From d9377f09e1d3e21754f346867598ab39b465e9fa Mon Sep 17 00:00:00 2001
From: William Levack Payne <108789355+WillLP-code@users.noreply.github.com>
Date: Thu, 9 Nov 2023 11:46:56 +0000
Subject: [PATCH] ml forecast house prices
---
.../data/1980 2023 average house prices.csv | 524 ++
.../forecasting tutorial.ipynb | 5458 ++++++++++++
ml-data science tutorials/logs.log | 7857 +++++++++++++++++
3 files changed, 13839 insertions(+)
create mode 100644 ml-data science tutorials/data/1980 2023 average house prices.csv
create mode 100644 ml-data science tutorials/forecasting tutorial.ipynb
create mode 100644 ml-data science tutorials/logs.log
diff --git a/ml-data science tutorials/data/1980 2023 average house prices.csv b/ml-data science tutorials/data/1980 2023 average house prices.csv
new file mode 100644
index 0000000..619a44a
--- /dev/null
+++ b/ml-data science tutorials/data/1980 2023 average house prices.csv
@@ -0,0 +1,524 @@
+Name,Period,House price index All property types,Average price All property types,Percentage change (monthly) All property types,Percentage change (yearly) All property types
+United Kingdom,1980-01,10.11,19273,3.94,28.59
+United Kingdom,1980-02,10.11,19273,3.94,28.59
+United Kingdom,1980-03,10.11,19273,3.94,28.59
+United Kingdom,1980-04,10.51,20044,4,24.15
+United Kingdom,1980-05,10.51,20044,4,24.15
+United Kingdom,1980-06,10.51,20044,4,24.15
+United Kingdom,1980-07,10.94,20857,4.05,19.98
+United Kingdom,1980-08,10.94,20857,4.05,19.98
+United Kingdom,1980-09,10.94,20857,4.05,19.98
+United Kingdom,1980-10,10.96,20897,0.19,12.71
+United Kingdom,1980-11,10.96,20897,0.19,12.71
+United Kingdom,1980-12,10.96,20897,0.19,12.71
+United Kingdom,1981-01,10.98,20938,0.19,8.64
+United Kingdom,1981-02,10.98,20938,0.19,8.64
+United Kingdom,1981-03,10.98,20938,0.19,8.64
+United Kingdom,1981-04,11.28,21507,2.72,7.29
+United Kingdom,1981-05,11.28,21507,2.72,7.29
+United Kingdom,1981-06,11.28,21507,2.72,7.29
+United Kingdom,1981-07,11.46,21852,1.61,4.77
+United Kingdom,1981-08,11.46,21852,1.61,4.77
+United Kingdom,1981-09,11.46,21852,1.61,4.77
+United Kingdom,1981-10,11.24,21425,-1.95,2.53
+United Kingdom,1981-11,11.24,21425,-1.95,2.53
+United Kingdom,1981-12,11.24,21425,-1.95,2.53
+United Kingdom,1982-01,10.96,20897,-2.46,-0.19
+United Kingdom,1982-02,10.96,20897,-2.46,-0.19
+United Kingdom,1982-03,10.96,20897,-2.46,-0.19
+United Kingdom,1982-04,11.44,21811,4.37,1.42
+United Kingdom,1982-05,11.44,21811,4.37,1.42
+United Kingdom,1982-06,11.44,21811,4.37,1.42
+United Kingdom,1982-07,11.73,22360,2.51,2.32
+United Kingdom,1982-08,11.73,22360,2.51,2.32
+United Kingdom,1982-09,11.73,22360,2.51,2.32
+United Kingdom,1982-10,11.9,22685,1.45,5.88
+United Kingdom,1982-11,11.9,22685,1.45,5.88
+United Kingdom,1982-12,11.9,22685,1.45,5.88
+United Kingdom,1983-01,12.25,23355,2.95,11.76
+United Kingdom,1983-02,12.25,23355,2.95,11.76
+United Kingdom,1983-03,12.25,23355,2.95,11.76
+United Kingdom,1983-04,12.68,24167,3.48,10.8
+United Kingdom,1983-05,12.68,24167,3.48,10.8
+United Kingdom,1983-06,12.68,24167,3.48,10.8
+United Kingdom,1983-07,13.21,25183,4.2,12.62
+United Kingdom,1983-08,13.21,25183,4.2,12.62
+United Kingdom,1983-09,13.21,25183,4.2,12.62
+United Kingdom,1983-10,13.31,25386,0.81,11.91
+United Kingdom,1983-11,13.31,25386,0.81,11.91
+United Kingdom,1983-12,13.31,25386,0.81,11.91
+United Kingdom,1984-01,13.42,25589,0.8,9.57
+United Kingdom,1984-02,13.42,25589,0.8,9.57
+United Kingdom,1984-03,13.42,25589,0.8,9.57
+United Kingdom,1984-04,13.85,26401,3.17,9.24
+United Kingdom,1984-05,13.85,26401,3.17,9.24
+United Kingdom,1984-06,13.85,26401,3.17,9.24
+United Kingdom,1984-07,14.38,27416,3.85,8.87
+United Kingdom,1984-08,14.38,27416,3.85,8.87
+United Kingdom,1984-09,14.38,27416,3.85,8.87
+United Kingdom,1984-10,14.59,27823,1.48,9.6
+United Kingdom,1984-11,14.59,27823,1.48,9.6
+United Kingdom,1984-12,14.59,27823,1.48,9.6
+United Kingdom,1985-01,14.59,27823,0,8.73
+United Kingdom,1985-02,14.59,27823,0,8.73
+United Kingdom,1985-03,14.59,27823,0,8.73
+United Kingdom,1985-04,15.12,28838,3.65,9.23
+United Kingdom,1985-05,15.12,28838,3.65,9.23
+United Kingdom,1985-06,15.12,28838,3.65,9.23
+United Kingdom,1985-07,15.44,29447,2.11,7.41
+United Kingdom,1985-08,15.44,29447,2.11,7.41
+United Kingdom,1985-09,15.44,29447,2.11,7.41
+United Kingdom,1985-10,15.98,30463,3.45,9.49
+United Kingdom,1985-11,15.98,30463,3.45,9.49
+United Kingdom,1985-12,15.98,30463,3.45,9.49
+United Kingdom,1986-01,16.3,31072,2,11.68
+United Kingdom,1986-02,16.3,31072,2,11.68
+United Kingdom,1986-03,16.3,31072,2,11.68
+United Kingdom,1986-04,17.04,32494,4.58,12.68
+United Kingdom,1986-05,17.04,32494,4.58,12.68
+United Kingdom,1986-06,17.04,32494,4.58,12.68
+United Kingdom,1986-07,17.79,33915,4.38,15.17
+United Kingdom,1986-08,17.79,33915,4.38,15.17
+United Kingdom,1986-09,17.79,33915,4.38,15.17
+United Kingdom,1986-10,18.32,34931,2.99,14.67
+United Kingdom,1986-11,18.32,34931,2.99,14.67
+United Kingdom,1986-12,18.32,34931,2.99,14.67
+United Kingdom,1987-01,18.85,35946,2.91,15.69
+United Kingdom,1987-02,18.85,35946,2.91,15.69
+United Kingdom,1987-03,18.85,35946,2.91,15.69
+United Kingdom,1987-04,19.71,37571,4.52,15.63
+United Kingdom,1987-05,19.71,37571,4.52,15.63
+United Kingdom,1987-06,19.71,37571,4.52,15.63
+United Kingdom,1987-07,20.66,39398,4.86,16.17
+United Kingdom,1987-08,20.66,39398,4.86,16.17
+United Kingdom,1987-09,20.66,39398,4.86,16.17
+United Kingdom,1987-10,21.89,41732,5.92,19.47
+United Kingdom,1987-11,21.89,41732,5.92,19.47
+United Kingdom,1987-12,21.89,41732,5.92,19.47
+United Kingdom,1988-01,22.81,43483,4.2,20.97
+United Kingdom,1988-02,22.81,43483,4.2,20.97
+United Kingdom,1988-03,22.81,43483,4.2,20.97
+United Kingdom,1988-04,24.18,46109,6.04,22.73
+United Kingdom,1988-05,24.18,46109,6.04,22.73
+United Kingdom,1988-06,24.18,46109,6.04,22.73
+United Kingdom,1988-07,27.4,52238,13.29,32.59
+United Kingdom,1988-08,27.4,52238,13.29,32.59
+United Kingdom,1988-09,27.4,52238,13.29,32.59
+United Kingdom,1988-10,29.08,55448,6.15,32.87
+United Kingdom,1988-11,29.08,55448,6.15,32.87
+United Kingdom,1988-12,29.08,55448,6.15,32.87
+United Kingdom,1989-01,29.69,56615,2.11,30.2
+United Kingdom,1989-02,29.69,56615,2.11,30.2
+United Kingdom,1989-03,29.69,56615,2.11,30.2
+United Kingdom,1989-04,30.76,58658,3.61,27.22
+United Kingdom,1989-05,30.76,58658,3.61,27.22
+United Kingdom,1989-06,30.76,58658,3.61,27.22
+United Kingdom,1989-07,31.84,60701,3.48,16.2
+United Kingdom,1989-08,31.84,60701,3.48,16.2
+United Kingdom,1989-09,31.84,60701,3.48,16.2
+United Kingdom,1989-10,31.22,59533,-1.92,7.37
+United Kingdom,1989-11,31.22,59533,-1.92,7.37
+United Kingdom,1989-12,31.22,59533,-1.92,7.37
+United Kingdom,1990-01,30.55,58250,-2.16,2.89
+United Kingdom,1990-02,30.55,58250,-2.16,2.89
+United Kingdom,1990-03,30.55,58250,-2.16,2.89
+United Kingdom,1990-04,30.28,57726,-0.9,-1.59
+United Kingdom,1990-05,30.28,57726,-0.9,-1.59
+United Kingdom,1990-06,30.28,57726,-0.9,-1.59
+United Kingdom,1990-07,30.83,58773,1.81,-3.18
+United Kingdom,1990-08,30.83,58773,1.81,-3.18
+United Kingdom,1990-09,30.83,58773,1.81,-3.18
+United Kingdom,1990-10,30.37,57901,-1.49,-2.74
+United Kingdom,1990-11,30.37,57901,-1.49,-2.74
+United Kingdom,1990-12,30.37,57901,-1.49,-2.74
+United Kingdom,1991-01,29.94,57086,-1.41,-2
+United Kingdom,1991-02,29.94,57086,-1.41,-2
+United Kingdom,1991-03,29.94,57086,-1.41,-2
+United Kingdom,1991-04,29.82,56853,-0.41,-1.51
+United Kingdom,1991-05,29.82,56853,-0.41,-1.51
+United Kingdom,1991-06,29.82,56853,-0.41,-1.51
+United Kingdom,1991-07,30.4,57959,1.94,-1.39
+United Kingdom,1991-08,30.4,57959,1.94,-1.39
+United Kingdom,1991-09,30.4,57959,1.94,-1.39
+United Kingdom,1991-10,30.12,57435,-0.9,-0.8
+United Kingdom,1991-11,30.12,57435,-0.9,-0.8
+United Kingdom,1991-12,30.12,57435,-0.9,-0.8
+United Kingdom,1992-01,29.64,56504,-1.62,-1.02
+United Kingdom,1992-02,29.64,56504,-1.62,-1.02
+United Kingdom,1992-03,29.64,56504,-1.62,-1.02
+United Kingdom,1992-04,28.93,55166,-2.37,-2.97
+United Kingdom,1992-05,28.93,55166,-2.37,-2.97
+United Kingdom,1992-06,28.93,55166,-2.37,-2.97
+United Kingdom,1992-07,29.02,55328,0.29,-4.54
+United Kingdom,1992-08,29.02,55328,0.29,-4.54
+United Kingdom,1992-09,29.02,55328,0.29,-4.54
+United Kingdom,1992-10,27.91,53213,-3.82,-7.35
+United Kingdom,1992-11,27.91,53213,-3.82,-7.35
+United Kingdom,1992-12,27.91,53213,-3.82,-7.35
+United Kingdom,1993-01,28.05,53484,0.51,-5.34
+United Kingdom,1993-02,28.05,53484,0.51,-5.34
+United Kingdom,1993-03,28.05,53484,0.51,-5.34
+United Kingdom,1993-04,28.28,53918,0.81,-2.26
+United Kingdom,1993-05,28.28,53918,0.81,-2.26
+United Kingdom,1993-06,28.28,53918,0.81,-2.26
+United Kingdom,1993-07,28.88,55057,2.11,-0.49
+United Kingdom,1993-08,28.88,55057,2.11,-0.49
+United Kingdom,1993-09,28.88,55057,2.11,-0.49
+United Kingdom,1993-10,28.34,54026,-1.87,1.53
+United Kingdom,1993-11,28.34,54026,-1.87,1.53
+United Kingdom,1993-12,28.34,54026,-1.87,1.53
+United Kingdom,1994-01,28.65,54623,1.1,2.13
+United Kingdom,1994-02,28.65,54623,1.1,2.13
+United Kingdom,1994-03,28.65,54623,1.1,2.13
+United Kingdom,1994-04,29.05,55383,1.39,2.72
+United Kingdom,1994-05,29.05,55383,1.39,2.72
+United Kingdom,1994-06,29.05,55383,1.39,2.72
+United Kingdom,1994-07,29.53,56305,1.67,2.27
+United Kingdom,1994-08,29.53,56305,1.67,2.27
+United Kingdom,1994-09,29.53,56305,1.67,2.27
+United Kingdom,1994-10,29.33,55925,-0.67,3.51
+United Kingdom,1994-11,29.33,55925,-0.67,3.51
+United Kingdom,1994-12,29.33,55925,-0.67,3.51
+United Kingdom,1995-01,29.08,55437,-0.87,1.49
+United Kingdom,1995-02,29.08,55437,-0.87,1.49
+United Kingdom,1995-03,29.08,55437,-0.87,1.49
+United Kingdom,1995-04,29.39,56033,1.08,1.18
+United Kingdom,1995-05,29.39,56033,1.08,1.18
+United Kingdom,1995-06,29.39,56033,1.08,1.18
+United Kingdom,1995-07,29.64,56522,0.87,0.39
+United Kingdom,1995-08,29.64,56522,0.87,0.39
+United Kingdom,1995-09,29.64,56522,0.87,0.39
+United Kingdom,1995-10,29.25,55762,-1.34,-0.29
+United Kingdom,1995-11,29.25,55762,-1.34,-0.29
+United Kingdom,1995-12,29.25,55762,-1.34,-0.29
+United Kingdom,1996-01,29.67,56576,1.46,2.05
+United Kingdom,1996-02,29.67,56576,1.46,2.05
+United Kingdom,1996-03,29.67,56576,1.46,2.05
+United Kingdom,1996-04,29.7,56630,0.1,1.06
+United Kingdom,1996-05,29.7,56630,0.1,1.06
+United Kingdom,1996-06,29.7,56630,0.1,1.06
+United Kingdom,1996-07,30.87,58854,3.93,4.13
+United Kingdom,1996-08,30.87,58854,3.93,4.13
+United Kingdom,1996-09,30.87,58854,3.93,4.13
+United Kingdom,1996-10,31.41,59885,1.75,7.39
+United Kingdom,1996-11,31.41,59885,1.75,7.39
+United Kingdom,1996-12,31.41,59885,1.75,7.39
+United Kingdom,1997-01,31.84,60698,1.36,7.29
+United Kingdom,1997-02,31.84,60698,1.36,7.29
+United Kingdom,1997-03,31.84,60698,1.36,7.29
+United Kingdom,1997-04,32.49,61946,2.06,9.39
+United Kingdom,1997-05,32.49,61946,2.06,9.39
+United Kingdom,1997-06,32.49,61946,2.06,9.39
+United Kingdom,1997-07,34.14,65092,5.08,10.6
+United Kingdom,1997-08,34.14,65092,5.08,10.6
+United Kingdom,1997-09,34.14,65092,5.08,10.6
+United Kingdom,1997-10,33.88,64604,-0.75,7.88
+United Kingdom,1997-11,33.88,64604,-0.75,7.88
+United Kingdom,1997-12,33.88,64604,-0.75,7.88
+United Kingdom,1998-01,34.74,66231,2.52,9.12
+United Kingdom,1998-02,34.74,66231,2.52,9.12
+United Kingdom,1998-03,34.74,66231,2.52,9.12
+United Kingdom,1998-04,36.59,69757,5.32,12.61
+United Kingdom,1998-05,36.59,69757,5.32,12.61
+United Kingdom,1998-06,36.59,69757,5.32,12.61
+United Kingdom,1998-07,38.18,72795,4.35,11.83
+United Kingdom,1998-08,38.18,72795,4.35,11.83
+United Kingdom,1998-09,38.18,72795,4.35,11.83
+United Kingdom,1998-10,38.01,72469,-0.45,12.17
+United Kingdom,1998-11,38.01,72469,-0.45,12.17
+United Kingdom,1998-12,38.01,72469,-0.45,12.17
+United Kingdom,1999-01,38.24,72903,0.6,10.07
+United Kingdom,1999-02,38.24,72903,0.6,10.07
+United Kingdom,1999-03,38.24,72903,0.6,10.07
+United Kingdom,1999-04,39.86,75995,4.24,8.94
+United Kingdom,1999-05,39.86,75995,4.24,8.94
+United Kingdom,1999-06,39.86,75995,4.24,8.94
+United Kingdom,1999-07,42.19,80443,5.85,10.51
+United Kingdom,1999-08,42.19,80443,5.85,10.51
+United Kingdom,1999-09,42.19,80443,5.85,10.51
+United Kingdom,1999-10,43.27,82504,2.56,13.85
+United Kingdom,1999-11,43.27,82504,2.56,13.85
+United Kingdom,1999-12,43.27,82504,2.56,13.85
+United Kingdom,2000-01,44.38,84620,2.56,16.07
+United Kingdom,2000-02,44.38,84620,2.56,16.07
+United Kingdom,2000-03,44.38,84620,2.56,16.07
+United Kingdom,2000-04,46.8,89230,5.45,17.42
+United Kingdom,2000-05,46.8,89230,5.45,17.42
+United Kingdom,2000-06,46.8,89230,5.45,17.42
+United Kingdom,2000-07,47.68,90912,1.88,13.01
+United Kingdom,2000-08,47.68,90912,1.88,13.01
+United Kingdom,2000-09,47.68,90912,1.88,13.01
+United Kingdom,2000-10,49.1,93624,2.98,13.48
+United Kingdom,2000-11,49.1,93624,2.98,13.48
+United Kingdom,2000-12,49.1,93624,2.98,13.48
+United Kingdom,2001-01,48.85,93136,-0.52,10.06
+United Kingdom,2001-02,48.85,93136,-0.52,10.06
+United Kingdom,2001-03,48.85,93136,-0.52,10.06
+United Kingdom,2001-04,50.61,96499,3.61,8.15
+United Kingdom,2001-05,50.61,96499,3.61,8.15
+United Kingdom,2001-06,50.61,96499,3.61,8.15
+United Kingdom,2001-07,52.43,99971,3.6,9.96
+United Kingdom,2001-08,52.43,99971,3.6,9.96
+United Kingdom,2001-09,52.43,99971,3.6,9.96
+United Kingdom,2001-10,51.38,97964,-2.01,4.63
+United Kingdom,2001-11,51.38,97964,-2.01,4.63
+United Kingdom,2001-12,51.38,97964,-2.01,4.63
+United Kingdom,2002-01,51.2,97623,-0.35,4.82
+United Kingdom,2002-02,53.06,101164,3.63,8.62
+United Kingdom,2002-03,54.92,104705,3.5,12.42
+United Kingdom,2002-04,55.66,106121,1.35,9.97
+United Kingdom,2002-05,57.09,108852,2.57,12.8
+United Kingdom,2002-06,59.43,113304,4.09,17.41
+United Kingdom,2002-07,59.9,114214,0.8,14.25
+United Kingdom,2002-08,61.23,116743,2.21,16.78
+United Kingdom,2002-09,62.72,119576,2.43,19.61
+United Kingdom,2002-10,63.19,120486,0.76,22.99
+United Kingdom,2002-11,63.83,121700,1.01,24.23
+United Kingdom,2002-12,65.95,125747,3.33,28.36
+United Kingdom,2003-01,65.47,124836,-0.72,27.88
+United Kingdom,2003-02,64.78,123521,-1.05,22.1
+United Kingdom,2003-03,66.16,126152,2.13,20.48
+United Kingdom,2003-04,67.76,129186,2.41,21.73
+United Kingdom,2003-05,67.28,128276,-0.7,17.84
+United Kingdom,2003-06,67.44,128579,0.24,13.48
+United Kingdom,2003-07,68.6,130805,1.73,14.53
+United Kingdom,2003-08,69.83,133132,1.78,14.04
+United Kingdom,2003-09,69.61,132727,-0.3,11
+United Kingdom,2003-10,70.83,135054,1.75,12.09
+United Kingdom,2003-11,70.04,133536,-1.12,9.73
+United Kingdom,2003-12,71.42,136167,1.97,8.29
+United Kingdom,2004-01,71.84,136976,0.59,9.72
+United Kingdom,2004-02,71.15,135661,-0.96,9.83
+United Kingdom,2004-03,71.31,135964,0.22,7.78
+United Kingdom,2004-04,74.55,142135,4.54,10.02
+United Kingdom,2004-05,75.45,143855,1.21,12.15
+United Kingdom,2004-06,76.78,146384,1.76,13.85
+United Kingdom,2004-07,78.42,149520,2.14,14.31
+United Kingdom,2004-08,79.32,151240,1.15,13.6
+United Kingdom,2004-09,79.16,150937,-0.2,13.72
+United Kingdom,2004-10,79.75,152050,0.74,12.58
+United Kingdom,2004-11,79.64,151847,-0.13,13.71
+United Kingdom,2004-12,79.06,150734,-0.73,10.7
+United Kingdom,2005-01,79,150633,-0.07,9.97
+United Kingdom,2005-02,78.93,150488,-0.1,10.93
+United Kingdom,2005-03,79.58,151723,0.82,11.59
+United Kingdom,2005-04,80.71,153880,1.42,8.26
+United Kingdom,2005-05,81.57,155533,1.07,8.12
+United Kingdom,2005-06,82.22,156767,0.79,7.09
+United Kingdom,2005-07,83.28,158786,1.29,6.2
+United Kingdom,2005-08,83.62,159431,0.41,5.42
+United Kingdom,2005-09,83.49,159183,-0.16,5.46
+United Kingdom,2005-10,83.32,158865,-0.2,4.48
+United Kingdom,2005-11,83.57,159337,0.3,4.93
+United Kingdom,2005-12,84.03,160209,0.55,6.29
+United Kingdom,2006-01,83.9,159970,-0.15,6.2
+United Kingdom,2006-02,84.04,160231,0.16,6.47
+United Kingdom,2006-03,84.72,161531,0.81,6.46
+United Kingdom,2006-04,86.56,165042,2.17,7.25
+United Kingdom,2006-05,87.38,166606,0.95,7.12
+United Kingdom,2006-06,88.21,168184,0.95,7.28
+United Kingdom,2006-07,89.48,170604,1.44,7.44
+United Kingdom,2006-08,90.23,172037,0.84,7.91
+United Kingdom,2006-09,90.6,172738,0.41,8.52
+United Kingdom,2006-10,91.13,173750,0.59,9.37
+United Kingdom,2006-11,91.6,174644,0.51,9.61
+United Kingdom,2006-12,92.74,176819,1.25,10.37
+United Kingdom,2007-01,92.71,176758,-0.03,10.49
+United Kingdom,2007-02,92.97,177261,0.28,10.63
+United Kingdom,2007-03,93.69,178636,0.78,10.59
+United Kingdom,2007-04,95.58,182243,2.02,10.42
+United Kingdom,2007-05,96.68,184330,1.15,10.64
+United Kingdom,2007-06,97.74,186348,1.09,10.8
+United Kingdom,2007-07,98.96,188691,1.26,10.6
+United Kingdom,2007-08,99.54,189786,0.58,10.32
+United Kingdom,2007-09,99.67,190032,0.13,10.01
+United Kingdom,2007-10,99.44,189589,-0.23,9.12
+United Kingdom,2007-11,99.38,189489,-0.05,8.5
+United Kingdom,2007-12,99.23,189193,-0.16,7
+United Kingdom,2008-01,97.44,185782,-1.8,5.11
+United Kingdom,2008-02,96.6,184185,-0.86,3.91
+United Kingdom,2008-03,95.9,182845,-0.73,2.36
+United Kingdom,2008-04,96.06,183148,0.17,0.5
+United Kingdom,2008-05,96.64,184267,0.61,-0.03
+United Kingdom,2008-06,95.37,181831,-1.32,-2.42
+United Kingdom,2008-07,94.33,179845,-1.09,-4.69
+United Kingdom,2008-08,92.36,176092,-2.09,-7.22
+United Kingdom,2008-09,90.03,171660,-2.52,-9.67
+United Kingdom,2008-10,88.21,168177,-2.03,-11.29
+United Kingdom,2008-11,85.72,163447,-2.81,-13.74
+United Kingdom,2008-12,84.42,160954,-1.53,-14.93
+United Kingdom,2009-01,82.47,157234,-2.31,-15.37
+United Kingdom,2009-02,81.51,155417,-1.16,-15.62
+United Kingdom,2009-03,81.01,154452,-0.62,-15.53
+United Kingdom,2009-04,81.74,155852,0.91,-14.9
+United Kingdom,2009-05,82.87,158004,1.38,-14.25
+United Kingdom,2009-06,83.69,159561,0.99,-12.25
+United Kingdom,2009-07,85.19,162423,1.79,-9.69
+United Kingdom,2009-08,86.03,164025,0.99,-6.85
+United Kingdom,2009-09,86.7,165314,0.79,-3.7
+United Kingdom,2009-10,87.29,166425,0.67,-1.04
+United Kingdom,2009-11,87.58,166986,0.34,2.17
+United Kingdom,2009-12,88.16,168082,0.66,4.43
+United Kingdom,2010-01,87.83,167469,-0.36,6.51
+United Kingdom,2010-02,88.05,167888,0.25,8.02
+United Kingdom,2010-03,88.05,167878,-0.01,8.69
+United Kingdom,2010-04,89.18,170028,1.28,9.1
+United Kingdom,2010-05,89.61,170846,0.48,8.13
+United Kingdom,2010-06,90.05,171689,0.49,7.6
+United Kingdom,2010-07,90.96,173427,1.01,6.77
+United Kingdom,2010-08,90.95,173417,-0.01,5.73
+United Kingdom,2010-09,90.72,172972,-0.26,4.63
+United Kingdom,2010-10,89.71,171045,-1.11,2.78
+United Kingdom,2010-11,88.64,169013,-1.19,1.21
+United Kingdom,2010-12,88.48,168703,-0.18,0.37
+United Kingdom,2011-01,87.75,167300,-0.83,-0.1
+United Kingdom,2011-02,87.28,166415,-0.53,-0.88
+United Kingdom,2011-03,86.88,165649,-0.46,-1.33
+United Kingdom,2011-04,88.23,168218,1.55,-1.06
+United Kingdom,2011-05,87.83,167470,-0.44,-1.98
+United Kingdom,2011-06,87.98,167753,0.17,-2.29
+United Kingdom,2011-07,89.09,169866,1.26,-2.05
+United Kingdom,2011-08,89.14,169968,0.06,-1.99
+United Kingdom,2011-09,88.92,169544,-0.25,-1.98
+United Kingdom,2011-10,87.94,167673,-1.1,-1.97
+United Kingdom,2011-11,87.99,167757,0.05,-0.74
+United Kingdom,2011-12,87.61,167048,-0.42,-0.98
+United Kingdom,2012-01,87.02,165908,-0.68,-0.83
+United Kingdom,2012-02,86.78,165457,-0.27,-0.58
+United Kingdom,2012-03,87.04,165947,0.3,0.18
+United Kingdom,2012-04,88.04,167854,1.15,-0.22
+United Kingdom,2012-05,88.32,168395,0.32,0.55
+United Kingdom,2012-06,89.19,170049,0.98,1.37
+United Kingdom,2012-07,89.53,170701,0.38,0.49
+United Kingdom,2012-08,89.63,170902,0.12,0.55
+United Kingdom,2012-09,89.32,170295,-0.36,0.44
+United Kingdom,2012-10,88.68,169090,-0.71,0.84
+United Kingdom,2012-11,88.76,169227,0.08,0.88
+United Kingdom,2012-12,88.55,168843,-0.23,1.07
+United Kingdom,2013-01,87.96,167716,-0.67,1.09
+United Kingdom,2013-02,87.95,167682,-0.02,1.34
+United Kingdom,2013-03,88.47,168681,0.6,1.65
+United Kingdom,2013-04,89.34,170335,0.98,1.48
+United Kingdom,2013-05,89.81,171234,0.53,1.69
+United Kingdom,2013-06,90.55,172655,0.83,1.53
+United Kingdom,2013-07,91.57,174592,1.12,2.28
+United Kingdom,2013-08,92.3,175982,0.8,2.97
+United Kingdom,2013-09,92.36,176098,0.07,3.41
+United Kingdom,2013-10,91.98,175378,-0.41,3.72
+United Kingdom,2013-11,92.49,176352,0.55,4.21
+United Kingdom,2013-12,93.34,177971,0.92,5.41
+United Kingdom,2014-01,93.45,178182,0.12,6.24
+United Kingdom,2014-02,93.84,178921,0.41,6.7
+United Kingdom,2014-03,94.16,179537,0.34,6.44
+United Kingdom,2014-04,96.26,183532,2.23,7.75
+United Kingdom,2014-05,97.28,185476,1.06,8.32
+United Kingdom,2014-06,98.12,187077,0.86,8.35
+United Kingdom,2014-07,99.5,189709,1.41,8.66
+United Kingdom,2014-08,100.66,191932,1.17,9.06
+United Kingdom,2014-09,100.77,192138,0.11,9.11
+United Kingdom,2014-10,100.62,191855,-0.15,9.39
+United Kingdom,2014-11,100.29,191209,-0.34,8.43
+United Kingdom,2014-12,100.53,191669,0.24,7.7
+United Kingdom,2015-01,100,190665,-0.52,7.01
+United Kingdom,2015-02,100.09,190827,0.09,6.65
+United Kingdom,2015-03,100.46,191537,0.37,6.68
+United Kingdom,2015-04,101.34,193225,0.88,5.28
+United Kingdom,2015-05,102.44,195313,1.08,5.3
+United Kingdom,2015-06,103.22,196802,0.76,5.2
+United Kingdom,2015-07,104.97,200142,1.7,5.5
+United Kingdom,2015-08,105.93,201973,0.92,5.23
+United Kingdom,2015-09,106.15,202389,0.21,5.34
+United Kingdom,2015-10,106.29,202664,0.14,5.63
+United Kingdom,2015-11,107.11,204223,0.77,6.81
+United Kingdom,2015-12,107.48,204920,0.34,6.91
+United Kingdom,2016-01,107.76,205464,0.27,7.76
+United Kingdom,2016-02,107.81,205555,0.04,7.72
+United Kingdom,2016-03,108.92,207667,1.03,8.42
+United Kingdom,2016-04,109.32,208443,0.37,7.88
+United Kingdom,2016-05,110.6,210872,1.17,7.97
+United Kingdom,2016-06,111.65,212887,0.96,8.17
+United Kingdom,2016-07,112.83,215127,1.05,7.49
+United Kingdom,2016-08,112.84,215145,0.01,6.52
+United Kingdom,2016-09,112.67,214816,-0.15,6.14
+United Kingdom,2016-10,112.29,214107,-0.33,5.65
+United Kingdom,2016-11,112.82,215113,0.47,5.33
+United Kingdom,2016-12,113.03,215500,0.18,5.16
+United Kingdom,2017-01,112.89,215243,-0.12,4.76
+United Kingdom,2017-02,113.13,215697,0.21,4.93
+United Kingdom,2017-03,112.89,215236,-0.21,3.64
+United Kingdom,2017-04,114.67,218642,1.58,4.89
+United Kingdom,2017-05,115.36,219954,0.6,4.31
+United Kingdom,2017-06,116.35,221833,0.85,4.2
+United Kingdom,2017-07,117.86,224719,1.3,4.46
+United Kingdom,2017-08,118.4,225738,0.45,4.92
+United Kingdom,2017-09,117.95,224895,-0.37,4.69
+United Kingdom,2017-10,118.06,225092,0.09,5.13
+United Kingdom,2017-11,117.72,224453,-0.28,4.34
+United Kingdom,2017-12,118.18,225330,0.39,4.56
+United Kingdom,2018-01,117.77,224544,-0.35,4.32
+United Kingdom,2018-02,118.08,225131,0.26,4.37
+United Kingdom,2018-03,117.36,223772,-0.6,3.97
+United Kingdom,2018-04,118.49,225910,0.96,3.32
+United Kingdom,2018-05,118.97,226834,0.41,3.13
+United Kingdom,2018-06,119.77,228355,0.67,2.94
+United Kingdom,2018-07,121.25,231187,1.24,2.88
+United Kingdom,2018-08,121.63,231898,0.31,2.73
+United Kingdom,2018-09,121.39,231454,-0.19,2.92
+United Kingdom,2018-10,121.27,231211,-0.1,2.72
+United Kingdom,2018-11,120.75,230224,-0.43,2.57
+United Kingdom,2018-12,120.49,229729,-0.22,1.95
+United Kingdom,2019-01,119.75,228314,-0.62,1.68
+United Kingdom,2019-02,119.44,227738,-0.25,1.16
+United Kingdom,2019-03,119.11,227104,-0.28,1.49
+United Kingdom,2019-04,119.97,228749,0.72,1.26
+United Kingdom,2019-05,120.14,229061,0.14,0.98
+United Kingdom,2019-06,120.66,230049,0.43,0.74
+United Kingdom,2019-07,122,232618,1.12,0.62
+United Kingdom,2019-08,122.4,233366,0.32,0.63
+United Kingdom,2019-09,122.49,233536,0.07,0.9
+United Kingdom,2019-10,122.16,232919,-0.26,0.74
+United Kingdom,2019-11,121.73,232096,-0.35,0.81
+United Kingdom,2019-12,121.57,231792,-0.13,0.9
+United Kingdom,2020-01,121.65,231940,0.06,1.59
+United Kingdom,2020-02,120.95,230609,-0.57,1.26
+United Kingdom,2020-03,122.04,232684,0.9,2.46
+United Kingdom,2020-04,120.8,230318,-1.02,0.69
+United Kingdom,2020-05,121.42,231508,0.52,1.07
+United Kingdom,2020-06,123.1,234703,1.38,2.02
+United Kingdom,2020-07,124.14,236687,0.85,1.75
+United Kingdom,2020-08,125.35,238998,0.98,2.41
+United Kingdom,2020-09,126.68,241541,1.06,3.43
+United Kingdom,2020-10,127.75,243575,0.84,4.58
+United Kingdom,2020-11,129.06,246065,1.02,6.02
+United Kingdom,2020-12,130.06,247983,0.78,6.99
+United Kingdom,2021-01,130.96,249690,0.69,7.65
+United Kingdom,2021-02,130.9,249586,-0.04,8.23
+United Kingdom,2021-03,132.96,253506,1.57,8.95
+United Kingdom,2021-04,131.23,250210,-1.3,8.64
+United Kingdom,2021-05,131.79,251285,0.43,8.54
+United Kingdom,2021-06,139.34,265676,5.73,13.2
+United Kingdom,2021-07,132.67,252960,-4.79,6.88
+United Kingdom,2021-08,136.59,260429,2.95,8.97
+United Kingdom,2021-09,141.09,269003,3.29,11.37
+United Kingdom,2021-10,138.11,263333,-2.11,8.11
+United Kingdom,2021-11,140.23,267370,1.53,8.66
+United Kingdom,2021-12,140.62,268115,0.28,8.12
+United Kingdom,2022-01,143.05,272738,1.72,9.23
+United Kingdom,2022-02,142.9,272454,-0.1,9.16
+United Kingdom,2022-03,143.6,273787,0.49,8
+United Kingdom,2022-04,145.2,276917,1.1,10.7
+United Kingdom,2022-05,147.1,280433,1.3,11.6
+United Kingdom,2022-06,148.3,282777,0.8,6.4
+United Kingdom,2022-07,151.1,288156,1.9,13.8
+United Kingdom,2022-08,152.4,290545,0.8,11.5
+United Kingdom,2022-09,153.2,292013,0.5,8.6
+United Kingdom,2022-10,153,291637,-0.1,10.7
+United Kingdom,2022-11,153.2,292187,0.2,9.3
+United Kingdom,2022-12,152.2,290128,-0.7,8.2
+United Kingdom,2023-01,150.4,286847,-1.1,5.2
+United Kingdom,2023-02,149.6,285288,-0.5,4.7
+United Kingdom,2023-03,148.2,282548,-1,3.2
+United Kingdom,2023-04,148.9,283871,0.5,2.5
+United Kingdom,2023-05,149.5,285053,0.4,1.6
+United Kingdom,2023-06,151.2,288281,1.1,1.9
+United Kingdom,2023-07,152,289824,0.5,0.6
diff --git a/ml-data science tutorials/forecasting tutorial.ipynb b/ml-data science tutorials/forecasting tutorial.ipynb
new file mode 100644
index 0000000..d8c7c0e
--- /dev/null
+++ b/ml-data science tutorials/forecasting tutorial.ipynb
@@ -0,0 +1,5458 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 102,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Name | \n",
+ " Period | \n",
+ " House price index All property types | \n",
+ " Average price All property types | \n",
+ " Percentage change (monthly) All property types | \n",
+ " Percentage change (yearly) All property types | \n",
+ " Month | \n",
+ " Year | \n",
+ " Series | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " United Kingdom | \n",
+ " 1980-01-01 | \n",
+ " 10.11 | \n",
+ " 19273 | \n",
+ " 3.94 | \n",
+ " 28.59 | \n",
+ " 1 | \n",
+ " 1980 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " United Kingdom | \n",
+ " 1980-02-01 | \n",
+ " 10.11 | \n",
+ " 19273 | \n",
+ " 3.94 | \n",
+ " 28.59 | \n",
+ " 2 | \n",
+ " 1980 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " United Kingdom | \n",
+ " 1980-03-01 | \n",
+ " 10.11 | \n",
+ " 19273 | \n",
+ " 3.94 | \n",
+ " 28.59 | \n",
+ " 3 | \n",
+ " 1980 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " United Kingdom | \n",
+ " 1980-04-01 | \n",
+ " 10.51 | \n",
+ " 20044 | \n",
+ " 4.00 | \n",
+ " 24.15 | \n",
+ " 4 | \n",
+ " 1980 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " United Kingdom | \n",
+ " 1980-05-01 | \n",
+ " 10.51 | \n",
+ " 20044 | \n",
+ " 4.00 | \n",
+ " 24.15 | \n",
+ " 5 | \n",
+ " 1980 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 518 | \n",
+ " United Kingdom | \n",
+ " 2023-03-01 | \n",
+ " 148.20 | \n",
+ " 282548 | \n",
+ " -1.00 | \n",
+ " 3.20 | \n",
+ " 3 | \n",
+ " 2023 | \n",
+ " 519 | \n",
+ "
\n",
+ " \n",
+ " 519 | \n",
+ " United Kingdom | \n",
+ " 2023-04-01 | \n",
+ " 148.90 | \n",
+ " 283871 | \n",
+ " 0.50 | \n",
+ " 2.50 | \n",
+ " 4 | \n",
+ " 2023 | \n",
+ " 520 | \n",
+ "
\n",
+ " \n",
+ " 520 | \n",
+ " United Kingdom | \n",
+ " 2023-05-01 | \n",
+ " 149.50 | \n",
+ " 285053 | \n",
+ " 0.40 | \n",
+ " 1.60 | \n",
+ " 5 | \n",
+ " 2023 | \n",
+ " 521 | \n",
+ "
\n",
+ " \n",
+ " 521 | \n",
+ " United Kingdom | \n",
+ " 2023-06-01 | \n",
+ " 151.20 | \n",
+ " 288281 | \n",
+ " 1.10 | \n",
+ " 1.90 | \n",
+ " 6 | \n",
+ " 2023 | \n",
+ " 522 | \n",
+ "
\n",
+ " \n",
+ " 522 | \n",
+ " United Kingdom | \n",
+ " 2023-07-01 | \n",
+ " 152.00 | \n",
+ " 289824 | \n",
+ " 0.50 | \n",
+ " 0.60 | \n",
+ " 7 | \n",
+ " 2023 | \n",
+ " 523 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
523 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Name Period House price index All property types \\\n",
+ "0 United Kingdom 1980-01-01 10.11 \n",
+ "1 United Kingdom 1980-02-01 10.11 \n",
+ "2 United Kingdom 1980-03-01 10.11 \n",
+ "3 United Kingdom 1980-04-01 10.51 \n",
+ "4 United Kingdom 1980-05-01 10.51 \n",
+ ".. ... ... ... \n",
+ "518 United Kingdom 2023-03-01 148.20 \n",
+ "519 United Kingdom 2023-04-01 148.90 \n",
+ "520 United Kingdom 2023-05-01 149.50 \n",
+ "521 United Kingdom 2023-06-01 151.20 \n",
+ "522 United Kingdom 2023-07-01 152.00 \n",
+ "\n",
+ " Average price All property types \\\n",
+ "0 19273 \n",
+ "1 19273 \n",
+ "2 19273 \n",
+ "3 20044 \n",
+ "4 20044 \n",
+ ".. ... \n",
+ "518 282548 \n",
+ "519 283871 \n",
+ "520 285053 \n",
+ "521 288281 \n",
+ "522 289824 \n",
+ "\n",
+ " Percentage change (monthly) All property types \\\n",
+ "0 3.94 \n",
+ "1 3.94 \n",
+ "2 3.94 \n",
+ "3 4.00 \n",
+ "4 4.00 \n",
+ ".. ... \n",
+ "518 -1.00 \n",
+ "519 0.50 \n",
+ "520 0.40 \n",
+ "521 1.10 \n",
+ "522 0.50 \n",
+ "\n",
+ " Percentage change (yearly) All property types Month Year Series \n",
+ "0 28.59 1 1980 1 \n",
+ "1 28.59 2 1980 2 \n",
+ "2 28.59 3 1980 3 \n",
+ "3 24.15 4 1980 4 \n",
+ "4 24.15 5 1980 5 \n",
+ ".. ... ... ... ... \n",
+ "518 3.20 3 2023 519 \n",
+ "519 2.50 4 2023 520 \n",
+ "520 1.60 5 2023 521 \n",
+ "521 1.90 6 2023 522 \n",
+ "522 0.60 7 2023 523 \n",
+ "\n",
+ "[523 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 102,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# choose python 3.8 conda env\n",
+ "# pip install pycaret\n",
+ "from pycaret.regression import *\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "df = pd.read_csv('/workspaces/D2I-Jupyter-Notebook-Tools/ml-data science tutorials/data/1980 2023 average house prices.csv')\n",
+ "df['Period'] = pd.to_datetime(df['Period'], format='%Y-%m')\n",
+ "df['Month'] = [i.month for i in df['Period']]\n",
+ "df['Year'] = [i.year for i in df['Period']]\n",
+ "\n",
+ "df['Series'] = np.arange(1, len(df)+1)\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 103,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Series | \n",
+ " Year | \n",
+ " Month | \n",
+ " Average price All property types | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1980 | \n",
+ " 1 | \n",
+ " 19273 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1980 | \n",
