zsyUU^E>c4rIY2{PN&mxJ4A|P*L>9T>`B3gyoT5L>g?T_1p0Zg$xxucu_QLEEw-$Eo z)Nl(gzIWFn*Z!eU%W!4i(`~n&?Pgk!*ruQyU(lVPn%>=8@m-bDPMHNjDmjNb!lZ~< z$UGE(1`?ZV?gK)EUXJ=mXFrd^0psC@W1d6;I^lJ)sp3N12kh5Nu)N3i7Svg!CJYZI z2-%L0j%9;;J4s`Q1h?X&-V?PEG$vktB$TtyXJ>ZtD{OgU zc@!L%e8KAby2Ix9*_O7z=Gm9+IHOe3`RZ80mYM;)JJazv*XyfI9Zzw5C`Unp8Q-nEvT=9vi5oD7==}f0Lt6;f}0=y3>f8o`wc?zr1lme1)S_Q@Aj;x*z<;Z#d z8SD|Hi)yzoar1SDe8P#P_E(PQZlVW&3Mshk^5*X;DKv`d&+3xvk3hdW{WD0`DKJnq zBB2t|@994h#Y5`Y`EKA@53QU$bO1p*=K8}O5BR^x`^&JXzVCk=MvxG&Py_^VP*M<> z89F5urKF`hB&9<_5EKkb5GflJMClF*L8MDc5JV&-R7xcL&zy768QwGC=X?Dg+}CwK z(8J6*v-WGPy<+dR_TJ}eWU-=S;Sz!G{SOk3<9b9~)sp*e+TC(pCeBu|)Yjo@+D*kO zl8Oi}*l?}#; zye}CHN}q*V%f+A68^OEil{gW51&&mR6gA!I{D(C6MZgf^2lEhj&bt6_1;N%CjQw; zdI#48b9KEDx$^}_^VYKoXWorE)N;F#pS(u4O2J)cL>v{L&}wh;+%w~boX<&H8rM9k zHx|vVHwNDXT~qUX(N|UGeAwBGdxo}ZpnaY`^;L0jt(NbH9FG^=L@VWy=NV+BXff3a)ma0qUfuwOUZF4cLQ<>T|_9-M>AzN80Ep0m6Be(|L}ulA9M)BuMpXR%PxvUeB1 z!R6kF+W8?LHhs*`NU`_hztuGRCh1))>^0f>JV`$LL$mu134d%KSxa>EU`d?n$RALg z;!uI}wXlV#$|Q{4Ub(n2Hg2$&cn-IuW*Kgb-L_tiAWL&9FxZ)FqDdZ-|G{_~bF9qa(`d;Xr&`)t)&_P|s z@}*|>(Yw)Hqi)Ar4<;2DayjwUH2R)W?=)DISt&TT@MeWXHOD2sH1l;h1VtB2~3F4H+OJUJJ>FkT$a-1OiY-T&Jt+v z7GHIVP?#cwD)B>7d-i7s>0)&$t^}2r{a3%pblkZc_3>$jTf_-+pFro*IEL|iX@c`D zU-BpTcIK8cC%Ww)ZI)1gpZ}>mM_C*Hdz>*JkQx%IjzA! zKBO>18KY{_E)eEpuQy1!VCiDF&aZTw_U%_CGUqx4t`Fj(*%4QhU_Ly7+?G3g3aw6O zo&M;2v)rO^%KFaW+vEyD&BUEbcjaD}?$8O=w*6o=qX#EssVh%!D-gBY6EJM);P;s7 zy4C)-{2mffxo6K@WG~b#o8>l|FWFDB^r9$fZ>xWJgSU*_h51W2J`VdTvd&9XxsgwdcHJO@kNDYY0X`T=g#h%srmTs&b6uQ<3RsrsM7|~7V~}$tMo-W1JL=U<9!~f30!c12?Gk9) zA7*N8=9Cnd-T-p z<&$|}d?r$^yk+2g_rRTVluP>hh1X}_`QEUXb69 zoIR9pn^x5%$v}v3o|Cx6J_;DHxZ(Bovr}2B+dh@( z+@7gD4%SC2j@gJZNZftEeP}A&k2Ci_Rxze)M09;6U1F&#n>Y9s!TBmod3ir) zqoVZseAH4_e7-z|!=WkBCWB5=gL#poT!vO%iJUvWnt2WGN?4)dC_GLvuQq#AF=zI{ z7xA+99fr5%il)>e63lp5PQ6~>bava*OOfeuYvg-R{ z-0Zg>#;JXW=6c_@AGYd!{fb-r#WUVr8718hn|cmkO&52079b>-yU?hd{VS9l(E_v0 zT-JA{?=&%Wv+Vjsob>8)rvs%=g|Jx;QdGQJ{|gIacXwpTgEDj3L?bo6ai)ag%D|M4 zp4dw%d*7E1T``n0v?!aVsQB#@d#l?u*&#f7+g2 zqZ0VlqHM@zGRszZY(^o!G4+5HZ(uNE_*3)9)WUYVUHceIuI1eoge%NsHB5X?um0d@ zx9ladOg6SkIn&ZGjvU^rKwBGVyUaYCX*@N;ALm4YA{N3xBsyCkO*p(Yyg#2ie zaXdXB-NblB_r#kKlNar~-xhPMGPA56^IeO1HX9A#%d=y`D)DTmNuh&I&JHH%- z6I18AXJ1M1IMmA&Z>o#eoBw? zF;$FOwBBL)>xTOes&gm3*z6yo63TTgl>MC~G_2!-$fWq^_8~HQms5;h+h^*uBF{aG z`|z--<1j4Jm)%M`f7k8D`!YXp<)!