+ " 2 | \n",
+ " 19273 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1980 | \n",
+ " 3 | \n",
+ " 19273 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1980 | \n",
+ " 4 | \n",
+ " 20044 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1980 | \n",
+ " 5 | \n",
+ " 20044 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 518 | \n",
+ " 519 | \n",
+ " 2023 | \n",
+ " 3 | \n",
+ " 282548 | \n",
+ "
\n",
+ " \n",
+ " 519 | \n",
+ " 520 | \n",
+ " 2023 | \n",
+ " 4 | \n",
+ " 283871 | \n",
+ "
\n",
+ " \n",
+ " 520 | \n",
+ " 521 | \n",
+ " 2023 | \n",
+ " 5 | \n",
+ " 285053 | \n",
+ "
\n",
+ " \n",
+ " 521 | \n",
+ " 522 | \n",
+ " 2023 | \n",
+ " 6 | \n",
+ " 288281 | \n",
+ "
\n",
+ " \n",
+ " 522 | \n",
+ " 523 | \n",
+ " 2023 | \n",
+ " 7 | \n",
+ " 289824 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
523 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Series Year Month Average price All property types\n",
+ "0 1 1980 1 19273\n",
+ "1 2 1980 2 19273\n",
+ "2 3 1980 3 19273\n",
+ "3 4 1980 4 20044\n",
+ "4 5 1980 5 20044\n",
+ ".. ... ... ... ...\n",
+ "518 519 2023 3 282548\n",
+ "519 520 2023 4 283871\n",
+ "520 521 2023 5 285053\n",
+ "521 522 2023 6 288281\n",
+ "522 523 2023 7 289824\n",
+ "\n",
+ "[523 rows x 4 columns]"
+ ]
+ },
+ "execution_count": 103,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.drop(['Name',\t\n",
+ " 'Period',\t\n",
+ " 'House price index All property types',\t\n",
+ " 'Percentage change (monthly) All property types',\t\n",
+ " 'Percentage change (yearly) All property types'], axis=1, inplace=True)\n",
+ "df = df[['Series', 'Year', 'Month', 'Average price All property types']]\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Description | \n",
+ " Value | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Session id | \n",
+ " 123 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Target | \n",
+ " Average price All property types | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Target type | \n",
+ " Regression | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Original data shape | \n",
+ " (372, 4) | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Transformed data shape | \n",
+ " (372, 4) | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Transformed train set shape | \n",
+ " (260, 4) | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Transformed test set shape | \n",
+ " (112, 4) | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Numeric features | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " Preprocess | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Imputation type | \n",
+ " simple | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Numeric imputation | \n",
+ " mean | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Categorical imputation | \n",
+ " mode | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Transform target | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Transform target method | \n",
+ " yeo-johnson | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Fold Generator | \n",
+ " TimeSeriesSplit | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " Fold Number | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " CPU Jobs | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " Use GPU | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " Log Experiment | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " Experiment Name | \n",
+ " reg-default-name | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " USI | \n",
+ " c357 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "train = df[(df['Year'] < 2011)]\n",
+ "test = df[df['Year'] >= 2011]\n",
+ "\n",
+ "s = setup(data = train, \n",
+ " train_size=0.7,\n",
+ " # test_data = test, \n",
+ " target = 'Average price All property types', \n",
+ " fold_strategy = 'timeseries', \n",
+ " numeric_features = ['Year'], \n",
+ " fold = 3, \n",
+ " transform_target = True, \n",
+ " session_id = 123,\n",
+ " data_split_shuffle=False,\n",
+ " fold_shuffle=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 109,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Model | \n",
+ " MAE | \n",
+ " MSE | \n",
+ " RMSE | \n",
+ " R2 | \n",
+ " RMSLE | \n",
+ " MAPE | \n",
+ " TT (Sec) | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " huber | \n",
+ " Huber Regressor | \n",
+ " 401.4442 | \n",
+ " 730330.6695 | \n",
+ " 493.4000 | \n",
+ " -342.7522 | \n",
+ " 0.0303 | \n",
+ " 0.0249 | \n",
+ " 0.0400 | \n",
+ "
\n",
+ " \n",
+ " br | \n",
+ " Bayesian Ridge | \n",
+ " 406.7168 | \n",
+ " 637178.7544 | \n",
+ " 460.8611 | \n",
+ " -361.6791 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.0267 | \n",
+ "
\n",
+ " \n",
+ " lr | \n",
+ " Linear Regression | \n",
+ " 406.8419 | \n",
+ " 636100.1089 | \n",
+ " 460.4708 | \n",
+ " -361.9967 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.6500 | \n",
+ "
\n",
+ " \n",
+ " en | \n",
+ " Elastic Net | \n",
+ " 406.8625 | \n",
+ " 636242.5939 | \n",
+ " 460.5224 | \n",
+ " -414.8965 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.0233 | \n",
+ "
\n",
+ " \n",
+ " ridge | \n",
+ " Ridge Regression | \n",
+ " 406.8740 | \n",
+ " 636153.6122 | \n",
+ " 460.4902 | \n",
+ " -361.6717 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.0367 | \n",
+ "
\n",
+ " \n",
+ " lar | \n",
+ " Least Angle Regression | \n",
+ " 406.8742 | \n",
+ " 636152.6535 | \n",
+ " 460.4898 | \n",
+ " -367.6239 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.0267 | \n",
+ "
\n",
+ " \n",
+ " lasso | \n",
+ " Lasso Regression | \n",
+ " 406.8759 | \n",
+ " 636150.7158 | \n",
+ " 460.4891 | \n",
+ " -414.8965 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.0267 | \n",
+ "
\n",
+ " \n",
+ " llar | \n",
+ " Lasso Least Angle Regression | \n",
+ " 406.8759 | \n",
+ " 636150.7537 | \n",
+ " 460.4892 | \n",
+ " -414.8965 | \n",
+ " 0.0296 | \n",
+ " 0.0265 | \n",
+ " 0.0267 | \n",
+ "
\n",
+ " \n",
+ " omp | \n",
+ " Orthogonal Matching Pursuit | \n",
+ " 407.1799 | \n",
+ " 635667.6341 | \n",
+ " 460.3143 | \n",
+ " -362.4192 | \n",
+ " 0.0296 | \n",
+ " 0.0266 | \n",
+ " 0.0300 | \n",
+ "
\n",
+ " \n",
+ " par | \n",
+ " Passive Aggressive Regressor | \n",
+ " 513.0888 | \n",
+ " 1381573.6220 | \n",
+ " 678.6823 | \n",
+ " -5137734055422490.0000 | \n",
+ " 0.0778 | \n",
+ " 0.1171 | \n",
+ " 0.0267 | \n",
+ "
\n",
+ " \n",
+ " dt | \n",
+ " Decision Tree Regressor | \n",
+ " 1104.2452 | \n",
+ " 5360442.3142 | \n",
+ " 1336.7177 | \n",
+ " -6.4436 | \n",
+ " 0.0909 | \n",
+ " 0.0659 | \n",
+ " 0.0333 | \n",
+ "
\n",
+ " \n",
+ " et | \n",
+ " Extra Trees Regressor | \n",
+ " 1108.9459 | \n",
+ " 5391101.3263 | \n",
+ " 1340.5349 | \n",
+ " -4.9937 | \n",
+ " 0.0913 | \n",
+ " 0.0662 | \n",
+ " 0.1200 | \n",
+ "
\n",
+ " \n",
+ " gbr | \n",
+ " Gradient Boosting Regressor | \n",
+ " 1109.8662 | \n",
+ " 5395167.6810 | \n",
+ " 1341.0404 | \n",
+ " -7.1237 | \n",
+ " 0.0913 | \n",
+ " 0.0663 | \n",
+ " 0.0533 | \n",
+ "
\n",
+ " \n",
+ " rf | \n",
+ " Random Forest Regressor | \n",
+ " 1114.2830 | \n",
+ " 5425661.6577 | \n",
+ " 1344.8249 | \n",
+ " -7.4567 | \n",
+ " 0.0916 | \n",
+ " 0.0665 | \n",
+ " 0.1933 | \n",
+ "
\n",
+ " \n",
+ " knn | \n",
+ " K Neighbors Regressor | \n",
+ " 1124.5196 | \n",
+ " 5492675.8571 | \n",
+ " 1353.1046 | \n",
+ " -3.5928 | \n",
+ " 0.0923 | \n",
+ " 0.0672 | \n",
+ " 0.0400 | \n",
+ "
\n",
+ " \n",
+ " lightgbm | \n",
+ " Light Gradient Boosting Machine | \n",
+ " 1130.7261 | \n",
+ " 5534960.4728 | \n",
+ " 1358.3029 | \n",
+ " -5.6743 | \n",
+ " 0.0928 | \n",
+ " 0.0676 | \n",
+ " 0.2033 | \n",
+ "
\n",
+ " \n",
+ " ada | \n",
+ " AdaBoost Regressor | \n",
+ " 1209.5528 | \n",
+ " 6091424.0350 | \n",
+ " 1424.9473 | \n",
+ " -6.5624 | \n",
+ " 0.0985 | \n",
+ " 0.0728 | \n",
+ " 0.0500 | \n",
+ "
\n",
+ " \n",
+ " dummy | \n",
+ " Dummy Regressor | \n",
+ " 2064.1313 | \n",
+ " 14484283.5780 | \n",
+ " 2197.2926 | \n",
+ " -417.6080 | \n",
+ " 0.1741 | \n",
+ " 0.1294 | \n",
+ " 0.0267 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "best = compare_models(sort = 'MAE')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 121,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Month | \n",
+ " Year | \n",
+ " Series | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2010 | \n",
+ " 360 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2010 | \n",
+ " 361 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2010 | \n",
+ " 362 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 2010 | \n",
+ " 363 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 2010 | \n",
+ " 364 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Month Year Series\n",
+ "0 1 2010 360\n",
+ "1 2 2010 361\n",
+ "2 3 2010 362\n",
+ "3 4 2010 363\n",
+ "4 5 2010 364"
+ ]
+ },
+ "execution_count": 121,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "future_dates = pd.date_range(start = '2010-01-01', end = '2030-01-01', freq = 'MS')\n",
+ "future_df = pd.DataFrame()\n",
+ "future_df['Month'] = [i.month for i in future_dates]\n",
+ "future_df['Year'] = [i.year for i in future_dates] \n",
+ "max_series = df['Series'][df['Year'] < 2010].max()\n",
+ "future_df['Series'] = np.arange(max_series,(max_series+len(future_dates)))\n",
+ "future_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 122,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Month | \n",
+ " Year | \n",
+ " Series | \n",
+ " prediction_label | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2010 | \n",
+ " 360 | \n",
+ " 125184.525406 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2010 | \n",
+ " 361 | \n",
+ " 125634.533246 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 2010 | \n",
+ " 362 | \n",
+ " 126085.298396 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 2010 | \n",
+ " 363 | \n",
+ " 126536.820687 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 2010 | \n",
+ " 364 | \n",
+ " 126989.099952 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Month Year Series prediction_label\n",
+ "0 1 2010 360 125184.525406\n",
+ "1 2 2010 361 125634.533246\n",
+ "2 3 2010 362 126085.298396\n",
+ "3 4 2010 363 126536.820687\n",
+ "4 5 2010 364 126989.099952"
+ ]
+ },
+ "execution_count": 122,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "predictions_future = predict_model(best, data=future_df)\n",
+ "predictions_future.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 126,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "variable=Average price All property types
Series=%{x}
value=%{y}",
+ "legendgroup": "Average price All property types",
+ "line": {
+ "color": "#636efa",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "Average price All property types",
+ "showlegend": true,
+ "type": "scattergl",
+ "x": [
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29,
+ 30,
+ 31,
+ 32,
+ 33,
+ 34,
+ 35,
+ 36,
+ 37,
+ 38,
+ 39,
+ 40,
+ 41,
+ 42,
+ 43,
+ 44,
+ 45,
+ 46,
+ 47,
+ 48,
+ 49,
+ 50,
+ 51,
+ 52,
+ 53,
+ 54,
+ 55,
+ 56,
+ 57,
+ 58,
+ 59,
+ 60,
+ 61,
+ 62,
+ 63,
+ 64,
+ 65,
+ 66,
+ 67,
+ 68,
+ 69,
+ 70,
+ 71,
+ 72,
+ 73,
+ 74,
+ 75,
+ 76,
+ 77,
+ 78,
+ 79,
+ 80,
+ 81,
+ 82,
+ 83,
+ 84,
+ 85,
+ 86,
+ 87,
+ 88,
+ 89,
+ 90,
+ 91,
+ 92,
+ 93,
+ 94,
+ 95,
+ 96,
+ 97,
+ 98,
+ 99,
+ 100,
+ 101,
+ 102,
+ 103,
+ 104,
+ 105,
+ 106,
+ 107,
+ 108,
+ 109,
+ 110,
+ 111,
+ 112,
+ 113,
+ 114,
+ 115,
+ 116,
+ 117,
+ 118,
+ 119,
+ 120,
+ 121,
+ 122,
+ 123,
+ 124,
+ 125,
+ 126,
+ 127,
+ 128,
+ 129,
+ 130,
+ 131,
+ 132,
+ 133,
+ 134,
+ 135,
+ 136,
+ 137,
+ 138,
+ 139,
+ 140,
+ 141,
+ 142,
+ 143,
+ 144,
+ 145,
+ 146,
+ 147,
+ 148,
+ 149,
+ 150,
+ 151,
+ 152,
+ 153,
+ 154,
+ 155,
+ 156,
+ 157,
+ 158,
+ 159,
+ 160,
+ 161,
+ 162,
+ 163,
+ 164,
+ 165,
+ 166,
+ 167,
+ 168,
+ 169,
+ 170,
+ 171,
+ 172,
+ 173,
+ 174,
+ 175,
+ 176,
+ 177,
+ 178,
+ 179,
+ 180,
+ 181,
+ 182,
+ 183,
+ 184,
+ 185,
+ 186,
+ 187,
+ 188,
+ 189,
+ 190,
+ 191,
+ 192,
+ 193,
+ 194,
+ 195,
+ 196,
+ 197,
+ 198,
+ 199,
+ 200,
+ 201,
+ 202,
+ 203,
+ 204,
+ 205,
+ 206,
+ 207,
+ 208,
+ 209,
+ 210,
+ 211,
+ 212,
+ 213,
+ 214,
+ 215,
+ 216,
+ 217,
+ 218,
+ 219,
+ 220,
+ 221,
+ 222,
+ 223,
+ 224,
+ 225,
+ 226,
+ 227,
+ 228,
+ 229,
+ 230,
+ 231,
+ 232,
+ 233,
+ 234,
+ 235,
+ 236,
+ 237,
+ 238,
+ 239,
+ 240,
+ 241,
+ 242,
+ 243,
+ 244,
+ 245,
+ 246,
+ 247,
+ 248,
+ 249,
+ 250,
+ 251,
+ 252,
+ 253,
+ 254,
+ 255,
+ 256,
+ 257,
+ 258,
+ 259,
+ 260,
+ 261,
+ 262,
+ 263,
+ 264,
+ 265,
+ 266,
+ 267,
+ 268,
+ 269,
+ 270,
+ 271,
+ 272,
+ 273,
+ 274,
+ 275,
+ 276,
+ 277,
+ 278,
+ 279,
+ 280,
+ 281,
+ 282,
+ 283,
+ 284,
+ 285,
+ 286,
+ 287,
+ 288,
+ 289,
+ 290,
+ 291,
+ 292,
+ 293,
+ 294,
+ 295,
+ 296,
+ 297,
+ 298,
+ 299,
+ 300,
+ 301,
+ 302,
+ 303,
+ 304,
+ 305,
+ 306,
+ 307,
+ 308,
+ 309,
+ 310,
+ 311,
+ 312,
+ 313,
+ 314,
+ 315,
+ 316,
+ 317,
+ 318,
+ 319,
+ 320,
+ 321,
+ 322,
+ 323,
+ 324,
+ 325,
+ 326,
+ 327,
+ 328,
+ 329,
+ 330,
+ 331,
+ 332,
+ 333,
+ 334,
+ 335,
+ 336,
+ 337,
+ 338,
+ 339,
+ 340,
+ 341,
+ 342,
+ 343,
+ 344,
+ 345,
+ 346,
+ 347,
+ 348,
+ 349,
+ 350,
+ 351,
+ 352,
+ 353,
+ 354,
+ 355,
+ 356,
+ 357,
+ 358,
+ 359,
+ 360,
+ 360,
+ 361,
+ 362,
+ 363,
+ 364,
+ 365,
+ 366,
+ 367,
+ 368,
+ 369,
+ 370,
+ 371,
+ 372,
+ 373,
+ 374,
+ 375,
+ 376,
+ 377,
+ 378,
+ 379,
+ 380,
+ 381,
+ 382,
+ 383,
+ 384,
+ 385,
+ 386,
+ 387,
+ 388,
+ 389,
+ 390,
+ 391,
+ 392,
+ 393,
+ 394,
+ 395,
+ 396,
+ 397,
+ 398,
+ 399,
+ 400,
+ 401,
+ 402,
+ 403,
+ 404,
+ 405,
+ 406,
+ 407,
+ 408,
+ 409,
+ 410,
+ 411,
+ 412,
+ 413,
+ 414,
+ 415,
+ 416,
+ 417,
+ 418,
+ 419,
+ 420,
+ 421,
+ 422,
+ 423,
+ 424,
+ 425,
+ 426,
+ 427,
+ 428,
+ 429,
+ 430,
+ 431,
+ 432,
+ 433,
+ 434,
+ 435,
+ 436,
+ 437,
+ 438,
+ 439,
+ 440,
+ 441,
+ 442,
+ 443,
+ 444,
+ 445,
+ 446,
+ 447,
+ 448,
+ 449,
+ 450,
+ 451,
+ 452,
+ 453,
+ 454,
+ 455,
+ 456,
+ 457,
+ 458,
+ 459,
+ 460,
+ 461,
+ 462,
+ 463,
+ 464,
+ 465,
+ 466,
+ 467,
+ 468,
+ 469,
+ 470,
+ 471,
+ 472,
+ 473,
+ 474,
+ 475,
+ 476,
+ 477,
+ 478,
+ 479,
+ 480,
+ 481,
+ 482,
+ 483,
+ 484,
+ 485,
+ 486,
+ 487,
+ 488,
+ 489,
+ 490,
+ 491,
+ 492,
+ 493,
+ 494,
+ 495,
+ 496,
+ 497,
+ 498,
+ 499,
+ 500,
+ 501,
+ 502,
+ 503,
+ 504,
+ 505,
+ 506,
+ 507,
+ 508,
+ 509,
+ 510,
+ 511,
+ 512,
+ 513,
+ 514,
+ 515,
+ 516,
+ 517,
+ 518,
+ 519,
+ 520,
+ 521,
+ 522,
+ 523,
+ 524,
+ 525,
+ 526,
+ 527,
+ 528,
+ 529,
+ 530,
+ 531,
+ 532,
+ 533,
+ 534,
+ 535,
+ 536,
+ 537,
+ 538,
+ 539,
+ 540,
+ 541,
+ 542,
+ 543,
+ 544,
+ 545,
+ 546,
+ 547,
+ 548,
+ 549,
+ 550,
+ 551,
+ 552,
+ 553,
+ 554,
+ 555,
+ 556,
+ 557,
+ 558,
+ 559,
+ 560,
+ 561,
+ 562,
+ 563,
+ 564,
+ 565,
+ 566,
+ 567,
+ 568,
+ 569,
+ 570,
+ 571,
+ 572,
+ 573,
+ 574,
+ 575,
+ 576,
+ 577,
+ 578,
+ 579,
+ 580,
+ 581,
+ 582,
+ 583,
+ 584,
+ 585,
+ 586,
+ 587,
+ 588,
+ 589,
+ 590,
+ 591,
+ 592,
+ 593,
+ 594,
+ 595,
+ 596,
+ 597,
+ 598,
+ 599,
+ 600
+ ],
+ "xaxis": "x",
+ "y": [
+ 19273,
+ 19273,
+ 19273,
+ 20044,
+ 20044,
+ 20044,
+ 20857,
+ 20857,
+ 20857,
+ 20897,
+ 20897,
+ 20897,
+ 20938,
+ 20938,
+ 20938,
+ 21507,
+ 21507,
+ 21507,
+ 21852,
+ 21852,
+ 21852,
+ 21425,
+ 21425,
+ 21425,
+ 20897,
+ 20897,
+ 20897,
+ 21811,
+ 21811,
+ 21811,
+ 22360,
+ 22360,
+ 22360,
+ 22685,
+ 22685,
+ 22685,
+ 23355,
+ 23355,
+ 23355,
+ 24167,
+ 24167,
+ 24167,
+ 25183,
+ 25183,
+ 25183,
+ 25386,
+ 25386,
+ 25386,
+ 25589,
+ 25589,
+ 25589,
+ 26401,
+ 26401,
+ 26401,
+ 27416,
+ 27416,
+ 27416,
+ 27823,
+ 27823,
+ 27823,
+ 27823,
+ 27823,
+ 27823,
+ 28838,
+ 28838,
+ 28838,
+ 29447,
+ 29447,
+ 29447,
+ 30463,
+ 30463,
+ 30463,
+ 31072,
+ 31072,
+ 31072,
+ 32494,
+ 32494,
+ 32494,
+ 33915,
+ 33915,
+ 33915,
+ 34931,
+ 34931,
+ 34931,
+ 35946,
+ 35946,
+ 35946,
+ 37571,
+ 37571,
+ 37571,
+ 39398,
+ 39398,
+ 39398,
+ 41732,
+ 41732,
+ 41732,
+ 43483,
+ 43483,
+ 43483,
+ 46109,
+ 46109,
+ 46109,
+ 52238,
+ 52238,
+ 52238,
+ 55448,
+ 55448,
+ 55448,
+ 56615,
+ 56615,
+ 56615,
+ 58658,
+ 58658,
+ 58658,
+ 60701,
+ 60701,
+ 60701,
+ 59533,
+ 59533,
+ 59533,
+ 58250,
+ 58250,
+ 58250,
+ 57726,
+ 57726,
+ 57726,
+ 58773,
+ 58773,
+ 58773,
+ 57901,
+ 57901,
+ 57901,
+ 57086,
+ 57086,
+ 57086,
+ 56853,
+ 56853,
+ 56853,
+ 57959,
+ 57959,
+ 57959,
+ 57435,
+ 57435,
+ 57435,
+ 56504,
+ 56504,
+ 56504,
+ 55166,
+ 55166,
+ 55166,
+ 55328,
+ 55328,
+ 55328,
+ 53213,
+ 53213,
+ 53213,
+ 53484,
+ 53484,
+ 53484,
+ 53918,
+ 53918,
+ 53918,
+ 55057,
+ 55057,
+ 55057,
+ 54026,
+ 54026,
+ 54026,
+ 54623,
+ 54623,
+ 54623,
+ 55383,
+ 55383,
+ 55383,
+ 56305,
+ 56305,
+ 56305,
+ 55925,
+ 55925,
+ 55925,
+ 55437,
+ 55437,
+ 55437,
+ 56033,
+ 56033,
+ 56033,
+ 56522,
+ 56522,
+ 56522,
+ 55762,
+ 55762,
+ 55762,
+ 56576,
+ 56576,
+ 56576,
+ 56630,
+ 56630,
+ 56630,
+ 58854,
+ 58854,
+ 58854,
+ 59885,
+ 59885,
+ 59885,
+ 60698,
+ 60698,
+ 60698,
+ 61946,
+ 61946,
+ 61946,
+ 65092,
+ 65092,
+ 65092,
+ 64604,
+ 64604,
+ 64604,
+ 66231,
+ 66231,
+ 66231,
+ 69757,
+ 69757,
+ 69757,
+ 72795,
+ 72795,
+ 72795,
+ 72469,
+ 72469,
+ 72469,
+ 72903,
+ 72903,
+ 72903,
+ 75995,
+ 75995,
+ 75995,
+ 80443,
+ 80443,
+ 80443,
+ 82504,
+ 82504,
+ 82504,
+ 84620,
+ 84620,
+ 84620,
+ 89230,
+ 89230,
+ 89230,
+ 90912,
+ 90912,
+ 90912,
+ 93624,
+ 93624,
+ 93624,
+ 93136,
+ 93136,
+ 93136,
+ 96499,
+ 96499,
+ 96499,
+ 99971,
+ 99971,
+ 99971,
+ 97964,
+ 97964,
+ 97964,
+ 97623,
+ 101164,
+ 104705,
+ 106121,
+ 108852,
+ 113304,
+ 114214,
+ 116743,
+ 119576,
+ 120486,
+ 121700,
+ 125747,
+ 124836,
+ 123521,
+ 126152,
+ 129186,
+ 128276,
+ 128579,
+ 130805,
+ 133132,
+ 132727,
+ 135054,
+ 133536,
+ 136167,
+ 136976,
+ 135661,
+ 135964,
+ 142135,
+ 143855,
+ 146384,
+ 149520,
+ 151240,
+ 150937,
+ 152050,
+ 151847,
+ 150734,
+ 150633,
+ 150488,
+ 151723,
+ 153880,
+ 155533,
+ 156767,
+ 158786,
+ 159431,
+ 159183,
+ 158865,
+ 159337,
+ 160209,
+ 159970,
+ 160231,
+ 161531,
+ 165042,
+ 166606,
+ 168184,
+ 170604,
+ 172037,
+ 172738,
+ 173750,
+ 174644,
+ 176819,
+ 176758,
+ 177261,
+ 178636,
+ 182243,
+ 184330,
+ 186348,
+ 188691,
+ 189786,
+ 190032,
+ 189589,
+ 189489,
+ 189193,
+ 185782,
+ 184185,
+ 182845,
+ 183148,
+ 184267,
+ 181831,
+ 179845,
+ 176092,
+ 171660,
+ 168177,
+ 163447,
+ 160954,
+ 157234,
+ 155417,
+ 154452,
+ 155852,
+ 158004,
+ 159561,
+ 162423,
+ 164025,
+ 165314,
+ 166425,
+ 166986,
+ 168082,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null
+ ],
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "variable=prediction_label
Series=%{x}
value=%{y}",
+ "legendgroup": "prediction_label",
+ "line": {
+ "color": "#EF553B",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "prediction_label",
+ "showlegend": true,
+ "type": "scattergl",
+ "x": [
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29,
+ 30,
+ 31,
+ 32,
+ 33,
+ 34,
+ 35,
+ 36,
+ 37,
+ 38,
+ 39,
+ 40,
+ 41,
+ 42,
+ 43,
+ 44,
+ 45,
+ 46,
+ 47,
+ 48,
+ 49,
+ 50,
+ 51,
+ 52,
+ 53,
+ 54,
+ 55,
+ 56,
+ 57,
+ 58,
+ 59,
+ 60,
+ 61,
+ 62,
+ 63,
+ 64,
+ 65,
+ 66,
+ 67,
+ 68,
+ 69,
+ 70,
+ 71,
+ 72,
+ 73,
+ 74,
+ 75,
+ 76,
+ 77,
+ 78,
+ 79,
+ 80,
+ 81,
+ 82,
+ 83,
+ 84,
+ 85,
+ 86,
+ 87,
+ 88,
+ 89,
+ 90,
+ 91,
+ 92,
+ 93,
+ 94,
+ 95,
+ 96,
+ 97,
+ 98,
+ 99,
+ 100,
+ 101,
+ 102,
+ 103,
+ 104,
+ 105,
+ 106,
+ 107,
+ 108,
+ 109,
+ 110,
+ 111,
+ 112,
+ 113,
+ 114,
+ 115,
+ 116,
+ 117,
+ 118,
+ 119,
+ 120,
+ 121,
+ 122,
+ 123,
+ 124,
+ 125,
+ 126,
+ 127,
+ 128,
+ 129,
+ 130,
+ 131,
+ 132,
+ 133,
+ 134,
+ 135,
+ 136,
+ 137,
+ 138,
+ 139,
+ 140,
+ 141,
+ 142,
+ 143,
+ 144,
+ 145,
+ 146,
+ 147,
+ 148,
+ 149,
+ 150,
+ 151,
+ 152,
+ 153,
+ 154,
+ 155,
+ 156,
+ 157,
+ 158,
+ 159,
+ 160,
+ 161,
+ 162,
+ 163,
+ 164,
+ 165,
+ 166,
+ 167,
+ 168,
+ 169,
+ 170,
+ 171,
+ 172,
+ 173,
+ 174,
+ 175,
+ 176,
+ 177,
+ 178,
+ 179,
+ 180,
+ 181,
+ 182,
+ 183,
+ 184,
+ 185,
+ 186,
+ 187,
+ 188,
+ 189,
+ 190,
+ 191,
+ 192,
+ 193,
+ 194,
+ 195,
+ 196,
+ 197,
+ 198,
+ 199,
+ 200,
+ 201,
+ 202,
+ 203,
+ 204,
+ 205,
+ 206,
+ 207,
+ 208,
+ 209,
+ 210,
+ 211,
+ 212,
+ 213,
+ 214,
+ 215,
+ 216,
+ 217,
+ 218,
+ 219,
+ 220,
+ 221,
+ 222,
+ 223,
+ 224,
+ 225,
+ 226,
+ 227,
+ 228,
+ 229,
+ 230,
+ 231,
+ 232,
+ 233,
+ 234,
+ 235,
+ 236,
+ 237,
+ 238,
+ 239,
+ 240,
+ 241,
+ 242,
+ 243,
+ 244,
+ 245,
+ 246,
+ 247,
+ 248,
+ 249,
+ 250,
+ 251,
+ 252,
+ 253,
+ 254,
+ 255,
+ 256,
+ 257,
+ 258,
+ 259,
+ 260,
+ 261,
+ 262,
+ 263,
+ 264,
+ 265,
+ 266,
+ 267,
+ 268,
+ 269,
+ 270,
+ 271,
+ 272,
+ 273,
+ 274,
+ 275,
+ 276,
+ 277,
+ 278,
+ 279,
+ 280,
+ 281,
+ 282,
+ 283,
+ 284,
+ 285,
+ 286,
+ 287,
+ 288,
+ 289,
+ 290,
+ 291,
+ 292,
+ 293,
+ 294,
+ 295,
+ 296,
+ 297,
+ 298,
+ 299,
+ 300,
+ 301,
+ 302,
+ 303,
+ 304,
+ 305,
+ 306,
+ 307,
+ 308,
+ 309,
+ 310,
+ 311,
+ 312,
+ 313,
+ 314,
+ 315,
+ 316,
+ 317,
+ 318,
+ 319,
+ 320,
+ 321,
+ 322,
+ 323,
+ 324,
+ 325,
+ 326,
+ 327,
+ 328,
+ 329,
+ 330,
+ 331,
+ 332,
+ 333,
+ 334,
+ 335,
+ 336,
+ 337,
+ 338,
+ 339,
+ 340,
+ 341,
+ 342,
+ 343,
+ 344,
+ 345,
+ 346,
+ 347,
+ 348,
+ 349,
+ 350,
+ 351,
+ 352,
+ 353,
+ 354,
+ 355,
+ 356,
+ 357,
+ 358,
+ 359,
+ 360,
+ 360,
+ 361,
+ 362,
+ 363,
+ 364,
+ 365,
+ 366,
+ 367,
+ 368,
+ 369,
+ 370,
+ 371,
+ 372,
+ 373,
+ 374,
+ 375,
+ 376,
+ 377,
+ 378,
+ 379,
+ 380,
+ 381,
+ 382,
+ 383,
+ 384,
+ 385,
+ 386,
+ 387,
+ 388,
+ 389,
+ 390,
+ 391,
+ 392,
+ 393,
+ 394,
+ 395,
+ 396,
+ 397,
+ 398,
+ 399,
+ 400,
+ 401,
+ 402,
+ 403,
+ 404,
+ 405,
+ 406,
+ 407,
+ 408,
+ 409,
+ 410,
+ 411,
+ 412,
+ 413,
+ 414,
+ 415,
+ 416,
+ 417,
+ 418,
+ 419,
+ 420,
+ 421,
+ 422,
+ 423,
+ 424,
+ 425,
+ 426,
+ 427,
+ 428,
+ 429,
+ 430,
+ 431,
+ 432,
+ 433,
+ 434,
+ 435,
+ 436,
+ 437,
+ 438,
+ 439,
+ 440,
+ 441,
+ 442,
+ 443,
+ 444,
+ 445,
+ 446,
+ 447,
+ 448,
+ 449,
+ 450,
+ 451,
+ 452,
+ 453,
+ 454,
+ 455,
+ 456,
+ 457,
+ 458,
+ 459,
+ 460,
+ 461,
+ 462,
+ 463,
+ 464,
+ 465,
+ 466,
+ 467,
+ 468,
+ 469,
+ 470,
+ 471,
+ 472,
+ 473,
+ 474,
+ 475,
+ 476,
+ 477,
+ 478,
+ 479,
+ 480,
+ 481,
+ 482,
+ 483,
+ 484,
+ 485,
+ 486,
+ 487,
+ 488,
+ 489,
+ 490,
+ 491,
+ 492,
+ 493,
+ 494,
+ 495,
+ 496,
+ 497,
+ 498,
+ 499,
+ 500,
+ 501,
+ 502,
+ 503,
+ 504,
+ 505,
+ 506,
+ 507,
+ 508,
+ 509,
+ 510,
+ 511,
+ 512,
+ 513,
+ 514,
+ 515,
+ 516,
+ 517,
+ 518,
+ 519,
+ 520,
+ 521,
+ 522,
+ 523,
+ 524,
+ 525,
+ 526,
+ 527,
+ 528,
+ 529,
+ 530,
+ 531,
+ 532,
+ 533,
+ 534,
+ 535,
+ 536,
+ 537,
+ 538,
+ 539,
+ 540,
+ 541,
+ 542,
+ 543,
+ 544,
+ 545,
+ 546,
+ 547,
+ 548,
+ 549,
+ 550,
+ 551,
+ 552,
+ 553,
+ 554,
+ 555,
+ 556,
+ 557,
+ 558,
+ 559,
+ 560,
+ 561,
+ 562,
+ 563,
+ 564,
+ 565,
+ 566,
+ 567,
+ 568,
+ 569,
+ 570,
+ 571,
+ 572,
+ 573,
+ 574,
+ 575,
+ 576,
+ 577,
+ 578,
+ 579,
+ 580,
+ 581,
+ 582,
+ 583,
+ 584,
+ 585,
+ 586,
+ 587,
+ 588,
+ 589,
+ 590,
+ 591,
+ 592,
+ 593,
+ 594,
+ 595,
+ 596,
+ 597,
+ 598,
+ 599,
+ 600
+ ],
+ "xaxis": "x",
+ "y": [
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ null,
+ 125184.52540604299,
+ 125634.5332462745,
+ 126085.29839587386,
+ 126536.82068694575,
+ 126989.09995195075,
+ 127442.13602370374,
+ 127895.92873537257,
+ 128350.4779204766,
+ 128805.78341288527,
+ 129261.84504681689,
+ 129718.6626568369,
+ 130176.23607785684,
+ 130267.70920405925,
+ 130726.18916274763,
+ 131185.42457049972,
+ 131645.41526332495,
+ 132106.16107757294,
+ 132567.66184993225,
+ 133029.91741742913,
+ 133492.92761742597,
+ 133956.6922876203,
+ 134421.21126604316,
+ 134886.48439105804,
+ 135352.51150135955,
+ 135445.67270669836,
+ 135912.6041693102,
+ 136380.28926354207,
+ 136848.72782913942,
+ 137317.9197061732,
+ 137787.86473503907,
+ 138258.56275645582,
+ 138730.01361146432,
+ 139202.2171414261,
+ 139675.17318802237,
+ 140148.8815932526,
+ 140623.34219943336,
+ 140718.1874560001,
+ 141193.55027856273,
+ 141669.66495632794,
+ 142146.531332619,
+ 142624.1492510712,
+ 143102.51855563087,
+ 143581.63909055397,
+ 144061.51070040514,
+ 144542.1332300564,
+ 145023.50652468618,
+ 145505.6304297778,
+ 145988.50479111887,
+ 146085.0301612035,
+ 146568.8046503502,
+ 147053.3292575877,
+ 147538.6038296685,
+ 148024.6282136446,
+ 148511.40225686601,
+ 148998.92580698014,
+ 149487.19871193005,
+ 149976.2208199539,
+ 150465.99197958352,
+ 150956.51203964383,
+ 151447.78084925105,
+ 151545.98248158765,
+ 152038.14937582536,
+ 152531.0646887309,
+ 153024.72827034662,
+ 153519.13997100224,
+ 154014.2996413137,
+ 154510.20713218232,
+ 155006.8622947932,
+ 155504.26498061468,
+ 156002.4150413972,
+ 156501.31232917242,
+ 157000.95669625196,
+ 157100.83082249117,
+ 157601.37127459203,
+ 158102.65848210602,
+ 158604.69229823415,
+ 159107.47257645335,
+ 159610.99917051537,
+ 160115.271934446,
+ 160620.29072254398,
+ 161126.05538938008,
+ 161632.56578979592,
+ 162139.82177890348,
+ 162647.8232120837,
+ 162749.3661434724,
+ 163258.26170390288,
+ 163767.90239122848,
+ 164278.28806168475,
+ 164789.41857177275,
+ 165301.29377825765,
+ 165813.91353816816,
+ 166327.27770879513,
+ 166841.3861476911,
+ 167356.23871266918,
+ 167871.83526180233,
+ 168388.17565342196,
+ 168491.38377767528,
+ 169008.6163789832,
+ 169526.59251205463,
+ 170045.31203604332,
+ 170564.774810358,
+ 171084.98069466182,
+ 171605.92954887112,
+ 172127.62123315487,
+ 172650.05560793343,
+ 173173.23253387806,
+ 173697.15187191003,
+ 174221.81348319954,
+ 174326.6832615507,
+ 174852.23520363844,
+ 175378.5291144706,
+ 175905.56485600866,
+ 176433.3422904597,
+ 176961.86128027516,
+ 177491.12168815095,
+ 178021.12337702568,
+ 178551.86621008033,
+ 179083.35005073718,
+ 179615.5747626594,
+ 180148.5402097499,
+ 180255.0681741646,
+ 180788.92211038322,
+ 181323.51648323584,
+ 181858.85115738743,
+ 182394.92599773945,
+ 182931.7408694291,
+ 183469.29563782868,
+ 184007.5901685443,
+ 184546.6243274158,
+ 185086.39798051558,
+ 185626.91099414785,
+ 186168.16323484803,
+ 186276.34598539144,
+ 186818.48490939604,
+ 187361.36276769455,
+ 187904.97942755665,
+ 188449.3347564802,
+ 188994.42862219014,
+ 189540.26089263812,
+ 190086.8314360012,
+ 190634.14012068178,
+ 191182.1868153062,
+ 191730.97138872484,
+ 192280.4937100105,
+ 192390.32791235612,
+ 192940.73514566896,
+ 193491.879839628,
+ 194043.7618640144,
+ 194596.38108882937,
+ 195149.7373842929,
+ 195703.83062084398,
+ 196258.66066913912,
+ 196814.2274000516,
+ 197370.53068467142,
+ 197927.57039430446,
+ 198485.34640047123,
+ 198596.82878354163,
+ 199155.48796377325,
+ 199714.88315867452,
+ 200275.01424044938,
+ 200835.88108151412,
+ 201397.48355449655,
+ 201959.82153223528,
+ 202522.8948877791,
+ 203086.70349438637,
+ 203651.24722552436,
+ 204216.5259548684,
+ 204782.53955630155,
+ 204895.66691003245,
+ 205462.5619797149,
+ 206030.19164479294,
+ 206598.5557798093,
+ 207167.65425951182,
+ 207737.48695885236,
+ 208308.05375298677,
+ 208879.35451727352,
+ 209451.3891272736,
+ 210024.15745874977,
+ 210597.65938766603,
+ 211171.89479018658,
+ 211286.66396340416,
+ 211861.77915939636,
+ 212437.627557293,
+ 213014.20903389595,
+ 213591.52346620476,
+ 214169.57073141664,
+ 214748.35070692562,
+ 215327.86327032174,
+ 215908.10829939053,
+ 216489.08567211253,
+ 217070.7952666629,
+ 217653.23696141026,
+ 217769.64485981688,
+ 218352.9647032428,
+ 218937.01637999128,
+ 219521.7997690472,
+ 220107.31474958698,
+ 220693.56120097742,
+ 221280.5390027761,
+ 221868.2480347298,
+ 222456.68817677477,
+ 223045.85930903524,
+ 223635.76131182394,
+ 224226.39406564078,
+ 224344.43764989963,
+ 224935.94693658498,
+ 225528.18671208972,
+ 226121.15685750954,
+ 226714.85725412527,
+ 227309.2877834024,
+ 227904.44832699062,
+ 228500.33876672262,
+ 229096.95898461432,
+ 229694.3088628639,
+ 230292.38828385173,
+ 230891.1971301388,
+ 231010.8734140524,
+ 231610.5572054279,
+ 232210.97016440748,
+ 232812.11217412894,
+ 233413.98311790943,
+ 234016.58287924467,
+ 234619.91134180853,
+ 235223.9683894524,
+ 235828.75390620457,
+ 236434.26777626996,
+ 237040.5098840297,
+ 237647.48011404029,
+ 237768.78616281657,
+ 238376.62977725768,
+ 238985.20126062245,
+ 239594.50049802553,
+ 240204.52737475524,
+ 240815.28177627223,
+ 241426.7635882103,
+ 242038.97269637484,
+ 242651.90898674275,
+ 243265.57234546167,
+ 243879.9626588501,
+ 244495.07981339638,
+ 244618.0127419964
+ ],
+ "yaxis": "y"
+ },
+ {
+ "type": "scatter",
+ "x": [
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14,
+ 15,
+ 16,
+ 17,
+ 18,
+ 19,
+ 20,
+ 21,
+ 22,
+ 23,
+ 24,
+ 25,
+ 26,
+ 27,
+ 28,
+ 29,
+ 30,
+ 31,
+ 32,
+ 33,
+ 34,
+ 35,
+ 36,
+ 37,
+ 38,
+ 39,
+ 40,
+ 41,
+ 42,
+ 43,
+ 44,
+ 45,
+ 46,
+ 47,
+ 48,
+ 49,
+ 50,
+ 51,
+ 52,
+ 53,
+ 54,
+ 55,
+ 56,
+ 57,
+ 58,
+ 59,
+ 60,
+ 61,
+ 62,
+ 63,
+ 64,
+ 65,
+ 66,
+ 67,
+ 68,
+ 69,
+ 70,
+ 71,
+ 72,
+ 73,
+ 74,
+ 75,
+ 76,
+ 77,
+ 78,
+ 79,
+ 80,
+ 81,
+ 82,
+ 83,
+ 84,
+ 85,
+ 86,
+ 87,
+ 88,
+ 89,
+ 90,
+ 91,
+ 92,
+ 93,
+ 94,
+ 95,
+ 96,
+ 97,
+ 98,
+ 99,
+ 100,
+ 101,
+ 102,
+ 103,
+ 104,
+ 105,
+ 106,
+ 107,
+ 108,
+ 109,
+ 110,
+ 111,
+ 112,
+ 113,
+ 114,
+ 115,
+ 116,
+ 117,
+ 118,
+ 119,
+ 120,
+ 121,
+ 122,
+ 123,
+ 124,
+ 125,
+ 126,
+ 127,
+ 128,
+ 129,
+ 130,
+ 131,
+ 132,
+ 133,
+ 134,
+ 135,
+ 136,
+ 137,
+ 138,
+ 139,
+ 140,
+ 141,
+ 142,
+ 143,
+ 144,
+ 145,
+ 146,
+ 147,
+ 148,
+ 149,
+ 150,
+ 151,
+ 152,
+ 153,
+ 154,
+ 155,
+ 156,
+ 157,
+ 158,
+ 159,
+ 160,
+ 161,
+ 162,
+ 163,
+ 164,
+ 165,
+ 166,
+ 167,
+ 168,
+ 169,
+ 170,
+ 171,
+ 172,
+ 173,
+ 174,
+ 175,
+ 176,
+ 177,
+ 178,
+ 179,
+ 180,
+ 181,
+ 182,
+ 183,
+ 184,
+ 185,
+ 186,
+ 187,
+ 188,
+ 189,
+ 190,
+ 191,
+ 192,
+ 193,
+ 194,
+ 195,
+ 196,
+ 197,
+ 198,
+ 199,
+ 200,
+ 201,
+ 202,
+ 203,
+ 204,
+ 205,
+ 206,
+ 207,
+ 208,
+ 209,
+ 210,
+ 211,
+ 212,
+ 213,
+ 214,
+ 215,
+ 216,
+ 217,
+ 218,
+ 219,
+ 220,
+ 221,
+ 222,
+ 223,
+ 224,
+ 225,
+ 226,
+ 227,
+ 228,
+ 229,
+ 230,
+ 231,
+ 232,
+ 233,
+ 234,
+ 235,
+ 236,
+ 237,
+ 238,
+ 239,
+ 240,
+ 241,
+ 242,
+ 243,
+ 244,
+ 245,
+ 246,
+ 247,
+ 248,
+ 249,
+ 250,
+ 251,
+ 252,
+ 253,
+ 254,
+ 255,
+ 256,
+ 257,
+ 258,
+ 259,
+ 260,
+ 261,
+ 262,
+ 263,
+ 264,
+ 265,
+ 266,
+ 267,
+ 268,
+ 269,
+ 270,
+ 271,
+ 272,
+ 273,
+ 274,
+ 275,
+ 276,
+ 277,
+ 278,
+ 279,
+ 280,
+ 281,
+ 282,
+ 283,
+ 284,
+ 285,
+ 286,
+ 287,
+ 288,
+ 289,
+ 290,
+ 291,
+ 292,
+ 293,
+ 294,
+ 295,
+ 296,
+ 297,
+ 298,
+ 299,
+ 300,
+ 301,
+ 302,
+ 303,
+ 304,
+ 305,
+ 306,
+ 307,
+ 308,
+ 309,
+ 310,
+ 311,
+ 312,
+ 313,
+ 314,
+ 315,
+ 316,
+ 317,
+ 318,
+ 319,
+ 320,
+ 321,
+ 322,
+ 323,
+ 324,
+ 325,
+ 326,
+ 327,
+ 328,
+ 329,
+ 330,
+ 331,
+ 332,
+ 333,
+ 334,
+ 335,
+ 336,
+ 337,
+ 338,
+ 339,
+ 340,
+ 341,
+ 342,
+ 343,
+ 344,
+ 345,
+ 346,
+ 347,
+ 348,
+ 349,
+ 350,
+ 351,
+ 352,
+ 353,
+ 354,
+ 355,
+ 356,
+ 357,
+ 358,
+ 359,
+ 360,
+ 361,
+ 362,
+ 363,
+ 364,
+ 365,
+ 366,
+ 367,
+ 368,
+ 369,
+ 370,
+ 371,
+ 372,
+ 373,
+ 374,
+ 375,
+ 376,
+ 377,
+ 378,
+ 379,
+ 380,
+ 381,
+ 382,
+ 383,
+ 384,
+ 385,
+ 386,
+ 387,
+ 388,
+ 389,
+ 390,
+ 391,
+ 392,
+ 393,
+ 394,
+ 395,
+ 396,
+ 397,
+ 398,
+ 399,
+ 400,
+ 401,
+ 402,
+ 403,
+ 404,
+ 405,
+ 406,
+ 407,
+ 408,
+ 409,
+ 410,
+ 411,
+ 412,
+ 413,
+ 414,
+ 415,
+ 416,
+ 417,
+ 418,
+ 419,
+ 420,
+ 421,