=51V-pyQdt&hQ5a_xJ?lYn1(p;%Y8;S#bYef# z+bAVDiBmF}ockVM%vt$joxt{e@UEQPE#9a0EG2Mqv4cYK#nN$a^mH0dCLqWT4v>=M z(VABAoW1FJi^|2?O+-uVx?!v#*WHwF7wcOPAv13@$zb!M!n`nurumCi@uY5!j0wil)o$JLa2i5N(rI25)FH z=7h;S=?vlsD|jh!eN6rf6VIvYju(vy-nYWqD|SLzoYx0wkx6JbfEroFK| zr;=2d`=Zz^iN_;BX)IN}Y|)%Z{Q>Q-SKcf%HseaZ>(YTQ1X&E@7Hy-Rip-h{sorCW zYTm!Y&V`WpiFWvvBW2EeP^UZJ+F}+dIkURESI*Uu=2#* zc(e4^JEsXa_tY9M#a0Hyga>t%)aE;9a+96@ZWk2%^MsSws$xbp&)V zTxf7B_}2PHyR&`ot(E=Fi1!a#TqWjTl`A-xhO7GcT#Wv5^UGVOv-vH>wY~EWe0-{} zanl{B}d7jt}@O(ryO>(4Lgw?D1sKb4)<5bYc;7kFfu|MqnJWGFe+ z+{gCwKBu^c94xgxo_AJ^E1!s5zY`Ms@Cq#5nzGnBG%tGX-C|7p`@P?YRcDV9yjglo zYNsx~LnM61fyx}k8QD`dqA%FXzFbgO9rhOpDA)Uv7Zo?U?QN~N2S-;IJs3amTNpoZm>Y~Ay+Kb6#t&>)gYl!6AD}(~#drf4kCKJCjfu3QrylBS zUKqbHAGfdoOo$K8EsQ|jm2q@%wQz8Cf${%8c?Sv{jv3qmn%kcYhlC3O?@sv}+~4T; zJNL^|`D(|kn=ppnLCxNVCeK=!)!**!^^AUzJ9_qw*8_zx>0QjU1g@V{`YJxmFn%~g z$t7DgRZG3A*1lNfqtD^wipGY|4q05i-9{}&v7@G56^2Q%%dguaI9> zYaJ>iC4F|!E^~fecRS2-pk3C4mV(jqWUysb&sPuBE6j&pW@k6%S7)zqH@uT~kCvi% zMCol_;kMfQ(uwK$Zz7gz9M2u&U=e2Jzu#;KZ zj;S@jtJhwnUTUIHX?Z$3*HfxB$u8}&>o~Ib#fZ?O{@Lr`Cv^K3%9^^2(AyJvC9? z$T?QxZ~{NNDBjyo_`c+e$e&rd4Uh{ow-^UeP71CXa&tJD(+F5+ZpqS8!v`u~d$5cCUmYR4l*GKLP?|dK8 z5|y~_GNBqdDSyZ3jCeP#c~3a)hgtTo^Gt7z$ak0+YSPRO<#S!5-5EKaqA%8AJ5Tne z@W5WG;-EL$6i)<f7PnaEse zqtXIuXi_8YAMkT*%z>oP9JMi&vQpDp-{Ji-Tg^LSxO9w^GZ(FtY(RDb=|R`Cf~mwS zyes=(J)Ebgib&S+bvm;nCD!w4ydMJ{7aj3vi@-J4^Pi;d&zoycbw43}_DI&ga$Gy4 zKq@V4OkryNTdI7+#Mpgmt{C@Jj%u;`aBom~6qD1<2NLH6 zJ5zYIQa93dbye1I?Lx7f)GyrM?nY!>_2dC>ya5$H5qN z@ayxlWBZ7l4se`&#MGDJa+0xlhbnoR;FIU;Wj0b=LOy!g`eUWvMko#&Q{<_d5`8(y z-ySS&*4=CVB-mn_bur8)DS(7)V_*kB+xVq)@5%_WXX7 zUm(A;i2qbs0B0M~9kK=*cKaVY=FME%yhX1nj|@DF>^!IU^R59$S;}LnTcS@XVmu6w zv`3xHeQe!H`SG5;RF`Z|4b|@B^+NXFJEYRiUDn>g_neecA=P~58NcN&hi9?7WBaZI z@=i0U^xppxGClX?Eg9vHX7O{4?^gKVP-*Qu+#oWeb^8Ko%$S?7QaQV7kIo9!wWA$R z3O~NI_0FrG7&=W!6F>CpZu5!Pxt#Zd0?(@1K8k!`Bql%xYobyZBeD9N(64kwn5j!Zu zpz`uOIrHJ?4@X@`BQ5qSt9BjMUD+RzPf*WkrN=cn`Q+?w8uR}2LmocQ`Nl(;1Y8f4 z_?&pEReWl2jLz%TyRXlZKaNFrx9rdelySX1E_qdJWv}7Ed-}tAb|-i#wJ$^mXG%U3 zvsvF0ky2l+%PBufx^zFG^?AcC5j(ZKC&uY7zAyC4N1jmOv{Fo!v0tp!sy{OLkzG3} zw)XvpP(B8bt;WYiHT@Z C~eIbpw*5NCnUY`$2?ESjQhk=VBb_aNv_n-7nBFCr9J-^k~XHIB-Ur&e)oxwqkFR?eAU=@vIY}1tU2AW zI$B^ZT=H}(fQh#_>)Zrk700S>y1h*Zf-TFyv@G`hS*d4s>`~4)t21+#IGF9Z8QUDm zDR)||1kEZ7Xv9xx7TDwtOMjx*n0}g4XQ|R`ub`qSJL4xo3mzBeIi=&1HDC2J{d0>*iZUq{i9FekxyR)3AI(~oupECZ zCiI=$CDOmcJxkf-1^+#9C#sOR(+54$uhXnGr?*jZDfyE*J#uhT%&7NXlKXK|ce?r6 zktA4~oljo-u}j~SB54EPjNH^a%oFL9I)AN(&+8VGxDFeGuER~jo+PXDk>O61&9`*U z%9`QfI!j z*NtJPynQa;8|H{(mlWgbkF>>_U6?kJ7S}9&*3s;3HPPBB#((|aG-IQILS6v1_kpI2zEJb?`%W|pEn+!D$dgY(Cu?J02eF88{!m@$dAP=%7Y!LuQ(Z1U8HHEWvKYfmUthIR&BbG%J8 zz3`bX;Kw&2a^xj5)f~}VFRxm)=Okn=#tJ@NT!{%v60=gDA4t3x2LIM`BrNs4wo(5_ z{`Fth5orhL=O!YlK7@ym9S*uPP%JMWsZjlKIG?dvseI{RkD=0S3W2_BT1Sa)47BVt zAD7h3nQq?u_SByD4@1O8mcPn}`8XRJggqy(I2IT;nO09>{Eb_N>nM--@}g+7QK(dI z>Z>aTzY495i<%c#J`dK94FA4;?s^I=ONu+Zj-2)P3)U~guo^SUeh2uqk7D%t!}bSi zese7?D08?`PdpLuYP{w|9t@)#e~?U0KH0H9IqcipS6vfc_Z#DRZyPYCF=^Er+dbcz z2G_b$pI%Y>;&tp?&7r}zVxl1SNe&lw9Y>Rx`n7PP znw)3fL8`%uOlmSE&hVfbwO|_J50b&=jVX()D_4&k_HzpK*4F*$eKRxN={RkU1{3+} zRThTOp9dS3f3gfCciI(vIRIyFSbH`3yZYtaRJiw zl)pEEJAb@g(x z;8C=3u;o#+Fmu&|A$bwpLV_?p0Re6y1dIO&u4v=sJKQ~+$#)l9@gG34=xdq`cK0e<6 z5u~-NtCI*1kB5f`w}T0q0TVkDXESRXcMBH?D37_L8IPlrg~Le{a0_P#dlc4_b~a`f z4rUfOm_TANfqB9V4kmp z@{J|wz%+X+i3=gPg^@6%AfOhgxh-1aAoTx5EzlBoL5bYi!pYIu)rA{ND|m27lpjl? zn0pX#NE9xFil^D?ZfFpQ$c?CIn;cUFTY^cYS9L=|R0+lo}cQdp2e+3LncQ8vb zfX@Q`kA|~_g_@(IE03C^orRK#6HEY|P*URo{Sx{vOaM$GozsH}0I4aI!vDRij7n{t zv+#n!u}(w+h-@f>Jc>Lj!)3vvjQ&r~0abS2_<&A~nL2v%sH1!@&lw97a|>tiZ}e|A z{#J0XvvIIcw>CjJTHrw-VFpMX`t0m#V`+k-0NmAfbhb5hbhPD>bu@EBJ1idbH!ju| z7OrUAt~^R6X3mZnpJl93-(q~0wK1`Cw8Hp8-Ok3`0{kuTEZ7d}F)L>idmeckD>r8g z9t|5;I}4sOSgA5VavNe$cC$w%`FLRhU@8xe^7(+MVF(x;%+tY8`9qXZpc8$3D1kzm zKNtcPfzaOxzz_&9MJR}Jmq4e$P$mR+4-92mLSW_)&Wny>z)#>PC&ddC_|Tb2l-mNo zMfnH>m|leQq5g!v<%c1W(6=bR0lYU_4P~e(e*z#u=PH4a3NR#q8Ap{(>@8gMHa&nD z!&FfzN_5kx2>GX1FqBZv&cdDttzTgCf*>D)&?it1a5yA46e6@V;2X@K0wM4j0ZIgp zgjh#H(f~Iwp(G3OCImf)iao&ZP;MQ4Messbh%N#Nwu9gUpF;&G@HsFC3quG(-$Q5- zf*=lrFepwWFNhn7>JBu0B&sjKEBHGk9HfUtbpiPO#`7SbNT{!o5I;yHM3)bG9z4hl z)lty%5T8iCjpsl-sAvGv-_S8A&5VTd%t)|jP=Nw?Zc`_s+uBfIRmlEPod_yBt{w!L z5P&omgdzYU5d?vt0wg18*d`SP8H6-T2<#BlC=$)5 z5O@#LGGVauP|14qJvc8Y5;!lUlaLO=A&ZCef&zp?Is}Jw1`Y@D;;{(>7>1pqQT!hy zDQ)8HVBrdh5ROlTXn6kz;&zT^CU!6rH&<&%XB$^9s1@`88>cd$CHQ}61vQejGe?cC zK{Y_)p$=%}|AG4YZx|g&nGYXjbf^9wD7(O1ES%j@gKQT_F#Px$Kzow^Ljw?50eoc9 z=7>QSuuhcmss6|EP}U`gj|d*mfs=?3J|dgkzy=Zx6H`>I#o>MgA=3j~EVe5HZvEv- z5U?P$D?<-EaMA+ocM}n8YXX}?6H&uS0kmEr$g$#7Zb57l5(F9rVBw?)I1_x*!nPBD zGCJbo6uB@SA^=znF>Q?p^mzD4Ve3CA27Gwn_}nyVCWEPsfBQ|^(cBA{jG$4FFz8x^ z0R~W>7IeIDFbd;CjIH@V(`X6e?p`5~q!7@{_$XqV0f-H6_ku${e5A0A0c;(gII&_7 zK7xM&AS#Wa3IiKQ5d^X!IE)L9FAM;Y?yt`LA%rtpZ+Li~bDNSLfE+QX{4sV}oV~o2 zB>*uOgA~w1_(TQA7a0Hz!k_{;6?EU>G>+%jg5!&dfFt<}XdB-EO#_|8fj8f%b-YH3HvQ036=pptP+@U?mkmVPcT^6Ps}A1RNYp8iX z5)3SVL2aWKaA;Nt2WRDY!D0J)D0<;l4LC0_?!ik9+W;U8cv;1seBdRDmi}M9AqZQj z2LfM&2WL6BNNuMd2&`-iC{s*2K!8R|4Yz`TvnqTH0(UW~0rrPaY6yI@7jVS!m(F$y z0RvIPh7PX9~>Ul;+?R{u-}uS*58UO32{LEsunK&A(# z&M*@#U=9+XqleNtK*dqxGN4~jS7`8z%G(3!3M7=K_>*D-+zt#5rKaE;IYTIA28U8r za4l9IQ~uX$K2z$!szTFu#b>8$|_NB8G2dR6*f^riKd%_KW}yGK3~;YKMa^ema{% z#9uo2CPvWk9T%oe0b*NL0lmNvZBu9f`wGn>K4_5h#03p|j0EZpFbcub3xKNPhlalW zSMA`S`fLRaa&|bN0V;<{3$PCS3IbXWUTDB=4051GZv_qVc(|ZpsyjyB7PohRTplhu z*f#LTbploj77K9bEXpB34g|`f!;z2!fvOg8D3=ZgbJ+Mrf@v!_tyb2;%*Nit4$E+X z#xVs6xQs3O1#l(!L2NP(khiV+1@is4@V|ug5Dj;5KF_02;6rG$;v(0~(+;n6$R(P%!