+ 422,
+ 423,
+ 424,
+ 425,
+ 426,
+ 427,
+ 428,
+ 429,
+ 430,
+ 431,
+ 432,
+ 433,
+ 434,
+ 435,
+ 436,
+ 437,
+ 438,
+ 439,
+ 440,
+ 441,
+ 442,
+ 443,
+ 444,
+ 445,
+ 446,
+ 447,
+ 448,
+ 449,
+ 450,
+ 451,
+ 452,
+ 453,
+ 454,
+ 455,
+ 456,
+ 457,
+ 458,
+ 459,
+ 460,
+ 461,
+ 462,
+ 463,
+ 464,
+ 465,
+ 466,
+ 467,
+ 468,
+ 469,
+ 470,
+ 471,
+ 472,
+ 473,
+ 474,
+ 475,
+ 476,
+ 477,
+ 478,
+ 479,
+ 480,
+ 481,
+ 482,
+ 483,
+ 484,
+ 485,
+ 486,
+ 487,
+ 488,
+ 489,
+ 490,
+ 491,
+ 492,
+ 493,
+ 494,
+ 495,
+ 496,
+ 497,
+ 498,
+ 499,
+ 500,
+ 501,
+ 502,
+ 503,
+ 504,
+ 505,
+ 506,
+ 507,
+ 508,
+ 509,
+ 510,
+ 511,
+ 512,
+ 513,
+ 514,
+ 515,
+ 516,
+ 517,
+ 518,
+ 519,
+ 520,
+ 521,
+ 522,
+ 523
+ ],
+ "y": [
+ 19273,
+ 19273,
+ 19273,
+ 20044,
+ 20044,
+ 20044,
+ 20857,
+ 20857,
+ 20857,
+ 20897,
+ 20897,
+ 20897,
+ 20938,
+ 20938,
+ 20938,
+ 21507,
+ 21507,
+ 21507,
+ 21852,
+ 21852,
+ 21852,
+ 21425,
+ 21425,
+ 21425,
+ 20897,
+ 20897,
+ 20897,
+ 21811,
+ 21811,
+ 21811,
+ 22360,
+ 22360,
+ 22360,
+ 22685,
+ 22685,
+ 22685,
+ 23355,
+ 23355,
+ 23355,
+ 24167,
+ 24167,
+ 24167,
+ 25183,
+ 25183,
+ 25183,
+ 25386,
+ 25386,
+ 25386,
+ 25589,
+ 25589,
+ 25589,
+ 26401,
+ 26401,
+ 26401,
+ 27416,
+ 27416,
+ 27416,
+ 27823,
+ 27823,
+ 27823,
+ 27823,
+ 27823,
+ 27823,
+ 28838,
+ 28838,
+ 28838,
+ 29447,
+ 29447,
+ 29447,
+ 30463,
+ 30463,
+ 30463,
+ 31072,
+ 31072,
+ 31072,
+ 32494,
+ 32494,
+ 32494,
+ 33915,
+ 33915,
+ 33915,
+ 34931,
+ 34931,
+ 34931,
+ 35946,
+ 35946,
+ 35946,
+ 37571,
+ 37571,
+ 37571,
+ 39398,
+ 39398,
+ 39398,
+ 41732,
+ 41732,
+ 41732,
+ 43483,
+ 43483,
+ 43483,
+ 46109,
+ 46109,
+ 46109,
+ 52238,
+ 52238,
+ 52238,
+ 55448,
+ 55448,
+ 55448,
+ 56615,
+ 56615,
+ 56615,
+ 58658,
+ 58658,
+ 58658,
+ 60701,
+ 60701,
+ 60701,
+ 59533,
+ 59533,
+ 59533,
+ 58250,
+ 58250,
+ 58250,
+ 57726,
+ 57726,
+ 57726,
+ 58773,
+ 58773,
+ 58773,
+ 57901,
+ 57901,
+ 57901,
+ 57086,
+ 57086,
+ 57086,
+ 56853,
+ 56853,
+ 56853,
+ 57959,
+ 57959,
+ 57959,
+ 57435,
+ 57435,
+ 57435,
+ 56504,
+ 56504,
+ 56504,
+ 55166,
+ 55166,
+ 55166,
+ 55328,
+ 55328,
+ 55328,
+ 53213,
+ 53213,
+ 53213,
+ 53484,
+ 53484,
+ 53484,
+ 53918,
+ 53918,
+ 53918,
+ 55057,
+ 55057,
+ 55057,
+ 54026,
+ 54026,
+ 54026,
+ 54623,
+ 54623,
+ 54623,
+ 55383,
+ 55383,
+ 55383,
+ 56305,
+ 56305,
+ 56305,
+ 55925,
+ 55925,
+ 55925,
+ 55437,
+ 55437,
+ 55437,
+ 56033,
+ 56033,
+ 56033,
+ 56522,
+ 56522,
+ 56522,
+ 55762,
+ 55762,
+ 55762,
+ 56576,
+ 56576,
+ 56576,
+ 56630,
+ 56630,
+ 56630,
+ 58854,
+ 58854,
+ 58854,
+ 59885,
+ 59885,
+ 59885,
+ 60698,
+ 60698,
+ 60698,
+ 61946,
+ 61946,
+ 61946,
+ 65092,
+ 65092,
+ 65092,
+ 64604,
+ 64604,
+ 64604,
+ 66231,
+ 66231,
+ 66231,
+ 69757,
+ 69757,
+ 69757,
+ 72795,
+ 72795,
+ 72795,
+ 72469,
+ 72469,
+ 72469,
+ 72903,
+ 72903,
+ 72903,
+ 75995,
+ 75995,
+ 75995,
+ 80443,
+ 80443,
+ 80443,
+ 82504,
+ 82504,
+ 82504,
+ 84620,
+ 84620,
+ 84620,
+ 89230,
+ 89230,
+ 89230,
+ 90912,
+ 90912,
+ 90912,
+ 93624,
+ 93624,
+ 93624,
+ 93136,
+ 93136,
+ 93136,
+ 96499,
+ 96499,
+ 96499,
+ 99971,
+ 99971,
+ 99971,
+ 97964,
+ 97964,
+ 97964,
+ 97623,
+ 101164,
+ 104705,
+ 106121,
+ 108852,
+ 113304,
+ 114214,
+ 116743,
+ 119576,
+ 120486,
+ 121700,
+ 125747,
+ 124836,
+ 123521,
+ 126152,
+ 129186,
+ 128276,
+ 128579,
+ 130805,
+ 133132,
+ 132727,
+ 135054,
+ 133536,
+ 136167,
+ 136976,
+ 135661,
+ 135964,
+ 142135,
+ 143855,
+ 146384,
+ 149520,
+ 151240,
+ 150937,
+ 152050,
+ 151847,
+ 150734,
+ 150633,
+ 150488,
+ 151723,
+ 153880,
+ 155533,
+ 156767,
+ 158786,
+ 159431,
+ 159183,
+ 158865,
+ 159337,
+ 160209,
+ 159970,
+ 160231,
+ 161531,
+ 165042,
+ 166606,
+ 168184,
+ 170604,
+ 172037,
+ 172738,
+ 173750,
+ 174644,
+ 176819,
+ 176758,
+ 177261,
+ 178636,
+ 182243,
+ 184330,
+ 186348,
+ 188691,
+ 189786,
+ 190032,
+ 189589,
+ 189489,
+ 189193,
+ 185782,
+ 184185,
+ 182845,
+ 183148,
+ 184267,
+ 181831,
+ 179845,
+ 176092,
+ 171660,
+ 168177,
+ 163447,
+ 160954,
+ 157234,
+ 155417,
+ 154452,
+ 155852,
+ 158004,
+ 159561,
+ 162423,
+ 164025,
+ 165314,
+ 166425,
+ 166986,
+ 168082,
+ 167469,
+ 167888,
+ 167878,
+ 170028,
+ 170846,
+ 171689,
+ 173427,
+ 173417,
+ 172972,
+ 171045,
+ 169013,
+ 168703,
+ 167300,
+ 166415,
+ 165649,
+ 168218,
+ 167470,
+ 167753,
+ 169866,
+ 169968,
+ 169544,
+ 167673,
+ 167757,
+ 167048,
+ 165908,
+ 165457,
+ 165947,
+ 167854,
+ 168395,
+ 170049,
+ 170701,
+ 170902,
+ 170295,
+ 169090,
+ 169227,
+ 168843,
+ 167716,
+ 167682,
+ 168681,
+ 170335,
+ 171234,
+ 172655,
+ 174592,
+ 175982,
+ 176098,
+ 175378,
+ 176352,
+ 177971,
+ 178182,
+ 178921,
+ 179537,
+ 183532,
+ 185476,
+ 187077,
+ 189709,
+ 191932,
+ 192138,
+ 191855,
+ 191209,
+ 191669,
+ 190665,
+ 190827,
+ 191537,
+ 193225,
+ 195313,
+ 196802,
+ 200142,
+ 201973,
+ 202389,
+ 202664,
+ 204223,
+ 204920,
+ 205464,
+ 205555,
+ 207667,
+ 208443,
+ 210872,
+ 212887,
+ 215127,
+ 215145,
+ 214816,
+ 214107,
+ 215113,
+ 215500,
+ 215243,
+ 215697,
+ 215236,
+ 218642,
+ 219954,
+ 221833,
+ 224719,
+ 225738,
+ 224895,
+ 225092,
+ 224453,
+ 225330,
+ 224544,
+ 225131,
+ 223772,
+ 225910,
+ 226834,
+ 228355,
+ 231187,
+ 231898,
+ 231454,
+ 231211,
+ 230224,
+ 229729,
+ 228314,
+ 227738,
+ 227104,
+ 228749,
+ 229061,
+ 230049,
+ 232618,
+ 233366,
+ 233536,
+ 232919,
+ 232096,
+ 231792,
+ 231940,
+ 230609,
+ 232684,
+ 230318,
+ 231508,
+ 234703,
+ 236687,
+ 238998,
+ 241541,
+ 243575,
+ 246065,
+ 247983,
+ 249690,
+ 249586,
+ 253506,
+ 250210,
+ 251285,
+ 265676,
+ 252960,
+ 260429,
+ 269003,
+ 263333,
+ 267370,
+ 268115,
+ 272738,
+ 272454,
+ 273787,
+ 276917,
+ 280433,
+ 282777,
+ 288156,
+ 290545,
+ 292013,
+ 291637,
+ 292187,
+ 290128,
+ 286847,
+ 285288,
+ 282548,
+ 283871,
+ 285053,
+ 288281,
+ 289824
+ ]
+ }
+ ],
+ "layout": {
+ "legend": {
+ "title": {
+ "text": "variable"
+ },
+ "tracegroupgap": 0
+ },
+ "margin": {
+ "t": 60
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#f2f5fa"
+ },
+ "error_y": {
+ "color": "#f2f5fa"
+ },
+ "marker": {
+ "line": {
+ "color": "rgb(17,17,17)",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "rgb(17,17,17)",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#A2B1C6",
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "minorgridcolor": "#506784",
+ "startlinecolor": "#A2B1C6"
+ },
+ "baxis": {
+ "endlinecolor": "#A2B1C6",
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "minorgridcolor": "#506784",
+ "startlinecolor": "#A2B1C6"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "line": {
+ "color": "#283442"
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "line": {
+ "color": "#283442"
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#506784"
+ },
+ "line": {
+ "color": "rgb(17,17,17)"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#2a3f5f"
+ },
+ "line": {
+ "color": "rgb(17,17,17)"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#f2f5fa",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#f2f5fa"
+ },
+ "geo": {
+ "bgcolor": "rgb(17,17,17)",
+ "lakecolor": "rgb(17,17,17)",
+ "landcolor": "rgb(17,17,17)",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "#506784"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "dark"
+ },
+ "paper_bgcolor": "rgb(17,17,17)",
+ "plot_bgcolor": "rgb(17,17,17)",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "ticks": ""
+ },
+ "bgcolor": "rgb(17,17,17)",
+ "radialaxis": {
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "rgb(17,17,17)",
+ "gridcolor": "#506784",
+ "gridwidth": 2,
+ "linecolor": "#506784",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#C8D4E3"
+ },
+ "yaxis": {
+ "backgroundcolor": "rgb(17,17,17)",
+ "gridcolor": "#506784",
+ "gridwidth": 2,
+ "linecolor": "#506784",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#C8D4E3"
+ },
+ "zaxis": {
+ "backgroundcolor": "rgb(17,17,17)",
+ "gridcolor": "#506784",
+ "gridwidth": 2,
+ "linecolor": "#506784",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "#C8D4E3"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#f2f5fa"
+ }
+ },
+ "sliderdefaults": {
+ "bgcolor": "#C8D4E3",
+ "bordercolor": "rgb(17,17,17)",
+ "borderwidth": 1,
+ "tickwidth": 0
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "ticks": ""
+ },
+ "bgcolor": "rgb(17,17,17)",
+ "caxis": {
+ "gridcolor": "#506784",
+ "linecolor": "#506784",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "updatemenudefaults": {
+ "bgcolor": "#506784",
+ "borderwidth": 0
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "#283442",
+ "linecolor": "#506784",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#283442",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "#283442",
+ "linecolor": "#506784",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "#283442",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Series"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "value"
+ }
+ }
+ }
+ },
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import plotly.express as px\n",
+ "concat_df = pd.concat([df[df['Year'] < 2010],predictions_future], axis=0)\n",
+ "\n",
+ "fig = px.line(concat_df, x=concat_df['Series'], y=[\"Average price All property types\", \"prediction_label\"], template = 'plotly_dark')\n",
+ "fig.add_scatter(x=df['Series'], y=df['Average price All property types'])\n",
+ "\n",
+ "fig.show()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.18"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/ml-data science tutorials/logs.log b/ml-data science tutorials/logs.log
new file mode 100644
index 0000000..25642a7
--- /dev/null
+++ b/ml-data science tutorials/logs.log
@@ -0,0 +1,7857 @@
+2023-11-09 09:57:32,418:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 09:57:32,418:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 09:57:32,418:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 09:57:32,418:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 09:57:55,172:INFO:PyCaret RegressionExperiment
+2023-11-09 09:57:55,172:INFO:Logging name: reg-default-name
+2023-11-09 09:57:55,172:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 09:57:55,172:INFO:version 3.1.0
+2023-11-09 09:57:55,173:INFO:Initializing setup()
+2023-11-09 09:57:55,173:INFO:self.USI: 9d6e
+2023-11-09 09:57:55,173:INFO:self._variable_keys: {'fold_generator', 'pipeline', 'fold_groups_param', 'n_jobs_param', 'memory', 'idx', 'log_plots_param', 'transform_target_param', 'USI', 'y_train', 'X', 'exp_id', 'gpu_param', 'y_test', 'target_param', 'X_train', 'exp_name_log', 'y', 'X_test', 'html_param', '_ml_usecase', 'seed', 'gpu_n_jobs_param', 'data', '_available_plots', 'fold_shuffle_param', 'logging_param'}
+2023-11-09 09:57:55,173:INFO:Checking environment
+2023-11-09 09:57:55,173:INFO:python_version: 3.8.18
+2023-11-09 09:57:55,173:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 09:57:55,173:INFO:machine: x86_64
+2023-11-09 09:57:55,173:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 09:57:55,173:INFO:Memory: svmem(total=8315187200, available=4932845568, percent=40.7, used=3047759872, free=196444160, active=1336061952, inactive=5946228736, buffers=317767680, cached=4753215488, shared=4423680, slab=647933952)
+2023-11-09 09:57:55,174:INFO:Physical Core: 1
+2023-11-09 09:57:55,174:INFO:Logical Core: 2
+2023-11-09 09:57:55,174:INFO:Checking libraries
+2023-11-09 09:57:55,174:INFO:System:
+2023-11-09 09:57:55,174:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 09:57:55,174:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 09:57:55,174:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 09:57:55,174:INFO:PyCaret required dependencies:
+2023-11-09 09:57:55,239:INFO: pip: 23.3
+2023-11-09 09:57:55,239:INFO: setuptools: 68.0.0
+2023-11-09 09:57:55,239:INFO: pycaret: 3.1.0
+2023-11-09 09:57:55,239:INFO: IPython: 8.12.0
+2023-11-09 09:57:55,240:INFO: ipywidgets: 8.1.1
+2023-11-09 09:57:55,240:INFO: tqdm: 4.66.1
+2023-11-09 09:57:55,240:INFO: numpy: 1.23.5
+2023-11-09 09:57:55,240:INFO: pandas: 1.5.3
+2023-11-09 09:57:55,240:INFO: jinja2: 3.1.2
+2023-11-09 09:57:55,241:INFO: scipy: 1.10.1
+2023-11-09 09:57:55,241:INFO: joblib: 1.3.2
+2023-11-09 09:57:55,241:INFO: sklearn: 1.2.2
+2023-11-09 09:57:55,241:INFO: pyod: 1.1.1
+2023-11-09 09:57:55,241:INFO: imblearn: 0.11.0
+2023-11-09 09:57:55,241:INFO: category_encoders: 2.6.3
+2023-11-09 09:57:55,241:INFO: lightgbm: 4.1.0
+2023-11-09 09:57:55,241:INFO: numba: 0.58.1
+2023-11-09 09:57:55,241:INFO: requests: 2.31.0
+2023-11-09 09:57:55,241:INFO: matplotlib: 3.7.3
+2023-11-09 09:57:55,241:INFO: scikitplot: 0.3.7
+2023-11-09 09:57:55,242:INFO: yellowbrick: 1.5
+2023-11-09 09:57:55,242:INFO: plotly: 5.18.0
+2023-11-09 09:57:55,242:INFO: plotly-resampler: Not installed
+2023-11-09 09:57:55,242:INFO: kaleido: 0.2.1
+2023-11-09 09:57:55,242:INFO: schemdraw: 0.15
+2023-11-09 09:57:55,242:INFO: statsmodels: 0.14.0
+2023-11-09 09:57:55,242:INFO: sktime: 0.21.1
+2023-11-09 09:57:55,242:INFO: tbats: 1.1.3
+2023-11-09 09:57:55,242:INFO: pmdarima: 2.0.4
+2023-11-09 09:57:55,242:INFO: psutil: 5.9.0
+2023-11-09 09:57:55,242:INFO: markupsafe: 2.1.3
+2023-11-09 09:57:55,242:INFO: pickle5: Not installed
+2023-11-09 09:57:55,242:INFO: cloudpickle: 3.0.0
+2023-11-09 09:57:55,242:INFO: deprecation: 2.1.0
+2023-11-09 09:57:55,242:INFO: xxhash: 3.4.1
+2023-11-09 09:57:55,242:INFO: wurlitzer: 3.0.3
+2023-11-09 09:57:55,242:INFO:PyCaret optional dependencies:
+2023-11-09 09:57:55,261:INFO: shap: Not installed
+2023-11-09 09:57:55,261:INFO: interpret: Not installed
+2023-11-09 09:57:55,261:INFO: umap: Not installed
+2023-11-09 09:57:55,261:INFO: ydata_profiling: Not installed
+2023-11-09 09:57:55,261:INFO: explainerdashboard: Not installed
+2023-11-09 09:57:55,261:INFO: autoviz: Not installed
+2023-11-09 09:57:55,261:INFO: fairlearn: Not installed
+2023-11-09 09:57:55,261:INFO: deepchecks: Not installed
+2023-11-09 09:57:55,261:INFO: xgboost: Not installed
+2023-11-09 09:57:55,262:INFO: catboost: Not installed
+2023-11-09 09:57:55,262:INFO: kmodes: Not installed
+2023-11-09 09:57:55,262:INFO: mlxtend: Not installed
+2023-11-09 09:57:55,262:INFO: statsforecast: Not installed
+2023-11-09 09:57:55,262:INFO: tune_sklearn: Not installed
+2023-11-09 09:57:55,262:INFO: ray: Not installed
+2023-11-09 09:57:55,262:INFO: hyperopt: Not installed
+2023-11-09 09:57:55,262:INFO: optuna: Not installed
+2023-11-09 09:57:55,262:INFO: skopt: Not installed
+2023-11-09 09:57:55,262:INFO: mlflow: Not installed
+2023-11-09 09:57:55,262:INFO: gradio: Not installed
+2023-11-09 09:57:55,262:INFO: fastapi: Not installed
+2023-11-09 09:57:55,262:INFO: uvicorn: Not installed
+2023-11-09 09:57:55,262:INFO: m2cgen: Not installed
+2023-11-09 09:57:55,262:INFO: evidently: Not installed
+2023-11-09 09:57:55,262:INFO: fugue: Not installed
+2023-11-09 09:57:55,262:INFO: streamlit: Not installed
+2023-11-09 09:57:55,263:INFO: prophet: Not installed
+2023-11-09 09:57:55,263:INFO:None
+2023-11-09 09:57:55,263:INFO:Set up data.
+2023-11-09 09:58:51,037:INFO:PyCaret RegressionExperiment
+2023-11-09 09:58:51,037:INFO:Logging name: reg-default-name
+2023-11-09 09:58:51,037:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 09:58:51,037:INFO:version 3.1.0
+2023-11-09 09:58:51,037:INFO:Initializing setup()
+2023-11-09 09:58:51,037:INFO:self.USI: 2184
+2023-11-09 09:58:51,037:INFO:self._variable_keys: {'fold_generator', 'pipeline', 'fold_groups_param', 'n_jobs_param', 'memory', 'idx', 'log_plots_param', 'transform_target_param', 'USI', 'y_train', 'X', 'exp_id', 'gpu_param', 'y_test', 'target_param', 'X_train', 'exp_name_log', 'y', 'X_test', 'html_param', '_ml_usecase', 'seed', 'gpu_n_jobs_param', 'data', '_available_plots', 'fold_shuffle_param', 'logging_param'}
+2023-11-09 09:58:51,037:INFO:Checking environment
+2023-11-09 09:58:51,037:INFO:python_version: 3.8.18
+2023-11-09 09:58:51,037:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 09:58:51,037:INFO:machine: x86_64
+2023-11-09 09:58:51,038:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 09:58:51,038:INFO:Memory: svmem(total=8315187200, available=4912762880, percent=40.9, used=3067842560, free=191614976, active=1342439424, inactive=5921595392, buffers=320319488, cached=4735410176, shared=4423680, slab=647843840)
+2023-11-09 09:58:51,038:INFO:Physical Core: 1
+2023-11-09 09:58:51,038:INFO:Logical Core: 2
+2023-11-09 09:58:51,038:INFO:Checking libraries
+2023-11-09 09:58:51,038:INFO:System:
+2023-11-09 09:58:51,038:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 09:58:51,038:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 09:58:51,038:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 09:58:51,039:INFO:PyCaret required dependencies:
+2023-11-09 09:58:51,039:INFO: pip: 23.3
+2023-11-09 09:58:51,039:INFO: setuptools: 68.0.0
+2023-11-09 09:58:51,039:INFO: pycaret: 3.1.0
+2023-11-09 09:58:51,039:INFO: IPython: 8.12.0
+2023-11-09 09:58:51,039:INFO: ipywidgets: 8.1.1
+2023-11-09 09:58:51,039:INFO: tqdm: 4.66.1
+2023-11-09 09:58:51,039:INFO: numpy: 1.23.5
+2023-11-09 09:58:51,039:INFO: pandas: 1.5.3
+2023-11-09 09:58:51,039:INFO: jinja2: 3.1.2
+2023-11-09 09:58:51,039:INFO: scipy: 1.10.1
+2023-11-09 09:58:51,039:INFO: joblib: 1.3.2
+2023-11-09 09:58:51,039:INFO: sklearn: 1.2.2
+2023-11-09 09:58:51,039:INFO: pyod: 1.1.1
+2023-11-09 09:58:51,039:INFO: imblearn: 0.11.0
+2023-11-09 09:58:51,039:INFO: category_encoders: 2.6.3
+2023-11-09 09:58:51,039:INFO: lightgbm: 4.1.0
+2023-11-09 09:58:51,039:INFO: numba: 0.58.1
+2023-11-09 09:58:51,040:INFO: requests: 2.31.0
+2023-11-09 09:58:51,040:INFO: matplotlib: 3.7.3
+2023-11-09 09:58:51,040:INFO: scikitplot: 0.3.7
+2023-11-09 09:58:51,040:INFO: yellowbrick: 1.5
+2023-11-09 09:58:51,040:INFO: plotly: 5.18.0
+2023-11-09 09:58:51,040:INFO: plotly-resampler: Not installed
+2023-11-09 09:58:51,040:INFO: kaleido: 0.2.1
+2023-11-09 09:58:51,040:INFO: schemdraw: 0.15
+2023-11-09 09:58:51,040:INFO: statsmodels: 0.14.0
+2023-11-09 09:58:51,040:INFO: sktime: 0.21.1
+2023-11-09 09:58:51,040:INFO: tbats: 1.1.3
+2023-11-09 09:58:51,040:INFO: pmdarima: 2.0.4
+2023-11-09 09:58:51,040:INFO: psutil: 5.9.0
+2023-11-09 09:58:51,040:INFO: markupsafe: 2.1.3
+2023-11-09 09:58:51,040:INFO: pickle5: Not installed
+2023-11-09 09:58:51,040:INFO: cloudpickle: 3.0.0
+2023-11-09 09:58:51,040:INFO: deprecation: 2.1.0
+2023-11-09 09:58:51,040:INFO: xxhash: 3.4.1
+2023-11-09 09:58:51,040:INFO: wurlitzer: 3.0.3
+2023-11-09 09:58:51,040:INFO:PyCaret optional dependencies:
+2023-11-09 09:58:51,041:INFO: shap: Not installed
+2023-11-09 09:58:51,041:INFO: interpret: Not installed
+2023-11-09 09:58:51,041:INFO: umap: Not installed
+2023-11-09 09:58:51,041:INFO: ydata_profiling: Not installed
+2023-11-09 09:58:51,041:INFO: explainerdashboard: Not installed
+2023-11-09 09:58:51,041:INFO: autoviz: Not installed
+2023-11-09 09:58:51,041:INFO: fairlearn: Not installed
+2023-11-09 09:58:51,041:INFO: deepchecks: Not installed
+2023-11-09 09:58:51,041:INFO: xgboost: Not installed
+2023-11-09 09:58:51,041:INFO: catboost: Not installed
+2023-11-09 09:58:51,041:INFO: kmodes: Not installed
+2023-11-09 09:58:51,041:INFO: mlxtend: Not installed
+2023-11-09 09:58:51,041:INFO: statsforecast: Not installed
+2023-11-09 09:58:51,041:INFO: tune_sklearn: Not installed
+2023-11-09 09:58:51,041:INFO: ray: Not installed
+2023-11-09 09:58:51,041:INFO: hyperopt: Not installed
+2023-11-09 09:58:51,041:INFO: optuna: Not installed
+2023-11-09 09:58:51,041:INFO: skopt: Not installed
+2023-11-09 09:58:51,041:INFO: mlflow: Not installed
+2023-11-09 09:58:51,042:INFO: gradio: Not installed
+2023-11-09 09:58:51,042:INFO: fastapi: Not installed
+2023-11-09 09:58:51,042:INFO: uvicorn: Not installed
+2023-11-09 09:58:51,042:INFO: m2cgen: Not installed
+2023-11-09 09:58:51,042:INFO: evidently: Not installed
+2023-11-09 09:58:51,042:INFO: fugue: Not installed
+2023-11-09 09:58:51,042:INFO: streamlit: Not installed
+2023-11-09 09:58:51,042:INFO: prophet: Not installed
+2023-11-09 09:58:51,042:INFO:None
+2023-11-09 09:58:51,042:INFO:Set up data.
+2023-11-09 09:58:51,047:INFO:Set up folding strategy.
+2023-11-09 10:01:36,096:INFO:PyCaret RegressionExperiment
+2023-11-09 10:01:36,096:INFO:Logging name: reg-default-name
+2023-11-09 10:01:36,096:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 10:01:36,097:INFO:version 3.1.0
+2023-11-09 10:01:36,097:INFO:Initializing setup()
+2023-11-09 10:01:36,097:INFO:self.USI: 095c
+2023-11-09 10:01:36,097:INFO:self._variable_keys: {'fold_generator', 'pipeline', 'fold_groups_param', 'n_jobs_param', 'memory', 'idx', 'log_plots_param', 'transform_target_param', 'USI', 'y_train', 'X', 'exp_id', 'gpu_param', 'y_test', 'target_param', 'X_train', 'exp_name_log', 'y', 'X_test', 'html_param', '_ml_usecase', 'seed', 'gpu_n_jobs_param', 'data', '_available_plots', 'fold_shuffle_param', 'logging_param'}
+2023-11-09 10:01:36,097:INFO:Checking environment
+2023-11-09 10:01:36,097:INFO:python_version: 3.8.18
+2023-11-09 10:01:36,097:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 10:01:36,097:INFO:machine: x86_64
+2023-11-09 10:01:36,097:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 10:01:36,097:INFO:Memory: svmem(total=8315187200, available=5006782464, percent=39.8, used=2973822976, free=281190400, active=1343188992, inactive=5892014080, buffers=321576960, cached=4738596864, shared=4423680, slab=647929856)
+2023-11-09 10:01:36,098:INFO:Physical Core: 1
+2023-11-09 10:01:36,098:INFO:Logical Core: 2
+2023-11-09 10:01:36,099:INFO:Checking libraries
+2023-11-09 10:01:36,099:INFO:System:
+2023-11-09 10:01:36,099:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 10:01:36,099:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 10:01:36,099:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 10:01:36,099:INFO:PyCaret required dependencies:
+2023-11-09 10:01:36,099:INFO: pip: 23.3
+2023-11-09 10:01:36,099:INFO: setuptools: 68.0.0
+2023-11-09 10:01:36,100:INFO: pycaret: 3.1.0
+2023-11-09 10:01:36,100:INFO: IPython: 8.12.0
+2023-11-09 10:01:36,100:INFO: ipywidgets: 8.1.1
+2023-11-09 10:01:36,100:INFO: tqdm: 4.66.1
+2023-11-09 10:01:36,100:INFO: numpy: 1.23.5
+2023-11-09 10:01:36,100:INFO: pandas: 1.5.3
+2023-11-09 10:01:36,100:INFO: jinja2: 3.1.2
+2023-11-09 10:01:36,100:INFO: scipy: 1.10.1
+2023-11-09 10:01:36,101:INFO: joblib: 1.3.2
+2023-11-09 10:01:36,101:INFO: sklearn: 1.2.2
+2023-11-09 10:01:36,101:INFO: pyod: 1.1.1
+2023-11-09 10:01:36,101:INFO: imblearn: 0.11.0
+2023-11-09 10:01:36,101:INFO: category_encoders: 2.6.3
+2023-11-09 10:01:36,101:INFO: lightgbm: 4.1.0
+2023-11-09 10:01:36,101:INFO: numba: 0.58.1
+2023-11-09 10:01:36,102:INFO: requests: 2.31.0
+2023-11-09 10:01:36,102:INFO: matplotlib: 3.7.3
+2023-11-09 10:01:36,102:INFO: scikitplot: 0.3.7
+2023-11-09 10:01:36,102:INFO: yellowbrick: 1.5
+2023-11-09 10:01:36,102:INFO: plotly: 5.18.0
+2023-11-09 10:01:36,102:INFO: plotly-resampler: Not installed
+2023-11-09 10:01:36,102:INFO: kaleido: 0.2.1
+2023-11-09 10:01:36,102:INFO: schemdraw: 0.15
+2023-11-09 10:01:36,102:INFO: statsmodels: 0.14.0
+2023-11-09 10:01:36,102:INFO: sktime: 0.21.1
+2023-11-09 10:01:36,102:INFO: tbats: 1.1.3
+2023-11-09 10:01:36,102:INFO: pmdarima: 2.0.4
+2023-11-09 10:01:36,102:INFO: psutil: 5.9.0
+2023-11-09 10:01:36,102:INFO: markupsafe: 2.1.3
+2023-11-09 10:01:36,102:INFO: pickle5: Not installed
+2023-11-09 10:01:36,102:INFO: cloudpickle: 3.0.0
+2023-11-09 10:01:36,102:INFO: deprecation: 2.1.0
+2023-11-09 10:01:36,102:INFO: xxhash: 3.4.1
+2023-11-09 10:01:36,103:INFO: wurlitzer: 3.0.3
+2023-11-09 10:01:36,103:INFO:PyCaret optional dependencies:
+2023-11-09 10:01:36,103:INFO: shap: Not installed
+2023-11-09 10:01:36,103:INFO: interpret: Not installed
+2023-11-09 10:01:36,103:INFO: umap: Not installed
+2023-11-09 10:01:36,103:INFO: ydata_profiling: Not installed
+2023-11-09 10:01:36,103:INFO: explainerdashboard: Not installed
+2023-11-09 10:01:36,103:INFO: autoviz: Not installed
+2023-11-09 10:01:36,103:INFO: fairlearn: Not installed
+2023-11-09 10:01:36,103:INFO: deepchecks: Not installed
+2023-11-09 10:01:36,103:INFO: xgboost: Not installed
+2023-11-09 10:01:36,103:INFO: catboost: Not installed
+2023-11-09 10:01:36,103:INFO: kmodes: Not installed
+2023-11-09 10:01:36,103:INFO: mlxtend: Not installed
+2023-11-09 10:01:36,103:INFO: statsforecast: Not installed
+2023-11-09 10:01:36,103:INFO: tune_sklearn: Not installed
+2023-11-09 10:01:36,103:INFO: ray: Not installed
+2023-11-09 10:01:36,104:INFO: hyperopt: Not installed
+2023-11-09 10:01:36,104:INFO: optuna: Not installed
+2023-11-09 10:01:36,104:INFO: skopt: Not installed
+2023-11-09 10:01:36,104:INFO: mlflow: Not installed
+2023-11-09 10:01:36,104:INFO: gradio: Not installed
+2023-11-09 10:01:36,104:INFO: fastapi: Not installed
+2023-11-09 10:01:36,104:INFO: uvicorn: Not installed
+2023-11-09 10:01:36,104:INFO: m2cgen: Not installed
+2023-11-09 10:01:36,104:INFO: evidently: Not installed
+2023-11-09 10:01:36,104:INFO: fugue: Not installed
+2023-11-09 10:01:36,104:INFO: streamlit: Not installed
+2023-11-09 10:01:36,104:INFO: prophet: Not installed
+2023-11-09 10:01:36,104:INFO:None
+2023-11-09 10:01:36,104:INFO:Set up data.
+2023-11-09 10:01:36,109:INFO:Set up folding strategy.
+2023-11-09 10:01:36,109:INFO:Set up train/test split.
+2023-11-09 10:01:36,109:INFO:Set up data.
+2023-11-09 10:01:36,112:INFO:Set up index.
+2023-11-09 10:01:36,113:INFO:Assigning column types.
+2023-11-09 10:01:36,115:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
+2023-11-09 10:01:36,115:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,119:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,123:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,173:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,211:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,212:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,212:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,213:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,216:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,221:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,277:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,315:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,316:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,316:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,316:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
+2023-11-09 10:01:36,321:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,325:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,379:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,418:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,418:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,418:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,422:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,426:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,475:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,514:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,514:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,515:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,515:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
+2023-11-09 10:01:36,522:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,570:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,608:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,608:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,609:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,617:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,664:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,701:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,702:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,702:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,702:INFO:Engine successfully changes for model 'en' to 'sklearn'.
+2023-11-09 10:01:36,759:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,796:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,796:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,796:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,854:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,895:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,895:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,895:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,896:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
+2023-11-09 10:01:36,952:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:36,992:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:36,992:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,056:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:01:37,094:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,094:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,094:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
+2023-11-09 10:01:37,191:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,191:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,405:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,406:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,407:INFO:Preparing preprocessing pipeline...
+2023-11-09 10:01:37,407:INFO:Set up target transformation.
+2023-11-09 10:01:37,408:INFO:Set up simple imputation.
+2023-11-09 10:01:37,409:INFO:Set up column name cleaning.
+2023-11-09 10:01:37,439:INFO:Finished creating preprocessing pipeline.
+2023-11-09 10:01:37,445:INFO:Pipeline: Pipeline(memory=FastMemory(location=/tmp/joblib),
+ steps=[('target_transformation',
+ TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
+ ('numerical_imputer',
+ TransformerWrapper(include=['Year', 'Series'],
+ transformer=SimpleImputer())),
+ ('categorical_imputer',
+ TransformerWrapper(include=[],
+ transformer=SimpleImputer(strategy='most_frequent'))),
+ ('clean_column_names',
+ TransformerWrapper(transformer=CleanColumnNames()))])
+2023-11-09 10:01:37,445:INFO:Creating final display dataframe.
+2023-11-09 10:01:37,516:INFO:Setup _display_container: Description Value
+0 Session id 123
+1 Target Average price All property types
+2 Target type Regression
+3 Original data shape (523, 4)
+4 Transformed data shape (523, 4)
+5 Transformed train set shape (372, 4)
+6 Transformed test set shape (151, 4)
+7 Numeric features 2
+8 Preprocess True
+9 Imputation type simple
+10 Numeric imputation mean
+11 Categorical imputation mode
+12 Transform target True
+13 Transform target method yeo-johnson
+14 Fold Generator TimeSeriesSplit
+15 Fold Number 3
+16 CPU Jobs -1
+17 Use GPU False
+18 Log Experiment False
+19 Experiment Name reg-default-name
+20 USI 095c
+2023-11-09 10:01:37,625:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,626:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,729:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,730:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:01:37,730:INFO:setup() successfully completed in 1.63s...............