-9hlXt&a8N0?f(8x#aY4g25csxI z!x+`!B8RE)sxZh-wt}{iH^W72Q-s(S+tzjf1aXXBfL^4tg;(E57~#T(Z3x(o1*~A< zbS&U*MO48Q7$KmpfILxG06Xdm7!0b|2WJ1^K$%hvR0VLSQ`wkF0YboH=JcdC|Ake+H1V^#$y~s0+)}^s)7oq++w}qvlkk(4 zJ?X|W6sR~4hsyGBsImV1GKaup?~(I0EmrWq5B9Rj1~lL zPYSLpfVvz9h)sq9^0<{;H#{j0T7L`$FS3~*=(0~}iWfm+1|&PJiSBOI)`q1Ns| zvr!CB3ds3?U=?f%FRPo%)^M;Jw_C&dA6Q^43xcR?M&4{cM-_*3Y_J89nVq&T2$wu9}Y z28^2UL;GV2K%o$F30p~R!;|8Gwkcq2C$$Yr0zBz|$!#iELtbhtXd9js2QBP+HMS>( z(zdu#QX9+epqeWjEC|EkV0jOcDlk69@|Xa{4PE?aj|nuk@hg#UF#iou%4vcR1)^2Z=v)fGicb;tuB!2&@F7 zbPpQhfE7-Z4g!jWUj&#o^UsF6sh|x9Yw~Ep;U4N>m9%m2jQ$G482(hX@rH{HpNxan zCQH~B8fLh_L2i>V{Hbf>g|^|7anRai3EMz}+y}m{18-wW4Y0$lw0ENb^B-uSmSEEQ z<2rG6=pT;;L^2%Yu#Evy!mXffteV3?YYT%wfGeSJ83Y0@74R~c5e<|xCdTbl2xt<&+_8-X>c*{D-iT=b zWqDKe8(JNYzc;Yf)!`tAJ+^{0Yb$6Q5e)~e&6cu_)WD9xD>dLYMko9!e&cml8xai$ zG|bTO4>}C$3VvvRMpVGS8?wKxq{av1hi!OM9Pl>V#CDQ{R2FbqILQ4m3kV)y8C${I z@TNFup}+du3s^B60oJ8)x~z>oG*Dd_0hO*1Q0W>0m97y`=^C}+40K^&6$g|&Sjxb1 zVOZt$e|BL2n7>RQz^x?sjRvf<;svp(Mvee^-AcZY3&X(>P*Mk=p2h33M=)3j^f-zpxB6iJ#?72K3KWZCosGwjMz1w&)FrJG8dr zBDcwSKuz1KHy{^=i`Hh#*$x_TAHUSFjR#Wxt)M|J3>UObL1a4}#$0%TgWRSfIb@Gp zL4(HmxM*z-BHKs}RA0PO18!reF6bh*f(8wtaX~}76%1P2N^NU101OU;+~3k2z7-UZ z)5itve>8&)BgbO~z->%uz;I_PsXU z+TYqYI2_#;8bAWC0R#4fp&y`9ZUt>4Jm7$~DLiZo4KqC8Acv{&C|3pA$yU%d!UGOk zo5I7k(6%-Mz{_At?VrN~4rthB@W(v?ZUw3|<4DLOpmhxhu&j#OArD9sbp@cKu7J6q zc5q{?83nx*mRG|%GUA`z3eY&F0MJa}U$BVS*me#0HUKCVh)qRth_|h}dLxYBp!H|` zgbE{IyQnKPA%eC*BcM_z0;&rmpt|ti?e35e!BQtyIKes-0IinWu?{p186Xb0n~Y}r zD)~l)!a)oD)&J5ffZF1Rw#jJzR2CB&K?J} zO@U)uXuuc;KeSD;1GK}fplvw&|3ceT|K3*DKsCk-ZBq#xat&KS+i>aT?oktF z)f1&p7n|6ckKL8f#%NrT3_4K) z0aa5GP>C4t2=BBU#cI#GNW+S5EpoRYGe}RS>HgJ&JWIWqf!#5%t4qBTnXFEj! z?&DV!^lc1Ix37k8M6~}x+f)sQ4(-9O!i-4F@gEP=R*(+jJ;sQFuFaQz;zsT3bnNBS_+ahW-je zIkttiwHW|D0D~OpNVkHvk=?=p4ciQ`oj$ai8i&(ILQ7zfnERK(6Ng4JqFrwq#FZ=2A8 zTU)RI1Vu<2aWspq+>qF}VqwE6n75J>)YZ5c`lGw(t_Ipg9gqet{rdNV(g0INonHt24ytM) zp;90cs%jyjQXmqlY9XOgAQCDCBEf_=>hL>=9<*5v2_;yOU`7OW&>A?nLPA-~|NFsf z5FKb61`^t{@}Gm){w^K{Me|qofAk9HPH0Fyaflr#(*G+ND8Az&gB_{1MgzrSTx75# z)YfF6xQUAlw*78R28waG$lx(uoFaze5iT;Ari!ui5+@lXxHIa{!Hh`Ef-o-Pn=BeU z5)oyB_zp?{X`qhU!8!{SJO}cx9w7hF!FRL=651IK*&1FSfmJpKVw;NeSv4LN(~HpC zZO~aR9E@!$oI?jy{tIJRCxn3V!^POP0ush@xPPnVz~E_Xo%-u=Aj95pI8ZqqayWQ} zwyA^;9sKw&%wxZG4?NQogL`NjJ!*o6KHnPGPy<>m0l7;22r+GAQ?~-6P<-8rZ4A(% zqyNMi*2x~A3&+LTw*88Iur_$sDK0|zMFfm>QPBY-S&U1A|3oyD#%vN1pcZ&Uw5dK0 z9me`kBEmXt8&on}oNX^6tdp?8^G5#?+D7;P1W`!$!61rPlYqzn5{C{q{U>&@j)wwI zs>MYJZ%0CV(xGsVAK@0dj=qID8X2bx+f)~aj?(=n&alqW28SWIINQD>vAsN28GPGN z^k>uqji$g+4}LLW>bok+Jb*#mKe3DLvNzSq{}RI6kB#7CO|12T|*4tFUf#+XBTU#Uo|L|{9#d{k%_{V>nc7kt12mb&N zs6+oVU-(CWSi88lQ*;FWA>gKc-P`bme+&qOhkxb^N+95fDVqw~+u(t+&$#IPFXMFt zbl3qdI{(Xn9SN;Ffld!cogxmXKVEYM9{(#e=y>XXF*_u-wP3x<0p*$g7RT|8f}q0# zkl=(2KSIpW%%%_zOdat!6o4!yXJ8olhfzBcdlZCKkjCU}+sJ^#dc6oZ)BKBQYsEt1 zH{eah>22uXH(;!-+VZG3r=X7hm$yT`O#yYhizDjjeMJigD_3jOdeu#Dlr)H_JX^!N zFJ#s$On8PdHrHq0Rkc>?hu1W-ei7IpGIogW>X>gW@StiS-^0wi{M+#-@>jdK+vfx0 zf_w7oc0OjSE4&(WvML~&O;dZQRLMu%K{Vl6?(4OD=0wrMK^G6V&K~0q6%-OHrULhYxK1w z*Us@B>TSK6_WX&ib@Ef);Lqz5qWm`(8=TxF2SZo%yO!RRRakNR&mMaBvN0-k>cP(X z{bIxRO7I%R(K#Z@ct-&s1K{F{dcA}_Mlt}a%&uhNYGQ8UYJz^z2QWIpFFw=>ReXYw zEK#qE5kL*T(374G`kskXmnmE|x{AIHu84gR`?A(dS%0s-k(nu)mnoW*=?cS-A!T@*0P)$G?jc*8L(M%U8_QyS+aCD{Ezo1r_4;^ z<(yeh-M^2J@z0-H>zc{XBMd+KYf<_t_qo?QO*Bmxes!%;FiJl=FZXuH$ai#6(@kbp zcb{(Q?uTy^e9H{P?|-=bwS;#`=8UFq>rjpG-RfT^&#tY!ckFdv$@(S`szc^ zK#U9X{E@5Wogu309bZfGSw0BT4+gB?X_|EQmOe{NG zNi*0d-*8~%SBiiB%<5XcUT_(&mh8@_JHG7Fu|55E@rTt{i3Gb6O`{1a-U<~xy8-LH z*^|3>o~1rX!Xa+=?dwTOTV_dV2C72QA|Wn1g}aSR^OSV^_C*rM4(r5bR!ALCJO0dt zqmfR9t=Zrp8SJNU-JI7cnT&w%9)z^1gmRhQf=gnf2fczR6`q`oUMCu;EDd*m>`y4f z6Hhw9{^XU_lFO#vqy)o_#TS+I?Ak38Tu^jh!pir;v)8D4r`tZH{2)Jc*cJkR-5GB&Cj_% zKC(2)=Md!0m}YUPQjB=obZ^k|XC?}tV{XZ1oczDSTO)&i3&NqcHTj@jD5y4#MO#l8TtVZIB)>^s^>Zj}eJ6E-TpB4GfkH5Vln4xsuMFGn= z#a+%=L@EAk(MU-hXlj*$;JEy6Qeyd|RA9tK|%@>ZYAVrUcU8*dg9UvD13qwjh&d5t^{KqkjvRU8^+C zEaOvO@-0s`KlWadB>L@ok<>bm;^C!W?-`m&FPh1@sJHhL886yBqS*UjVwO4bcxaM> ztViYTqD*y5HJ6q?)wy_cWiu5kwnl663qRGoVCYqv2$*2^cvMBiQDI9C!%TP*N5#6zizw&JBNMR2$@vyLy4NahpS={kk z!^|J!_{LXA-ZOW-WbQjk%T6~T$!jOaDf+lJSyiPQ5us1hDijcR#>I#;#tf;Hpg z;>Oo|M|BCCe6OtUqdx6o#P<0iYuo}&|HIyao_ro5)SH1H+9~%vs;A>Mt-Y=8mr~JN z!g?xwZEc0HUgmC|K_C4SFCU*08nPM3J(Yo(I&*y_#&763Pb$pa*?&r9Ot*NfkNd3E zT;HkR>xN11i9~k)YW*Uis@VOJzU$-14+k#JOibFGc{LcPp|?Po$8FO=x3i5u&ng~4 z^x#^Tk4Qpakc~+Jm!0jCtHH(bt2TK?))S4nr)1`ItOC?{DGr?>DJD|L%{;kNhOO;| z2i4?k@)LTM%p=t=h-s`?imvk?9RGdb?5F0|iM^5^+hc5okH42>3RB*zG&?nWpOIW~ z7Ii(WJbi(VTt{Y&=;X<@&@ak8Zc_A(hn2YMMO^d2xSe3%7bKZ{vXyjI;cGXEM z*z(oq-TL{pk4TH&lOU~3?qO_0Y%X#93XhIdF-tW^9ueY^DyivPT z`Q)M7^L`OOlVfZvt%o|?0*db&SMUq3*|i>>DhQss60hUamzGf{-D2#dKlJ{Ef_`dF zu-knS(WbMAWQEpcxxT0;S$Wf_H~WQ?9HCe@B`wShxw5bPd-e|MkA>C>{rfrf&k5$| z@1{~bEK1);TGiU^&P*T}GbvUN&se5(ZHH{HCW|t)#(93K1K;-=_wkXP z48Ib5opv`})~*#&sSYUScoEP-#)r{2?HL|n1I3kbo1d2Fm4Z$tRBR5^UlcC%Bm{LsJnONLzqLk zqb1Gx+7UvZ>mRZp$G?vg#Z@vCfA=@-HcpO`Votp+L}D@%*?FKxywLg*$vr{IAU;8> zh}v38gx}@EbmTOxM?M4z3;)_PBUK<8)MG~{tJrYd%IQ-LA3{S-nr)QwM5UsNgCR-% zzKcf#EsU@Gwk8;MO9(j{lGr3iN*yDnW6p{8Rs8Yp0hiUj4xMwBHxc7b<`I++!?@-3 zuYWf#BGmg4{$?1_<1_Ud2i(PH@XXEcC`%IOvIn7cHeVV z%8|+BIY}y~aJ2sRuCOC75~8FmTa=H>XyP=943 zm1LT{7P{B}2NRKCeXEt074@BqE5GwZ)BS$mR`E)0Ph~c$yk=NgP#PFs7I@mQQdNnu z?%M4Uz1t&Zb>H7!(#`Ovll-k#=KP7}e)d@R&u&%M@;jcPVk?SSKc4XcmVpOnk=#Tf{n1 zdpOe?S^LP{{yTNIf5x09@Sne~vdr|vIo)a;k>tz}{;6!