+2023-11-09 10:01:54,954:INFO:Initializing compare_models()
+2023-11-09 10:01:54,955:INFO:compare_models(self=, include=None, fold=None, round=4, cross_validation=True, sort=MAE, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': , 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'MAE', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': }, exclude=None)
+2023-11-09 10:01:54,955:INFO:Checking exceptions
+2023-11-09 10:01:54,957:INFO:Preparing display monitor
+2023-11-09 10:01:54,981:INFO:Initializing Linear Regression
+2023-11-09 10:01:54,981:INFO:Total runtime is 4.1961669921875e-06 minutes
+2023-11-09 10:01:54,984:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:54,984:INFO:Initializing create_model()
+2023-11-09 10:01:54,984:INFO:create_model(self=, estimator=lr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:54,985:INFO:Checking exceptions
+2023-11-09 10:01:54,985:INFO:Importing libraries
+2023-11-09 10:01:54,985:INFO:Copying training dataset
+2023-11-09 10:01:54,988:INFO:Defining folds
+2023-11-09 10:01:54,988:INFO:Declaring metric variables
+2023-11-09 10:01:54,991:INFO:Importing untrained model
+2023-11-09 10:01:54,994:INFO:Linear Regression Imported successfully
+2023-11-09 10:01:54,999:INFO:Starting cross validation
+2023-11-09 10:01:55,002:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:57,255:INFO:Calculating mean and std
+2023-11-09 10:01:57,257:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,262:INFO:Uploading results into container
+2023-11-09 10:01:57,263:INFO:Uploading model into container now
+2023-11-09 10:01:57,281:INFO:_master_model_container: 1
+2023-11-09 10:01:57,281:INFO:_display_container: 2
+2023-11-09 10:01:57,281:INFO:LinearRegression(n_jobs=-1)
+2023-11-09 10:01:57,281:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:57,378:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:57,378:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,386:INFO:Initializing Lasso Regression
+2023-11-09 10:01:57,386:INFO:Total runtime is 0.04008920192718506 minutes
+2023-11-09 10:01:57,389:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:57,390:INFO:Initializing create_model()
+2023-11-09 10:01:57,390:INFO:create_model(self=, estimator=lasso, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:57,390:INFO:Checking exceptions
+2023-11-09 10:01:57,390:INFO:Importing libraries
+2023-11-09 10:01:57,391:INFO:Copying training dataset
+2023-11-09 10:01:57,394:INFO:Defining folds
+2023-11-09 10:01:57,394:INFO:Declaring metric variables
+2023-11-09 10:01:57,397:INFO:Importing untrained model
+2023-11-09 10:01:57,401:INFO:Lasso Regression Imported successfully
+2023-11-09 10:01:57,407:INFO:Starting cross validation
+2023-11-09 10:01:57,408:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:57,480:INFO:Calculating mean and std
+2023-11-09 10:01:57,481:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,484:INFO:Uploading results into container
+2023-11-09 10:01:57,484:INFO:Uploading model into container now
+2023-11-09 10:01:57,484:INFO:_master_model_container: 2
+2023-11-09 10:01:57,485:INFO:_display_container: 2
+2023-11-09 10:01:57,485:INFO:Lasso(random_state=123)
+2023-11-09 10:01:57,485:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:57,576:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:57,576:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,588:INFO:Initializing Ridge Regression
+2023-11-09 10:01:57,588:INFO:Total runtime is 0.04345134099324545 minutes
+2023-11-09 10:01:57,592:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:57,592:INFO:Initializing create_model()
+2023-11-09 10:01:57,592:INFO:create_model(self=, estimator=ridge, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:57,592:INFO:Checking exceptions
+2023-11-09 10:01:57,592:INFO:Importing libraries
+2023-11-09 10:01:57,592:INFO:Copying training dataset
+2023-11-09 10:01:57,597:INFO:Defining folds
+2023-11-09 10:01:57,598:INFO:Declaring metric variables
+2023-11-09 10:01:57,601:INFO:Importing untrained model
+2023-11-09 10:01:57,605:INFO:Ridge Regression Imported successfully
+2023-11-09 10:01:57,612:INFO:Starting cross validation
+2023-11-09 10:01:57,613:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:57,721:INFO:Calculating mean and std
+2023-11-09 10:01:57,723:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,728:INFO:Uploading results into container
+2023-11-09 10:01:57,728:INFO:Uploading model into container now
+2023-11-09 10:01:57,729:INFO:_master_model_container: 3
+2023-11-09 10:01:57,729:INFO:_display_container: 2
+2023-11-09 10:01:57,729:INFO:Ridge(random_state=123)
+2023-11-09 10:01:57,729:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:57,866:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:57,867:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,879:INFO:Initializing Elastic Net
+2023-11-09 10:01:57,879:INFO:Total runtime is 0.048310124874115 minutes
+2023-11-09 10:01:57,884:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:57,884:INFO:Initializing create_model()
+2023-11-09 10:01:57,884:INFO:create_model(self=, estimator=en, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:57,884:INFO:Checking exceptions
+2023-11-09 10:01:57,884:INFO:Importing libraries
+2023-11-09 10:01:57,884:INFO:Copying training dataset
+2023-11-09 10:01:57,891:INFO:Defining folds
+2023-11-09 10:01:57,891:INFO:Declaring metric variables
+2023-11-09 10:01:57,896:INFO:Importing untrained model
+2023-11-09 10:01:57,899:INFO:Elastic Net Imported successfully
+2023-11-09 10:01:57,905:INFO:Starting cross validation
+2023-11-09 10:01:57,907:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:57,976:INFO:Calculating mean and std
+2023-11-09 10:01:57,976:INFO:Creating metrics dataframe
+2023-11-09 10:01:57,979:INFO:Uploading results into container
+2023-11-09 10:01:57,979:INFO:Uploading model into container now
+2023-11-09 10:01:57,980:INFO:_master_model_container: 4
+2023-11-09 10:01:57,980:INFO:_display_container: 2
+2023-11-09 10:01:57,980:INFO:ElasticNet(random_state=123)
+2023-11-09 10:01:57,980:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:58,060:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:58,060:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,068:INFO:Initializing Least Angle Regression
+2023-11-09 10:01:58,069:INFO:Total runtime is 0.05146764516830445 minutes
+2023-11-09 10:01:58,072:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:58,072:INFO:Initializing create_model()
+2023-11-09 10:01:58,072:INFO:create_model(self=, estimator=lar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:58,072:INFO:Checking exceptions
+2023-11-09 10:01:58,073:INFO:Importing libraries
+2023-11-09 10:01:58,073:INFO:Copying training dataset
+2023-11-09 10:01:58,076:INFO:Defining folds
+2023-11-09 10:01:58,077:INFO:Declaring metric variables
+2023-11-09 10:01:58,080:INFO:Importing untrained model
+2023-11-09 10:01:58,083:INFO:Least Angle Regression Imported successfully
+2023-11-09 10:01:58,088:INFO:Starting cross validation
+2023-11-09 10:01:58,090:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:58,157:INFO:Calculating mean and std
+2023-11-09 10:01:58,158:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,160:INFO:Uploading results into container
+2023-11-09 10:01:58,161:INFO:Uploading model into container now
+2023-11-09 10:01:58,161:INFO:_master_model_container: 5
+2023-11-09 10:01:58,161:INFO:_display_container: 2
+2023-11-09 10:01:58,161:INFO:Lars(random_state=123)
+2023-11-09 10:01:58,162:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:58,260:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:58,260:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,272:INFO:Initializing Lasso Least Angle Regression
+2023-11-09 10:01:58,272:INFO:Total runtime is 0.054855755964914966 minutes
+2023-11-09 10:01:58,275:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:58,276:INFO:Initializing create_model()
+2023-11-09 10:01:58,276:INFO:create_model(self=, estimator=llar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:58,276:INFO:Checking exceptions
+2023-11-09 10:01:58,276:INFO:Importing libraries
+2023-11-09 10:01:58,276:INFO:Copying training dataset
+2023-11-09 10:01:58,280:INFO:Defining folds
+2023-11-09 10:01:58,280:INFO:Declaring metric variables
+2023-11-09 10:01:58,284:INFO:Importing untrained model
+2023-11-09 10:01:58,288:INFO:Lasso Least Angle Regression Imported successfully
+2023-11-09 10:01:58,296:INFO:Starting cross validation
+2023-11-09 10:01:58,297:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:58,383:INFO:Calculating mean and std
+2023-11-09 10:01:58,384:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,389:INFO:Uploading results into container
+2023-11-09 10:01:58,389:INFO:Uploading model into container now
+2023-11-09 10:01:58,390:INFO:_master_model_container: 6
+2023-11-09 10:01:58,390:INFO:_display_container: 2
+2023-11-09 10:01:58,390:INFO:LassoLars(random_state=123)
+2023-11-09 10:01:58,390:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:58,480:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:58,480:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,493:INFO:Initializing Orthogonal Matching Pursuit
+2023-11-09 10:01:58,493:INFO:Total runtime is 0.05854492187500001 minutes
+2023-11-09 10:01:58,497:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:58,497:INFO:Initializing create_model()
+2023-11-09 10:01:58,498:INFO:create_model(self=, estimator=omp, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:58,498:INFO:Checking exceptions
+2023-11-09 10:01:58,498:INFO:Importing libraries
+2023-11-09 10:01:58,498:INFO:Copying training dataset
+2023-11-09 10:01:58,502:INFO:Defining folds
+2023-11-09 10:01:58,502:INFO:Declaring metric variables
+2023-11-09 10:01:58,508:INFO:Importing untrained model
+2023-11-09 10:01:58,512:INFO:Orthogonal Matching Pursuit Imported successfully
+2023-11-09 10:01:58,520:INFO:Starting cross validation
+2023-11-09 10:01:58,521:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:58,619:INFO:Calculating mean and std
+2023-11-09 10:01:58,620:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,626:INFO:Uploading results into container
+2023-11-09 10:01:58,626:INFO:Uploading model into container now
+2023-11-09 10:01:58,627:INFO:_master_model_container: 7
+2023-11-09 10:01:58,627:INFO:_display_container: 2
+2023-11-09 10:01:58,627:INFO:OrthogonalMatchingPursuit()
+2023-11-09 10:01:58,627:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:58,726:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:58,726:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,738:INFO:Initializing Bayesian Ridge
+2023-11-09 10:01:58,738:INFO:Total runtime is 0.06262396574020387 minutes
+2023-11-09 10:01:58,742:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:58,742:INFO:Initializing create_model()
+2023-11-09 10:01:58,742:INFO:create_model(self=, estimator=br, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:58,742:INFO:Checking exceptions
+2023-11-09 10:01:58,743:INFO:Importing libraries
+2023-11-09 10:01:58,743:INFO:Copying training dataset
+2023-11-09 10:01:58,748:INFO:Defining folds
+2023-11-09 10:01:58,748:INFO:Declaring metric variables
+2023-11-09 10:01:58,752:INFO:Importing untrained model
+2023-11-09 10:01:58,756:INFO:Bayesian Ridge Imported successfully
+2023-11-09 10:01:58,764:INFO:Starting cross validation
+2023-11-09 10:01:58,765:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:58,837:INFO:Calculating mean and std
+2023-11-09 10:01:58,838:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,840:INFO:Uploading results into container
+2023-11-09 10:01:58,841:INFO:Uploading model into container now
+2023-11-09 10:01:58,841:INFO:_master_model_container: 8
+2023-11-09 10:01:58,841:INFO:_display_container: 2
+2023-11-09 10:01:58,841:INFO:BayesianRidge()
+2023-11-09 10:01:58,842:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:58,921:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:58,921:INFO:Creating metrics dataframe
+2023-11-09 10:01:58,930:INFO:Initializing Passive Aggressive Regressor
+2023-11-09 10:01:58,930:INFO:Total runtime is 0.06582495768864952 minutes
+2023-11-09 10:01:58,933:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:58,934:INFO:Initializing create_model()
+2023-11-09 10:01:58,934:INFO:create_model(self=, estimator=par, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:58,934:INFO:Checking exceptions
+2023-11-09 10:01:58,934:INFO:Importing libraries
+2023-11-09 10:01:58,934:INFO:Copying training dataset
+2023-11-09 10:01:58,938:INFO:Defining folds
+2023-11-09 10:01:58,938:INFO:Declaring metric variables
+2023-11-09 10:01:58,941:INFO:Importing untrained model
+2023-11-09 10:01:58,945:INFO:Passive Aggressive Regressor Imported successfully
+2023-11-09 10:01:58,950:INFO:Starting cross validation
+2023-11-09 10:01:58,951:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:59,026:INFO:Calculating mean and std
+2023-11-09 10:01:59,026:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,029:INFO:Uploading results into container
+2023-11-09 10:01:59,029:INFO:Uploading model into container now
+2023-11-09 10:01:59,029:INFO:_master_model_container: 9
+2023-11-09 10:01:59,030:INFO:_display_container: 2
+2023-11-09 10:01:59,030:INFO:PassiveAggressiveRegressor(random_state=123)
+2023-11-09 10:01:59,030:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:59,121:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:59,121:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,138:INFO:Initializing Huber Regressor
+2023-11-09 10:01:59,138:INFO:Total runtime is 0.06928383509318035 minutes
+2023-11-09 10:01:59,142:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:59,142:INFO:Initializing create_model()
+2023-11-09 10:01:59,142:INFO:create_model(self=, estimator=huber, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:59,142:INFO:Checking exceptions
+2023-11-09 10:01:59,142:INFO:Importing libraries
+2023-11-09 10:01:59,142:INFO:Copying training dataset
+2023-11-09 10:01:59,147:INFO:Defining folds
+2023-11-09 10:01:59,147:INFO:Declaring metric variables
+2023-11-09 10:01:59,152:INFO:Importing untrained model
+2023-11-09 10:01:59,155:INFO:Huber Regressor Imported successfully
+2023-11-09 10:01:59,165:INFO:Starting cross validation
+2023-11-09 10:01:59,166:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:59,294:INFO:Calculating mean and std
+2023-11-09 10:01:59,295:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,299:INFO:Uploading results into container
+2023-11-09 10:01:59,300:INFO:Uploading model into container now
+2023-11-09 10:01:59,300:INFO:_master_model_container: 10
+2023-11-09 10:01:59,300:INFO:_display_container: 2
+2023-11-09 10:01:59,301:INFO:HuberRegressor()
+2023-11-09 10:01:59,301:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:59,383:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:59,384:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,393:INFO:Initializing K Neighbors Regressor
+2023-11-09 10:01:59,393:INFO:Total runtime is 0.07354575792948406 minutes
+2023-11-09 10:01:59,397:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:59,398:INFO:Initializing create_model()
+2023-11-09 10:01:59,398:INFO:create_model(self=, estimator=knn, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:59,398:INFO:Checking exceptions
+2023-11-09 10:01:59,398:INFO:Importing libraries
+2023-11-09 10:01:59,398:INFO:Copying training dataset
+2023-11-09 10:01:59,401:INFO:Defining folds
+2023-11-09 10:01:59,402:INFO:Declaring metric variables
+2023-11-09 10:01:59,405:INFO:Importing untrained model
+2023-11-09 10:01:59,408:INFO:K Neighbors Regressor Imported successfully
+2023-11-09 10:01:59,413:INFO:Starting cross validation
+2023-11-09 10:01:59,414:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:59,509:INFO:Calculating mean and std
+2023-11-09 10:01:59,510:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,514:INFO:Uploading results into container
+2023-11-09 10:01:59,514:INFO:Uploading model into container now
+2023-11-09 10:01:59,515:INFO:_master_model_container: 11
+2023-11-09 10:01:59,515:INFO:_display_container: 2
+2023-11-09 10:01:59,515:INFO:KNeighborsRegressor(n_jobs=-1)
+2023-11-09 10:01:59,515:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:59,596:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:59,596:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,606:INFO:Initializing Decision Tree Regressor
+2023-11-09 10:01:59,606:INFO:Total runtime is 0.07708897988001506 minutes
+2023-11-09 10:01:59,609:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:59,610:INFO:Initializing create_model()
+2023-11-09 10:01:59,610:INFO:create_model(self=, estimator=dt, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:59,610:INFO:Checking exceptions
+2023-11-09 10:01:59,610:INFO:Importing libraries
+2023-11-09 10:01:59,610:INFO:Copying training dataset
+2023-11-09 10:01:59,613:INFO:Defining folds
+2023-11-09 10:01:59,614:INFO:Declaring metric variables
+2023-11-09 10:01:59,616:INFO:Importing untrained model
+2023-11-09 10:01:59,619:INFO:Decision Tree Regressor Imported successfully
+2023-11-09 10:01:59,625:INFO:Starting cross validation
+2023-11-09 10:01:59,626:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:01:59,696:INFO:Calculating mean and std
+2023-11-09 10:01:59,696:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,700:INFO:Uploading results into container
+2023-11-09 10:01:59,700:INFO:Uploading model into container now
+2023-11-09 10:01:59,700:INFO:_master_model_container: 12
+2023-11-09 10:01:59,701:INFO:_display_container: 2
+2023-11-09 10:01:59,701:INFO:DecisionTreeRegressor(random_state=123)
+2023-11-09 10:01:59,701:INFO:create_model() successfully completed......................................
+2023-11-09 10:01:59,781:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:01:59,781:INFO:Creating metrics dataframe
+2023-11-09 10:01:59,791:INFO:Initializing Random Forest Regressor
+2023-11-09 10:01:59,791:INFO:Total runtime is 0.08017359972000122 minutes
+2023-11-09 10:01:59,794:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:01:59,795:INFO:Initializing create_model()
+2023-11-09 10:01:59,795:INFO:create_model(self=, estimator=rf, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:01:59,795:INFO:Checking exceptions
+2023-11-09 10:01:59,795:INFO:Importing libraries
+2023-11-09 10:01:59,795:INFO:Copying training dataset
+2023-11-09 10:01:59,799:INFO:Defining folds
+2023-11-09 10:01:59,799:INFO:Declaring metric variables
+2023-11-09 10:01:59,803:INFO:Importing untrained model
+2023-11-09 10:01:59,806:INFO:Random Forest Regressor Imported successfully
+2023-11-09 10:01:59,812:INFO:Starting cross validation
+2023-11-09 10:01:59,813:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:02:00,212:INFO:Calculating mean and std
+2023-11-09 10:02:00,213:INFO:Creating metrics dataframe
+2023-11-09 10:02:00,217:INFO:Uploading results into container
+2023-11-09 10:02:00,217:INFO:Uploading model into container now
+2023-11-09 10:02:00,218:INFO:_master_model_container: 13
+2023-11-09 10:02:00,218:INFO:_display_container: 2
+2023-11-09 10:02:00,218:INFO:RandomForestRegressor(n_jobs=-1, random_state=123)
+2023-11-09 10:02:00,218:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:00,294:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:02:00,295:INFO:Creating metrics dataframe
+2023-11-09 10:02:00,306:INFO:Initializing Extra Trees Regressor
+2023-11-09 10:02:00,306:INFO:Total runtime is 0.08874882062276204 minutes
+2023-11-09 10:02:00,309:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:02:00,309:INFO:Initializing create_model()
+2023-11-09 10:02:00,309:INFO:create_model(self=, estimator=et, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:02:00,309:INFO:Checking exceptions
+2023-11-09 10:02:00,310:INFO:Importing libraries
+2023-11-09 10:02:00,310:INFO:Copying training dataset
+2023-11-09 10:02:00,312:INFO:Defining folds
+2023-11-09 10:02:00,312:INFO:Declaring metric variables
+2023-11-09 10:02:00,315:INFO:Importing untrained model
+2023-11-09 10:02:00,318:INFO:Extra Trees Regressor Imported successfully
+2023-11-09 10:02:00,325:INFO:Starting cross validation
+2023-11-09 10:02:00,326:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:02:00,723:INFO:Calculating mean and std
+2023-11-09 10:02:00,724:INFO:Creating metrics dataframe
+2023-11-09 10:02:00,727:INFO:Uploading results into container
+2023-11-09 10:02:00,728:INFO:Uploading model into container now
+2023-11-09 10:02:00,729:INFO:_master_model_container: 14
+2023-11-09 10:02:00,729:INFO:_display_container: 2
+2023-11-09 10:02:00,729:INFO:ExtraTreesRegressor(n_jobs=-1, random_state=123)
+2023-11-09 10:02:00,730:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:00,805:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:02:00,805:INFO:Creating metrics dataframe
+2023-11-09 10:02:00,815:INFO:Initializing AdaBoost Regressor
+2023-11-09 10:02:00,815:INFO:Total runtime is 0.09724491834640503 minutes
+2023-11-09 10:02:00,819:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:02:00,819:INFO:Initializing create_model()
+2023-11-09 10:02:00,819:INFO:create_model(self=, estimator=ada, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:02:00,819:INFO:Checking exceptions
+2023-11-09 10:02:00,819:INFO:Importing libraries
+2023-11-09 10:02:00,819:INFO:Copying training dataset
+2023-11-09 10:02:00,822:INFO:Defining folds
+2023-11-09 10:02:00,822:INFO:Declaring metric variables
+2023-11-09 10:02:00,825:INFO:Importing untrained model
+2023-11-09 10:02:00,828:INFO:AdaBoost Regressor Imported successfully
+2023-11-09 10:02:00,835:INFO:Starting cross validation
+2023-11-09 10:02:00,836:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:02:01,027:INFO:Calculating mean and std
+2023-11-09 10:02:01,027:INFO:Creating metrics dataframe
+2023-11-09 10:02:01,032:INFO:Uploading results into container
+2023-11-09 10:02:01,033:INFO:Uploading model into container now
+2023-11-09 10:02:01,033:INFO:_master_model_container: 15
+2023-11-09 10:02:01,033:INFO:_display_container: 2
+2023-11-09 10:02:01,034:INFO:AdaBoostRegressor(random_state=123)
+2023-11-09 10:02:01,034:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:01,115:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:02:01,115:INFO:Creating metrics dataframe
+2023-11-09 10:02:01,125:INFO:Initializing Gradient Boosting Regressor
+2023-11-09 10:02:01,125:INFO:Total runtime is 0.10240623950958253 minutes
+2023-11-09 10:02:01,128:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:02:01,129:INFO:Initializing create_model()
+2023-11-09 10:02:01,129:INFO:create_model(self=, estimator=gbr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:02:01,129:INFO:Checking exceptions
+2023-11-09 10:02:01,129:INFO:Importing libraries
+2023-11-09 10:02:01,129:INFO:Copying training dataset
+2023-11-09 10:02:01,132:INFO:Defining folds
+2023-11-09 10:02:01,132:INFO:Declaring metric variables
+2023-11-09 10:02:01,134:INFO:Importing untrained model
+2023-11-09 10:02:01,137:INFO:Gradient Boosting Regressor Imported successfully
+2023-11-09 10:02:01,144:INFO:Starting cross validation
+2023-11-09 10:02:01,145:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:02:01,296:INFO:Calculating mean and std
+2023-11-09 10:02:01,296:INFO:Creating metrics dataframe
+2023-11-09 10:02:01,300:INFO:Uploading results into container
+2023-11-09 10:02:01,300:INFO:Uploading model into container now
+2023-11-09 10:02:01,301:INFO:_master_model_container: 16
+2023-11-09 10:02:01,301:INFO:_display_container: 2
+2023-11-09 10:02:01,301:INFO:GradientBoostingRegressor(random_state=123)
+2023-11-09 10:02:01,301:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:01,380:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:02:01,380:INFO:Creating metrics dataframe
+2023-11-09 10:02:01,391:INFO:Initializing Light Gradient Boosting Machine
+2023-11-09 10:02:01,391:INFO:Total runtime is 0.10683684349060059 minutes
+2023-11-09 10:02:01,394:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:02:01,395:INFO:Initializing create_model()
+2023-11-09 10:02:01,395:INFO:create_model(self=, estimator=lightgbm, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:02:01,395:INFO:Checking exceptions
+2023-11-09 10:02:01,395:INFO:Importing libraries
+2023-11-09 10:02:01,395:INFO:Copying training dataset
+2023-11-09 10:02:01,397:INFO:Defining folds
+2023-11-09 10:02:01,398:INFO:Declaring metric variables
+2023-11-09 10:02:01,400:INFO:Importing untrained model
+2023-11-09 10:02:01,404:INFO:Light Gradient Boosting Machine Imported successfully
+2023-11-09 10:02:01,411:INFO:Starting cross validation
+2023-11-09 10:02:01,412:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:02:02,039:INFO:Calculating mean and std
+2023-11-09 10:02:02,039:INFO:Creating metrics dataframe
+2023-11-09 10:02:02,043:INFO:Uploading results into container
+2023-11-09 10:02:02,044:INFO:Uploading model into container now
+2023-11-09 10:02:02,045:INFO:_master_model_container: 17
+2023-11-09 10:02:02,045:INFO:_display_container: 2
+2023-11-09 10:02:02,045:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 10:02:02,045:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:02,155:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:02:02,156:INFO:Creating metrics dataframe
+2023-11-09 10:02:02,167:INFO:Initializing Dummy Regressor
+2023-11-09 10:02:02,168:INFO:Total runtime is 0.1197807788848877 minutes
+2023-11-09 10:02:02,171:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:02:02,171:INFO:Initializing create_model()
+2023-11-09 10:02:02,172:INFO:create_model(self=, estimator=dummy, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:02:02,172:INFO:Checking exceptions
+2023-11-09 10:02:02,172:INFO:Importing libraries
+2023-11-09 10:02:02,172:INFO:Copying training dataset
+2023-11-09 10:02:02,174:INFO:Defining folds
+2023-11-09 10:02:02,174:INFO:Declaring metric variables
+2023-11-09 10:02:02,177:INFO:Importing untrained model
+2023-11-09 10:02:02,180:INFO:Dummy Regressor Imported successfully
+2023-11-09 10:02:02,187:INFO:Starting cross validation
+2023-11-09 10:02:02,188:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:02:02,255:INFO:Calculating mean and std
+2023-11-09 10:02:02,255:INFO:Creating metrics dataframe
+2023-11-09 10:02:02,258:INFO:Uploading results into container
+2023-11-09 10:02:02,259:INFO:Uploading model into container now
+2023-11-09 10:02:02,259:INFO:_master_model_container: 18
+2023-11-09 10:02:02,259:INFO:_display_container: 2
+2023-11-09 10:02:02,259:INFO:DummyRegressor()
+2023-11-09 10:02:02,259:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:02,368:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:02:02,368:INFO:Creating metrics dataframe
+2023-11-09 10:02:02,390:INFO:Initializing create_model()
+2023-11-09 10:02:02,390:INFO:create_model(self=, estimator=HuberRegressor(), fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=False, predict=False, fit_kwargs={}, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:02:02,390:INFO:Checking exceptions
+2023-11-09 10:02:02,392:INFO:Importing libraries
+2023-11-09 10:02:02,392:INFO:Copying training dataset
+2023-11-09 10:02:02,395:INFO:Defining folds
+2023-11-09 10:02:02,395:INFO:Declaring metric variables
+2023-11-09 10:02:02,396:INFO:Importing untrained model
+2023-11-09 10:02:02,396:INFO:Declaring custom model
+2023-11-09 10:02:02,396:INFO:Huber Regressor Imported successfully
+2023-11-09 10:02:02,397:INFO:Cross validation set to False
+2023-11-09 10:02:02,397:INFO:Fitting Model
+2023-11-09 10:02:02,421:INFO:HuberRegressor()
+2023-11-09 10:02:02,421:INFO:create_model() successfully completed......................................
+2023-11-09 10:02:02,529:INFO:_master_model_container: 18
+2023-11-09 10:02:02,529:INFO:_display_container: 2
+2023-11-09 10:02:02,529:INFO:HuberRegressor()
+2023-11-09 10:02:02,529:INFO:compare_models() successfully completed......................................
+2023-11-09 10:44:47,260:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 10:44:47,261:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 10:44:47,261:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 10:44:47,261:WARNING:
+'cuml' is a soft dependency and not included in the pycaret installation. Please run: `pip install cuml` to install.
+2023-11-09 10:44:47,596:INFO:PyCaret RegressionExperiment
+2023-11-09 10:44:47,598:INFO:Logging name: reg-default-name
+2023-11-09 10:44:47,598:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 10:44:47,598:INFO:version 3.1.0
+2023-11-09 10:44:47,599:INFO:Initializing setup()
+2023-11-09 10:44:47,599:INFO:self.USI: 005c
+2023-11-09 10:44:47,600:INFO:self._variable_keys: {'seed', 'idx', 'transform_target_param', 'gpu_param', 'target_param', 'log_plots_param', 'pipeline', 'logging_param', 'fold_groups_param', '_ml_usecase', 'html_param', 'gpu_n_jobs_param', 'y', 'y_test', 'y_train', 'memory', 'exp_id', 'X_test', 'exp_name_log', 'USI', 'data', 'X_train', 'fold_shuffle_param', 'X', 'fold_generator', 'n_jobs_param', '_available_plots'}
+2023-11-09 10:44:47,600:INFO:Checking environment
+2023-11-09 10:44:47,600:INFO:python_version: 3.8.18
+2023-11-09 10:44:47,600:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 10:44:47,601:INFO:machine: x86_64
+2023-11-09 10:44:47,601:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 10:44:47,601:INFO:Memory: svmem(total=8315187200, available=5218893824, percent=37.2, used=2761687040, free=524611584, active=1463525376, inactive=5511421952, buffers=334630912, cached=4694257664, shared=4448256, slab=649134080)
+2023-11-09 10:44:47,602:INFO:Physical Core: 1
+2023-11-09 10:44:47,602:INFO:Logical Core: 2
+2023-11-09 10:44:47,602:INFO:Checking libraries
+2023-11-09 10:44:47,603:INFO:System:
+2023-11-09 10:44:47,603:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 10:44:47,606:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 10:44:47,607:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 10:44:47,607:INFO:PyCaret required dependencies:
+2023-11-09 10:44:47,684:INFO: pip: 23.3
+2023-11-09 10:44:47,684:INFO: setuptools: 68.0.0
+2023-11-09 10:44:47,684:INFO: pycaret: 3.1.0
+2023-11-09 10:44:47,684:INFO: IPython: 8.12.0
+2023-11-09 10:44:47,684:INFO: ipywidgets: 8.1.1
+2023-11-09 10:44:47,684:INFO: tqdm: 4.66.1
+2023-11-09 10:44:47,684:INFO: numpy: 1.23.5
+2023-11-09 10:44:47,684:INFO: pandas: 1.5.3
+2023-11-09 10:44:47,684:INFO: jinja2: 3.1.2
+2023-11-09 10:44:47,684:INFO: scipy: 1.10.1
+2023-11-09 10:44:47,685:INFO: joblib: 1.3.2
+2023-11-09 10:44:47,685:INFO: sklearn: 1.2.2
+2023-11-09 10:44:47,685:INFO: pyod: 1.1.1
+2023-11-09 10:44:47,685:INFO: imblearn: 0.11.0
+2023-11-09 10:44:47,685:INFO: category_encoders: 2.6.3
+2023-11-09 10:44:47,686:INFO: lightgbm: 4.1.0
+2023-11-09 10:44:47,686:INFO: numba: 0.58.1
+2023-11-09 10:44:47,686:INFO: requests: 2.31.0
+2023-11-09 10:44:47,686:INFO: matplotlib: 3.7.3
+2023-11-09 10:44:47,686:INFO: scikitplot: 0.3.7
+2023-11-09 10:44:47,686:INFO: yellowbrick: 1.5
+2023-11-09 10:44:47,686:INFO: plotly: 5.18.0
+2023-11-09 10:44:47,686:INFO: plotly-resampler: Not installed
+2023-11-09 10:44:47,687:INFO: kaleido: 0.2.1
+2023-11-09 10:44:47,687:INFO: schemdraw: 0.15
+2023-11-09 10:44:47,687:INFO: statsmodels: 0.14.0
+2023-11-09 10:44:47,687:INFO: sktime: 0.21.1
+2023-11-09 10:44:47,687:INFO: tbats: 1.1.3
+2023-11-09 10:44:47,687:INFO: pmdarima: 2.0.4
+2023-11-09 10:44:47,687:INFO: psutil: 5.9.0
+2023-11-09 10:44:47,687:INFO: markupsafe: 2.1.3
+2023-11-09 10:44:47,687:INFO: pickle5: Not installed
+2023-11-09 10:44:47,687:INFO: cloudpickle: 3.0.0
+2023-11-09 10:44:47,687:INFO: deprecation: 2.1.0
+2023-11-09 10:44:47,687:INFO: xxhash: 3.4.1
+2023-11-09 10:44:47,687:INFO: wurlitzer: 3.0.3
+2023-11-09 10:44:47,688:INFO:PyCaret optional dependencies:
+2023-11-09 10:44:47,711:INFO: shap: Not installed
+2023-11-09 10:44:47,711:INFO: interpret: Not installed
+2023-11-09 10:44:47,711:INFO: umap: Not installed
+2023-11-09 10:44:47,711:INFO: ydata_profiling: Not installed
+2023-11-09 10:44:47,711:INFO: explainerdashboard: Not installed
+2023-11-09 10:44:47,712:INFO: autoviz: Not installed
+2023-11-09 10:44:47,712:INFO: fairlearn: Not installed
+2023-11-09 10:44:47,712:INFO: deepchecks: Not installed
+2023-11-09 10:44:47,712:INFO: xgboost: Not installed
+2023-11-09 10:44:47,712:INFO: catboost: Not installed
+2023-11-09 10:44:47,712:INFO: kmodes: Not installed
+2023-11-09 10:44:47,713:INFO: mlxtend: Not installed
+2023-11-09 10:44:47,713:INFO: statsforecast: Not installed
+2023-11-09 10:44:47,713:INFO: tune_sklearn: Not installed
+2023-11-09 10:44:47,713:INFO: ray: Not installed
+2023-11-09 10:44:47,713:INFO: hyperopt: Not installed
+2023-11-09 10:44:47,713:INFO: optuna: Not installed
+2023-11-09 10:44:47,714:INFO: skopt: Not installed
+2023-11-09 10:44:47,714:INFO: mlflow: Not installed
+2023-11-09 10:44:47,714:INFO: gradio: Not installed
+2023-11-09 10:44:47,714:INFO: fastapi: Not installed
+2023-11-09 10:44:47,714:INFO: uvicorn: Not installed
+2023-11-09 10:44:47,714:INFO: m2cgen: Not installed
+2023-11-09 10:44:47,715:INFO: evidently: Not installed
+2023-11-09 10:44:47,715:INFO: fugue: Not installed
+2023-11-09 10:44:47,715:INFO: streamlit: Not installed
+2023-11-09 10:44:47,715:INFO: prophet: Not installed
+2023-11-09 10:44:47,716:INFO:None
+2023-11-09 10:44:47,716:INFO:Set up data.
+2023-11-09 10:44:47,724:INFO:Set up folding strategy.
+2023-11-09 10:44:47,724:INFO:Set up train/test split.
+2023-11-09 10:44:47,724:INFO:Set up data.
+2023-11-09 10:44:47,729:INFO:Set up index.
+2023-11-09 10:44:47,730:INFO:Assigning column types.
+2023-11-09 10:44:47,736:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
+2023-11-09 10:44:47,737:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,744:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,751:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,871:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,936:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,937:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:47,938:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:47,939:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,944:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:44:47,951:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,055:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,201:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,207:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,208:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,208:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
+2023-11-09 10:44:48,222:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,247:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,370:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,469:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,471:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,473:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,487:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,495:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,621:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,762:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,763:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,764:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,765:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
+2023-11-09 10:44:48,780:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,910:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,993:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:48,994:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:48,994:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,010:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,113:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,293:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,303:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,304:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,304:INFO:Engine successfully changes for model 'en' to 'sklearn'.
+2023-11-09 10:44:49,446:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,489:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,490:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,490:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,547:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,585:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,586:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,586:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,587:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
+2023-11-09 10:44:49,646:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,685:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,685:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,744:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 10:44:49,782:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,783:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,783:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
+2023-11-09 10:44:49,881:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,881:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,983:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,983:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:49,984:INFO:Preparing preprocessing pipeline...
+2023-11-09 10:44:49,984:INFO:Set up target transformation.
+2023-11-09 10:44:49,984:INFO:Set up simple imputation.
+2023-11-09 10:44:49,985:INFO:Set up column name cleaning.
+2023-11-09 10:44:50,013:INFO:Finished creating preprocessing pipeline.
+2023-11-09 10:44:50,020:INFO:Pipeline: Pipeline(memory=FastMemory(location=/tmp/joblib),
+ steps=[('target_transformation',
+ TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
+ ('numerical_imputer',
+ TransformerWrapper(include=['Year', 'Series'],
+ transformer=SimpleImputer())),
+ ('categorical_imputer',
+ TransformerWrapper(include=[],
+ transformer=SimpleImputer(strategy='most_frequent'))),
+ ('clean_column_names',
+ TransformerWrapper(transformer=CleanColumnNames()))])
+2023-11-09 10:44:50,020:INFO:Creating final display dataframe.
+2023-11-09 10:44:50,121:INFO:Setup _display_container: Description Value
+0 Session id 123
+1 Target Average price All property types
+2 Target type Regression
+3 Original data shape (523, 4)
+4 Transformed data shape (523, 4)
+5 Transformed train set shape (372, 4)
+6 Transformed test set shape (151, 4)
+7 Numeric features 2
+8 Preprocess True
+9 Imputation type simple
+10 Numeric imputation mean
+11 Categorical imputation mode
+12 Transform target True
+13 Transform target method yeo-johnson
+14 Fold Generator TimeSeriesSplit
+15 Fold Number 3
+16 CPU Jobs -1
+17 Use GPU False
+18 Log Experiment False
+19 Experiment Name reg-default-name
+20 USI 005c
+2023-11-09 10:44:50,314:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:50,315:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:50,417:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:50,417:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 10:44:50,418:INFO:setup() successfully completed in 2.82s...............