#K+UP1jzsBi_g>w}mxa@Py>?){zD z7Fq(!nV$bjnRsHq}HAd&YJETl&1no;n z*+0ZnFL)8C<@Tg7hh0*5eu2X+{*Djft*}px>M#ve!e)_C6C<7F*jL)$SKh@8lm|(C za{0n3>C&j7-yHYJiR2EVVZ|xRk*TAec+X-Q4c+>|IS)U}q(GHUO_9a>S^KlLV%QVf z*!=6#Syj$&$W6!(K7JlzW=pFUbiRpj&)({b3O*DUZS2p8@ZPy`nB>D~Tda9YRS3O9 zxv=0e|6%Isdi!e>Da2Jag)SBC$p^=qG9I(XUun`C%JDiEWuyF~$=5(ZqBHlNR%5Pd z3bl(%yEJF4>H%eugq0{|>jA1;4n^_J6(ZgyPjB>C#tT#zi?sf-r1j))YGoN&XAp3# zZLOf2;FPV4?agLMG82)Vy>XibHsYAEq(ZWQu>mZ(Uo$II~Dlv&o+R%)QsvXKa_0=Z#53uUre2s$+HyxJHLypDS-ReDpO=+)2aCy}|4f^UiLE}HFV+A;X5s$hLt zf2x)|F|^)O#PGWIC%;vA=!ng@_&mp9Vg;ehKt`EYkJZOz6f*;oJO#=_8(GFOL%M&g zCEi*a8Pn1WvLbZU{?t^scj;ly!S1KuHQx%tj{jg9ttvl1zjOTJF#!Z;Jq&rRw{kTy zI!@|p;aFsNK@`%QI2Ez!N#i2(j^lS>zg50@@fqG78Q?WNvYKdK(mUPQ z@(rdN%zZljf!OWXAw5;W;$1%zZn(T{i9E17^5etmaq7~W_d*=Z^3ASGzGk!A>0M5q zV|ZF-9JaD5`8bGc)sb)|%_MPHW}e9P_!H7^dwWk889m=cZ!f+(9XQ=s^) zViU_%lb`#Q$*wPax*U1M(mg;bF^0m4lIH96@Yp)jBhS`deU%_>vAe}W=B#*jq5zc4yB5Q%pbM1A8>Kwgne&rV?x|z?XfqU z6r9TWQ1>=S+BzkEL=w>}(O-UqTZT$ZtzK|W&nx7vw3O_uWsY^4JiBQq`~D~zzV;(Z zix-bi^_bj{xjiYWTuqwqN=4Li?FR)p#Tkp>vf{K8hBJ$W(}{VoJ1zY$W<0&9SEf2s zQnY7_R=U2VJXg0=^k2JO&BHIK)aIb;Jz8wh@IFINe$YqSCnr6Azu)G?1Mu_vvI505gAdL1{j49WTipT9Kpn2$^PiGyCkJRRe~cnpF)1kNjzD-L;U2T$1O@2}Vm)C;; z{ke${wtfN0!WWJsLItUf*AwO@CB-hSjaL-Rwh%XPC?#1*2CBoD4)mpI(J7@|92~mp zcB@p1??~ms)Ma<#k_2L7O3DMsPWsrx@9E0ThaxJiO+5t&RP^4Z81QMyT(`(N)oK1o zGod6tTyCUT;mt^@J)`Quur77q%JbP>ol_&Mvb_fH*(#f*HM9kUR4%>k4Nq<>mnaU^ zzxK+{a$eZ}sA1ZXTF%Ub39;Y&mz75XEHe*LnUpN#Xg>Ke^!VyXxO1Q;<#nfiR^0s;G z-dxISr3z+ayM3O$WAVvj%lI*F6G0+AmfFErYu1@)d-2rt5uvb-NjGBqyJ<&V?@I(b zyxXg%t*7a=f|$OdAgHOK^4s~*LY-#OWN$*ns;s(9jysXt*{QUd61Hxx(8Q{_lhnk) zzR2Rcjkkx|FGbsOa_&vGO(_q1_**hAfka?P+T`GA--{EYFAci|NX-gj?s$9|E)|n; z2!4G>i}tEvgBHal(P@^2*yVi;dX)R`Ha{l1d`LPb_T8zcy7ix9gm#Nlzt4fK!UaU9 z`02Q9M)@qVk2jf+{cNRsv^Ygr9?%#VsQUI$_uf|{bD9piUvIv*nmN2C0spu(&`a^< z)$CM-5rsVY@iOspov{z!pDs7BDZQ&mN$vHrHFXvXxj*>RKaHOCQp?yuImZj->sO93 zd64}+CRS%@k(;V>&31A8M$=p(t9*aUmqMD3kJfxCe%1EGlKbS1wC67LvUGb|`Ox(A z4cw^B`0}1sBqQB^m&08qlK}^npBW4mhC7MrEoHtORrWQ?Agbvgzu;$a?5Ye?WavGC zc=v<{uUVsW)R>E?Z<><_d#blyQN5xY&;UCwK~r(URGfnQsJXky9@8+37lgX556^oL z>|v_Pc}S3bVLx@kNsR{$r4|*`+5VT>7%qzr5?=bThD@>k=-#wI%G#-vK|lB~X~j|6iPqDbn>{ENh~bhYNWaqkq$B!hZZ+WgOlm5PUc<+u9uk%@x?%JNT3JC2VkNQs* zC6X;`9E~+CzG>`L?4T$)V51jU^6rpFNk_h#0&(S(wYA;yo81F@1wP+>nb=>}JUyH{ z8+m`^baAVl&p?BF8WP_>eu;k5Ls?RN!Pui}hT-sUc9Wj7LQE6q4y=kJbSUH8 zJ~1XwhQRuIL>w8vU%BIf5>X4HP)H14a_RZOAxRKB=ewbWMF8+olz zhN>dsLhZ{4(R;V1bZs6d8oTF+J{id7I`?SmuJdQAqMP@s-k(u7kGa>tzJu-9b1C&ZZ6vh zITHGv=cA;aDtFrE$7#+HB4xUNGdZ>N?iObq67AbTSLmW)q-~UX-%e$>FHy?h(Bf zNWyo%Y2*@1HLUX3iDSdDhZD^w7)4|cYFsKf(@y%SbDYD8!zSnKiaR~yd&}(EQ{Fqn zJCvU;L|ls)O7(v26^=+7KjmV60ue^0Vg8jpWGAy^4KG_ge3AdVTqt#@oNW8$^D%p( z#HXY#h0B&Ght)AhvwzDDFVwj|9u=mrL(lj+xk=Gmp?eycd8YdDDu;WDOoKY*-;>ykRl%p~psNCu%Q#G3%5S6*(oW zq3!m7JuTT66&g);T9G@kC%lwCqT&01J!IFX2h}@{R=%3<(DGe7>be8mKWF;e7u2D|53(s%nRH zcI~g{FEX2cD>`uC^~`HJwH5l4JgICd9=D6{3TJ%07gIVzoHW1c^Yf<6vlj$L`(BpM zuV3xi^(jCy*YR26KBH1=X)BY$6t4H>LyM{2v9DfN9T6PhTUcNAqMmhlv#irOQysY^ z7hNrqanaBI`z9ouoUy!$|(|5#~hJf1gO9|X$KZ4dOj6M`!?xN0c^nX5* zHTv`=$8cbCUs=I`uf2?lkcI^9^ZZLp-UE+sdl@2>2x-QA}4SXb9JttrVYK03k4>7l7AQU*!$LnS9mhfIJh zsw2qP+Kjn{hpp;??ALMPwXX2sLOT2X{c@IpJ?^`Brri3~ z3JZs+^l4ag)a>uAV`WnZE5s5)ZJXysO>htsnMH@>Ux*terdhc0S zDf_V;80>Iv9oNk_mQpvTWGvH#jU~*LpY`Ib6LfTioNc;iI#(DsG?ny-T|cy}h||b*r;FPUxu1bQ&)Z zU$!W}IvW>0w;b5(yX{r{$vO$D2;BCb?_zrDBfL1{D7v zd+!(?`?Kx)#`cVD+qN@f+qN-d&e*nXJ2SRz+jegL|FzfN>zsYpx%a*~Z|>=I`l+fh zYSef}KVAJxx9eho!<`|v&}H-4ZoJ;wrKEvTU7510uA!Z-|}=Goj=tApN#E@ zvx?deQ5knqo(}-s*Zt}}$8eM)JWz`MCE)sWN>(Wf`=hu|oq$CO63vtaQW|bCqE;eD zY;5ghKxM^rbz1^!Z)I+NPmw8*9?NDotQK9qo7kCF>%4Q7V8y_;EVL=n@@e-V*{A*O zEjn(t$ji@P58vq%`3jqd*K&ty$}h4PVM{O36=c38Bww0 z*Feai7V6N#qlaWM^PWE~uU$o}kmRVYGI#KkDdH5E0 zSMc};&T9tbU%d^Bl6;0u%C_Ks(SY z1{vIPt59lhg;DGP-NI1nH$HnSIR;f!s7fEW(;z$}$ubE3EU4O}3=u07&xbB5I+;Fn zXs1JPDx@tCea`gC!)v>QYdGsRK8!vj=#*dE(650>r7XoI#YEsSlse;ZX091oRqF8@ z$xL|R#=ZO{1GIJaNbj8Fw9a1k7FEhidZq(%l>k^TJ`Wn&Ilawr;M6wi3P*$0)|45Q z=m(lM3LLnQ-(B%=e^5Fg&22W{fXh`zqn+{6?dI)m*;;d?=wJoz^E;Kw)CZHw)$34& zPBB=7PB-1Ao)5@V5KOa{u=9#??1Uo5$gx;D;RE7%PRmqfVyRYdYRjR+h2*dKjdp6l|H3vh7HK_pSkMWja!j{Vyflz%Hb!fv z60;NPVF1zj0kiGJ0*{btngMH~vj0AZE>FMeizD)g?%5m6O@%JlN-O%|&~&CN;+x$- zxIqymF%vacn;?A@%2Va_?sPVJqLk(cU&-Mi*k13dU6JpkwHL_4HNt$McroKoSQ#j# zy-_3gOXcmjtNQRD@^hWsi_CCloYjS8U3DWGU4-j6bF~x^j%3XU91p)pSC{qU3^aNm z-|hFz_7AoeI&3G4x_tQ$4@|Cu!TI4JMQ@PQlhovLzxc=TNEQ=#4A)7kG3Uutxz5gD zhiz?a%43>Flr{9~KL~cw8Y`E5m!idF;t+++tPfZw$OYN~mnvSUXq2j2i?<_HZtjZi z)s~gEAy;J*PgJ5oVD1F@ooOHuO{Y0fYrpaip->NOU@qa}^lD0YlX?0LSbyjp|J2k& z9vgiShXLU>@d34V47)rH3)2V=ef^Q8$sNKi0e|L4#es|UrgLC0oEy@6joglaq0`Y% z>8$yFmYX-k^Y{ThwYTKj#lXZSR+;)-m|D-K+<<)XTiZv-(Qr?ZtNF9RJi|+;z{qPN zg9Sx3K}WmMYw5fwRV=ZLp4Q>#@C^uA0vhTHNwo3%&Y6Zy$?v5B|5Xad@xyy%VQ5LM zx-p&S2kkp}nTm`GG4j%<)RlFw;pkPRHaej9mnfM@dUInFqH6ZGfl~bA7 zQf?#rOlodH@boaz=v2U0EToHwOWkQ#!yv==X8D;o=5iU6sr}H&as>1I$e&F?|XD{OQO-bwYm7na8%VN9}0-%cya@T%sRo$kc*A@qbb~n&dsqNL7hM;UbzIYEZ9++Y-|4 zEcy*8c=0kUH)U-^pd~W;{hA4wm)@KeBdyHL7 zn-Btw(olsMWGpU%STtvU1c{M91&CO|8o(XCJ}=%_M6dUnK04D*2a*i>`q@ZL011|x zY#7^2hVlo^!f%szyVGTagl)qp9w1{O1U9)T$PmfU zs&Tji`yBEvjvNkwR7t81XGR`}IJi`$|X zLq>!YOHsQN`E>H7QN3Pn@Zt-;yzKtZ^JMUv)Fna1O_Xzef85RCdY^5bSq5wdT$zmU zHm4B$cGT(iOo&>1e+nwMq@|CH8>#N$^v_TFx|QZ405{@g-POWS&Gh+dQK#@|22ie` z&iBv?RGw?h_jyBF8#mRko)$rzKV0^G&27#MHaRO-UmW#IWc1^e&K20)CKcgH;P~{b z*WZuH+|3wC$Hx_zC%c?wEK97nHPvPotrSW7%O}c0Hoy}1^W#hV4iY2ye=O_G#ti!Q z5EofPFbwvCV4bltoBxQwoaA`wIx-!i*dQ(dtQPaWTK_f0^W?eVc;!