+2023-11-09 10:44:50,425:INFO:Initializing compare_models()
+2023-11-09 10:44:50,426:INFO:compare_models(self=, include=None, fold=None, round=4, cross_validation=True, sort=MAE, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': , 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'MAE', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': }, exclude=None)
+2023-11-09 10:44:50,426:INFO:Checking exceptions
+2023-11-09 10:44:50,428:INFO:Preparing display monitor
+2023-11-09 10:44:50,454:INFO:Initializing Linear Regression
+2023-11-09 10:44:50,455:INFO:Total runtime is 8.821487426757812e-06 minutes
+2023-11-09 10:44:50,459:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:50,459:INFO:Initializing create_model()
+2023-11-09 10:44:50,460:INFO:create_model(self=, estimator=lr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:50,460:INFO:Checking exceptions
+2023-11-09 10:44:50,460:INFO:Importing libraries
+2023-11-09 10:44:50,460:INFO:Copying training dataset
+2023-11-09 10:44:50,464:INFO:Defining folds
+2023-11-09 10:44:50,464:INFO:Declaring metric variables
+2023-11-09 10:44:50,467:INFO:Importing untrained model
+2023-11-09 10:44:50,474:INFO:Linear Regression Imported successfully
+2023-11-09 10:44:50,483:INFO:Starting cross validation
+2023-11-09 10:44:50,486:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:52,602:INFO:Calculating mean and std
+2023-11-09 10:44:52,604:INFO:Creating metrics dataframe
+2023-11-09 10:44:52,610:INFO:Uploading results into container
+2023-11-09 10:44:52,611:INFO:Uploading model into container now
+2023-11-09 10:44:52,612:INFO:_master_model_container: 1
+2023-11-09 10:44:52,612:INFO:_display_container: 2
+2023-11-09 10:44:52,612:INFO:LinearRegression(n_jobs=-1)
+2023-11-09 10:44:52,613:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:52,718:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:52,719:INFO:Creating metrics dataframe
+2023-11-09 10:44:52,733:INFO:Initializing Lasso Regression
+2023-11-09 10:44:52,733:INFO:Total runtime is 0.03797665039698283 minutes
+2023-11-09 10:44:52,738:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:52,738:INFO:Initializing create_model()
+2023-11-09 10:44:52,738:INFO:create_model(self=, estimator=lasso, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:52,738:INFO:Checking exceptions
+2023-11-09 10:44:52,739:INFO:Importing libraries
+2023-11-09 10:44:52,739:INFO:Copying training dataset
+2023-11-09 10:44:52,744:INFO:Defining folds
+2023-11-09 10:44:52,745:INFO:Declaring metric variables
+2023-11-09 10:44:52,751:INFO:Importing untrained model
+2023-11-09 10:44:52,756:INFO:Lasso Regression Imported successfully
+2023-11-09 10:44:52,767:INFO:Starting cross validation
+2023-11-09 10:44:52,768:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:52,855:INFO:Calculating mean and std
+2023-11-09 10:44:52,856:INFO:Creating metrics dataframe
+2023-11-09 10:44:52,860:INFO:Uploading results into container
+2023-11-09 10:44:52,861:INFO:Uploading model into container now
+2023-11-09 10:44:52,861:INFO:_master_model_container: 2
+2023-11-09 10:44:52,861:INFO:_display_container: 2
+2023-11-09 10:44:52,862:INFO:Lasso(random_state=123)
+2023-11-09 10:44:52,862:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:52,941:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:52,942:INFO:Creating metrics dataframe
+2023-11-09 10:44:52,950:INFO:Initializing Ridge Regression
+2023-11-09 10:44:52,951:INFO:Total runtime is 0.04160174528757731 minutes
+2023-11-09 10:44:52,954:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:52,954:INFO:Initializing create_model()
+2023-11-09 10:44:52,955:INFO:create_model(self=, estimator=ridge, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:52,955:INFO:Checking exceptions
+2023-11-09 10:44:52,955:INFO:Importing libraries
+2023-11-09 10:44:52,955:INFO:Copying training dataset
+2023-11-09 10:44:52,961:INFO:Defining folds
+2023-11-09 10:44:52,961:INFO:Declaring metric variables
+2023-11-09 10:44:52,965:INFO:Importing untrained model
+2023-11-09 10:44:52,969:INFO:Ridge Regression Imported successfully
+2023-11-09 10:44:52,975:INFO:Starting cross validation
+2023-11-09 10:44:52,976:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:53,056:INFO:Calculating mean and std
+2023-11-09 10:44:53,056:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,061:INFO:Uploading results into container
+2023-11-09 10:44:53,062:INFO:Uploading model into container now
+2023-11-09 10:44:53,062:INFO:_master_model_container: 3
+2023-11-09 10:44:53,063:INFO:_display_container: 2
+2023-11-09 10:44:53,063:INFO:Ridge(random_state=123)
+2023-11-09 10:44:53,063:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:53,140:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:53,140:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,148:INFO:Initializing Elastic Net
+2023-11-09 10:44:53,149:INFO:Total runtime is 0.044902992248535153 minutes
+2023-11-09 10:44:53,152:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:53,153:INFO:Initializing create_model()
+2023-11-09 10:44:53,153:INFO:create_model(self=, estimator=en, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:53,153:INFO:Checking exceptions
+2023-11-09 10:44:53,153:INFO:Importing libraries
+2023-11-09 10:44:53,153:INFO:Copying training dataset
+2023-11-09 10:44:53,156:INFO:Defining folds
+2023-11-09 10:44:53,157:INFO:Declaring metric variables
+2023-11-09 10:44:53,160:INFO:Importing untrained model
+2023-11-09 10:44:53,163:INFO:Elastic Net Imported successfully
+2023-11-09 10:44:53,169:INFO:Starting cross validation
+2023-11-09 10:44:53,171:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:53,252:INFO:Calculating mean and std
+2023-11-09 10:44:53,253:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,260:INFO:Uploading results into container
+2023-11-09 10:44:53,261:INFO:Uploading model into container now
+2023-11-09 10:44:53,261:INFO:_master_model_container: 4
+2023-11-09 10:44:53,262:INFO:_display_container: 2
+2023-11-09 10:44:53,262:INFO:ElasticNet(random_state=123)
+2023-11-09 10:44:53,262:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:53,345:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:53,345:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,354:INFO:Initializing Least Angle Regression
+2023-11-09 10:44:53,354:INFO:Total runtime is 0.04832832018534342 minutes
+2023-11-09 10:44:53,357:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:53,357:INFO:Initializing create_model()
+2023-11-09 10:44:53,358:INFO:create_model(self=, estimator=lar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:53,358:INFO:Checking exceptions
+2023-11-09 10:44:53,358:INFO:Importing libraries
+2023-11-09 10:44:53,358:INFO:Copying training dataset
+2023-11-09 10:44:53,363:INFO:Defining folds
+2023-11-09 10:44:53,364:INFO:Declaring metric variables
+2023-11-09 10:44:53,368:INFO:Importing untrained model
+2023-11-09 10:44:53,373:INFO:Least Angle Regression Imported successfully
+2023-11-09 10:44:53,378:INFO:Starting cross validation
+2023-11-09 10:44:53,380:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:53,458:INFO:Calculating mean and std
+2023-11-09 10:44:53,458:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,461:INFO:Uploading results into container
+2023-11-09 10:44:53,462:INFO:Uploading model into container now
+2023-11-09 10:44:53,462:INFO:_master_model_container: 5
+2023-11-09 10:44:53,462:INFO:_display_container: 2
+2023-11-09 10:44:53,463:INFO:Lars(random_state=123)
+2023-11-09 10:44:53,463:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:53,539:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:53,540:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,548:INFO:Initializing Lasso Least Angle Regression
+2023-11-09 10:44:53,549:INFO:Total runtime is 0.0515765905380249 minutes
+2023-11-09 10:44:53,553:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:53,554:INFO:Initializing create_model()
+2023-11-09 10:44:53,554:INFO:create_model(self=, estimator=llar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:53,554:INFO:Checking exceptions
+2023-11-09 10:44:53,554:INFO:Importing libraries
+2023-11-09 10:44:53,554:INFO:Copying training dataset
+2023-11-09 10:44:53,558:INFO:Defining folds
+2023-11-09 10:44:53,558:INFO:Declaring metric variables
+2023-11-09 10:44:53,562:INFO:Importing untrained model
+2023-11-09 10:44:53,566:INFO:Lasso Least Angle Regression Imported successfully
+2023-11-09 10:44:53,571:INFO:Starting cross validation
+2023-11-09 10:44:53,573:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:53,659:INFO:Calculating mean and std
+2023-11-09 10:44:53,660:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,663:INFO:Uploading results into container
+2023-11-09 10:44:53,665:INFO:Uploading model into container now
+2023-11-09 10:44:53,665:INFO:_master_model_container: 6
+2023-11-09 10:44:53,665:INFO:_display_container: 2
+2023-11-09 10:44:53,666:INFO:LassoLars(random_state=123)
+2023-11-09 10:44:53,666:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:53,744:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:53,744:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,753:INFO:Initializing Orthogonal Matching Pursuit
+2023-11-09 10:44:53,753:INFO:Total runtime is 0.05497572422027588 minutes
+2023-11-09 10:44:53,757:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:53,757:INFO:Initializing create_model()
+2023-11-09 10:44:53,757:INFO:create_model(self=, estimator=omp, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:53,758:INFO:Checking exceptions
+2023-11-09 10:44:53,758:INFO:Importing libraries
+2023-11-09 10:44:53,758:INFO:Copying training dataset
+2023-11-09 10:44:53,762:INFO:Defining folds
+2023-11-09 10:44:53,762:INFO:Declaring metric variables
+2023-11-09 10:44:53,766:INFO:Importing untrained model
+2023-11-09 10:44:53,769:INFO:Orthogonal Matching Pursuit Imported successfully
+2023-11-09 10:44:53,776:INFO:Starting cross validation
+2023-11-09 10:44:53,777:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:53,855:INFO:Calculating mean and std
+2023-11-09 10:44:53,855:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,859:INFO:Uploading results into container
+2023-11-09 10:44:53,859:INFO:Uploading model into container now
+2023-11-09 10:44:53,860:INFO:_master_model_container: 7
+2023-11-09 10:44:53,860:INFO:_display_container: 2
+2023-11-09 10:44:53,860:INFO:OrthogonalMatchingPursuit()
+2023-11-09 10:44:53,860:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:53,936:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:53,936:INFO:Creating metrics dataframe
+2023-11-09 10:44:53,945:INFO:Initializing Bayesian Ridge
+2023-11-09 10:44:53,945:INFO:Total runtime is 0.05818490584691365 minutes
+2023-11-09 10:44:53,949:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:53,949:INFO:Initializing create_model()
+2023-11-09 10:44:53,949:INFO:create_model(self=, estimator=br, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:53,950:INFO:Checking exceptions
+2023-11-09 10:44:53,950:INFO:Importing libraries
+2023-11-09 10:44:53,950:INFO:Copying training dataset
+2023-11-09 10:44:53,954:INFO:Defining folds
+2023-11-09 10:44:53,955:INFO:Declaring metric variables
+2023-11-09 10:44:53,958:INFO:Importing untrained model
+2023-11-09 10:44:53,963:INFO:Bayesian Ridge Imported successfully
+2023-11-09 10:44:53,969:INFO:Starting cross validation
+2023-11-09 10:44:53,970:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:54,049:INFO:Calculating mean and std
+2023-11-09 10:44:54,049:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,052:INFO:Uploading results into container
+2023-11-09 10:44:54,053:INFO:Uploading model into container now
+2023-11-09 10:44:54,053:INFO:_master_model_container: 8
+2023-11-09 10:44:54,053:INFO:_display_container: 2
+2023-11-09 10:44:54,054:INFO:BayesianRidge()
+2023-11-09 10:44:54,054:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:54,130:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:54,130:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,139:INFO:Initializing Passive Aggressive Regressor
+2023-11-09 10:44:54,140:INFO:Total runtime is 0.06142244736353556 minutes
+2023-11-09 10:44:54,143:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:54,144:INFO:Initializing create_model()
+2023-11-09 10:44:54,144:INFO:create_model(self=, estimator=par, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:54,144:INFO:Checking exceptions
+2023-11-09 10:44:54,144:INFO:Importing libraries
+2023-11-09 10:44:54,144:INFO:Copying training dataset
+2023-11-09 10:44:54,147:INFO:Defining folds
+2023-11-09 10:44:54,148:INFO:Declaring metric variables
+2023-11-09 10:44:54,151:INFO:Importing untrained model
+2023-11-09 10:44:54,154:INFO:Passive Aggressive Regressor Imported successfully
+2023-11-09 10:44:54,161:INFO:Starting cross validation
+2023-11-09 10:44:54,162:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:54,252:INFO:Calculating mean and std
+2023-11-09 10:44:54,252:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,256:INFO:Uploading results into container
+2023-11-09 10:44:54,257:INFO:Uploading model into container now
+2023-11-09 10:44:54,257:INFO:_master_model_container: 9
+2023-11-09 10:44:54,257:INFO:_display_container: 2
+2023-11-09 10:44:54,258:INFO:PassiveAggressiveRegressor(random_state=123)
+2023-11-09 10:44:54,258:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:54,339:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:54,339:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,351:INFO:Initializing Huber Regressor
+2023-11-09 10:44:54,351:INFO:Total runtime is 0.064950164159139 minutes
+2023-11-09 10:44:54,356:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:54,357:INFO:Initializing create_model()
+2023-11-09 10:44:54,357:INFO:create_model(self=, estimator=huber, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:54,357:INFO:Checking exceptions
+2023-11-09 10:44:54,357:INFO:Importing libraries
+2023-11-09 10:44:54,357:INFO:Copying training dataset
+2023-11-09 10:44:54,362:INFO:Defining folds
+2023-11-09 10:44:54,362:INFO:Declaring metric variables
+2023-11-09 10:44:54,366:INFO:Importing untrained model
+2023-11-09 10:44:54,371:INFO:Huber Regressor Imported successfully
+2023-11-09 10:44:54,377:INFO:Starting cross validation
+2023-11-09 10:44:54,379:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:54,575:INFO:Calculating mean and std
+2023-11-09 10:44:54,577:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,582:INFO:Uploading results into container
+2023-11-09 10:44:54,582:INFO:Uploading model into container now
+2023-11-09 10:44:54,582:INFO:_master_model_container: 10
+2023-11-09 10:44:54,583:INFO:_display_container: 2
+2023-11-09 10:44:54,583:INFO:HuberRegressor()
+2023-11-09 10:44:54,583:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:54,662:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:54,663:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,673:INFO:Initializing K Neighbors Regressor
+2023-11-09 10:44:54,673:INFO:Total runtime is 0.07030820846557617 minutes
+2023-11-09 10:44:54,676:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:54,677:INFO:Initializing create_model()
+2023-11-09 10:44:54,677:INFO:create_model(self=, estimator=knn, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:54,677:INFO:Checking exceptions
+2023-11-09 10:44:54,677:INFO:Importing libraries
+2023-11-09 10:44:54,677:INFO:Copying training dataset
+2023-11-09 10:44:54,681:INFO:Defining folds
+2023-11-09 10:44:54,681:INFO:Declaring metric variables
+2023-11-09 10:44:54,684:INFO:Importing untrained model
+2023-11-09 10:44:54,688:INFO:K Neighbors Regressor Imported successfully
+2023-11-09 10:44:54,694:INFO:Starting cross validation
+2023-11-09 10:44:54,695:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:54,803:INFO:Calculating mean and std
+2023-11-09 10:44:54,805:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,809:INFO:Uploading results into container
+2023-11-09 10:44:54,810:INFO:Uploading model into container now
+2023-11-09 10:44:54,810:INFO:_master_model_container: 11
+2023-11-09 10:44:54,810:INFO:_display_container: 2
+2023-11-09 10:44:54,811:INFO:KNeighborsRegressor(n_jobs=-1)
+2023-11-09 10:44:54,811:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:54,906:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:54,906:INFO:Creating metrics dataframe
+2023-11-09 10:44:54,921:INFO:Initializing Decision Tree Regressor
+2023-11-09 10:44:54,922:INFO:Total runtime is 0.07445542017618816 minutes
+2023-11-09 10:44:54,926:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:54,926:INFO:Initializing create_model()
+2023-11-09 10:44:54,926:INFO:create_model(self=, estimator=dt, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:54,926:INFO:Checking exceptions
+2023-11-09 10:44:54,926:INFO:Importing libraries
+2023-11-09 10:44:54,926:INFO:Copying training dataset
+2023-11-09 10:44:54,933:INFO:Defining folds
+2023-11-09 10:44:54,934:INFO:Declaring metric variables
+2023-11-09 10:44:54,939:INFO:Importing untrained model
+2023-11-09 10:44:54,943:INFO:Decision Tree Regressor Imported successfully
+2023-11-09 10:44:54,952:INFO:Starting cross validation
+2023-11-09 10:44:54,953:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:55,054:INFO:Calculating mean and std
+2023-11-09 10:44:55,056:INFO:Creating metrics dataframe
+2023-11-09 10:44:55,060:INFO:Uploading results into container
+2023-11-09 10:44:55,061:INFO:Uploading model into container now
+2023-11-09 10:44:55,061:INFO:_master_model_container: 12
+2023-11-09 10:44:55,061:INFO:_display_container: 2
+2023-11-09 10:44:55,062:INFO:DecisionTreeRegressor(random_state=123)
+2023-11-09 10:44:55,062:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:55,141:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:55,141:INFO:Creating metrics dataframe
+2023-11-09 10:44:55,151:INFO:Initializing Random Forest Regressor
+2023-11-09 10:44:55,151:INFO:Total runtime is 0.07827664216359456 minutes
+2023-11-09 10:44:55,155:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:55,155:INFO:Initializing create_model()
+2023-11-09 10:44:55,155:INFO:create_model(self=, estimator=rf, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:55,156:INFO:Checking exceptions
+2023-11-09 10:44:55,156:INFO:Importing libraries
+2023-11-09 10:44:55,156:INFO:Copying training dataset
+2023-11-09 10:44:55,159:INFO:Defining folds
+2023-11-09 10:44:55,160:INFO:Declaring metric variables
+2023-11-09 10:44:55,164:INFO:Importing untrained model
+2023-11-09 10:44:55,167:INFO:Random Forest Regressor Imported successfully
+2023-11-09 10:44:55,174:INFO:Starting cross validation
+2023-11-09 10:44:55,175:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:55,667:INFO:Calculating mean and std
+2023-11-09 10:44:55,668:INFO:Creating metrics dataframe
+2023-11-09 10:44:55,672:INFO:Uploading results into container
+2023-11-09 10:44:55,672:INFO:Uploading model into container now
+2023-11-09 10:44:55,673:INFO:_master_model_container: 13
+2023-11-09 10:44:55,673:INFO:_display_container: 2
+2023-11-09 10:44:55,674:INFO:RandomForestRegressor(n_jobs=-1, random_state=123)
+2023-11-09 10:44:55,674:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:55,751:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:55,752:INFO:Creating metrics dataframe
+2023-11-09 10:44:55,762:INFO:Initializing Extra Trees Regressor
+2023-11-09 10:44:55,763:INFO:Total runtime is 0.08847056229909261 minutes
+2023-11-09 10:44:55,766:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:55,767:INFO:Initializing create_model()
+2023-11-09 10:44:55,767:INFO:create_model(self=, estimator=et, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:55,767:INFO:Checking exceptions
+2023-11-09 10:44:55,767:INFO:Importing libraries
+2023-11-09 10:44:55,768:INFO:Copying training dataset
+2023-11-09 10:44:55,771:INFO:Defining folds
+2023-11-09 10:44:55,771:INFO:Declaring metric variables
+2023-11-09 10:44:55,775:INFO:Importing untrained model
+2023-11-09 10:44:55,778:INFO:Extra Trees Regressor Imported successfully
+2023-11-09 10:44:55,784:INFO:Starting cross validation
+2023-11-09 10:44:55,786:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:56,122:INFO:Calculating mean and std
+2023-11-09 10:44:56,123:INFO:Creating metrics dataframe
+2023-11-09 10:44:56,126:INFO:Uploading results into container
+2023-11-09 10:44:56,128:INFO:Uploading model into container now
+2023-11-09 10:44:56,129:INFO:_master_model_container: 14
+2023-11-09 10:44:56,129:INFO:_display_container: 2
+2023-11-09 10:44:56,130:INFO:ExtraTreesRegressor(n_jobs=-1, random_state=123)
+2023-11-09 10:44:56,130:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:56,206:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:56,206:INFO:Creating metrics dataframe
+2023-11-09 10:44:56,218:INFO:Initializing AdaBoost Regressor
+2023-11-09 10:44:56,218:INFO:Total runtime is 0.09605745871861776 minutes
+2023-11-09 10:44:56,222:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:56,222:INFO:Initializing create_model()
+2023-11-09 10:44:56,222:INFO:create_model(self=, estimator=ada, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:56,222:INFO:Checking exceptions
+2023-11-09 10:44:56,222:INFO:Importing libraries
+2023-11-09 10:44:56,222:INFO:Copying training dataset
+2023-11-09 10:44:56,226:INFO:Defining folds
+2023-11-09 10:44:56,226:INFO:Declaring metric variables
+2023-11-09 10:44:56,230:INFO:Importing untrained model
+2023-11-09 10:44:56,233:INFO:AdaBoost Regressor Imported successfully
+2023-11-09 10:44:56,239:INFO:Starting cross validation
+2023-11-09 10:44:56,240:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:56,447:INFO:Calculating mean and std
+2023-11-09 10:44:56,448:INFO:Creating metrics dataframe
+2023-11-09 10:44:56,452:INFO:Uploading results into container
+2023-11-09 10:44:56,453:INFO:Uploading model into container now
+2023-11-09 10:44:56,453:INFO:_master_model_container: 15
+2023-11-09 10:44:56,454:INFO:_display_container: 2
+2023-11-09 10:44:56,454:INFO:AdaBoostRegressor(random_state=123)
+2023-11-09 10:44:56,455:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:56,535:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:56,535:INFO:Creating metrics dataframe
+2023-11-09 10:44:56,547:INFO:Initializing Gradient Boosting Regressor
+2023-11-09 10:44:56,547:INFO:Total runtime is 0.10155067046483358 minutes
+2023-11-09 10:44:56,551:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:56,552:INFO:Initializing create_model()
+2023-11-09 10:44:56,552:INFO:create_model(self=, estimator=gbr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:56,552:INFO:Checking exceptions
+2023-11-09 10:44:56,552:INFO:Importing libraries
+2023-11-09 10:44:56,552:INFO:Copying training dataset
+2023-11-09 10:44:56,557:INFO:Defining folds
+2023-11-09 10:44:56,558:INFO:Declaring metric variables
+2023-11-09 10:44:56,561:INFO:Importing untrained model
+2023-11-09 10:44:56,565:INFO:Gradient Boosting Regressor Imported successfully
+2023-11-09 10:44:56,572:INFO:Starting cross validation
+2023-11-09 10:44:56,573:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:56,774:INFO:Calculating mean and std
+2023-11-09 10:44:56,781:INFO:Creating metrics dataframe
+2023-11-09 10:44:56,790:INFO:Uploading results into container
+2023-11-09 10:44:56,791:INFO:Uploading model into container now
+2023-11-09 10:44:56,791:INFO:_master_model_container: 16
+2023-11-09 10:44:56,791:INFO:_display_container: 2
+2023-11-09 10:44:56,792:INFO:GradientBoostingRegressor(random_state=123)
+2023-11-09 10:44:56,792:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:56,900:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:56,900:INFO:Creating metrics dataframe
+2023-11-09 10:44:56,910:INFO:Initializing Light Gradient Boosting Machine
+2023-11-09 10:44:56,911:INFO:Total runtime is 0.10760351816813152 minutes
+2023-11-09 10:44:56,918:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:56,918:INFO:Initializing create_model()
+2023-11-09 10:44:56,918:INFO:create_model(self=, estimator=lightgbm, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:56,918:INFO:Checking exceptions
+2023-11-09 10:44:56,918:INFO:Importing libraries
+2023-11-09 10:44:56,918:INFO:Copying training dataset
+2023-11-09 10:44:56,925:INFO:Defining folds
+2023-11-09 10:44:56,925:INFO:Declaring metric variables
+2023-11-09 10:44:56,929:INFO:Importing untrained model
+2023-11-09 10:44:56,938:INFO:Light Gradient Boosting Machine Imported successfully
+2023-11-09 10:44:56,950:INFO:Starting cross validation
+2023-11-09 10:44:56,952:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:58,819:INFO:Calculating mean and std
+2023-11-09 10:44:58,821:INFO:Creating metrics dataframe
+2023-11-09 10:44:58,825:INFO:Uploading results into container
+2023-11-09 10:44:58,827:INFO:Uploading model into container now
+2023-11-09 10:44:58,828:INFO:_master_model_container: 17
+2023-11-09 10:44:58,828:INFO:_display_container: 2
+2023-11-09 10:44:58,828:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 10:44:58,829:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:58,907:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:58,907:INFO:Creating metrics dataframe
+2023-11-09 10:44:58,924:INFO:Initializing Dummy Regressor
+2023-11-09 10:44:58,924:INFO:Total runtime is 0.14116499821345013 minutes
+2023-11-09 10:44:58,928:INFO:SubProcess create_model() called ==================================
+2023-11-09 10:44:58,928:INFO:Initializing create_model()
+2023-11-09 10:44:58,928:INFO:create_model(self=, estimator=dummy, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:58,928:INFO:Checking exceptions
+2023-11-09 10:44:58,928:INFO:Importing libraries
+2023-11-09 10:44:58,928:INFO:Copying training dataset
+2023-11-09 10:44:58,932:INFO:Defining folds
+2023-11-09 10:44:58,932:INFO:Declaring metric variables
+2023-11-09 10:44:58,936:INFO:Importing untrained model
+2023-11-09 10:44:58,939:INFO:Dummy Regressor Imported successfully
+2023-11-09 10:44:58,945:INFO:Starting cross validation
+2023-11-09 10:44:58,946:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 10:44:59,014:INFO:Calculating mean and std
+2023-11-09 10:44:59,014:INFO:Creating metrics dataframe
+2023-11-09 10:44:59,017:INFO:Uploading results into container
+2023-11-09 10:44:59,018:INFO:Uploading model into container now
+2023-11-09 10:44:59,018:INFO:_master_model_container: 18
+2023-11-09 10:44:59,018:INFO:_display_container: 2
+2023-11-09 10:44:59,019:INFO:DummyRegressor()
+2023-11-09 10:44:59,019:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:59,096:INFO:SubProcess create_model() end ==================================
+2023-11-09 10:44:59,096:INFO:Creating metrics dataframe
+2023-11-09 10:44:59,117:INFO:Initializing create_model()
+2023-11-09 10:44:59,118:INFO:create_model(self=, estimator=HuberRegressor(), fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=False, predict=False, fit_kwargs={}, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 10:44:59,118:INFO:Checking exceptions
+2023-11-09 10:44:59,119:INFO:Importing libraries
+2023-11-09 10:44:59,119:INFO:Copying training dataset
+2023-11-09 10:44:59,122:INFO:Defining folds
+2023-11-09 10:44:59,123:INFO:Declaring metric variables
+2023-11-09 10:44:59,123:INFO:Importing untrained model
+2023-11-09 10:44:59,123:INFO:Declaring custom model
+2023-11-09 10:44:59,123:INFO:Huber Regressor Imported successfully
+2023-11-09 10:44:59,124:INFO:Cross validation set to False
+2023-11-09 10:44:59,124:INFO:Fitting Model
+2023-11-09 10:44:59,147:INFO:HuberRegressor()
+2023-11-09 10:44:59,147:INFO:create_model() successfully completed......................................
+2023-11-09 10:44:59,255:INFO:_master_model_container: 18
+2023-11-09 10:44:59,255:INFO:_display_container: 2
+2023-11-09 10:44:59,255:INFO:HuberRegressor()
+2023-11-09 10:44:59,255:INFO:compare_models() successfully completed......................................
+2023-11-09 10:45:31,940:INFO:Initializing predict_model()
+2023-11-09 10:45:31,943:INFO:predict_model(self=, estimator=HuberRegressor(), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=True, ml_usecase=None, preprocess=True, encode_labels=.encode_labels at 0x7fbb44aafd30>)
+2023-11-09 10:45:31,944:INFO:Checking exceptions
+2023-11-09 10:45:31,944:INFO:Preloading libraries
+2023-11-09 10:45:31,961:INFO:Set up data.
+2023-11-09 10:45:31,968:INFO:Set up index.
+2023-11-09 11:09:16,097:INFO:PyCaret RegressionExperiment
+2023-11-09 11:09:16,097:INFO:Logging name: reg-default-name
+2023-11-09 11:09:16,097:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 11:09:16,097:INFO:version 3.1.0
+2023-11-09 11:09:16,097:INFO:Initializing setup()
+2023-11-09 11:09:16,097:INFO:self.USI: de6d
+2023-11-09 11:09:16,097:INFO:self._variable_keys: {'seed', 'idx', 'transform_target_param', 'gpu_param', 'target_param', 'log_plots_param', 'pipeline', 'logging_param', 'fold_groups_param', '_ml_usecase', 'html_param', 'gpu_n_jobs_param', 'y', 'y_test', 'y_train', 'memory', 'exp_id', 'X_test', 'exp_name_log', 'USI', 'data', 'X_train', 'fold_shuffle_param', 'X', 'fold_generator', 'n_jobs_param', '_available_plots'}
+2023-11-09 11:09:16,097:INFO:Checking environment
+2023-11-09 11:09:16,097:INFO:python_version: 3.8.18
+2023-11-09 11:09:16,097:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 11:09:16,097:INFO:machine: x86_64
+2023-11-09 11:09:16,097:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:09:16,098:INFO:Memory: svmem(total=8315187200, available=4920614912, percent=40.8, used=3059818496, free=319401984, active=1462353920, inactive=5675810816, buffers=339505152, cached=4596461568, shared=4476928, slab=650973184)
+2023-11-09 11:09:16,098:INFO:Physical Core: 1
+2023-11-09 11:09:16,098:INFO:Logical Core: 2
+2023-11-09 11:09:16,098:INFO:Checking libraries
+2023-11-09 11:09:16,098:INFO:System:
+2023-11-09 11:09:16,098:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 11:09:16,098:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 11:09:16,098:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:09:16,099:INFO:PyCaret required dependencies:
+2023-11-09 11:09:16,099:INFO: pip: 23.3
+2023-11-09 11:09:16,099:INFO: setuptools: 68.0.0
+2023-11-09 11:09:16,099:INFO: pycaret: 3.1.0
+2023-11-09 11:09:16,099:INFO: IPython: 8.12.0
+2023-11-09 11:09:16,099:INFO: ipywidgets: 8.1.1
+2023-11-09 11:09:16,099:INFO: tqdm: 4.66.1
+2023-11-09 11:09:16,099:INFO: numpy: 1.23.5
+2023-11-09 11:09:16,099:INFO: pandas: 1.5.3
+2023-11-09 11:09:16,099:INFO: jinja2: 3.1.2
+2023-11-09 11:09:16,099:INFO: scipy: 1.10.1
+2023-11-09 11:09:16,099:INFO: joblib: 1.3.2
+2023-11-09 11:09:16,099:INFO: sklearn: 1.2.2
+2023-11-09 11:09:16,099:INFO: pyod: 1.1.1
+2023-11-09 11:09:16,099:INFO: imblearn: 0.11.0
+2023-11-09 11:09:16,100:INFO: category_encoders: 2.6.3
+2023-11-09 11:09:16,100:INFO: lightgbm: 4.1.0
+2023-11-09 11:09:16,100:INFO: numba: 0.58.1
+2023-11-09 11:09:16,100:INFO: requests: 2.31.0
+2023-11-09 11:09:16,100:INFO: matplotlib: 3.7.3
+2023-11-09 11:09:16,100:INFO: scikitplot: 0.3.7
+2023-11-09 11:09:16,100:INFO: yellowbrick: 1.5
+2023-11-09 11:09:16,100:INFO: plotly: 5.18.0
+2023-11-09 11:09:16,100:INFO: plotly-resampler: Not installed
+2023-11-09 11:09:16,100:INFO: kaleido: 0.2.1
+2023-11-09 11:09:16,100:INFO: schemdraw: 0.15
+2023-11-09 11:09:16,100:INFO: statsmodels: 0.14.0
+2023-11-09 11:09:16,100:INFO: sktime: 0.21.1
+2023-11-09 11:09:16,100:INFO: tbats: 1.1.3
+2023-11-09 11:09:16,100:INFO: pmdarima: 2.0.4
+2023-11-09 11:09:16,100:INFO: psutil: 5.9.0
+2023-11-09 11:09:16,101:INFO: markupsafe: 2.1.3
+2023-11-09 11:09:16,101:INFO: pickle5: Not installed
+2023-11-09 11:09:16,101:INFO: cloudpickle: 3.0.0
+2023-11-09 11:09:16,101:INFO: deprecation: 2.1.0
+2023-11-09 11:09:16,101:INFO: xxhash: 3.4.1
+2023-11-09 11:09:16,101:INFO: wurlitzer: 3.0.3
+2023-11-09 11:09:16,101:INFO:PyCaret optional dependencies:
+2023-11-09 11:09:16,101:INFO: shap: Not installed
+2023-11-09 11:09:16,101:INFO: interpret: Not installed
+2023-11-09 11:09:16,101:INFO: umap: Not installed
+2023-11-09 11:09:16,101:INFO: ydata_profiling: Not installed
+2023-11-09 11:09:16,101:INFO: explainerdashboard: Not installed
+2023-11-09 11:09:16,101:INFO: autoviz: Not installed
+2023-11-09 11:09:16,101:INFO: fairlearn: Not installed
+2023-11-09 11:09:16,101:INFO: deepchecks: Not installed
+2023-11-09 11:09:16,101:INFO: xgboost: Not installed
+2023-11-09 11:09:16,101:INFO: catboost: Not installed
+2023-11-09 11:09:16,101:INFO: kmodes: Not installed
+2023-11-09 11:09:16,101:INFO: mlxtend: Not installed
+2023-11-09 11:09:16,102:INFO: statsforecast: Not installed
+2023-11-09 11:09:16,102:INFO: tune_sklearn: Not installed
+2023-11-09 11:09:16,102:INFO: ray: Not installed
+2023-11-09 11:09:16,102:INFO: hyperopt: Not installed
+2023-11-09 11:09:16,102:INFO: optuna: Not installed
+2023-11-09 11:09:16,102:INFO: skopt: Not installed
+2023-11-09 11:09:16,102:INFO: mlflow: Not installed
+2023-11-09 11:09:16,102:INFO: gradio: Not installed
+2023-11-09 11:09:16,102:INFO: fastapi: Not installed
+2023-11-09 11:09:16,102:INFO: uvicorn: Not installed
+2023-11-09 11:09:16,102:INFO: m2cgen: Not installed
+2023-11-09 11:09:16,102:INFO: evidently: Not installed
+2023-11-09 11:09:16,102:INFO: fugue: Not installed
+2023-11-09 11:09:16,102:INFO: streamlit: Not installed
+2023-11-09 11:09:16,102:INFO: prophet: Not installed
+2023-11-09 11:09:16,102:INFO:None
+2023-11-09 11:09:16,102:INFO:Set up data.
+2023-11-09 11:09:16,106:INFO:Set up folding strategy.
+2023-11-09 11:09:16,106:INFO:Set up train/test split.
+2023-11-09 11:09:16,106:INFO:Set up data.
+2023-11-09 11:09:16,109:INFO:Set up index.
+2023-11-09 11:09:16,109:INFO:Assigning column types.
+2023-11-09 11:09:16,112:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
+2023-11-09 11:09:16,112:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,116:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,121:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,206:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,253:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,254:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,254:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,255:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,259:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,263:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,312:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,350:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,351:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,351:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,351:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
+2023-11-09 11:09:16,356:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,360:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,414:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,485:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,486:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,486:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,493:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,500:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,565:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,603:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,604:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,604:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,604:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
+2023-11-09 11:09:16,612:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,661:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,700:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,700:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,701:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,709:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,758:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,814:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,815:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,815:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,815:INFO:Engine successfully changes for model 'en' to 'sklearn'.
+2023-11-09 11:09:16,871:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,910:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:16,911:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,911:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:16,969:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:17,007:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:09:17,007:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,008:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,008:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
+2023-11-09 11:09:17,068:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:17,107:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,107:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,166:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:09:17,207:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,207:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,207:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
+2023-11-09 11:09:17,305:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,305:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,405:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,405:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,406:INFO:Preparing preprocessing pipeline...
+2023-11-09 11:09:17,406:INFO:Set up target transformation.
+2023-11-09 11:09:17,406:INFO:Set up simple imputation.
+2023-11-09 11:09:17,407:INFO:Set up column name cleaning.
+2023-11-09 11:09:17,433:INFO:Finished creating preprocessing pipeline.
+2023-11-09 11:09:17,438:INFO:Pipeline: Pipeline(memory=FastMemory(location=/tmp/joblib),
+ steps=[('target_transformation',
+ TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
+ ('numerical_imputer',
+ TransformerWrapper(include=['Year', 'Series'],
+ transformer=SimpleImputer())),
+ ('categorical_imputer',
+ TransformerWrapper(include=[],
+ transformer=SimpleImputer(strategy='most_frequent'))),
+ ('clean_column_names',
+ TransformerWrapper(transformer=CleanColumnNames()))])
+2023-11-09 11:09:17,439:INFO:Creating final display dataframe.
+2023-11-09 11:09:17,511:INFO:Setup _display_container: Description Value
+0 Session id 123
+1 Target Average price All property types
+2 Target type Regression
+3 Original data shape (523, 4)
+4 Transformed data shape (523, 4)
+5 Transformed train set shape (372, 4)
+6 Transformed test set shape (151, 4)
+7 Numeric features 2
+8 Preprocess True
+9 Imputation type simple
+10 Numeric imputation mean
+11 Categorical imputation mode
+12 Transform target True
+13 Transform target method yeo-johnson
+14 Fold Generator TimeSeriesSplit
+15 Fold Number 3
+16 CPU Jobs -1
+17 Use GPU False
+18 Log Experiment False
+19 Experiment Name reg-default-name
+20 USI de6d
+2023-11-09 11:09:17,639:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,639:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,819:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,819:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:09:17,820:INFO:setup() successfully completed in 1.72s...............