{?vb`J;&~@)s zo=CI}kkDt z+k7W4^!l(Rap%K^?oA%41&fspP&<{9#Ta$>VY+N%x3JwbXQa2q#LBNWy;g$hffbZ4 zJDv@;-8Ny4J@xfaSbd!w*+S(XUw99eL7l#X?ZwMYynx=cYp-`k(A++1vxQt`Tofkv z!$`P(V55V?N@^{FH9glIT5819NJz1>5CtiAWR{pkvy8=7l_I21;=+QBfZX3TO>kk=;3m)i!{YF&zfHFinw0l#KW$1~ySo*(7tUt{&3G zKT|)PdO&5F=e&65rLe#DDpnTHy?j>}5f;3EPj2tIuF-LLLEdnBc#73j!gib0 zDXwSkZjxV0{xX(mz1LaQIiaMrrQ4~FF!fm6n%nD!r@I0J{=?5@@Um(1{FJGOkH9Rm z`(VMOg3ebptK-$bHMg;0195*30wb$$_{prZC35qHCG_W7gx@4) zEz^#Hd-J0G<`hEj>Ft9@R2|`f3h;%=ywSK#kP)mI% zhsCK7R~c)nr8O$l^LFCpC4$zwU!0gAmb9w8{7kWzOoPoO=B4h_HUzKKmAOgnD>h_7 z#XF1miJ^d}B{BpkY^L-MD_2E+B7v<`<%&Q2w7|T7LoU^44{TV%QbIlZloIcRF%8j` zXsBuC^1-d#0W|(sq?Oq6i6xY))lptEy2V60%|M=`)R!i7vK0F)G}fxe9*h#D*Ggc& z>pjXZesI3i>DgKIDpPAz$C3r@ImBRmK^#w2Pc2CH%4cAcE_m8%fmZ2ub??iO_W^|& zJo4^vI+V5PgfGRLqO9yAN?E^g*WRkG?@v&UAGsz>h15-Wna1`vi9Xt`tEOvTiQ>B1 z8rq>AZ`NNQd56n#w>6rt!XSQmCzLVGszXhx==`8#LB*+TYP^`w7`>LVl_T{HSP>xN z`Dso~Yi>O~7U`>XtVYD6byjj^c6okfVO6upvCc(SWEvoyyNNR)O?KkM%E^4Yf6%TV zalp>Dy0oU)Oa7A{>IVDDz zOqE(-u<35-fwO=6YeHJ3N8Qh^{bXjgqkSRvl9bg?6$IRSD zZo|XO)49EDh(C2ua6#P^Z-IVF_{{jX#%`BB$T5Ij3m+tnPN{Yos5fz2xKG?_ER>eD zmu;58spyt@7rrK@0khC)K51Mvb*XUas;WL6dhNl8UDBsy|7*o#odivYj2E!zhs%Bpa-a zAKFooK08jPI=^m z8e$o)abBwXh7Ym>Y1$O>8nGw7AK0fldu|h^kfdZ_(Kv>&+=2!6!G4ywHkTXP2o}TP zCpNRBoOPg;dy^C)A(WPDdxq-u_Butky|rDT&3AD#S$JS!AquJi6Zoy6jX z*oUDoB5?O)Y-PSvVvsOY<SpyE(K-7TwQ!znxWvHFgSUlB*mkOoP3iA#x zD&$%6x7asoc}dJ`W1aw1AUemol%cBP=fIwchrNXAKzo*r75nP5Y|>fVyz2Poj>v}1 zF+4_bPKoc69|?+vvblq8$m%de#DWgLh7HA&Q5jANzKG2;nB7yKGSRdQ@~{au&1Z2M z$K|me(}*~b>5>LzW$w3UGSpS;b56HgtA2|sazJ?<=AI+gMqmU)pUDqVEa1!F>Jo5G z%$?Jk)}!Q_XB>L@o3KxboLNVEAq8Fly+-A|C}nXa?*y!>aB0TQ<)tw>?zg%-dne8D zV|aCHy)iTRrrBvbFlWVeGBNk5Qg~mlQAmth#KN*1)S^*@QD$W-?2b0>J~K{`WYNfL z45UNh75tP#U1k@3X^TV7qOemn5!X`V5PHF?x7Av1t(p7@Ek!2>CLU81Rv1pSCbSuf zfQwRF!+V!B8LUm>P9#bN9%UbOYZ<|f<;U4DOK6O`dH92SD#7Rujv)XVgQ#3XI`;6R zB6+EmcjOWY*ANQcy&QAKG&kx^GBg9d@*J|Z3We}p!?Fq~6|1^E>?x|0iM)K|X8npA z)4+f`Dgm>qLdLki^GJvr;-0CE*6}w(9xt^b)T3yItX?VmF^miQC=xDR6HfuD%60&jD?U5gG zCE941Vohva8OnLV1l2%iT>@Q8_hI1W!P3?+n9f8A>aaoqX((5=geS^k)g>M?RDTmVF3DL4cLYnm9GMVnW?&KqIjrCX{`@&e7{yFiJhzMgVgX_fm&_T?5d-9s zJ^7Ykt4+#?(%>v&4j#D9vg_~60)}AUHDq}iq^o>6F0dy8fe;?BoI~~mM82OZG0|*r zozIY_N)^#sv*snq%CO;un1zTaBT<6pNYBx~7rnQ6B;Vz{v3*jm?Ug6>3C#IcAUKGo z0AtJ|B-MUlUk>@&gbiMiWwti#74*?JIBExr17WXFIUP8eWn;|v^9sHU0zhdz#KVe; zr}=+?ZF|EIi+zUVI;W|GK^}96r^&=V1P4yYtuaudH0)+!;#*IbnFR>+ME4%mShP#D zIjEDetcO{<`maJOX?1(sOeHDPDww=I=M!v zXn}PNNO7l~)}aE&$Z7eYzi_H+NZTjRPvSjtM`0Z2c!aZaLoo~2G%ZoJ-+(wMfWDtE zX}CyX-=dwn