+2023-11-09 11:09:17,891:INFO:Initializing compare_models()
+2023-11-09 11:09:17,892:INFO:compare_models(self=, include=None, fold=None, round=4, cross_validation=True, sort=MAE, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': , 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'MAE', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': }, exclude=None)
+2023-11-09 11:09:17,892:INFO:Checking exceptions
+2023-11-09 11:09:17,894:INFO:Preparing display monitor
+2023-11-09 11:09:17,919:INFO:Initializing Linear Regression
+2023-11-09 11:09:17,920:INFO:Total runtime is 1.1650721232096354e-05 minutes
+2023-11-09 11:09:17,923:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:17,923:INFO:Initializing create_model()
+2023-11-09 11:09:17,923:INFO:create_model(self=, estimator=lr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:17,923:INFO:Checking exceptions
+2023-11-09 11:09:17,924:INFO:Importing libraries
+2023-11-09 11:09:17,924:INFO:Copying training dataset
+2023-11-09 11:09:17,927:INFO:Defining folds
+2023-11-09 11:09:17,927:INFO:Declaring metric variables
+2023-11-09 11:09:17,930:INFO:Importing untrained model
+2023-11-09 11:09:17,934:INFO:Linear Regression Imported successfully
+2023-11-09 11:09:17,941:INFO:Starting cross validation
+2023-11-09 11:09:17,942:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:19,796:INFO:Calculating mean and std
+2023-11-09 11:09:19,798:INFO:Creating metrics dataframe
+2023-11-09 11:09:19,804:INFO:Uploading results into container
+2023-11-09 11:09:19,805:INFO:Uploading model into container now
+2023-11-09 11:09:19,805:INFO:_master_model_container: 1
+2023-11-09 11:09:19,806:INFO:_display_container: 2
+2023-11-09 11:09:19,806:INFO:LinearRegression(n_jobs=-1)
+2023-11-09 11:09:19,806:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:19,972:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:19,973:INFO:Creating metrics dataframe
+2023-11-09 11:09:19,988:INFO:Initializing Lasso Regression
+2023-11-09 11:09:19,989:INFO:Total runtime is 0.03448711236317953 minutes
+2023-11-09 11:09:19,992:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:19,993:INFO:Initializing create_model()
+2023-11-09 11:09:19,993:INFO:create_model(self=, estimator=lasso, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:19,993:INFO:Checking exceptions
+2023-11-09 11:09:19,993:INFO:Importing libraries
+2023-11-09 11:09:19,993:INFO:Copying training dataset
+2023-11-09 11:09:19,996:INFO:Defining folds
+2023-11-09 11:09:19,997:INFO:Declaring metric variables
+2023-11-09 11:09:20,002:INFO:Importing untrained model
+2023-11-09 11:09:20,007:INFO:Lasso Regression Imported successfully
+2023-11-09 11:09:20,015:INFO:Starting cross validation
+2023-11-09 11:09:20,016:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:20,129:INFO:Calculating mean and std
+2023-11-09 11:09:20,130:INFO:Creating metrics dataframe
+2023-11-09 11:09:20,135:INFO:Uploading results into container
+2023-11-09 11:09:20,136:INFO:Uploading model into container now
+2023-11-09 11:09:20,136:INFO:_master_model_container: 2
+2023-11-09 11:09:20,136:INFO:_display_container: 2
+2023-11-09 11:09:20,137:INFO:Lasso(random_state=123)
+2023-11-09 11:09:20,137:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:20,301:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:20,301:INFO:Creating metrics dataframe
+2023-11-09 11:09:20,309:INFO:Initializing Ridge Regression
+2023-11-09 11:09:20,309:INFO:Total runtime is 0.039824056625366214 minutes
+2023-11-09 11:09:20,312:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:20,313:INFO:Initializing create_model()
+2023-11-09 11:09:20,313:INFO:create_model(self=, estimator=ridge, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:20,313:INFO:Checking exceptions
+2023-11-09 11:09:20,313:INFO:Importing libraries
+2023-11-09 11:09:20,313:INFO:Copying training dataset
+2023-11-09 11:09:20,317:INFO:Defining folds
+2023-11-09 11:09:20,317:INFO:Declaring metric variables
+2023-11-09 11:09:20,321:INFO:Importing untrained model
+2023-11-09 11:09:20,324:INFO:Ridge Regression Imported successfully
+2023-11-09 11:09:20,330:INFO:Starting cross validation
+2023-11-09 11:09:20,331:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:20,400:INFO:Calculating mean and std
+2023-11-09 11:09:20,402:INFO:Creating metrics dataframe
+2023-11-09 11:09:20,404:INFO:Uploading results into container
+2023-11-09 11:09:20,405:INFO:Uploading model into container now
+2023-11-09 11:09:20,405:INFO:_master_model_container: 3
+2023-11-09 11:09:20,405:INFO:_display_container: 2
+2023-11-09 11:09:20,406:INFO:Ridge(random_state=123)
+2023-11-09 11:09:20,406:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:20,535:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:20,535:INFO:Creating metrics dataframe
+2023-11-09 11:09:20,544:INFO:Initializing Elastic Net
+2023-11-09 11:09:20,544:INFO:Total runtime is 0.04374899466832479 minutes
+2023-11-09 11:09:20,548:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:20,548:INFO:Initializing create_model()
+2023-11-09 11:09:20,548:INFO:create_model(self=, estimator=en, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:20,548:INFO:Checking exceptions
+2023-11-09 11:09:20,548:INFO:Importing libraries
+2023-11-09 11:09:20,549:INFO:Copying training dataset
+2023-11-09 11:09:20,552:INFO:Defining folds
+2023-11-09 11:09:20,552:INFO:Declaring metric variables
+2023-11-09 11:09:20,556:INFO:Importing untrained model
+2023-11-09 11:09:20,560:INFO:Elastic Net Imported successfully
+2023-11-09 11:09:20,565:INFO:Starting cross validation
+2023-11-09 11:09:20,567:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:20,712:INFO:Calculating mean and std
+2023-11-09 11:09:20,713:INFO:Creating metrics dataframe
+2023-11-09 11:09:20,717:INFO:Uploading results into container
+2023-11-09 11:09:20,718:INFO:Uploading model into container now
+2023-11-09 11:09:20,718:INFO:_master_model_container: 4
+2023-11-09 11:09:20,718:INFO:_display_container: 2
+2023-11-09 11:09:20,719:INFO:ElasticNet(random_state=123)
+2023-11-09 11:09:20,719:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:20,889:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:20,889:INFO:Creating metrics dataframe
+2023-11-09 11:09:20,898:INFO:Initializing Least Angle Regression
+2023-11-09 11:09:20,898:INFO:Total runtime is 0.04964574972788493 minutes
+2023-11-09 11:09:20,903:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:20,903:INFO:Initializing create_model()
+2023-11-09 11:09:20,903:INFO:create_model(self=, estimator=lar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:20,903:INFO:Checking exceptions
+2023-11-09 11:09:20,903:INFO:Importing libraries
+2023-11-09 11:09:20,903:INFO:Copying training dataset
+2023-11-09 11:09:20,907:INFO:Defining folds
+2023-11-09 11:09:20,907:INFO:Declaring metric variables
+2023-11-09 11:09:20,912:INFO:Importing untrained model
+2023-11-09 11:09:20,915:INFO:Least Angle Regression Imported successfully
+2023-11-09 11:09:20,921:INFO:Starting cross validation
+2023-11-09 11:09:20,922:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:21,003:INFO:Calculating mean and std
+2023-11-09 11:09:21,003:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,007:INFO:Uploading results into container
+2023-11-09 11:09:21,008:INFO:Uploading model into container now
+2023-11-09 11:09:21,009:INFO:_master_model_container: 5
+2023-11-09 11:09:21,009:INFO:_display_container: 2
+2023-11-09 11:09:21,009:INFO:Lars(random_state=123)
+2023-11-09 11:09:21,010:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:21,145:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:21,145:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,154:INFO:Initializing Lasso Least Angle Regression
+2023-11-09 11:09:21,154:INFO:Total runtime is 0.05390775998433431 minutes
+2023-11-09 11:09:21,157:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:21,158:INFO:Initializing create_model()
+2023-11-09 11:09:21,158:INFO:create_model(self=, estimator=llar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:21,158:INFO:Checking exceptions
+2023-11-09 11:09:21,158:INFO:Importing libraries
+2023-11-09 11:09:21,158:INFO:Copying training dataset
+2023-11-09 11:09:21,162:INFO:Defining folds
+2023-11-09 11:09:21,162:INFO:Declaring metric variables
+2023-11-09 11:09:21,165:INFO:Importing untrained model
+2023-11-09 11:09:21,168:INFO:Lasso Least Angle Regression Imported successfully
+2023-11-09 11:09:21,176:INFO:Starting cross validation
+2023-11-09 11:09:21,178:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:21,263:INFO:Calculating mean and std
+2023-11-09 11:09:21,264:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,267:INFO:Uploading results into container
+2023-11-09 11:09:21,268:INFO:Uploading model into container now
+2023-11-09 11:09:21,268:INFO:_master_model_container: 6
+2023-11-09 11:09:21,268:INFO:_display_container: 2
+2023-11-09 11:09:21,268:INFO:LassoLars(random_state=123)
+2023-11-09 11:09:21,268:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:21,401:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:21,401:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,410:INFO:Initializing Orthogonal Matching Pursuit
+2023-11-09 11:09:21,411:INFO:Total runtime is 0.058187222480773924 minutes
+2023-11-09 11:09:21,414:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:21,415:INFO:Initializing create_model()
+2023-11-09 11:09:21,415:INFO:create_model(self=, estimator=omp, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:21,415:INFO:Checking exceptions
+2023-11-09 11:09:21,415:INFO:Importing libraries
+2023-11-09 11:09:21,415:INFO:Copying training dataset
+2023-11-09 11:09:21,419:INFO:Defining folds
+2023-11-09 11:09:21,419:INFO:Declaring metric variables
+2023-11-09 11:09:21,423:INFO:Importing untrained model
+2023-11-09 11:09:21,426:INFO:Orthogonal Matching Pursuit Imported successfully
+2023-11-09 11:09:21,432:INFO:Starting cross validation
+2023-11-09 11:09:21,433:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:21,513:INFO:Calculating mean and std
+2023-11-09 11:09:21,514:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,517:INFO:Uploading results into container
+2023-11-09 11:09:21,518:INFO:Uploading model into container now
+2023-11-09 11:09:21,518:INFO:_master_model_container: 7
+2023-11-09 11:09:21,519:INFO:_display_container: 2
+2023-11-09 11:09:21,519:INFO:OrthogonalMatchingPursuit()
+2023-11-09 11:09:21,519:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:21,673:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:21,673:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,683:INFO:Initializing Bayesian Ridge
+2023-11-09 11:09:21,683:INFO:Total runtime is 0.0627333402633667 minutes
+2023-11-09 11:09:21,687:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:21,688:INFO:Initializing create_model()
+2023-11-09 11:09:21,688:INFO:create_model(self=, estimator=br, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:21,688:INFO:Checking exceptions
+2023-11-09 11:09:21,688:INFO:Importing libraries
+2023-11-09 11:09:21,688:INFO:Copying training dataset
+2023-11-09 11:09:21,693:INFO:Defining folds
+2023-11-09 11:09:21,693:INFO:Declaring metric variables
+2023-11-09 11:09:21,698:INFO:Importing untrained model
+2023-11-09 11:09:21,701:INFO:Bayesian Ridge Imported successfully
+2023-11-09 11:09:21,707:INFO:Starting cross validation
+2023-11-09 11:09:21,708:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:21,787:INFO:Calculating mean and std
+2023-11-09 11:09:21,788:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,791:INFO:Uploading results into container
+2023-11-09 11:09:21,792:INFO:Uploading model into container now
+2023-11-09 11:09:21,792:INFO:_master_model_container: 8
+2023-11-09 11:09:21,793:INFO:_display_container: 2
+2023-11-09 11:09:21,793:INFO:BayesianRidge()
+2023-11-09 11:09:21,793:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:21,937:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:21,938:INFO:Creating metrics dataframe
+2023-11-09 11:09:21,947:INFO:Initializing Passive Aggressive Regressor
+2023-11-09 11:09:21,947:INFO:Total runtime is 0.06713413000106812 minutes
+2023-11-09 11:09:21,951:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:21,952:INFO:Initializing create_model()
+2023-11-09 11:09:21,952:INFO:create_model(self=, estimator=par, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:21,952:INFO:Checking exceptions
+2023-11-09 11:09:21,952:INFO:Importing libraries
+2023-11-09 11:09:21,953:INFO:Copying training dataset
+2023-11-09 11:09:21,957:INFO:Defining folds
+2023-11-09 11:09:21,957:INFO:Declaring metric variables
+2023-11-09 11:09:21,961:INFO:Importing untrained model
+2023-11-09 11:09:21,964:INFO:Passive Aggressive Regressor Imported successfully
+2023-11-09 11:09:21,970:INFO:Starting cross validation
+2023-11-09 11:09:21,972:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:22,062:INFO:Calculating mean and std
+2023-11-09 11:09:22,063:INFO:Creating metrics dataframe
+2023-11-09 11:09:22,066:INFO:Uploading results into container
+2023-11-09 11:09:22,068:INFO:Uploading model into container now
+2023-11-09 11:09:22,068:INFO:_master_model_container: 9
+2023-11-09 11:09:22,068:INFO:_display_container: 2
+2023-11-09 11:09:22,069:INFO:PassiveAggressiveRegressor(random_state=123)
+2023-11-09 11:09:22,069:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:22,215:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:22,215:INFO:Creating metrics dataframe
+2023-11-09 11:09:22,225:INFO:Initializing Huber Regressor
+2023-11-09 11:09:22,225:INFO:Total runtime is 0.07176302671432495 minutes
+2023-11-09 11:09:22,229:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:22,230:INFO:Initializing create_model()
+2023-11-09 11:09:22,230:INFO:create_model(self=, estimator=huber, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:22,230:INFO:Checking exceptions
+2023-11-09 11:09:22,230:INFO:Importing libraries
+2023-11-09 11:09:22,230:INFO:Copying training dataset
+2023-11-09 11:09:22,234:INFO:Defining folds
+2023-11-09 11:09:22,234:INFO:Declaring metric variables
+2023-11-09 11:09:22,237:INFO:Importing untrained model
+2023-11-09 11:09:22,241:INFO:Huber Regressor Imported successfully
+2023-11-09 11:09:22,247:INFO:Starting cross validation
+2023-11-09 11:09:22,248:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:22,365:INFO:Calculating mean and std
+2023-11-09 11:09:22,367:INFO:Creating metrics dataframe
+2023-11-09 11:09:22,370:INFO:Uploading results into container
+2023-11-09 11:09:22,372:INFO:Uploading model into container now
+2023-11-09 11:09:22,372:INFO:_master_model_container: 10
+2023-11-09 11:09:22,372:INFO:_display_container: 2
+2023-11-09 11:09:22,373:INFO:HuberRegressor()
+2023-11-09 11:09:22,373:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:22,515:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:22,515:INFO:Creating metrics dataframe
+2023-11-09 11:09:22,525:INFO:Initializing K Neighbors Regressor
+2023-11-09 11:09:22,526:INFO:Total runtime is 0.07676899830500285 minutes
+2023-11-09 11:09:22,529:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:22,530:INFO:Initializing create_model()
+2023-11-09 11:09:22,530:INFO:create_model(self=, estimator=knn, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:22,530:INFO:Checking exceptions
+2023-11-09 11:09:22,530:INFO:Importing libraries
+2023-11-09 11:09:22,530:INFO:Copying training dataset
+2023-11-09 11:09:22,535:INFO:Defining folds
+2023-11-09 11:09:22,535:INFO:Declaring metric variables
+2023-11-09 11:09:22,539:INFO:Importing untrained model
+2023-11-09 11:09:22,543:INFO:K Neighbors Regressor Imported successfully
+2023-11-09 11:09:22,548:INFO:Starting cross validation
+2023-11-09 11:09:22,549:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:22,652:INFO:Calculating mean and std
+2023-11-09 11:09:22,653:INFO:Creating metrics dataframe
+2023-11-09 11:09:22,657:INFO:Uploading results into container
+2023-11-09 11:09:22,658:INFO:Uploading model into container now
+2023-11-09 11:09:22,658:INFO:_master_model_container: 11
+2023-11-09 11:09:22,658:INFO:_display_container: 2
+2023-11-09 11:09:22,659:INFO:KNeighborsRegressor(n_jobs=-1)
+2023-11-09 11:09:22,659:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:22,808:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:22,809:INFO:Creating metrics dataframe
+2023-11-09 11:09:22,824:INFO:Initializing Decision Tree Regressor
+2023-11-09 11:09:22,824:INFO:Total runtime is 0.0817442536354065 minutes
+2023-11-09 11:09:22,828:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:22,829:INFO:Initializing create_model()
+2023-11-09 11:09:22,829:INFO:create_model(self=, estimator=dt, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:22,829:INFO:Checking exceptions
+2023-11-09 11:09:22,829:INFO:Importing libraries
+2023-11-09 11:09:22,829:INFO:Copying training dataset
+2023-11-09 11:09:22,835:INFO:Defining folds
+2023-11-09 11:09:22,835:INFO:Declaring metric variables
+2023-11-09 11:09:22,838:INFO:Importing untrained model
+2023-11-09 11:09:22,843:INFO:Decision Tree Regressor Imported successfully
+2023-11-09 11:09:22,851:INFO:Starting cross validation
+2023-11-09 11:09:22,852:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:23,020:INFO:Calculating mean and std
+2023-11-09 11:09:23,022:INFO:Creating metrics dataframe
+2023-11-09 11:09:23,038:INFO:Uploading results into container
+2023-11-09 11:09:23,043:INFO:Uploading model into container now
+2023-11-09 11:09:23,044:INFO:_master_model_container: 12
+2023-11-09 11:09:23,044:INFO:_display_container: 2
+2023-11-09 11:09:23,045:INFO:DecisionTreeRegressor(random_state=123)
+2023-11-09 11:09:23,045:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:23,283:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:23,283:INFO:Creating metrics dataframe
+2023-11-09 11:09:23,304:INFO:Initializing Random Forest Regressor
+2023-11-09 11:09:23,304:INFO:Total runtime is 0.08975063959757487 minutes
+2023-11-09 11:09:23,308:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:23,309:INFO:Initializing create_model()
+2023-11-09 11:09:23,309:INFO:create_model(self=, estimator=rf, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:23,309:INFO:Checking exceptions
+2023-11-09 11:09:23,309:INFO:Importing libraries
+2023-11-09 11:09:23,309:INFO:Copying training dataset
+2023-11-09 11:09:23,314:INFO:Defining folds
+2023-11-09 11:09:23,314:INFO:Declaring metric variables
+2023-11-09 11:09:23,318:INFO:Importing untrained model
+2023-11-09 11:09:23,322:INFO:Random Forest Regressor Imported successfully
+2023-11-09 11:09:23,329:INFO:Starting cross validation
+2023-11-09 11:09:23,330:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:23,756:INFO:Calculating mean and std
+2023-11-09 11:09:23,757:INFO:Creating metrics dataframe
+2023-11-09 11:09:23,761:INFO:Uploading results into container
+2023-11-09 11:09:23,762:INFO:Uploading model into container now
+2023-11-09 11:09:23,762:INFO:_master_model_container: 13
+2023-11-09 11:09:23,762:INFO:_display_container: 2
+2023-11-09 11:09:23,763:INFO:RandomForestRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:09:23,763:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:23,897:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:23,897:INFO:Creating metrics dataframe
+2023-11-09 11:09:23,907:INFO:Initializing Extra Trees Regressor
+2023-11-09 11:09:23,908:INFO:Total runtime is 0.09980345964431762 minutes
+2023-11-09 11:09:23,911:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:23,912:INFO:Initializing create_model()
+2023-11-09 11:09:23,912:INFO:create_model(self=, estimator=et, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:23,912:INFO:Checking exceptions
+2023-11-09 11:09:23,912:INFO:Importing libraries
+2023-11-09 11:09:23,912:INFO:Copying training dataset
+2023-11-09 11:09:23,916:INFO:Defining folds
+2023-11-09 11:09:23,916:INFO:Declaring metric variables
+2023-11-09 11:09:23,920:INFO:Importing untrained model
+2023-11-09 11:09:23,923:INFO:Extra Trees Regressor Imported successfully
+2023-11-09 11:09:23,930:INFO:Starting cross validation
+2023-11-09 11:09:23,931:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:24,292:INFO:Calculating mean and std
+2023-11-09 11:09:24,293:INFO:Creating metrics dataframe
+2023-11-09 11:09:24,297:INFO:Uploading results into container
+2023-11-09 11:09:24,297:INFO:Uploading model into container now
+2023-11-09 11:09:24,298:INFO:_master_model_container: 14
+2023-11-09 11:09:24,298:INFO:_display_container: 2
+2023-11-09 11:09:24,298:INFO:ExtraTreesRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:09:24,298:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:24,432:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:24,432:INFO:Creating metrics dataframe
+2023-11-09 11:09:24,442:INFO:Initializing AdaBoost Regressor
+2023-11-09 11:09:24,442:INFO:Total runtime is 0.10870830217997232 minutes
+2023-11-09 11:09:24,447:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:24,448:INFO:Initializing create_model()
+2023-11-09 11:09:24,448:INFO:create_model(self=, estimator=ada, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:24,448:INFO:Checking exceptions
+2023-11-09 11:09:24,448:INFO:Importing libraries
+2023-11-09 11:09:24,448:INFO:Copying training dataset
+2023-11-09 11:09:24,451:INFO:Defining folds
+2023-11-09 11:09:24,452:INFO:Declaring metric variables
+2023-11-09 11:09:24,455:INFO:Importing untrained model
+2023-11-09 11:09:24,458:INFO:AdaBoost Regressor Imported successfully
+2023-11-09 11:09:24,464:INFO:Starting cross validation
+2023-11-09 11:09:24,465:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:24,664:INFO:Calculating mean and std
+2023-11-09 11:09:24,665:INFO:Creating metrics dataframe
+2023-11-09 11:09:24,668:INFO:Uploading results into container
+2023-11-09 11:09:24,669:INFO:Uploading model into container now
+2023-11-09 11:09:24,669:INFO:_master_model_container: 15
+2023-11-09 11:09:24,669:INFO:_display_container: 2
+2023-11-09 11:09:24,670:INFO:AdaBoostRegressor(random_state=123)
+2023-11-09 11:09:24,670:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:24,796:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:24,796:INFO:Creating metrics dataframe
+2023-11-09 11:09:24,808:INFO:Initializing Gradient Boosting Regressor
+2023-11-09 11:09:24,809:INFO:Total runtime is 0.11481863657633462 minutes
+2023-11-09 11:09:24,812:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:24,812:INFO:Initializing create_model()
+2023-11-09 11:09:24,813:INFO:create_model(self=, estimator=gbr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:24,813:INFO:Checking exceptions
+2023-11-09 11:09:24,813:INFO:Importing libraries
+2023-11-09 11:09:24,813:INFO:Copying training dataset
+2023-11-09 11:09:24,817:INFO:Defining folds
+2023-11-09 11:09:24,817:INFO:Declaring metric variables
+2023-11-09 11:09:24,821:INFO:Importing untrained model
+2023-11-09 11:09:24,824:INFO:Gradient Boosting Regressor Imported successfully
+2023-11-09 11:09:24,830:INFO:Starting cross validation
+2023-11-09 11:09:24,832:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:24,996:INFO:Calculating mean and std
+2023-11-09 11:09:24,997:INFO:Creating metrics dataframe
+2023-11-09 11:09:25,001:INFO:Uploading results into container
+2023-11-09 11:09:25,002:INFO:Uploading model into container now
+2023-11-09 11:09:25,002:INFO:_master_model_container: 16
+2023-11-09 11:09:25,003:INFO:_display_container: 2
+2023-11-09 11:09:25,003:INFO:GradientBoostingRegressor(random_state=123)
+2023-11-09 11:09:25,003:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:25,149:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:25,149:INFO:Creating metrics dataframe
+2023-11-09 11:09:25,164:INFO:Initializing Light Gradient Boosting Machine
+2023-11-09 11:09:25,165:INFO:Total runtime is 0.1207538604736328 minutes
+2023-11-09 11:09:25,168:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:25,169:INFO:Initializing create_model()
+2023-11-09 11:09:25,169:INFO:create_model(self=, estimator=lightgbm, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:25,169:INFO:Checking exceptions
+2023-11-09 11:09:25,169:INFO:Importing libraries
+2023-11-09 11:09:25,169:INFO:Copying training dataset
+2023-11-09 11:09:25,174:INFO:Defining folds
+2023-11-09 11:09:25,174:INFO:Declaring metric variables
+2023-11-09 11:09:25,177:INFO:Importing untrained model
+2023-11-09 11:09:25,182:INFO:Light Gradient Boosting Machine Imported successfully
+2023-11-09 11:09:25,190:INFO:Starting cross validation
+2023-11-09 11:09:25,192:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:25,460:INFO:Calculating mean and std
+2023-11-09 11:09:25,462:INFO:Creating metrics dataframe
+2023-11-09 11:09:25,465:INFO:Uploading results into container
+2023-11-09 11:09:25,466:INFO:Uploading model into container now
+2023-11-09 11:09:25,466:INFO:_master_model_container: 17
+2023-11-09 11:09:25,466:INFO:_display_container: 2
+2023-11-09 11:09:25,467:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:09:25,467:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:25,615:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:25,615:INFO:Creating metrics dataframe
+2023-11-09 11:09:25,626:INFO:Initializing Dummy Regressor
+2023-11-09 11:09:25,626:INFO:Total runtime is 0.12844714323679604 minutes
+2023-11-09 11:09:25,631:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:09:25,631:INFO:Initializing create_model()
+2023-11-09 11:09:25,631:INFO:create_model(self=, estimator=dummy, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:25,631:INFO:Checking exceptions
+2023-11-09 11:09:25,631:INFO:Importing libraries
+2023-11-09 11:09:25,631:INFO:Copying training dataset
+2023-11-09 11:09:25,635:INFO:Defining folds
+2023-11-09 11:09:25,636:INFO:Declaring metric variables
+2023-11-09 11:09:25,640:INFO:Importing untrained model
+2023-11-09 11:09:25,643:INFO:Dummy Regressor Imported successfully
+2023-11-09 11:09:25,650:INFO:Starting cross validation
+2023-11-09 11:09:25,651:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:09:25,725:INFO:Calculating mean and std
+2023-11-09 11:09:25,726:INFO:Creating metrics dataframe
+2023-11-09 11:09:25,729:INFO:Uploading results into container
+2023-11-09 11:09:25,729:INFO:Uploading model into container now
+2023-11-09 11:09:25,729:INFO:_master_model_container: 18
+2023-11-09 11:09:25,730:INFO:_display_container: 2
+2023-11-09 11:09:25,730:INFO:DummyRegressor()
+2023-11-09 11:09:25,730:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:25,886:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:09:25,886:INFO:Creating metrics dataframe
+2023-11-09 11:09:25,908:INFO:Initializing create_model()
+2023-11-09 11:09:25,908:INFO:create_model(self=, estimator=HuberRegressor(), fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=False, predict=False, fit_kwargs={}, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:09:25,908:INFO:Checking exceptions
+2023-11-09 11:09:25,910:INFO:Importing libraries
+2023-11-09 11:09:25,910:INFO:Copying training dataset
+2023-11-09 11:09:25,913:INFO:Defining folds
+2023-11-09 11:09:25,914:INFO:Declaring metric variables
+2023-11-09 11:09:25,914:INFO:Importing untrained model
+2023-11-09 11:09:25,914:INFO:Declaring custom model
+2023-11-09 11:09:25,914:INFO:Huber Regressor Imported successfully
+2023-11-09 11:09:25,915:INFO:Cross validation set to False
+2023-11-09 11:09:25,915:INFO:Fitting Model
+2023-11-09 11:09:25,939:INFO:HuberRegressor()
+2023-11-09 11:09:25,939:INFO:create_model() successfully completed......................................
+2023-11-09 11:09:26,110:INFO:_master_model_container: 18
+2023-11-09 11:09:26,111:INFO:_display_container: 2
+2023-11-09 11:09:26,111:INFO:HuberRegressor()
+2023-11-09 11:09:26,111:INFO:compare_models() successfully completed......................................
+2023-11-09 11:09:26,275:INFO:Initializing predict_model()
+2023-11-09 11:09:26,275:INFO:predict_model(self=, estimator=HuberRegressor(), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=True, ml_usecase=None, preprocess=True, encode_labels=.encode_labels at 0x7fbb2ca7a550>)
+2023-11-09 11:09:26,276:INFO:Checking exceptions
+2023-11-09 11:09:26,276:INFO:Preloading libraries
+2023-11-09 11:09:26,278:INFO:Set up data.
+2023-11-09 11:09:26,281:INFO:Set up index.
+2023-11-09 11:12:06,931:WARNING:/tmp/ipykernel_54540/3774887149.py:1: SettingWithCopyWarning:
+
+
+A value is trying to be set on a copy of a slice from a DataFrame
+
+See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
+
+
+2023-11-09 11:12:14,496:WARNING:/tmp/ipykernel_54540/2181003279.py:1: SettingWithCopyWarning:
+
+
+A value is trying to be set on a copy of a slice from a DataFrame
+
+See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
+
+
+2023-11-09 11:13:58,323:INFO:PyCaret RegressionExperiment
+2023-11-09 11:13:58,324:INFO:Logging name: reg-default-name
+2023-11-09 11:13:58,324:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 11:13:58,324:INFO:version 3.1.0
+2023-11-09 11:13:58,324:INFO:Initializing setup()
+2023-11-09 11:13:58,324:INFO:self.USI: a563
+2023-11-09 11:13:58,325:INFO:self._variable_keys: {'seed', 'idx', 'transform_target_param', 'gpu_param', 'target_param', 'log_plots_param', 'pipeline', 'logging_param', 'fold_groups_param', '_ml_usecase', 'html_param', 'gpu_n_jobs_param', 'y', 'y_test', 'y_train', 'memory', 'exp_id', 'X_test', 'exp_name_log', 'USI', 'data', 'X_train', 'fold_shuffle_param', 'X', 'fold_generator', 'n_jobs_param', '_available_plots'}
+2023-11-09 11:13:58,325:INFO:Checking environment
+2023-11-09 11:13:58,325:INFO:python_version: 3.8.18
+2023-11-09 11:13:58,325:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 11:13:58,325:INFO:machine: x86_64
+2023-11-09 11:13:58,325:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:13:58,326:INFO:Memory: svmem(total=8315187200, available=4599803904, percent=44.7, used=3380736000, free=272965632, active=1468928000, inactive=5733826560, buffers=333897728, cached=4327587840, shared=4489216, slab=651264000)
+2023-11-09 11:13:58,326:INFO:Physical Core: 1
+2023-11-09 11:13:58,326:INFO:Logical Core: 2
+2023-11-09 11:13:58,326:INFO:Checking libraries
+2023-11-09 11:13:58,326:INFO:System:
+2023-11-09 11:13:58,326:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 11:13:58,326:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 11:13:58,326:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:13:58,326:INFO:PyCaret required dependencies:
+2023-11-09 11:13:58,326:INFO: pip: 23.3
+2023-11-09 11:13:58,326:INFO: setuptools: 68.0.0
+2023-11-09 11:13:58,326:INFO: pycaret: 3.1.0
+2023-11-09 11:13:58,327:INFO: IPython: 8.12.0
+2023-11-09 11:13:58,327:INFO: ipywidgets: 8.1.1
+2023-11-09 11:13:58,327:INFO: tqdm: 4.66.1
+2023-11-09 11:13:58,327:INFO: numpy: 1.23.5
+2023-11-09 11:13:58,327:INFO: pandas: 1.5.3
+2023-11-09 11:13:58,327:INFO: jinja2: 3.1.2
+2023-11-09 11:13:58,327:INFO: scipy: 1.10.1
+2023-11-09 11:13:58,327:INFO: joblib: 1.3.2
+2023-11-09 11:13:58,327:INFO: sklearn: 1.2.2
+2023-11-09 11:13:58,327:INFO: pyod: 1.1.1
+2023-11-09 11:13:58,327:INFO: imblearn: 0.11.0
+2023-11-09 11:13:58,327:INFO: category_encoders: 2.6.3
+2023-11-09 11:13:58,327:INFO: lightgbm: 4.1.0
+2023-11-09 11:13:58,327:INFO: numba: 0.58.1
+2023-11-09 11:13:58,327:INFO: requests: 2.31.0
+2023-11-09 11:13:58,327:INFO: matplotlib: 3.7.3
+2023-11-09 11:13:58,327:INFO: scikitplot: 0.3.7
+2023-11-09 11:13:58,327:INFO: yellowbrick: 1.5
+2023-11-09 11:13:58,327:INFO: plotly: 5.18.0
+2023-11-09 11:13:58,328:INFO: plotly-resampler: Not installed
+2023-11-09 11:13:58,328:INFO: kaleido: 0.2.1
+2023-11-09 11:13:58,328:INFO: schemdraw: 0.15
+2023-11-09 11:13:58,328:INFO: statsmodels: 0.14.0
+2023-11-09 11:13:58,328:INFO: sktime: 0.21.1
+2023-11-09 11:13:58,328:INFO: tbats: 1.1.3
+2023-11-09 11:13:58,328:INFO: pmdarima: 2.0.4
+2023-11-09 11:13:58,328:INFO: psutil: 5.9.0
+2023-11-09 11:13:58,328:INFO: markupsafe: 2.1.3
+2023-11-09 11:13:58,328:INFO: pickle5: Not installed
+2023-11-09 11:13:58,328:INFO: cloudpickle: 3.0.0
+2023-11-09 11:13:58,328:INFO: deprecation: 2.1.0
+2023-11-09 11:13:58,328:INFO: xxhash: 3.4.1
+2023-11-09 11:13:58,328:INFO: wurlitzer: 3.0.3
+2023-11-09 11:13:58,328:INFO:PyCaret optional dependencies:
+2023-11-09 11:13:58,328:INFO: shap: Not installed
+2023-11-09 11:13:58,328:INFO: interpret: Not installed
+2023-11-09 11:13:58,328:INFO: umap: Not installed
+2023-11-09 11:13:58,328:INFO: ydata_profiling: Not installed
+2023-11-09 11:13:58,328:INFO: explainerdashboard: Not installed
+2023-11-09 11:13:58,329:INFO: autoviz: Not installed
+2023-11-09 11:13:58,329:INFO: fairlearn: Not installed
+2023-11-09 11:13:58,329:INFO: deepchecks: Not installed
+2023-11-09 11:13:58,329:INFO: xgboost: Not installed
+2023-11-09 11:13:58,329:INFO: catboost: Not installed
+2023-11-09 11:13:58,329:INFO: kmodes: Not installed
+2023-11-09 11:13:58,329:INFO: mlxtend: Not installed
+2023-11-09 11:13:58,329:INFO: statsforecast: Not installed
+2023-11-09 11:13:58,329:INFO: tune_sklearn: Not installed
+2023-11-09 11:13:58,329:INFO: ray: Not installed
+2023-11-09 11:13:58,329:INFO: hyperopt: Not installed
+2023-11-09 11:13:58,329:INFO: optuna: Not installed
+2023-11-09 11:13:58,329:INFO: skopt: Not installed
+2023-11-09 11:13:58,329:INFO: mlflow: Not installed
+2023-11-09 11:13:58,329:INFO: gradio: Not installed
+2023-11-09 11:13:58,329:INFO: fastapi: Not installed
+2023-11-09 11:13:58,329:INFO: uvicorn: Not installed
+2023-11-09 11:13:58,329:INFO: m2cgen: Not installed
+2023-11-09 11:13:58,329:INFO: evidently: Not installed
+2023-11-09 11:13:58,329:INFO: fugue: Not installed
+2023-11-09 11:13:58,330:INFO: streamlit: Not installed
+2023-11-09 11:13:58,330:INFO: prophet: Not installed
+2023-11-09 11:13:58,330:INFO:None
+2023-11-09 11:13:58,330:INFO:Set up data.
+2023-11-09 11:13:58,333:INFO:Set up folding strategy.
+2023-11-09 11:13:58,333:INFO:Set up train/test split.
+2023-11-09 11:13:58,333:INFO:Set up data.
+2023-11-09 11:13:58,336:INFO:Set up index.
+2023-11-09 11:13:58,337:INFO:Assigning column types.
+2023-11-09 11:13:58,339:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
+2023-11-09 11:13:58,339:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,343:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,348:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,426:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,528:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,530:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,530:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,531:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,537:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,543:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,623:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,685:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,686:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,686:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,686:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
+2023-11-09 11:13:58,691:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,705:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,826:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,868:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,869:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,869:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,875:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,880:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,939:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,976:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:58,977:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,977:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:58,977:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
+2023-11-09 11:13:58,985:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,037:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,074:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,075:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,075:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,084:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,133:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,172:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,172:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,173:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,173:INFO:Engine successfully changes for model 'en' to 'sklearn'.
+2023-11-09 11:13:59,230:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,269:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,270:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,270:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,327:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,366:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,367:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,367:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,367:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
+2023-11-09 11:13:59,425:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,463:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,463:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,522:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:13:59,566:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,566:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,567:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
+2023-11-09 11:13:59,664:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,664:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,760:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,760:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,761:INFO:Preparing preprocessing pipeline...
+2023-11-09 11:13:59,761:INFO:Set up target transformation.
+2023-11-09 11:13:59,761:INFO:Set up simple imputation.
+2023-11-09 11:13:59,762:INFO:Set up column name cleaning.
+2023-11-09 11:13:59,786:INFO:Finished creating preprocessing pipeline.
+2023-11-09 11:13:59,793:INFO:Pipeline: Pipeline(memory=FastMemory(location=/tmp/joblib),
+ steps=[('target_transformation',
+ TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
+ ('numerical_imputer',
+ TransformerWrapper(include=['Year', 'Series'],
+ transformer=SimpleImputer())),
+ ('categorical_imputer',
+ TransformerWrapper(include=[],
+ transformer=SimpleImputer(strategy='most_frequent'))),
+ ('clean_column_names',
+ TransformerWrapper(transformer=CleanColumnNames()))])
+2023-11-09 11:13:59,793:INFO:Creating final display dataframe.
+2023-11-09 11:13:59,870:INFO:Setup _display_container: Description Value
+0 Session id 123
+1 Target Average price All property types
+2 Target type Regression
+3 Original data shape (271, 4)
+4 Transformed data shape (271, 4)
+5 Transformed train set shape (168, 4)
+6 Transformed test set shape (103, 4)
+7 Numeric features 2
+8 Preprocess True
+9 Imputation type simple
+10 Numeric imputation mean
+11 Categorical imputation mode
+12 Transform target True
+13 Transform target method yeo-johnson
+14 Fold Generator TimeSeriesSplit
+15 Fold Number 3
+16 CPU Jobs -1
+17 Use GPU False
+18 Log Experiment False
+19 Experiment Name reg-default-name
+20 USI a563
+2023-11-09 11:13:59,988:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:13:59,989:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:14:00,161:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:14:00,161:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:14:00,162:INFO:setup() successfully completed in 1.84s...............
+2023-11-09 11:14:03,366:INFO:Initializing compare_models()
+2023-11-09 11:14:03,367:INFO:compare_models(self=, include=None, fold=None, round=4, cross_validation=True, sort=MAE, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': , 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'MAE', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': }, exclude=None)
+2023-11-09 11:14:03,368:INFO:Checking exceptions
+2023-11-09 11:14:03,369:INFO:Preparing display monitor
+2023-11-09 11:14:03,391:INFO:Initializing Linear Regression
+2023-11-09 11:14:03,391:INFO:Total runtime is 4.434585571289063e-06 minutes
+2023-11-09 11:14:03,394:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:03,394:INFO:Initializing create_model()
+2023-11-09 11:14:03,395:INFO:create_model(self=, estimator=lr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:03,395:INFO:Checking exceptions
+2023-11-09 11:14:03,395:INFO:Importing libraries
+2023-11-09 11:14:03,395:INFO:Copying training dataset
+2023-11-09 11:14:03,398:INFO:Defining folds
+2023-11-09 11:14:03,398:INFO:Declaring metric variables
+2023-11-09 11:14:03,402:INFO:Importing untrained model
+2023-11-09 11:14:03,405:INFO:Linear Regression Imported successfully
+2023-11-09 11:14:03,411:INFO:Starting cross validation
+2023-11-09 11:14:03,412:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:03,507:INFO:Calculating mean and std
+2023-11-09 11:14:03,507:INFO:Creating metrics dataframe
+2023-11-09 11:14:03,512:INFO:Uploading results into container
+2023-11-09 11:14:03,516:INFO:Uploading model into container now
+2023-11-09 11:14:03,516:INFO:_master_model_container: 1
+2023-11-09 11:14:03,519:INFO:_display_container: 2
+2023-11-09 11:14:03,519:INFO:LinearRegression(n_jobs=-1)
+2023-11-09 11:14:03,519:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:03,696:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:03,696:INFO:Creating metrics dataframe
+2023-11-09 11:14:03,703:INFO:Initializing Lasso Regression
+2023-11-09 11:14:03,704:INFO:Total runtime is 0.005212752024332682 minutes
+2023-11-09 11:14:03,710:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:03,710:INFO:Initializing create_model()
+2023-11-09 11:14:03,710:INFO:create_model(self=, estimator=lasso, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:03,710:INFO:Checking exceptions
+2023-11-09 11:14:03,710:INFO:Importing libraries
+2023-11-09 11:14:03,710:INFO:Copying training dataset
+2023-11-09 11:14:03,714:INFO:Defining folds
+2023-11-09 11:14:03,714:INFO:Declaring metric variables
+2023-11-09 11:14:03,717:INFO:Importing untrained model
+2023-11-09 11:14:03,720:INFO:Lasso Regression Imported successfully
+2023-11-09 11:14:03,726:INFO:Starting cross validation
+2023-11-09 11:14:03,727:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:03,801:WARNING:/workspaces/D2I-Jupyter-Notebook-Tools/.conda/lib/python3.8/site-packages/sklearn/linear_model/_coordinate_descent.py:631: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.575e+29, tolerance: 1.147e+26
+ model = cd_fast.enet_coordinate_descent(
+
+2023-11-09 11:14:03,814:INFO:Calculating mean and std
+2023-11-09 11:14:03,815:INFO:Creating metrics dataframe
+2023-11-09 11:14:03,819:INFO:Uploading results into container
+2023-11-09 11:14:03,820:INFO:Uploading model into container now
+2023-11-09 11:14:03,820:INFO:_master_model_container: 2
+2023-11-09 11:14:03,820:INFO:_display_container: 2
+2023-11-09 11:14:03,820:INFO:Lasso(random_state=123)
+2023-11-09 11:14:03,820:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:03,981:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:03,981:INFO:Creating metrics dataframe
+2023-11-09 11:14:03,989:INFO:Initializing Ridge Regression
+2023-11-09 11:14:03,989:INFO:Total runtime is 0.009976108868916828 minutes
+2023-11-09 11:14:03,993:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:03,994:INFO:Initializing create_model()
+2023-11-09 11:14:03,994:INFO:create_model(self=, estimator=ridge, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:03,994:INFO:Checking exceptions
+2023-11-09 11:14:03,994:INFO:Importing libraries
+2023-11-09 11:14:03,994:INFO:Copying training dataset
+2023-11-09 11:14:03,997:INFO:Defining folds
+2023-11-09 11:14:03,997:INFO:Declaring metric variables
+2023-11-09 11:14:04,001:INFO:Importing untrained model
+2023-11-09 11:14:04,005:INFO:Ridge Regression Imported successfully
+2023-11-09 11:14:04,012:INFO:Starting cross validation
+2023-11-09 11:14:04,013:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:04,095:INFO:Calculating mean and std
+2023-11-09 11:14:04,095:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,098:INFO:Uploading results into container
+2023-11-09 11:14:04,099:INFO:Uploading model into container now
+2023-11-09 11:14:04,099:INFO:_master_model_container: 3
+2023-11-09 11:14:04,099:INFO:_display_container: 2
+2023-11-09 11:14:04,099:INFO:Ridge(random_state=123)
+2023-11-09 11:14:04,099:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:04,227:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:04,227:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,235:INFO:Initializing Elastic Net
+2023-11-09 11:14:04,235:INFO:Total runtime is 0.014074321587880452 minutes
+2023-11-09 11:14:04,239:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:04,239:INFO:Initializing create_model()
+2023-11-09 11:14:04,239:INFO:create_model(self=, estimator=en, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:04,239:INFO:Checking exceptions
+2023-11-09 11:14:04,239:INFO:Importing libraries
+2023-11-09 11:14:04,239:INFO:Copying training dataset
+2023-11-09 11:14:04,242:INFO:Defining folds
+2023-11-09 11:14:04,242:INFO:Declaring metric variables
+2023-11-09 11:14:04,245:INFO:Importing untrained model
+2023-11-09 11:14:04,248:INFO:Elastic Net Imported successfully
+2023-11-09 11:14:04,254:INFO:Starting cross validation
+2023-11-09 11:14:04,255:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:04,333:INFO:Calculating mean and std
+2023-11-09 11:14:04,334:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,338:INFO:Uploading results into container
+2023-11-09 11:14:04,338:INFO:Uploading model into container now
+2023-11-09 11:14:04,339:INFO:_master_model_container: 4
+2023-11-09 11:14:04,339:INFO:_display_container: 2
+2023-11-09 11:14:04,339:INFO:ElasticNet(random_state=123)
+2023-11-09 11:14:04,339:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:04,470:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:04,470:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,483:INFO:Initializing Least Angle Regression
+2023-11-09 11:14:04,483:INFO:Total runtime is 0.018196769555409747 minutes
+2023-11-09 11:14:04,488:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:04,488:INFO:Initializing create_model()
+2023-11-09 11:14:04,488:INFO:create_model(self=, estimator=lar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:04,488:INFO:Checking exceptions
+2023-11-09 11:14:04,488:INFO:Importing libraries
+2023-11-09 11:14:04,489:INFO:Copying training dataset
+2023-11-09 11:14:04,493:INFO:Defining folds
+2023-11-09 11:14:04,494:INFO:Declaring metric variables
+2023-11-09 11:14:04,498:INFO:Importing untrained model
+2023-11-09 11:14:04,503:INFO:Least Angle Regression Imported successfully
+2023-11-09 11:14:04,511:INFO:Starting cross validation
+2023-11-09 11:14:04,514:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:04,617:INFO:Calculating mean and std
+2023-11-09 11:14:04,618:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,624:INFO:Uploading results into container
+2023-11-09 11:14:04,625:INFO:Uploading model into container now
+2023-11-09 11:14:04,625:INFO:_master_model_container: 5
+2023-11-09 11:14:04,625:INFO:_display_container: 2
+2023-11-09 11:14:04,627:INFO:Lars(random_state=123)
+2023-11-09 11:14:04,627:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:04,750:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:04,751:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,760:INFO:Initializing Lasso Least Angle Regression
+2023-11-09 11:14:04,760:INFO:Total runtime is 0.022819622357686357 minutes
+2023-11-09 11:14:04,763:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:04,764:INFO:Initializing create_model()
+2023-11-09 11:14:04,764:INFO:create_model(self=, estimator=llar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:04,764:INFO:Checking exceptions
+2023-11-09 11:14:04,765:INFO:Importing libraries
+2023-11-09 11:14:04,765:INFO:Copying training dataset
+2023-11-09 11:14:04,768:INFO:Defining folds
+2023-11-09 11:14:04,768:INFO:Declaring metric variables
+2023-11-09 11:14:04,772:INFO:Importing untrained model
+2023-11-09 11:14:04,775:INFO:Lasso Least Angle Regression Imported successfully
+2023-11-09 11:14:04,781:INFO:Starting cross validation
+2023-11-09 11:14:04,782:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:04,853:INFO:Calculating mean and std
+2023-11-09 11:14:04,854:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,856:INFO:Uploading results into container
+2023-11-09 11:14:04,857:INFO:Uploading model into container now
+2023-11-09 11:14:04,857:INFO:_master_model_container: 6
+2023-11-09 11:14:04,857:INFO:_display_container: 2
+2023-11-09 11:14:04,858:INFO:LassoLars(random_state=123)
+2023-11-09 11:14:04,858:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:04,980:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:04,980:INFO:Creating metrics dataframe
+2023-11-09 11:14:04,989:INFO:Initializing Orthogonal Matching Pursuit
+2023-11-09 11:14:04,990:INFO:Total runtime is 0.02664367357889811 minutes
+2023-11-09 11:14:04,994:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:04,995:INFO:Initializing create_model()
+2023-11-09 11:14:04,995:INFO:create_model(self=, estimator=omp, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:04,995:INFO:Checking exceptions
+2023-11-09 11:14:04,995:INFO:Importing libraries
+2023-11-09 11:14:04,995:INFO:Copying training dataset
+2023-11-09 11:14:05,001:INFO:Defining folds
+2023-11-09 11:14:05,001:INFO:Declaring metric variables
+2023-11-09 11:14:05,005:INFO:Importing untrained model
+2023-11-09 11:14:05,009:INFO:Orthogonal Matching Pursuit Imported successfully
+2023-11-09 11:14:05,017:INFO:Starting cross validation
+2023-11-09 11:14:05,018:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:05,104:INFO:Calculating mean and std
+2023-11-09 11:14:05,105:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,108:INFO:Uploading results into container
+2023-11-09 11:14:05,109:INFO:Uploading model into container now
+2023-11-09 11:14:05,109:INFO:_master_model_container: 7
+2023-11-09 11:14:05,110:INFO:_display_container: 2
+2023-11-09 11:14:05,110:INFO:OrthogonalMatchingPursuit()
+2023-11-09 11:14:05,110:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:05,235:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:05,235:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,245:INFO:Initializing Bayesian Ridge
+2023-11-09 11:14:05,245:INFO:Total runtime is 0.03090266386667887 minutes
+2023-11-09 11:14:05,249:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:05,250:INFO:Initializing create_model()
+2023-11-09 11:14:05,250:INFO:create_model(self=, estimator=br, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:05,250:INFO:Checking exceptions
+2023-11-09 11:14:05,250:INFO:Importing libraries
+2023-11-09 11:14:05,250:INFO:Copying training dataset
+2023-11-09 11:14:05,254:INFO:Defining folds
+2023-11-09 11:14:05,254:INFO:Declaring metric variables
+2023-11-09 11:14:05,258:INFO:Importing untrained model
+2023-11-09 11:14:05,262:INFO:Bayesian Ridge Imported successfully
+2023-11-09 11:14:05,269:INFO:Starting cross validation
+2023-11-09 11:14:05,270:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:05,368:INFO:Calculating mean and std
+2023-11-09 11:14:05,369:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,376:INFO:Uploading results into container
+2023-11-09 11:14:05,376:INFO:Uploading model into container now
+2023-11-09 11:14:05,377:INFO:_master_model_container: 8
+2023-11-09 11:14:05,377:INFO:_display_container: 2
+2023-11-09 11:14:05,377:INFO:BayesianRidge()
+2023-11-09 11:14:05,377:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:05,513:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:05,514:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,523:INFO:Initializing Passive Aggressive Regressor
+2023-11-09 11:14:05,523:INFO:Total runtime is 0.0355341633160909 minutes
+2023-11-09 11:14:05,526:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:05,527:INFO:Initializing create_model()
+2023-11-09 11:14:05,527:INFO:create_model(self=, estimator=par, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:05,527:INFO:Checking exceptions
+2023-11-09 11:14:05,527:INFO:Importing libraries
+2023-11-09 11:14:05,527:INFO:Copying training dataset
+2023-11-09 11:14:05,531:INFO:Defining folds
+2023-11-09 11:14:05,531:INFO:Declaring metric variables
+2023-11-09 11:14:05,534:INFO:Importing untrained model
+2023-11-09 11:14:05,538:INFO:Passive Aggressive Regressor Imported successfully
+2023-11-09 11:14:05,545:INFO:Starting cross validation
+2023-11-09 11:14:05,546:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:05,608:WARNING:/workspaces/D2I-Jupyter-Notebook-Tools/.conda/lib/python3.8/site-packages/sklearn/linear_model/_stochastic_gradient.py:1548: ConvergenceWarning: Maximum number of iteration reached before convergence. Consider increasing max_iter to improve the fit.
+ warnings.warn(
+
+2023-11-09 11:14:05,622:INFO:Calculating mean and std
+2023-11-09 11:14:05,623:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,626:INFO:Uploading results into container
+2023-11-09 11:14:05,627:INFO:Uploading model into container now
+2023-11-09 11:14:05,627:INFO:_master_model_container: 9
+2023-11-09 11:14:05,627:INFO:_display_container: 2
+2023-11-09 11:14:05,628:INFO:PassiveAggressiveRegressor(random_state=123)
+2023-11-09 11:14:05,628:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:05,756:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:05,757:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,766:INFO:Initializing Huber Regressor
+2023-11-09 11:14:05,766:INFO:Total runtime is 0.03959020773569742 minutes
+2023-11-09 11:14:05,770:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:05,770:INFO:Initializing create_model()
+2023-11-09 11:14:05,770:INFO:create_model(self=, estimator=huber, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:05,770:INFO:Checking exceptions
+2023-11-09 11:14:05,770:INFO:Importing libraries
+2023-11-09 11:14:05,771:INFO:Copying training dataset
+2023-11-09 11:14:05,774:INFO:Defining folds
+2023-11-09 11:14:05,774:INFO:Declaring metric variables
+2023-11-09 11:14:05,777:INFO:Importing untrained model
+2023-11-09 11:14:05,781:INFO:Huber Regressor Imported successfully
+2023-11-09 11:14:05,787:INFO:Starting cross validation
+2023-11-09 11:14:05,788:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:05,893:INFO:Calculating mean and std
+2023-11-09 11:14:05,895:INFO:Creating metrics dataframe
+2023-11-09 11:14:05,898:INFO:Uploading results into container
+2023-11-09 11:14:05,899:INFO:Uploading model into container now
+2023-11-09 11:14:05,900:INFO:_master_model_container: 10
+2023-11-09 11:14:05,900:INFO:_display_container: 2
+2023-11-09 11:14:05,900:INFO:HuberRegressor()
+2023-11-09 11:14:05,900:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:06,031:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:06,031:INFO:Creating metrics dataframe
+2023-11-09 11:14:06,040:INFO:Initializing K Neighbors Regressor
+2023-11-09 11:14:06,040:INFO:Total runtime is 0.04415459235509236 minutes
+2023-11-09 11:14:06,044:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:06,044:INFO:Initializing create_model()
+2023-11-09 11:14:06,044:INFO:create_model(self=, estimator=knn, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:06,044:INFO:Checking exceptions
+2023-11-09 11:14:06,044:INFO:Importing libraries
+2023-11-09 11:14:06,045:INFO:Copying training dataset
+2023-11-09 11:14:06,049:INFO:Defining folds
+2023-11-09 11:14:06,049:INFO:Declaring metric variables
+2023-11-09 11:14:06,053:INFO:Importing untrained model
+2023-11-09 11:14:06,057:INFO:K Neighbors Regressor Imported successfully
+2023-11-09 11:14:06,064:INFO:Starting cross validation
+2023-11-09 11:14:06,065:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:06,157:INFO:Calculating mean and std
+2023-11-09 11:14:06,158:INFO:Creating metrics dataframe
+2023-11-09 11:14:06,162:INFO:Uploading results into container
+2023-11-09 11:14:06,163:INFO:Uploading model into container now
+2023-11-09 11:14:06,163:INFO:_master_model_container: 11
+2023-11-09 11:14:06,163:INFO:_display_container: 2
+2023-11-09 11:14:06,164:INFO:KNeighborsRegressor(n_jobs=-1)
+2023-11-09 11:14:06,164:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:06,301:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:06,301:INFO:Creating metrics dataframe
+2023-11-09 11:14:06,311:INFO:Initializing Decision Tree Regressor
+2023-11-09 11:14:06,311:INFO:Total runtime is 0.04867283105850219 minutes
+2023-11-09 11:14:06,315:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:06,315:INFO:Initializing create_model()
+2023-11-09 11:14:06,315:INFO:create_model(self=, estimator=dt, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:06,315:INFO:Checking exceptions
+2023-11-09 11:14:06,316:INFO:Importing libraries
+2023-11-09 11:14:06,316:INFO:Copying training dataset
+2023-11-09 11:14:06,319:INFO:Defining folds
+2023-11-09 11:14:06,319:INFO:Declaring metric variables
+2023-11-09 11:14:06,323:INFO:Importing untrained model
+2023-11-09 11:14:06,326:INFO:Decision Tree Regressor Imported successfully
+2023-11-09 11:14:06,332:INFO:Starting cross validation
+2023-11-09 11:14:06,334:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:06,406:INFO:Calculating mean and std
+2023-11-09 11:14:06,406:INFO:Creating metrics dataframe
+2023-11-09 11:14:06,409:INFO:Uploading results into container
+2023-11-09 11:14:06,409:INFO:Uploading model into container now
+2023-11-09 11:14:06,410:INFO:_master_model_container: 12
+2023-11-09 11:14:06,410:INFO:_display_container: 2
+2023-11-09 11:14:06,410:INFO:DecisionTreeRegressor(random_state=123)
+2023-11-09 11:14:06,410:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:06,535:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:06,535:INFO:Creating metrics dataframe
+2023-11-09 11:14:06,545:INFO:Initializing Random Forest Regressor
+2023-11-09 11:14:06,546:INFO:Total runtime is 0.05258002678553263 minutes
+2023-11-09 11:14:06,549:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:06,550:INFO:Initializing create_model()
+2023-11-09 11:14:06,550:INFO:create_model(self=, estimator=rf, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:06,550:INFO:Checking exceptions
+2023-11-09 11:14:06,550:INFO:Importing libraries
+2023-11-09 11:14:06,550:INFO:Copying training dataset
+2023-11-09 11:14:06,553:INFO:Defining folds
+2023-11-09 11:14:06,554:INFO:Declaring metric variables
+2023-11-09 11:14:06,557:INFO:Importing untrained model
+2023-11-09 11:14:06,560:INFO:Random Forest Regressor Imported successfully
+2023-11-09 11:14:06,566:INFO:Starting cross validation
+2023-11-09 11:14:06,567:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:07,008:INFO:Calculating mean and std
+2023-11-09 11:14:07,009:INFO:Creating metrics dataframe
+2023-11-09 11:14:07,012:INFO:Uploading results into container
+2023-11-09 11:14:07,013:INFO:Uploading model into container now
+2023-11-09 11:14:07,014:INFO:_master_model_container: 13
+2023-11-09 11:14:07,014:INFO:_display_container: 2
+2023-11-09 11:14:07,014:INFO:RandomForestRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:14:07,014:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:07,147:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:07,148:INFO:Creating metrics dataframe
+2023-11-09 11:14:07,157:INFO:Initializing Extra Trees Regressor
+2023-11-09 11:14:07,158:INFO:Total runtime is 0.06277682781219482 minutes
+2023-11-09 11:14:07,161:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:07,161:INFO:Initializing create_model()
+2023-11-09 11:14:07,162:INFO:create_model(self=, estimator=et, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:07,162:INFO:Checking exceptions
+2023-11-09 11:14:07,162:INFO:Importing libraries
+2023-11-09 11:14:07,162:INFO:Copying training dataset
+2023-11-09 11:14:07,165:INFO:Defining folds
+2023-11-09 11:14:07,165:INFO:Declaring metric variables
+2023-11-09 11:14:07,169:INFO:Importing untrained model
+2023-11-09 11:14:07,172:INFO:Extra Trees Regressor Imported successfully
+2023-11-09 11:14:07,178:INFO:Starting cross validation
+2023-11-09 11:14:07,180:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:07,504:INFO:Calculating mean and std
+2023-11-09 11:14:07,505:INFO:Creating metrics dataframe
+2023-11-09 11:14:07,512:INFO:Uploading results into container
+2023-11-09 11:14:07,514:INFO:Uploading model into container now
+2023-11-09 11:14:07,515:INFO:_master_model_container: 14
+2023-11-09 11:14:07,515:INFO:_display_container: 2
+2023-11-09 11:14:07,516:INFO:ExtraTreesRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:14:07,517:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:07,646:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:07,646:INFO:Creating metrics dataframe
+2023-11-09 11:14:07,656:INFO:Initializing AdaBoost Regressor
+2023-11-09 11:14:07,657:INFO:Total runtime is 0.07109393676122029 minutes
+2023-11-09 11:14:07,660:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:07,661:INFO:Initializing create_model()
+2023-11-09 11:14:07,661:INFO:create_model(self=, estimator=ada, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:07,661:INFO:Checking exceptions
+2023-11-09 11:14:07,661:INFO:Importing libraries
+2023-11-09 11:14:07,661:INFO:Copying training dataset
+2023-11-09 11:14:07,664:INFO:Defining folds
+2023-11-09 11:14:07,665:INFO:Declaring metric variables
+2023-11-09 11:14:07,668:INFO:Importing untrained model
+2023-11-09 11:14:07,672:INFO:AdaBoost Regressor Imported successfully
+2023-11-09 11:14:07,678:INFO:Starting cross validation
+2023-11-09 11:14:07,679:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:07,848:INFO:Calculating mean and std
+2023-11-09 11:14:07,849:INFO:Creating metrics dataframe
+2023-11-09 11:14:07,853:INFO:Uploading results into container
+2023-11-09 11:14:07,853:INFO:Uploading model into container now
+2023-11-09 11:14:07,854:INFO:_master_model_container: 15
+2023-11-09 11:14:07,854:INFO:_display_container: 2
+2023-11-09 11:14:07,854:INFO:AdaBoostRegressor(random_state=123)
+2023-11-09 11:14:07,854:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:07,985:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:07,985:INFO:Creating metrics dataframe
+2023-11-09 11:14:07,995:INFO:Initializing Gradient Boosting Regressor
+2023-11-09 11:14:07,995:INFO:Total runtime is 0.07673628330230713 minutes
+2023-11-09 11:14:07,999:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:07,999:INFO:Initializing create_model()
+2023-11-09 11:14:07,999:INFO:create_model(self=, estimator=gbr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:07,999:INFO:Checking exceptions
+2023-11-09 11:14:07,999:INFO:Importing libraries
+2023-11-09 11:14:07,999:INFO:Copying training dataset
+2023-11-09 11:14:08,003:INFO:Defining folds
+2023-11-09 11:14:08,003:INFO:Declaring metric variables
+2023-11-09 11:14:08,007:INFO:Importing untrained model
+2023-11-09 11:14:08,010:INFO:Gradient Boosting Regressor Imported successfully
+2023-11-09 11:14:08,016:INFO:Starting cross validation
+2023-11-09 11:14:08,017:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:08,176:INFO:Calculating mean and std
+2023-11-09 11:14:08,177:INFO:Creating metrics dataframe
+2023-11-09 11:14:08,181:INFO:Uploading results into container
+2023-11-09 11:14:08,182:INFO:Uploading model into container now
+2023-11-09 11:14:08,182:INFO:_master_model_container: 16
+2023-11-09 11:14:08,182:INFO:_display_container: 2
+2023-11-09 11:14:08,183:INFO:GradientBoostingRegressor(random_state=123)
+2023-11-09 11:14:08,183:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:08,307:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:08,307:INFO:Creating metrics dataframe
+2023-11-09 11:14:08,319:INFO:Initializing Light Gradient Boosting Machine
+2023-11-09 11:14:08,319:INFO:Total runtime is 0.08212989171346029 minutes
+2023-11-09 11:14:08,323:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:08,323:INFO:Initializing create_model()
+2023-11-09 11:14:08,323:INFO:create_model(self=, estimator=lightgbm, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:08,323:INFO:Checking exceptions
+2023-11-09 11:14:08,324:INFO:Importing libraries
+2023-11-09 11:14:08,324:INFO:Copying training dataset
+2023-11-09 11:14:08,327:INFO:Defining folds
+2023-11-09 11:14:08,328:INFO:Declaring metric variables
+2023-11-09 11:14:08,332:INFO:Importing untrained model
+2023-11-09 11:14:08,335:INFO:Light Gradient Boosting Machine Imported successfully
+2023-11-09 11:14:08,341:INFO:Starting cross validation
+2023-11-09 11:14:08,342:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:08,497:INFO:Calculating mean and std
+2023-11-09 11:14:08,498:INFO:Creating metrics dataframe
+2023-11-09 11:14:08,504:INFO:Uploading results into container
+2023-11-09 11:14:08,504:INFO:Uploading model into container now
+2023-11-09 11:14:08,505:INFO:_master_model_container: 17
+2023-11-09 11:14:08,505:INFO:_display_container: 2
+2023-11-09 11:14:08,505:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:14:08,505:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:08,628:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:08,628:INFO:Creating metrics dataframe
+2023-11-09 11:14:08,639:INFO:Initializing Dummy Regressor
+2023-11-09 11:14:08,639:INFO:Total runtime is 0.08746862411499023 minutes
+2023-11-09 11:14:08,643:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:14:08,643:INFO:Initializing create_model()
+2023-11-09 11:14:08,643:INFO:create_model(self=, estimator=dummy, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:08,643:INFO:Checking exceptions
+2023-11-09 11:14:08,644:INFO:Importing libraries
+2023-11-09 11:14:08,644:INFO:Copying training dataset
+2023-11-09 11:14:08,647:INFO:Defining folds
+2023-11-09 11:14:08,647:INFO:Declaring metric variables
+2023-11-09 11:14:08,650:INFO:Importing untrained model
+2023-11-09 11:14:08,653:INFO:Dummy Regressor Imported successfully
+2023-11-09 11:14:08,659:INFO:Starting cross validation
+2023-11-09 11:14:08,660:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:14:08,731:INFO:Calculating mean and std
+2023-11-09 11:14:08,731:INFO:Creating metrics dataframe
+2023-11-09 11:14:08,734:INFO:Uploading results into container
+2023-11-09 11:14:08,735:INFO:Uploading model into container now
+2023-11-09 11:14:08,735:INFO:_master_model_container: 18
+2023-11-09 11:14:08,735:INFO:_display_container: 2
+2023-11-09 11:14:08,735:INFO:DummyRegressor()
+2023-11-09 11:14:08,735:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:08,890:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:14:08,890:INFO:Creating metrics dataframe
+2023-11-09 11:14:08,920:INFO:Initializing create_model()
+2023-11-09 11:14:08,920:INFO:create_model(self=, estimator=LGBMRegressor(n_jobs=-1, random_state=123), fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=False, predict=False, fit_kwargs={}, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:14:08,920:INFO:Checking exceptions
+2023-11-09 11:14:08,921:INFO:Importing libraries
+2023-11-09 11:14:08,921:INFO:Copying training dataset
+2023-11-09 11:14:08,924:INFO:Defining folds
+2023-11-09 11:14:08,924:INFO:Declaring metric variables
+2023-11-09 11:14:08,925:INFO:Importing untrained model
+2023-11-09 11:14:08,925:INFO:Declaring custom model
+2023-11-09 11:14:08,925:INFO:Light Gradient Boosting Machine Imported successfully
+2023-11-09 11:14:08,926:INFO:Cross validation set to False
+2023-11-09 11:14:08,926:INFO:Fitting Model
+2023-11-09 11:14:08,971:INFO:[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000037 seconds.
+2023-11-09 11:14:08,973:INFO:You can set `force_col_wise=true` to remove the overhead.
+2023-11-09 11:14:08,974:INFO:[LightGBM] [Info] Total Bins 85
+2023-11-09 11:14:08,975:INFO:[LightGBM] [Info] Number of data points in the train set: 168, number of used features: 3
+2023-11-09 11:14:08,976:INFO:[LightGBM] [Info] Start training from score 7743509295166477312.000000
+2023-11-09 11:14:08,977:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,978:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,979:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,981:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,981:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,982:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,988:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,989:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,990:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,994:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,994:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,995:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,995:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,995:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,995:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,996:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,996:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,996:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:08,997:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,000:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,001:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,004:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,006:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,020:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,021:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,021:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,021:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,021:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,022:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,022:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,022:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,023:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,024:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,026:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,027:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,046:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,046:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,046:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,047:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,047:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,047:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,048:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,048:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,048:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,048:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,049:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,049:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,049:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,050:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,050:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,050:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,050:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,051:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,051:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,051:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,051:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,052:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,052:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,052:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,053:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,053:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,053:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,053:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,054:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,054:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,054:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,054:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,055:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,055:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,055:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,055:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,056:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,056:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,056:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,056:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,057:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,057:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,057:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,057:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,058:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,058:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,058:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,058:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,059:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,059:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,059:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,059:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,060:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,060:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,060:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,060:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,060:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,061:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,061:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,061:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,061:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,062:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,062:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,062:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,062:INFO:[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
+2023-11-09 11:14:09,066:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:14:09,066:INFO:create_model() successfully completed......................................
+2023-11-09 11:14:09,230:INFO:_master_model_container: 18
+2023-11-09 11:14:09,230:INFO:_display_container: 2
+2023-11-09 11:14:09,230:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:14:09,231:INFO:compare_models() successfully completed......................................
+2023-11-09 11:14:16,296:INFO:Initializing predict_model()
+2023-11-09 11:14:16,297:INFO:predict_model(self=, estimator=LGBMRegressor(n_jobs=-1, random_state=123), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=True, ml_usecase=None, preprocess=True, encode_labels=.encode_labels at 0x7fbb2d2d58b0>)
+2023-11-09 11:14:16,297:INFO:Checking exceptions
+2023-11-09 11:14:16,297:INFO:Preloading libraries
+2023-11-09 11:14:16,299:INFO:Set up data.
+2023-11-09 11:14:16,302:INFO:Set up index.
+2023-11-09 11:14:55,200:INFO:Initializing predict_model()
+2023-11-09 11:14:55,201:INFO:predict_model(self=, estimator=LGBMRegressor(n_jobs=-1, random_state=123), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=True, ml_usecase=None, preprocess=True, encode_labels=.encode_labels at 0x7fbb44eba160>)
+2023-11-09 11:14:55,201:INFO:Checking exceptions
+2023-11-09 11:14:55,201:INFO:Preloading libraries
+2023-11-09 11:14:55,203:INFO:Set up data.
+2023-11-09 11:14:55,206:INFO:Set up index.
+2023-11-09 11:15:19,601:INFO:PyCaret RegressionExperiment
+2023-11-09 11:15:19,601:INFO:Logging name: reg-default-name
+2023-11-09 11:15:19,601:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 11:15:19,601:INFO:version 3.1.0
+2023-11-09 11:15:19,601:INFO:Initializing setup()
+2023-11-09 11:15:19,601:INFO:self.USI: e1b2
+2023-11-09 11:15:19,601:INFO:self._variable_keys: {'seed', 'idx', 'transform_target_param', 'gpu_param', 'target_param', 'log_plots_param', 'pipeline', 'logging_param', 'fold_groups_param', '_ml_usecase', 'html_param', 'gpu_n_jobs_param', 'y', 'y_test', 'y_train', 'memory', 'exp_id', 'X_test', 'exp_name_log', 'USI', 'data', 'X_train', 'fold_shuffle_param', 'X', 'fold_generator', 'n_jobs_param', '_available_plots'}
+2023-11-09 11:15:19,601:INFO:Checking environment
+2023-11-09 11:15:19,601:INFO:python_version: 3.8.18
+2023-11-09 11:15:19,601:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 11:15:19,601:INFO:machine: x86_64
+2023-11-09 11:15:19,601:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:15:19,602:INFO:Memory: svmem(total=8315187200, available=4601843712, percent=44.7, used=3378569216, free=269778944, active=1470234624, inactive=5726916608, buffers=334860288, cached=4331978752, shared=4485120, slab=651251712)
+2023-11-09 11:15:19,602:INFO:Physical Core: 1
+2023-11-09 11:15:19,602:INFO:Logical Core: 2
+2023-11-09 11:15:19,602:INFO:Checking libraries
+2023-11-09 11:15:19,602:INFO:System:
+2023-11-09 11:15:19,602:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 11:15:19,602:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 11:15:19,602:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:15:19,602:INFO:PyCaret required dependencies:
+2023-11-09 11:15:19,602:INFO: pip: 23.3
+2023-11-09 11:15:19,602:INFO: setuptools: 68.0.0
+2023-11-09 11:15:19,602:INFO: pycaret: 3.1.0
+2023-11-09 11:15:19,603:INFO: IPython: 8.12.0
+2023-11-09 11:15:19,603:INFO: ipywidgets: 8.1.1
+2023-11-09 11:15:19,603:INFO: tqdm: 4.66.1
+2023-11-09 11:15:19,603:INFO: numpy: 1.23.5
+2023-11-09 11:15:19,603:INFO: pandas: 1.5.3
+2023-11-09 11:15:19,603:INFO: jinja2: 3.1.2
+2023-11-09 11:15:19,603:INFO: scipy: 1.10.1
+2023-11-09 11:15:19,603:INFO: joblib: 1.3.2
+2023-11-09 11:15:19,603:INFO: sklearn: 1.2.2
+2023-11-09 11:15:19,603:INFO: pyod: 1.1.1
+2023-11-09 11:15:19,603:INFO: imblearn: 0.11.0
+2023-11-09 11:15:19,603:INFO: category_encoders: 2.6.3
+2023-11-09 11:15:19,603:INFO: lightgbm: 4.1.0
+2023-11-09 11:15:19,603:INFO: numba: 0.58.1
+2023-11-09 11:15:19,603:INFO: requests: 2.31.0
+2023-11-09 11:15:19,603:INFO: matplotlib: 3.7.3
+2023-11-09 11:15:19,603:INFO: scikitplot: 0.3.7
+2023-11-09 11:15:19,603:INFO: yellowbrick: 1.5
+2023-11-09 11:15:19,603:INFO: plotly: 5.18.0
+2023-11-09 11:15:19,603:INFO: plotly-resampler: Not installed
+2023-11-09 11:15:19,604:INFO: kaleido: 0.2.1
+2023-11-09 11:15:19,604:INFO: schemdraw: 0.15
+2023-11-09 11:15:19,604:INFO: statsmodels: 0.14.0
+2023-11-09 11:15:19,604:INFO: sktime: 0.21.1
+2023-11-09 11:15:19,604:INFO: tbats: 1.1.3
+2023-11-09 11:15:19,604:INFO: pmdarima: 2.0.4
+2023-11-09 11:15:19,604:INFO: psutil: 5.9.0
+2023-11-09 11:15:19,604:INFO: markupsafe: 2.1.3
+2023-11-09 11:15:19,604:INFO: pickle5: Not installed
+2023-11-09 11:15:19,604:INFO: cloudpickle: 3.0.0
+2023-11-09 11:15:19,604:INFO: deprecation: 2.1.0
+2023-11-09 11:15:19,604:INFO: xxhash: 3.4.1
+2023-11-09 11:15:19,604:INFO: wurlitzer: 3.0.3
+2023-11-09 11:15:19,604:INFO:PyCaret optional dependencies:
+2023-11-09 11:15:19,604:INFO: shap: Not installed
+2023-11-09 11:15:19,604:INFO: interpret: Not installed
+2023-11-09 11:15:19,604:INFO: umap: Not installed
+2023-11-09 11:15:19,604:INFO: ydata_profiling: Not installed
+2023-11-09 11:15:19,604:INFO: explainerdashboard: Not installed
+2023-11-09 11:15:19,604:INFO: autoviz: Not installed
+2023-11-09 11:15:19,605:INFO: fairlearn: Not installed
+2023-11-09 11:15:19,605:INFO: deepchecks: Not installed
+2023-11-09 11:15:19,605:INFO: xgboost: Not installed
+2023-11-09 11:15:19,605:INFO: catboost: Not installed
+2023-11-09 11:15:19,605:INFO: kmodes: Not installed
+2023-11-09 11:15:19,605:INFO: mlxtend: Not installed
+2023-11-09 11:15:19,605:INFO: statsforecast: Not installed
+2023-11-09 11:15:19,605:INFO: tune_sklearn: Not installed
+2023-11-09 11:15:19,605:INFO: ray: Not installed
+2023-11-09 11:15:19,605:INFO: hyperopt: Not installed
+2023-11-09 11:15:19,605:INFO: optuna: Not installed
+2023-11-09 11:15:19,605:INFO: skopt: Not installed
+2023-11-09 11:15:19,605:INFO: mlflow: Not installed
+2023-11-09 11:15:19,605:INFO: gradio: Not installed
+2023-11-09 11:15:19,605:INFO: fastapi: Not installed
+2023-11-09 11:15:19,605:INFO: uvicorn: Not installed
+2023-11-09 11:15:19,605:INFO: m2cgen: Not installed
+2023-11-09 11:15:19,606:INFO: evidently: Not installed
+2023-11-09 11:15:19,606:INFO: fugue: Not installed
+2023-11-09 11:15:19,606:INFO: streamlit: Not installed
+2023-11-09 11:15:19,606:INFO: prophet: Not installed
+2023-11-09 11:15:19,606:INFO:None
+2023-11-09 11:15:19,606:INFO:Set up data.
+2023-11-09 11:15:19,609:INFO:Set up folding strategy.
+2023-11-09 11:15:19,609:INFO:Set up train/test split.
+2023-11-09 11:15:19,609:INFO:Set up data.
+2023-11-09 11:15:19,613:INFO:Set up index.
+2023-11-09 11:15:19,613:INFO:Assigning column types.
+2023-11-09 11:15:19,615:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
+2023-11-09 11:15:19,615:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,619:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,623:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,677:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,747:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,748:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:19,748:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:19,749:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,757:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,764:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,901:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,954:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,955:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:19,955:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:19,955:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
+2023-11-09 11:15:19,960:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:15:19,964:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,013:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,050:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,050:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,050:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,055:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,058:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,116:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,153:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,153:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,154:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,154:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
+2023-11-09 11:15:20,163:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,211:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,250:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,250:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,250:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,258:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,305:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,346:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,346:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,346:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,347:INFO:Engine successfully changes for model 'en' to 'sklearn'.
+2023-11-09 11:15:20,401:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,437:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,438:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,438:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,526:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,581:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,582:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,582:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,582:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
+2023-11-09 11:15:20,639:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,678:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,678:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,736:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:15:20,773:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,773:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,774:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
+2023-11-09 11:15:20,871:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,871:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,974:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,974:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:20,975:INFO:Preparing preprocessing pipeline...
+2023-11-09 11:15:20,975:INFO:Set up target transformation.
+2023-11-09 11:15:20,975:INFO:Set up simple imputation.
+2023-11-09 11:15:20,976:INFO:Set up column name cleaning.
+2023-11-09 11:15:21,005:INFO:Finished creating preprocessing pipeline.
+2023-11-09 11:15:21,010:INFO:Pipeline: Pipeline(memory=FastMemory(location=/tmp/joblib),
+ steps=[('target_transformation',
+ TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
+ ('numerical_imputer',
+ TransformerWrapper(include=['Year', 'Series'],
+ transformer=SimpleImputer())),
+ ('categorical_imputer',
+ TransformerWrapper(include=[],
+ transformer=SimpleImputer(strategy='most_frequent'))),
+ ('clean_column_names',
+ TransformerWrapper(transformer=CleanColumnNames()))])
+2023-11-09 11:15:21,010:INFO:Creating final display dataframe.
+2023-11-09 11:15:21,080:INFO:Setup _display_container: Description Value
+0 Session id 123
+1 Target Average price All property types
+2 Target type Regression
+3 Original data shape (523, 4)
+4 Transformed data shape (523, 4)
+5 Transformed train set shape (372, 4)
+6 Transformed test set shape (151, 4)
+7 Numeric features 2
+8 Preprocess True
+9 Imputation type simple
+10 Numeric imputation mean
+11 Categorical imputation mode
+12 Transform target True
+13 Transform target method yeo-johnson
+14 Fold Generator TimeSeriesSplit
+15 Fold Number 3
+16 CPU Jobs -1
+17 Use GPU False
+18 Log Experiment False
+19 Experiment Name reg-default-name
+20 USI e1b2
+2023-11-09 11:15:21,196:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:21,196:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:21,293:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:21,293:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:15:21,294:INFO:setup() successfully completed in 1.69s...............
+2023-11-09 11:15:21,384:INFO:Initializing compare_models()
+2023-11-09 11:15:21,384:INFO:compare_models(self=, include=None, fold=None, round=4, cross_validation=True, sort=MAE, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': , 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'MAE', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': }, exclude=None)
+2023-11-09 11:15:21,385:INFO:Checking exceptions
+2023-11-09 11:15:21,386:INFO:Preparing display monitor
+2023-11-09 11:15:21,409:INFO:Initializing Linear Regression
+2023-11-09 11:15:21,409:INFO:Total runtime is 3.890196482340495e-06 minutes
+2023-11-09 11:15:21,412:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:21,412:INFO:Initializing create_model()
+2023-11-09 11:15:21,413:INFO:create_model(self=, estimator=lr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:21,413:INFO:Checking exceptions
+2023-11-09 11:15:21,413:INFO:Importing libraries
+2023-11-09 11:15:21,413:INFO:Copying training dataset
+2023-11-09 11:15:21,416:INFO:Defining folds
+2023-11-09 11:15:21,416:INFO:Declaring metric variables
+2023-11-09 11:15:21,418:INFO:Importing untrained model
+2023-11-09 11:15:21,422:INFO:Linear Regression Imported successfully
+2023-11-09 11:15:21,429:INFO:Starting cross validation
+2023-11-09 11:15:21,430:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:21,504:INFO:Calculating mean and std
+2023-11-09 11:15:21,505:INFO:Creating metrics dataframe
+2023-11-09 11:15:21,509:INFO:Uploading results into container
+2023-11-09 11:15:21,509:INFO:Uploading model into container now
+2023-11-09 11:15:21,510:INFO:_master_model_container: 1
+2023-11-09 11:15:21,510:INFO:_display_container: 2
+2023-11-09 11:15:21,510:INFO:LinearRegression(n_jobs=-1)
+2023-11-09 11:15:21,510:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:21,642:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:21,642:INFO:Creating metrics dataframe
+2023-11-09 11:15:21,650:INFO:Initializing Lasso Regression
+2023-11-09 11:15:21,650:INFO:Total runtime is 0.004018759727478027 minutes
+2023-11-09 11:15:21,653:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:21,654:INFO:Initializing create_model()
+2023-11-09 11:15:21,654:INFO:create_model(self=, estimator=lasso, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:21,654:INFO:Checking exceptions
+2023-11-09 11:15:21,654:INFO:Importing libraries
+2023-11-09 11:15:21,654:INFO:Copying training dataset
+2023-11-09 11:15:21,657:INFO:Defining folds
+2023-11-09 11:15:21,657:INFO:Declaring metric variables
+2023-11-09 11:15:21,660:INFO:Importing untrained model
+2023-11-09 11:15:21,663:INFO:Lasso Regression Imported successfully
+2023-11-09 11:15:21,669:INFO:Starting cross validation
+2023-11-09 11:15:21,670:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:21,745:INFO:Calculating mean and std
+2023-11-09 11:15:21,746:INFO:Creating metrics dataframe
+2023-11-09 11:15:21,749:INFO:Uploading results into container
+2023-11-09 11:15:21,749:INFO:Uploading model into container now
+2023-11-09 11:15:21,750:INFO:_master_model_container: 2
+2023-11-09 11:15:21,750:INFO:_display_container: 2
+2023-11-09 11:15:21,750:INFO:Lasso(random_state=123)
+2023-11-09 11:15:21,750:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:21,867:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:21,867:INFO:Creating metrics dataframe
+2023-11-09 11:15:21,875:INFO:Initializing Ridge Regression
+2023-11-09 11:15:21,875:INFO:Total runtime is 0.007770164807637532 minutes
+2023-11-09 11:15:21,878:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:21,879:INFO:Initializing create_model()
+2023-11-09 11:15:21,879:INFO:create_model(self=, estimator=ridge, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:21,879:INFO:Checking exceptions
+2023-11-09 11:15:21,879:INFO:Importing libraries
+2023-11-09 11:15:21,879:INFO:Copying training dataset
+2023-11-09 11:15:21,882:INFO:Defining folds
+2023-11-09 11:15:21,882:INFO:Declaring metric variables
+2023-11-09 11:15:21,884:INFO:Importing untrained model
+2023-11-09 11:15:21,887:INFO:Ridge Regression Imported successfully
+2023-11-09 11:15:21,893:INFO:Starting cross validation
+2023-11-09 11:15:21,894:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:21,988:INFO:Calculating mean and std
+2023-11-09 11:15:21,989:INFO:Creating metrics dataframe
+2023-11-09 11:15:21,994:INFO:Uploading results into container
+2023-11-09 11:15:21,995:INFO:Uploading model into container now
+2023-11-09 11:15:21,995:INFO:_master_model_container: 3
+2023-11-09 11:15:21,995:INFO:_display_container: 2
+2023-11-09 11:15:21,996:INFO:Ridge(random_state=123)
+2023-11-09 11:15:21,996:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:22,197:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:22,197:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,206:INFO:Initializing Elastic Net
+2023-11-09 11:15:22,206:INFO:Total runtime is 0.01328597068786621 minutes
+2023-11-09 11:15:22,209:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:22,210:INFO:Initializing create_model()
+2023-11-09 11:15:22,210:INFO:create_model(self=, estimator=en, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:22,210:INFO:Checking exceptions
+2023-11-09 11:15:22,210:INFO:Importing libraries
+2023-11-09 11:15:22,210:INFO:Copying training dataset
+2023-11-09 11:15:22,213:INFO:Defining folds
+2023-11-09 11:15:22,213:INFO:Declaring metric variables
+2023-11-09 11:15:22,217:INFO:Importing untrained model
+2023-11-09 11:15:22,228:INFO:Elastic Net Imported successfully
+2023-11-09 11:15:22,245:INFO:Starting cross validation
+2023-11-09 11:15:22,246:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:22,354:INFO:Calculating mean and std
+2023-11-09 11:15:22,355:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,362:INFO:Uploading results into container
+2023-11-09 11:15:22,363:INFO:Uploading model into container now
+2023-11-09 11:15:22,363:INFO:_master_model_container: 4
+2023-11-09 11:15:22,364:INFO:_display_container: 2
+2023-11-09 11:15:22,364:INFO:ElasticNet(random_state=123)
+2023-11-09 11:15:22,364:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:22,514:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:22,515:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,526:INFO:Initializing Least Angle Regression
+2023-11-09 11:15:22,526:INFO:Total runtime is 0.01861740748087565 minutes
+2023-11-09 11:15:22,531:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:22,532:INFO:Initializing create_model()
+2023-11-09 11:15:22,532:INFO:create_model(self=, estimator=lar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:22,532:INFO:Checking exceptions
+2023-11-09 11:15:22,533:INFO:Importing libraries
+2023-11-09 11:15:22,533:INFO:Copying training dataset
+2023-11-09 11:15:22,540:INFO:Defining folds
+2023-11-09 11:15:22,540:INFO:Declaring metric variables
+2023-11-09 11:15:22,545:INFO:Importing untrained model
+2023-11-09 11:15:22,549:INFO:Least Angle Regression Imported successfully
+2023-11-09 11:15:22,555:INFO:Starting cross validation
+2023-11-09 11:15:22,556:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:22,625:INFO:Calculating mean and std
+2023-11-09 11:15:22,625:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,628:INFO:Uploading results into container
+2023-11-09 11:15:22,629:INFO:Uploading model into container now
+2023-11-09 11:15:22,629:INFO:_master_model_container: 5
+2023-11-09 11:15:22,629:INFO:_display_container: 2
+2023-11-09 11:15:22,629:INFO:Lars(random_state=123)
+2023-11-09 11:15:22,630:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:22,749:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:22,749:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,757:INFO:Initializing Lasso Least Angle Regression
+2023-11-09 11:15:22,757:INFO:Total runtime is 0.022479029496510823 minutes
+2023-11-09 11:15:22,761:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:22,761:INFO:Initializing create_model()
+2023-11-09 11:15:22,761:INFO:create_model(self=, estimator=llar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:22,761:INFO:Checking exceptions
+2023-11-09 11:15:22,761:INFO:Importing libraries
+2023-11-09 11:15:22,762:INFO:Copying training dataset
+2023-11-09 11:15:22,765:INFO:Defining folds
+2023-11-09 11:15:22,765:INFO:Declaring metric variables
+2023-11-09 11:15:22,768:INFO:Importing untrained model
+2023-11-09 11:15:22,772:INFO:Lasso Least Angle Regression Imported successfully
+2023-11-09 11:15:22,778:INFO:Starting cross validation
+2023-11-09 11:15:22,779:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:22,853:INFO:Calculating mean and std
+2023-11-09 11:15:22,854:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,857:INFO:Uploading results into container
+2023-11-09 11:15:22,857:INFO:Uploading model into container now
+2023-11-09 11:15:22,857:INFO:_master_model_container: 6
+2023-11-09 11:15:22,857:INFO:_display_container: 2
+2023-11-09 11:15:22,858:INFO:LassoLars(random_state=123)
+2023-11-09 11:15:22,858:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:22,990:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:22,990:INFO:Creating metrics dataframe
+2023-11-09 11:15:22,999:INFO:Initializing Orthogonal Matching Pursuit
+2023-11-09 11:15:22,999:INFO:Total runtime is 0.026512602965037026 minutes
+2023-11-09 11:15:23,003:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:23,003:INFO:Initializing create_model()
+2023-11-09 11:15:23,003:INFO:create_model(self=, estimator=omp, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:23,003:INFO:Checking exceptions
+2023-11-09 11:15:23,003:INFO:Importing libraries
+2023-11-09 11:15:23,003:INFO:Copying training dataset
+2023-11-09 11:15:23,007:INFO:Defining folds
+2023-11-09 11:15:23,008:INFO:Declaring metric variables
+2023-11-09 11:15:23,011:INFO:Importing untrained model
+2023-11-09 11:15:23,014:INFO:Orthogonal Matching Pursuit Imported successfully
+2023-11-09 11:15:23,020:INFO:Starting cross validation
+2023-11-09 11:15:23,021:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:23,103:INFO:Calculating mean and std
+2023-11-09 11:15:23,104:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,108:INFO:Uploading results into container
+2023-11-09 11:15:23,110:INFO:Uploading model into container now
+2023-11-09 11:15:23,110:INFO:_master_model_container: 7
+2023-11-09 11:15:23,110:INFO:_display_container: 2
+2023-11-09 11:15:23,110:INFO:OrthogonalMatchingPursuit()
+2023-11-09 11:15:23,110:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:23,240:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:23,241:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,249:INFO:Initializing Bayesian Ridge
+2023-11-09 11:15:23,250:INFO:Total runtime is 0.030683565139770504 minutes
+2023-11-09 11:15:23,253:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:23,254:INFO:Initializing create_model()
+2023-11-09 11:15:23,254:INFO:create_model(self=, estimator=br, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:23,254:INFO:Checking exceptions
+2023-11-09 11:15:23,254:INFO:Importing libraries
+2023-11-09 11:15:23,254:INFO:Copying training dataset
+2023-11-09 11:15:23,257:INFO:Defining folds
+2023-11-09 11:15:23,257:INFO:Declaring metric variables
+2023-11-09 11:15:23,260:INFO:Importing untrained model
+2023-11-09 11:15:23,263:INFO:Bayesian Ridge Imported successfully
+2023-11-09 11:15:23,269:INFO:Starting cross validation
+2023-11-09 11:15:23,270:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:23,341:INFO:Calculating mean and std
+2023-11-09 11:15:23,342:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,347:INFO:Uploading results into container
+2023-11-09 11:15:23,347:INFO:Uploading model into container now
+2023-11-09 11:15:23,348:INFO:_master_model_container: 8
+2023-11-09 11:15:23,348:INFO:_display_container: 2
+2023-11-09 11:15:23,348:INFO:BayesianRidge()
+2023-11-09 11:15:23,348:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:23,473:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:23,473:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,483:INFO:Initializing Passive Aggressive Regressor
+2023-11-09 11:15:23,483:INFO:Total runtime is 0.03457204500834147 minutes
+2023-11-09 11:15:23,486:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:23,487:INFO:Initializing create_model()
+2023-11-09 11:15:23,487:INFO:create_model(self=, estimator=par, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:23,487:INFO:Checking exceptions
+2023-11-09 11:15:23,487:INFO:Importing libraries
+2023-11-09 11:15:23,487:INFO:Copying training dataset
+2023-11-09 11:15:23,491:INFO:Defining folds
+2023-11-09 11:15:23,491:INFO:Declaring metric variables
+2023-11-09 11:15:23,494:INFO:Importing untrained model
+2023-11-09 11:15:23,498:INFO:Passive Aggressive Regressor Imported successfully
+2023-11-09 11:15:23,503:INFO:Starting cross validation
+2023-11-09 11:15:23,504:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:23,602:INFO:Calculating mean and std
+2023-11-09 11:15:23,603:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,607:INFO:Uploading results into container
+2023-11-09 11:15:23,608:INFO:Uploading model into container now
+2023-11-09 11:15:23,608:INFO:_master_model_container: 9
+2023-11-09 11:15:23,608:INFO:_display_container: 2
+2023-11-09 11:15:23,609:INFO:PassiveAggressiveRegressor(random_state=123)
+2023-11-09 11:15:23,609:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:23,742:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:23,742:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,755:INFO:Initializing Huber Regressor
+2023-11-09 11:15:23,755:INFO:Total runtime is 0.039113608996073405 minutes
+2023-11-09 11:15:23,759:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:23,759:INFO:Initializing create_model()
+2023-11-09 11:15:23,759:INFO:create_model(self=, estimator=huber, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:23,760:INFO:Checking exceptions
+2023-11-09 11:15:23,760:INFO:Importing libraries
+2023-11-09 11:15:23,760:INFO:Copying training dataset
+2023-11-09 11:15:23,764:INFO:Defining folds
+2023-11-09 11:15:23,764:INFO:Declaring metric variables
+2023-11-09 11:15:23,768:INFO:Importing untrained model
+2023-11-09 11:15:23,772:INFO:Huber Regressor Imported successfully
+2023-11-09 11:15:23,779:INFO:Starting cross validation
+2023-11-09 11:15:23,780:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:23,927:INFO:Calculating mean and std
+2023-11-09 11:15:23,929:INFO:Creating metrics dataframe
+2023-11-09 11:15:23,933:INFO:Uploading results into container
+2023-11-09 11:15:23,933:INFO:Uploading model into container now
+2023-11-09 11:15:23,933:INFO:_master_model_container: 10
+2023-11-09 11:15:23,934:INFO:_display_container: 2
+2023-11-09 11:15:23,934:INFO:HuberRegressor()
+2023-11-09 11:15:23,934:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:24,055:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:24,055:INFO:Creating metrics dataframe
+2023-11-09 11:15:24,065:INFO:Initializing K Neighbors Regressor
+2023-11-09 11:15:24,065:INFO:Total runtime is 0.04427545468012492 minutes
+2023-11-09 11:15:24,069:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:24,070:INFO:Initializing create_model()
+2023-11-09 11:15:24,070:INFO:create_model(self=, estimator=knn, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:24,070:INFO:Checking exceptions
+2023-11-09 11:15:24,070:INFO:Importing libraries
+2023-11-09 11:15:24,070:INFO:Copying training dataset
+2023-11-09 11:15:24,075:INFO:Defining folds
+2023-11-09 11:15:24,075:INFO:Declaring metric variables
+2023-11-09 11:15:24,079:INFO:Importing untrained model
+2023-11-09 11:15:24,082:INFO:K Neighbors Regressor Imported successfully
+2023-11-09 11:15:24,088:INFO:Starting cross validation
+2023-11-09 11:15:24,089:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:24,225:INFO:Calculating mean and std
+2023-11-09 11:15:24,227:INFO:Creating metrics dataframe
+2023-11-09 11:15:24,233:INFO:Uploading results into container
+2023-11-09 11:15:24,234:INFO:Uploading model into container now
+2023-11-09 11:15:24,235:INFO:_master_model_container: 11
+2023-11-09 11:15:24,235:INFO:_display_container: 2
+2023-11-09 11:15:24,236:INFO:KNeighborsRegressor(n_jobs=-1)
+2023-11-09 11:15:24,236:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:24,368:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:24,368:INFO:Creating metrics dataframe
+2023-11-09 11:15:24,377:INFO:Initializing Decision Tree Regressor
+2023-11-09 11:15:24,377:INFO:Total runtime is 0.049476468563079835 minutes
+2023-11-09 11:15:24,381:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:24,381:INFO:Initializing create_model()
+2023-11-09 11:15:24,381:INFO:create_model(self=, estimator=dt, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:24,382:INFO:Checking exceptions
+2023-11-09 11:15:24,382:INFO:Importing libraries
+2023-11-09 11:15:24,382:INFO:Copying training dataset
+2023-11-09 11:15:24,385:INFO:Defining folds
+2023-11-09 11:15:24,385:INFO:Declaring metric variables
+2023-11-09 11:15:24,388:INFO:Importing untrained model
+2023-11-09 11:15:24,392:INFO:Decision Tree Regressor Imported successfully
+2023-11-09 11:15:24,397:INFO:Starting cross validation
+2023-11-09 11:15:24,398:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:24,469:INFO:Calculating mean and std
+2023-11-09 11:15:24,470:INFO:Creating metrics dataframe
+2023-11-09 11:15:24,472:INFO:Uploading results into container
+2023-11-09 11:15:24,473:INFO:Uploading model into container now
+2023-11-09 11:15:24,473:INFO:_master_model_container: 12
+2023-11-09 11:15:24,473:INFO:_display_container: 2
+2023-11-09 11:15:24,473:INFO:DecisionTreeRegressor(random_state=123)
+2023-11-09 11:15:24,473:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:24,597:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:24,598:INFO:Creating metrics dataframe
+2023-11-09 11:15:24,610:INFO:Initializing Random Forest Regressor
+2023-11-09 11:15:24,610:INFO:Total runtime is 0.05335224469502767 minutes
+2023-11-09 11:15:24,614:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:24,614:INFO:Initializing create_model()
+2023-11-09 11:15:24,615:INFO:create_model(self=, estimator=rf, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:24,615:INFO:Checking exceptions
+2023-11-09 11:15:24,615:INFO:Importing libraries
+2023-11-09 11:15:24,615:INFO:Copying training dataset
+2023-11-09 11:15:24,618:INFO:Defining folds
+2023-11-09 11:15:24,618:INFO:Declaring metric variables
+2023-11-09 11:15:24,622:INFO:Importing untrained model
+2023-11-09 11:15:24,625:INFO:Random Forest Regressor Imported successfully
+2023-11-09 11:15:24,631:INFO:Starting cross validation
+2023-11-09 11:15:24,632:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:25,090:INFO:Calculating mean and std
+2023-11-09 11:15:25,092:INFO:Creating metrics dataframe
+2023-11-09 11:15:25,095:INFO:Uploading results into container
+2023-11-09 11:15:25,096:INFO:Uploading model into container now
+2023-11-09 11:15:25,096:INFO:_master_model_container: 13
+2023-11-09 11:15:25,096:INFO:_display_container: 2
+2023-11-09 11:15:25,097:INFO:RandomForestRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:15:25,097:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:25,215:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:25,216:INFO:Creating metrics dataframe
+2023-11-09 11:15:25,229:INFO:Initializing Extra Trees Regressor
+2023-11-09 11:15:25,229:INFO:Total runtime is 0.06367428302764892 minutes
+2023-11-09 11:15:25,233:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:25,233:INFO:Initializing create_model()
+2023-11-09 11:15:25,233:INFO:create_model(self=, estimator=et, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:25,233:INFO:Checking exceptions
+2023-11-09 11:15:25,233:INFO:Importing libraries
+2023-11-09 11:15:25,233:INFO:Copying training dataset
+2023-11-09 11:15:25,238:INFO:Defining folds
+2023-11-09 11:15:25,238:INFO:Declaring metric variables
+2023-11-09 11:15:25,242:INFO:Importing untrained model
+2023-11-09 11:15:25,246:INFO:Extra Trees Regressor Imported successfully
+2023-11-09 11:15:25,252:INFO:Starting cross validation
+2023-11-09 11:15:25,254:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:25,576:INFO:Calculating mean and std
+2023-11-09 11:15:25,577:INFO:Creating metrics dataframe
+2023-11-09 11:15:25,581:INFO:Uploading results into container
+2023-11-09 11:15:25,582:INFO:Uploading model into container now
+2023-11-09 11:15:25,582:INFO:_master_model_container: 14
+2023-11-09 11:15:25,582:INFO:_display_container: 2
+2023-11-09 11:15:25,583:INFO:ExtraTreesRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:15:25,583:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:25,698:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:25,698:INFO:Creating metrics dataframe
+2023-11-09 11:15:25,708:INFO:Initializing AdaBoost Regressor
+2023-11-09 11:15:25,708:INFO:Total runtime is 0.07165770530700684 minutes
+2023-11-09 11:15:25,712:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:25,712:INFO:Initializing create_model()
+2023-11-09 11:15:25,712:INFO:create_model(self=, estimator=ada, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:25,712:INFO:Checking exceptions
+2023-11-09 11:15:25,712:INFO:Importing libraries
+2023-11-09 11:15:25,712:INFO:Copying training dataset
+2023-11-09 11:15:25,716:INFO:Defining folds
+2023-11-09 11:15:25,717:INFO:Declaring metric variables
+2023-11-09 11:15:25,720:INFO:Importing untrained model
+2023-11-09 11:15:25,723:INFO:AdaBoost Regressor Imported successfully
+2023-11-09 11:15:25,729:INFO:Starting cross validation
+2023-11-09 11:15:25,730:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:25,922:INFO:Calculating mean and std
+2023-11-09 11:15:25,923:INFO:Creating metrics dataframe
+2023-11-09 11:15:25,927:INFO:Uploading results into container
+2023-11-09 11:15:25,928:INFO:Uploading model into container now
+2023-11-09 11:15:25,928:INFO:_master_model_container: 15
+2023-11-09 11:15:25,928:INFO:_display_container: 2
+2023-11-09 11:15:25,929:INFO:AdaBoostRegressor(random_state=123)
+2023-11-09 11:15:25,929:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:26,046:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:26,046:INFO:Creating metrics dataframe
+2023-11-09 11:15:26,057:INFO:Initializing Gradient Boosting Regressor
+2023-11-09 11:15:26,057:INFO:Total runtime is 0.07747397820154826 minutes
+2023-11-09 11:15:26,061:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:26,061:INFO:Initializing create_model()
+2023-11-09 11:15:26,061:INFO:create_model(self=, estimator=gbr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:26,061:INFO:Checking exceptions
+2023-11-09 11:15:26,062:INFO:Importing libraries
+2023-11-09 11:15:26,062:INFO:Copying training dataset
+2023-11-09 11:15:26,065:INFO:Defining folds
+2023-11-09 11:15:26,065:INFO:Declaring metric variables
+2023-11-09 11:15:26,068:INFO:Importing untrained model
+2023-11-09 11:15:26,072:INFO:Gradient Boosting Regressor Imported successfully
+2023-11-09 11:15:26,078:INFO:Starting cross validation
+2023-11-09 11:15:26,079:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:26,234:INFO:Calculating mean and std
+2023-11-09 11:15:26,235:INFO:Creating metrics dataframe
+2023-11-09 11:15:26,239:INFO:Uploading results into container
+2023-11-09 11:15:26,240:INFO:Uploading model into container now
+2023-11-09 11:15:26,240:INFO:_master_model_container: 16
+2023-11-09 11:15:26,240:INFO:_display_container: 2
+2023-11-09 11:15:26,241:INFO:GradientBoostingRegressor(random_state=123)
+2023-11-09 11:15:26,241:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:26,405:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:26,405:INFO:Creating metrics dataframe
+2023-11-09 11:15:26,417:INFO:Initializing Light Gradient Boosting Machine
+2023-11-09 11:15:26,418:INFO:Total runtime is 0.08348162174224855 minutes
+2023-11-09 11:15:26,421:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:26,421:INFO:Initializing create_model()
+2023-11-09 11:15:26,422:INFO:create_model(self=, estimator=lightgbm, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:26,422:INFO:Checking exceptions
+2023-11-09 11:15:26,422:INFO:Importing libraries
+2023-11-09 11:15:26,422:INFO:Copying training dataset
+2023-11-09 11:15:26,425:INFO:Defining folds
+2023-11-09 11:15:26,426:INFO:Declaring metric variables
+2023-11-09 11:15:26,430:INFO:Importing untrained model
+2023-11-09 11:15:26,434:INFO:Light Gradient Boosting Machine Imported successfully
+2023-11-09 11:15:26,439:INFO:Starting cross validation
+2023-11-09 11:15:26,440:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:27,964:INFO:Calculating mean and std
+2023-11-09 11:15:27,965:INFO:Creating metrics dataframe
+2023-11-09 11:15:27,968:INFO:Uploading results into container
+2023-11-09 11:15:27,969:INFO:Uploading model into container now
+2023-11-09 11:15:27,969:INFO:_master_model_container: 17
+2023-11-09 11:15:27,970:INFO:_display_container: 2
+2023-11-09 11:15:27,970:INFO:LGBMRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:15:27,970:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:28,099:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:28,099:INFO:Creating metrics dataframe
+2023-11-09 11:15:28,111:INFO:Initializing Dummy Regressor
+2023-11-09 11:15:28,112:INFO:Total runtime is 0.11171794732411704 minutes
+2023-11-09 11:15:28,116:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:15:28,116:INFO:Initializing create_model()
+2023-11-09 11:15:28,116:INFO:create_model(self=, estimator=dummy, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:28,116:INFO:Checking exceptions
+2023-11-09 11:15:28,116:INFO:Importing libraries
+2023-11-09 11:15:28,116:INFO:Copying training dataset
+2023-11-09 11:15:28,120:INFO:Defining folds
+2023-11-09 11:15:28,121:INFO:Declaring metric variables
+2023-11-09 11:15:28,124:INFO:Importing untrained model
+2023-11-09 11:15:28,127:INFO:Dummy Regressor Imported successfully
+2023-11-09 11:15:28,133:INFO:Starting cross validation
+2023-11-09 11:15:28,134:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:15:28,200:INFO:Calculating mean and std
+2023-11-09 11:15:28,200:INFO:Creating metrics dataframe
+2023-11-09 11:15:28,204:INFO:Uploading results into container
+2023-11-09 11:15:28,204:INFO:Uploading model into container now
+2023-11-09 11:15:28,205:INFO:_master_model_container: 18
+2023-11-09 11:15:28,205:INFO:_display_container: 2
+2023-11-09 11:15:28,205:INFO:DummyRegressor()
+2023-11-09 11:15:28,205:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:28,332:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:15:28,332:INFO:Creating metrics dataframe
+2023-11-09 11:15:28,353:INFO:Initializing create_model()
+2023-11-09 11:15:28,353:INFO:create_model(self=, estimator=HuberRegressor(), fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=False, predict=False, fit_kwargs={}, groups=None, refit=True, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=None, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:15:28,353:INFO:Checking exceptions
+2023-11-09 11:15:28,354:INFO:Importing libraries
+2023-11-09 11:15:28,354:INFO:Copying training dataset
+2023-11-09 11:15:28,358:INFO:Defining folds
+2023-11-09 11:15:28,358:INFO:Declaring metric variables
+2023-11-09 11:15:28,358:INFO:Importing untrained model
+2023-11-09 11:15:28,358:INFO:Declaring custom model
+2023-11-09 11:15:28,358:INFO:Huber Regressor Imported successfully
+2023-11-09 11:15:28,359:INFO:Cross validation set to False
+2023-11-09 11:15:28,359:INFO:Fitting Model
+2023-11-09 11:15:28,388:INFO:HuberRegressor()
+2023-11-09 11:15:28,388:INFO:create_model() successfully completed......................................
+2023-11-09 11:15:28,591:INFO:_master_model_container: 18
+2023-11-09 11:15:28,591:INFO:_display_container: 2
+2023-11-09 11:15:28,591:INFO:HuberRegressor()
+2023-11-09 11:15:28,591:INFO:compare_models() successfully completed......................................
+2023-11-09 11:15:28,733:INFO:Initializing predict_model()
+2023-11-09 11:15:28,734:INFO:predict_model(self=, estimator=HuberRegressor(), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=True, ml_usecase=None, preprocess=True, encode_labels=.encode_labels at 0x7fbb2cb1bca0>)
+2023-11-09 11:15:28,735:INFO:Checking exceptions
+2023-11-09 11:15:28,735:INFO:Preloading libraries
+2023-11-09 11:15:28,737:INFO:Set up data.
+2023-11-09 11:15:28,740:INFO:Set up index.
+2023-11-09 11:15:29,109:WARNING:/tmp/ipykernel_54540/2181003279.py:1: SettingWithCopyWarning:
+
+
+A value is trying to be set on a copy of a slice from a DataFrame
+
+See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
+
+
+2023-11-09 11:16:24,458:INFO:Initializing predict_model()
+2023-11-09 11:16:24,460:INFO:predict_model(self=, estimator=HuberRegressor(), probability_threshold=None, encoded_labels=False, raw_score=False, round=4, verbose=True, ml_usecase=None, preprocess=True, encode_labels=.encode_labels at 0x7fbb2cc74790>)
+2023-11-09 11:16:24,460:INFO:Checking exceptions
+2023-11-09 11:16:24,460:INFO:Preloading libraries
+2023-11-09 11:16:24,463:INFO:Set up data.
+2023-11-09 11:16:24,466:INFO:Set up index.
+2023-11-09 11:19:48,927:WARNING:/tmp/ipykernel_54540/2181003279.py:1: SettingWithCopyWarning:
+
+
+A value is trying to be set on a copy of a slice from a DataFrame
+
+See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
+
+
+2023-11-09 11:21:05,437:WARNING:/tmp/ipykernel_54540/716735288.py:1: SettingWithCopyWarning:
+
+
+A value is trying to be set on a copy of a slice from a DataFrame
+
+See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
+
+
+2023-11-09 11:21:20,020:WARNING:/tmp/ipykernel_54540/4098162356.py:1: SettingWithCopyWarning:
+
+
+A value is trying to be set on a copy of a slice from a DataFrame
+
+See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
+
+
+2023-11-09 11:21:23,313:INFO:PyCaret RegressionExperiment
+2023-11-09 11:21:23,313:INFO:Logging name: reg-default-name
+2023-11-09 11:21:23,313:INFO:ML Usecase: MLUsecase.REGRESSION
+2023-11-09 11:21:23,313:INFO:version 3.1.0
+2023-11-09 11:21:23,313:INFO:Initializing setup()
+2023-11-09 11:21:23,313:INFO:self.USI: 4f24
+2023-11-09 11:21:23,314:INFO:self._variable_keys: {'seed', 'idx', 'transform_target_param', 'gpu_param', 'target_param', 'log_plots_param', 'pipeline', 'logging_param', 'fold_groups_param', '_ml_usecase', 'html_param', 'gpu_n_jobs_param', 'y', 'y_test', 'y_train', 'memory', 'exp_id', 'X_test', 'exp_name_log', 'USI', 'data', 'X_train', 'fold_shuffle_param', 'X', 'fold_generator', 'n_jobs_param', '_available_plots'}
+2023-11-09 11:21:23,314:INFO:Checking environment
+2023-11-09 11:21:23,314:INFO:python_version: 3.8.18
+2023-11-09 11:21:23,314:INFO:python_build: ('default', 'Sep 11 2023 13:40:15')
+2023-11-09 11:21:23,314:INFO:machine: x86_64
+2023-11-09 11:21:23,315:INFO:platform: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:21:23,315:INFO:Memory: svmem(total=8315187200, available=4807208960, percent=42.2, used=3173343232, free=459407360, active=1474170880, inactive=5536223232, buffers=337453056, cached=4344983552, shared=4476928, slab=650760192)
+2023-11-09 11:21:23,315:INFO:Physical Core: 1
+2023-11-09 11:21:23,316:INFO:Logical Core: 2
+2023-11-09 11:21:23,316:INFO:Checking libraries
+2023-11-09 11:21:23,316:INFO:System:
+2023-11-09 11:21:23,316:INFO: python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
+2023-11-09 11:21:23,316:INFO:executable: /workspaces/D2I-Jupyter-Notebook-Tools/.conda/bin/python
+2023-11-09 11:21:23,316:INFO: machine: Linux-6.2.0-1015-azure-x86_64-with-glibc2.17
+2023-11-09 11:21:23,316:INFO:PyCaret required dependencies:
+2023-11-09 11:21:23,316:INFO: pip: 23.3
+2023-11-09 11:21:23,316:INFO: setuptools: 68.0.0
+2023-11-09 11:21:23,316:INFO: pycaret: 3.1.0
+2023-11-09 11:21:23,316:INFO: IPython: 8.12.0
+2023-11-09 11:21:23,316:INFO: ipywidgets: 8.1.1
+2023-11-09 11:21:23,316:INFO: tqdm: 4.66.1
+2023-11-09 11:21:23,316:INFO: numpy: 1.23.5
+2023-11-09 11:21:23,316:INFO: pandas: 1.5.3
+2023-11-09 11:21:23,317:INFO: jinja2: 3.1.2
+2023-11-09 11:21:23,317:INFO: scipy: 1.10.1
+2023-11-09 11:21:23,317:INFO: joblib: 1.3.2
+2023-11-09 11:21:23,317:INFO: sklearn: 1.2.2
+2023-11-09 11:21:23,317:INFO: pyod: 1.1.1
+2023-11-09 11:21:23,317:INFO: imblearn: 0.11.0
+2023-11-09 11:21:23,317:INFO: category_encoders: 2.6.3
+2023-11-09 11:21:23,317:INFO: lightgbm: 4.1.0
+2023-11-09 11:21:23,317:INFO: numba: 0.58.1
+2023-11-09 11:21:23,317:INFO: requests: 2.31.0
+2023-11-09 11:21:23,317:INFO: matplotlib: 3.7.3
+2023-11-09 11:21:23,317:INFO: scikitplot: 0.3.7
+2023-11-09 11:21:23,317:INFO: yellowbrick: 1.5
+2023-11-09 11:21:23,317:INFO: plotly: 5.18.0
+2023-11-09 11:21:23,317:INFO: plotly-resampler: Not installed
+2023-11-09 11:21:23,317:INFO: kaleido: 0.2.1
+2023-11-09 11:21:23,317:INFO: schemdraw: 0.15
+2023-11-09 11:21:23,317:INFO: statsmodels: 0.14.0
+2023-11-09 11:21:23,317:INFO: sktime: 0.21.1
+2023-11-09 11:21:23,317:INFO: tbats: 1.1.3
+2023-11-09 11:21:23,317:INFO: pmdarima: 2.0.4
+2023-11-09 11:21:23,318:INFO: psutil: 5.9.0
+2023-11-09 11:21:23,318:INFO: markupsafe: 2.1.3
+2023-11-09 11:21:23,318:INFO: pickle5: Not installed
+2023-11-09 11:21:23,318:INFO: cloudpickle: 3.0.0
+2023-11-09 11:21:23,318:INFO: deprecation: 2.1.0
+2023-11-09 11:21:23,318:INFO: xxhash: 3.4.1
+2023-11-09 11:21:23,318:INFO: wurlitzer: 3.0.3
+2023-11-09 11:21:23,318:INFO:PyCaret optional dependencies:
+2023-11-09 11:21:23,318:INFO: shap: Not installed
+2023-11-09 11:21:23,318:INFO: interpret: Not installed
+2023-11-09 11:21:23,318:INFO: umap: Not installed
+2023-11-09 11:21:23,318:INFO: ydata_profiling: Not installed
+2023-11-09 11:21:23,318:INFO: explainerdashboard: Not installed
+2023-11-09 11:21:23,318:INFO: autoviz: Not installed
+2023-11-09 11:21:23,318:INFO: fairlearn: Not installed
+2023-11-09 11:21:23,318:INFO: deepchecks: Not installed
+2023-11-09 11:21:23,318:INFO: xgboost: Not installed
+2023-11-09 11:21:23,318:INFO: catboost: Not installed
+2023-11-09 11:21:23,319:INFO: kmodes: Not installed
+2023-11-09 11:21:23,319:INFO: mlxtend: Not installed
+2023-11-09 11:21:23,319:INFO: statsforecast: Not installed
+2023-11-09 11:21:23,319:INFO: tune_sklearn: Not installed
+2023-11-09 11:21:23,319:INFO: ray: Not installed
+2023-11-09 11:21:23,319:INFO: hyperopt: Not installed
+2023-11-09 11:21:23,319:INFO: optuna: Not installed
+2023-11-09 11:21:23,319:INFO: skopt: Not installed
+2023-11-09 11:21:23,319:INFO: mlflow: Not installed
+2023-11-09 11:21:23,319:INFO: gradio: Not installed
+2023-11-09 11:21:23,319:INFO: fastapi: Not installed
+2023-11-09 11:21:23,319:INFO: uvicorn: Not installed
+2023-11-09 11:21:23,319:INFO: m2cgen: Not installed
+2023-11-09 11:21:23,319:INFO: evidently: Not installed
+2023-11-09 11:21:23,319:INFO: fugue: Not installed
+2023-11-09 11:21:23,319:INFO: streamlit: Not installed
+2023-11-09 11:21:23,319:INFO: prophet: Not installed
+2023-11-09 11:21:23,319:INFO:None
+2023-11-09 11:21:23,319:INFO:Set up data.
+2023-11-09 11:21:23,323:INFO:Set up folding strategy.
+2023-11-09 11:21:23,323:INFO:Set up train/test split.
+2023-11-09 11:21:23,323:INFO:Set up data.
+2023-11-09 11:21:23,327:INFO:Set up index.
+2023-11-09 11:21:23,327:INFO:Assigning column types.
+2023-11-09 11:21:23,329:INFO:Engine successfully changes for model 'lr' to 'sklearn'.
+2023-11-09 11:21:23,330:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,335:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,339:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,394:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,436:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,437:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,437:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,438:INFO:Engine for model 'lasso' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,442:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,446:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,493:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,530:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,531:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,531:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,532:INFO:Engine successfully changes for model 'lasso' to 'sklearn'.
+2023-11-09 11:21:23,536:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,539:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,587:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,625:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,626:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,626:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,630:INFO:Engine for model 'ridge' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,634:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,682:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,721:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,721:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,722:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,722:INFO:Engine successfully changes for model 'ridge' to 'sklearn'.
+2023-11-09 11:21:23,730:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,777:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,815:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,815:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,815:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,823:INFO:Engine for model 'en' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,870:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,907:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:23,908:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,908:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:23,908:INFO:Engine successfully changes for model 'en' to 'sklearn'.
+2023-11-09 11:21:23,964:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:24,002:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:24,003:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,003:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,069:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:24,142:INFO:Engine for model 'knn' has not been set explicitly, hence returning None.
+2023-11-09 11:21:24,143:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,143:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,144:INFO:Engine successfully changes for model 'knn' to 'sklearn'.
+2023-11-09 11:21:24,248:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:24,285:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,286:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,346:INFO:Engine for model 'svm' has not been set explicitly, hence returning None.
+2023-11-09 11:21:24,415:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,416:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,416:INFO:Engine successfully changes for model 'svm' to 'sklearn'.
+2023-11-09 11:21:24,596:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,596:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,707:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,707:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,708:INFO:Preparing preprocessing pipeline...
+2023-11-09 11:21:24,708:INFO:Set up target transformation.
+2023-11-09 11:21:24,708:INFO:Set up simple imputation.
+2023-11-09 11:21:24,709:INFO:Set up column name cleaning.
+2023-11-09 11:21:24,735:INFO:Finished creating preprocessing pipeline.
+2023-11-09 11:21:24,741:INFO:Pipeline: Pipeline(memory=FastMemory(location=/tmp/joblib),
+ steps=[('target_transformation',
+ TransformerWrapperWithInverse(transformer=TargetTransformer(estimator=PowerTransformer(standardize=False)))),
+ ('numerical_imputer',
+ TransformerWrapper(include=['Year', 'Series'],
+ transformer=SimpleImputer())),
+ ('categorical_imputer',
+ TransformerWrapper(include=[],
+ transformer=SimpleImputer(strategy='most_frequent'))),
+ ('clean_column_names',
+ TransformerWrapper(transformer=CleanColumnNames()))])
+2023-11-09 11:21:24,741:INFO:Creating final display dataframe.
+2023-11-09 11:21:24,818:INFO:Setup _display_container: Description Value
+0 Session id 123
+1 Target Average price All property types
+2 Target type Regression
+3 Original data shape (523, 4)
+4 Transformed data shape (523, 4)
+5 Transformed train set shape (372, 4)
+6 Transformed test set shape (151, 4)
+7 Numeric features 2
+8 Preprocess True
+9 Imputation type simple
+10 Numeric imputation mean
+11 Categorical imputation mode
+12 Transform target True
+13 Transform target method yeo-johnson
+14 Fold Generator TimeSeriesSplit
+15 Fold Number 3
+16 CPU Jobs -1
+17 Use GPU False
+18 Log Experiment False
+19 Experiment Name reg-default-name
+20 USI 4f24
+2023-11-09 11:21:24,923:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:24,923:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:25,022:WARNING:
+'xgboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install xgboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:25,022:WARNING:
+'catboost' is a soft dependency and not included in the pycaret installation. Please run: `pip install catboost` to install.
+Alternately, you can install this by running `pip install pycaret[models]`
+2023-11-09 11:21:25,023:INFO:setup() successfully completed in 1.71s...............
+2023-11-09 11:21:25,114:INFO:Initializing compare_models()
+2023-11-09 11:21:25,114:INFO:compare_models(self=, include=None, fold=None, round=4, cross_validation=True, sort=MAE, n_select=1, budget_time=None, turbo=True, errors=ignore, fit_kwargs=None, groups=None, experiment_custom_tags=None, probability_threshold=None, verbose=True, parallel=None, caller_params={'self': , 'include': None, 'exclude': None, 'fold': None, 'round': 4, 'cross_validation': True, 'sort': 'MAE', 'n_select': 1, 'budget_time': None, 'turbo': True, 'errors': 'ignore', 'fit_kwargs': None, 'groups': None, 'experiment_custom_tags': None, 'engine': None, 'verbose': True, 'parallel': None, '__class__': }, exclude=None)
+2023-11-09 11:21:25,114:INFO:Checking exceptions
+2023-11-09 11:21:25,117:INFO:Preparing display monitor
+2023-11-09 11:21:25,155:INFO:Initializing Linear Regression
+2023-11-09 11:21:25,155:INFO:Total runtime is 5.054473876953125e-06 minutes
+2023-11-09 11:21:25,158:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:25,159:INFO:Initializing create_model()
+2023-11-09 11:21:25,159:INFO:create_model(self=, estimator=lr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:25,159:INFO:Checking exceptions
+2023-11-09 11:21:25,159:INFO:Importing libraries
+2023-11-09 11:21:25,160:INFO:Copying training dataset
+2023-11-09 11:21:25,163:INFO:Defining folds
+2023-11-09 11:21:25,163:INFO:Declaring metric variables
+2023-11-09 11:21:25,166:INFO:Importing untrained model
+2023-11-09 11:21:25,170:INFO:Linear Regression Imported successfully
+2023-11-09 11:21:25,179:INFO:Starting cross validation
+2023-11-09 11:21:25,180:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:27,376:INFO:Calculating mean and std
+2023-11-09 11:21:27,378:INFO:Creating metrics dataframe
+2023-11-09 11:21:27,382:INFO:Uploading results into container
+2023-11-09 11:21:27,383:INFO:Uploading model into container now
+2023-11-09 11:21:27,384:INFO:_master_model_container: 1
+2023-11-09 11:21:27,384:INFO:_display_container: 2
+2023-11-09 11:21:27,384:INFO:LinearRegression(n_jobs=-1)
+2023-11-09 11:21:27,384:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:27,535:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:27,536:INFO:Creating metrics dataframe
+2023-11-09 11:21:27,544:INFO:Initializing Lasso Regression
+2023-11-09 11:21:27,544:INFO:Total runtime is 0.03981637159983317 minutes
+2023-11-09 11:21:27,548:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:27,548:INFO:Initializing create_model()
+2023-11-09 11:21:27,548:INFO:create_model(self=, estimator=lasso, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:27,548:INFO:Checking exceptions
+2023-11-09 11:21:27,549:INFO:Importing libraries
+2023-11-09 11:21:27,549:INFO:Copying training dataset
+2023-11-09 11:21:27,552:INFO:Defining folds
+2023-11-09 11:21:27,553:INFO:Declaring metric variables
+2023-11-09 11:21:27,556:INFO:Importing untrained model
+2023-11-09 11:21:27,560:INFO:Lasso Regression Imported successfully
+2023-11-09 11:21:27,565:INFO:Starting cross validation
+2023-11-09 11:21:27,566:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:27,643:INFO:Calculating mean and std
+2023-11-09 11:21:27,644:INFO:Creating metrics dataframe
+2023-11-09 11:21:27,647:INFO:Uploading results into container
+2023-11-09 11:21:27,647:INFO:Uploading model into container now
+2023-11-09 11:21:27,648:INFO:_master_model_container: 2
+2023-11-09 11:21:27,648:INFO:_display_container: 2
+2023-11-09 11:21:27,648:INFO:Lasso(random_state=123)
+2023-11-09 11:21:27,648:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:27,769:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:27,769:INFO:Creating metrics dataframe
+2023-11-09 11:21:27,778:INFO:Initializing Ridge Regression
+2023-11-09 11:21:27,778:INFO:Total runtime is 0.04372069835662842 minutes
+2023-11-09 11:21:27,781:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:27,782:INFO:Initializing create_model()
+2023-11-09 11:21:27,782:INFO:create_model(self=, estimator=ridge, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:27,782:INFO:Checking exceptions
+2023-11-09 11:21:27,783:INFO:Importing libraries
+2023-11-09 11:21:27,783:INFO:Copying training dataset
+2023-11-09 11:21:27,786:INFO:Defining folds
+2023-11-09 11:21:27,786:INFO:Declaring metric variables
+2023-11-09 11:21:27,789:INFO:Importing untrained model
+2023-11-09 11:21:27,792:INFO:Ridge Regression Imported successfully
+2023-11-09 11:21:27,798:INFO:Starting cross validation
+2023-11-09 11:21:27,799:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:27,879:INFO:Calculating mean and std
+2023-11-09 11:21:27,880:INFO:Creating metrics dataframe
+2023-11-09 11:21:27,882:INFO:Uploading results into container
+2023-11-09 11:21:27,883:INFO:Uploading model into container now
+2023-11-09 11:21:27,883:INFO:_master_model_container: 3
+2023-11-09 11:21:27,883:INFO:_display_container: 2
+2023-11-09 11:21:27,884:INFO:Ridge(random_state=123)
+2023-11-09 11:21:27,884:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:28,011:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:28,011:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,019:INFO:Initializing Elastic Net
+2023-11-09 11:21:28,019:INFO:Total runtime is 0.0477394978205363 minutes
+2023-11-09 11:21:28,023:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:28,024:INFO:Initializing create_model()
+2023-11-09 11:21:28,024:INFO:create_model(self=, estimator=en, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:28,024:INFO:Checking exceptions
+2023-11-09 11:21:28,024:INFO:Importing libraries
+2023-11-09 11:21:28,024:INFO:Copying training dataset
+2023-11-09 11:21:28,028:INFO:Defining folds
+2023-11-09 11:21:28,028:INFO:Declaring metric variables
+2023-11-09 11:21:28,031:INFO:Importing untrained model
+2023-11-09 11:21:28,034:INFO:Elastic Net Imported successfully
+2023-11-09 11:21:28,040:INFO:Starting cross validation
+2023-11-09 11:21:28,042:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:28,119:INFO:Calculating mean and std
+2023-11-09 11:21:28,120:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,123:INFO:Uploading results into container
+2023-11-09 11:21:28,123:INFO:Uploading model into container now
+2023-11-09 11:21:28,124:INFO:_master_model_container: 4
+2023-11-09 11:21:28,124:INFO:_display_container: 2
+2023-11-09 11:21:28,124:INFO:ElasticNet(random_state=123)
+2023-11-09 11:21:28,124:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:28,257:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:28,257:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,265:INFO:Initializing Least Angle Regression
+2023-11-09 11:21:28,265:INFO:Total runtime is 0.051840678850809736 minutes
+2023-11-09 11:21:28,269:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:28,269:INFO:Initializing create_model()
+2023-11-09 11:21:28,270:INFO:create_model(self=, estimator=lar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:28,270:INFO:Checking exceptions
+2023-11-09 11:21:28,270:INFO:Importing libraries
+2023-11-09 11:21:28,270:INFO:Copying training dataset
+2023-11-09 11:21:28,273:INFO:Defining folds
+2023-11-09 11:21:28,274:INFO:Declaring metric variables
+2023-11-09 11:21:28,277:INFO:Importing untrained model
+2023-11-09 11:21:28,280:INFO:Least Angle Regression Imported successfully
+2023-11-09 11:21:28,286:INFO:Starting cross validation
+2023-11-09 11:21:28,288:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:28,367:INFO:Calculating mean and std
+2023-11-09 11:21:28,368:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,370:INFO:Uploading results into container
+2023-11-09 11:21:28,371:INFO:Uploading model into container now
+2023-11-09 11:21:28,371:INFO:_master_model_container: 5
+2023-11-09 11:21:28,371:INFO:_display_container: 2
+2023-11-09 11:21:28,372:INFO:Lars(random_state=123)
+2023-11-09 11:21:28,372:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:28,508:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:28,508:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,520:INFO:Initializing Lasso Least Angle Regression
+2023-11-09 11:21:28,521:INFO:Total runtime is 0.05610386927922567 minutes
+2023-11-09 11:21:28,526:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:28,527:INFO:Initializing create_model()
+2023-11-09 11:21:28,527:INFO:create_model(self=, estimator=llar, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:28,527:INFO:Checking exceptions
+2023-11-09 11:21:28,527:INFO:Importing libraries
+2023-11-09 11:21:28,528:INFO:Copying training dataset
+2023-11-09 11:21:28,533:INFO:Defining folds
+2023-11-09 11:21:28,533:INFO:Declaring metric variables
+2023-11-09 11:21:28,539:INFO:Importing untrained model
+2023-11-09 11:21:28,545:INFO:Lasso Least Angle Regression Imported successfully
+2023-11-09 11:21:28,553:INFO:Starting cross validation
+2023-11-09 11:21:28,554:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:28,673:INFO:Calculating mean and std
+2023-11-09 11:21:28,675:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,681:INFO:Uploading results into container
+2023-11-09 11:21:28,682:INFO:Uploading model into container now
+2023-11-09 11:21:28,682:INFO:_master_model_container: 6
+2023-11-09 11:21:28,682:INFO:_display_container: 2
+2023-11-09 11:21:28,683:INFO:LassoLars(random_state=123)
+2023-11-09 11:21:28,683:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:28,840:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:28,840:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,853:INFO:Initializing Orthogonal Matching Pursuit
+2023-11-09 11:21:28,853:INFO:Total runtime is 0.06163575251897176 minutes
+2023-11-09 11:21:28,856:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:28,857:INFO:Initializing create_model()
+2023-11-09 11:21:28,857:INFO:create_model(self=, estimator=omp, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:28,857:INFO:Checking exceptions
+2023-11-09 11:21:28,857:INFO:Importing libraries
+2023-11-09 11:21:28,857:INFO:Copying training dataset
+2023-11-09 11:21:28,861:INFO:Defining folds
+2023-11-09 11:21:28,862:INFO:Declaring metric variables
+2023-11-09 11:21:28,865:INFO:Importing untrained model
+2023-11-09 11:21:28,868:INFO:Orthogonal Matching Pursuit Imported successfully
+2023-11-09 11:21:28,874:INFO:Starting cross validation
+2023-11-09 11:21:28,875:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:28,963:INFO:Calculating mean and std
+2023-11-09 11:21:28,964:INFO:Creating metrics dataframe
+2023-11-09 11:21:28,968:INFO:Uploading results into container
+2023-11-09 11:21:28,969:INFO:Uploading model into container now
+2023-11-09 11:21:28,969:INFO:_master_model_container: 7
+2023-11-09 11:21:28,969:INFO:_display_container: 2
+2023-11-09 11:21:28,970:INFO:OrthogonalMatchingPursuit()
+2023-11-09 11:21:28,970:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:29,100:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:29,100:INFO:Creating metrics dataframe
+2023-11-09 11:21:29,109:INFO:Initializing Bayesian Ridge
+2023-11-09 11:21:29,109:INFO:Total runtime is 0.06590712865193685 minutes
+2023-11-09 11:21:29,113:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:29,113:INFO:Initializing create_model()
+2023-11-09 11:21:29,113:INFO:create_model(self=, estimator=br, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:29,113:INFO:Checking exceptions
+2023-11-09 11:21:29,113:INFO:Importing libraries
+2023-11-09 11:21:29,113:INFO:Copying training dataset
+2023-11-09 11:21:29,117:INFO:Defining folds
+2023-11-09 11:21:29,117:INFO:Declaring metric variables
+2023-11-09 11:21:29,121:INFO:Importing untrained model
+2023-11-09 11:21:29,124:INFO:Bayesian Ridge Imported successfully
+2023-11-09 11:21:29,130:INFO:Starting cross validation
+2023-11-09 11:21:29,131:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:29,215:INFO:Calculating mean and std
+2023-11-09 11:21:29,216:INFO:Creating metrics dataframe
+2023-11-09 11:21:29,219:INFO:Uploading results into container
+2023-11-09 11:21:29,220:INFO:Uploading model into container now
+2023-11-09 11:21:29,221:INFO:_master_model_container: 8
+2023-11-09 11:21:29,221:INFO:_display_container: 2
+2023-11-09 11:21:29,221:INFO:BayesianRidge()
+2023-11-09 11:21:29,221:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:29,391:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:29,391:INFO:Creating metrics dataframe
+2023-11-09 11:21:29,401:INFO:Initializing Passive Aggressive Regressor
+2023-11-09 11:21:29,402:INFO:Total runtime is 0.07077778577804565 minutes
+2023-11-09 11:21:29,405:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:29,406:INFO:Initializing create_model()
+2023-11-09 11:21:29,406:INFO:create_model(self=, estimator=par, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:29,406:INFO:Checking exceptions
+2023-11-09 11:21:29,406:INFO:Importing libraries
+2023-11-09 11:21:29,406:INFO:Copying training dataset
+2023-11-09 11:21:29,409:INFO:Defining folds
+2023-11-09 11:21:29,410:INFO:Declaring metric variables
+2023-11-09 11:21:29,412:INFO:Importing untrained model
+2023-11-09 11:21:29,416:INFO:Passive Aggressive Regressor Imported successfully
+2023-11-09 11:21:29,423:INFO:Starting cross validation
+2023-11-09 11:21:29,424:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:29,510:INFO:Calculating mean and std
+2023-11-09 11:21:29,510:INFO:Creating metrics dataframe
+2023-11-09 11:21:29,514:INFO:Uploading results into container
+2023-11-09 11:21:29,514:INFO:Uploading model into container now
+2023-11-09 11:21:29,515:INFO:_master_model_container: 9
+2023-11-09 11:21:29,515:INFO:_display_container: 2
+2023-11-09 11:21:29,515:INFO:PassiveAggressiveRegressor(random_state=123)
+2023-11-09 11:21:29,515:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:29,665:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:29,665:INFO:Creating metrics dataframe
+2023-11-09 11:21:29,695:INFO:Initializing Huber Regressor
+2023-11-09 11:21:29,695:INFO:Total runtime is 0.07566508452097574 minutes
+2023-11-09 11:21:29,701:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:29,702:INFO:Initializing create_model()
+2023-11-09 11:21:29,702:INFO:create_model(self=, estimator=huber, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:29,702:INFO:Checking exceptions
+2023-11-09 11:21:29,702:INFO:Importing libraries
+2023-11-09 11:21:29,702:INFO:Copying training dataset
+2023-11-09 11:21:29,709:INFO:Defining folds
+2023-11-09 11:21:29,709:INFO:Declaring metric variables
+2023-11-09 11:21:29,716:INFO:Importing untrained model
+2023-11-09 11:21:29,721:INFO:Huber Regressor Imported successfully
+2023-11-09 11:21:29,740:INFO:Starting cross validation
+2023-11-09 11:21:29,741:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:29,859:INFO:Calculating mean and std
+2023-11-09 11:21:29,860:INFO:Creating metrics dataframe
+2023-11-09 11:21:29,864:INFO:Uploading results into container
+2023-11-09 11:21:29,865:INFO:Uploading model into container now
+2023-11-09 11:21:29,865:INFO:_master_model_container: 10
+2023-11-09 11:21:29,865:INFO:_display_container: 2
+2023-11-09 11:21:29,866:INFO:HuberRegressor()
+2023-11-09 11:21:29,866:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:30,013:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:30,013:INFO:Creating metrics dataframe
+2023-11-09 11:21:30,022:INFO:Initializing K Neighbors Regressor
+2023-11-09 11:21:30,022:INFO:Total runtime is 0.08112245798110962 minutes
+2023-11-09 11:21:30,026:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:30,026:INFO:Initializing create_model()
+2023-11-09 11:21:30,026:INFO:create_model(self=, estimator=knn, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:30,027:INFO:Checking exceptions
+2023-11-09 11:21:30,027:INFO:Importing libraries
+2023-11-09 11:21:30,027:INFO:Copying training dataset
+2023-11-09 11:21:30,030:INFO:Defining folds
+2023-11-09 11:21:30,030:INFO:Declaring metric variables
+2023-11-09 11:21:30,034:INFO:Importing untrained model
+2023-11-09 11:21:30,038:INFO:K Neighbors Regressor Imported successfully
+2023-11-09 11:21:30,044:INFO:Starting cross validation
+2023-11-09 11:21:30,045:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:30,146:INFO:Calculating mean and std
+2023-11-09 11:21:30,148:INFO:Creating metrics dataframe
+2023-11-09 11:21:30,151:INFO:Uploading results into container
+2023-11-09 11:21:30,152:INFO:Uploading model into container now
+2023-11-09 11:21:30,153:INFO:_master_model_container: 11
+2023-11-09 11:21:30,153:INFO:_display_container: 2
+2023-11-09 11:21:30,153:INFO:KNeighborsRegressor(n_jobs=-1)
+2023-11-09 11:21:30,153:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:30,291:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:30,291:INFO:Creating metrics dataframe
+2023-11-09 11:21:30,302:INFO:Initializing Decision Tree Regressor
+2023-11-09 11:21:30,302:INFO:Total runtime is 0.08578158617019653 minutes
+2023-11-09 11:21:30,305:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:30,306:INFO:Initializing create_model()
+2023-11-09 11:21:30,306:INFO:create_model(self=, estimator=dt, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:30,306:INFO:Checking exceptions
+2023-11-09 11:21:30,306:INFO:Importing libraries
+2023-11-09 11:21:30,306:INFO:Copying training dataset
+2023-11-09 11:21:30,309:INFO:Defining folds
+2023-11-09 11:21:30,310:INFO:Declaring metric variables
+2023-11-09 11:21:30,314:INFO:Importing untrained model
+2023-11-09 11:21:30,317:INFO:Decision Tree Regressor Imported successfully
+2023-11-09 11:21:30,324:INFO:Starting cross validation
+2023-11-09 11:21:30,325:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:30,401:INFO:Calculating mean and std
+2023-11-09 11:21:30,402:INFO:Creating metrics dataframe
+2023-11-09 11:21:30,405:INFO:Uploading results into container
+2023-11-09 11:21:30,405:INFO:Uploading model into container now
+2023-11-09 11:21:30,405:INFO:_master_model_container: 12
+2023-11-09 11:21:30,405:INFO:_display_container: 2
+2023-11-09 11:21:30,406:INFO:DecisionTreeRegressor(random_state=123)
+2023-11-09 11:21:30,406:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:30,545:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:30,545:INFO:Creating metrics dataframe
+2023-11-09 11:21:30,555:INFO:Initializing Random Forest Regressor
+2023-11-09 11:21:30,555:INFO:Total runtime is 0.09000341494878134 minutes
+2023-11-09 11:21:30,559:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:30,559:INFO:Initializing create_model()
+2023-11-09 11:21:30,559:INFO:create_model(self=, estimator=rf, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:30,559:INFO:Checking exceptions
+2023-11-09 11:21:30,560:INFO:Importing libraries
+2023-11-09 11:21:30,560:INFO:Copying training dataset
+2023-11-09 11:21:30,563:INFO:Defining folds
+2023-11-09 11:21:30,563:INFO:Declaring metric variables
+2023-11-09 11:21:30,566:INFO:Importing untrained model
+2023-11-09 11:21:30,570:INFO:Random Forest Regressor Imported successfully
+2023-11-09 11:21:30,577:INFO:Starting cross validation
+2023-11-09 11:21:30,578:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:31,043:INFO:Calculating mean and std
+2023-11-09 11:21:31,045:INFO:Creating metrics dataframe
+2023-11-09 11:21:31,049:INFO:Uploading results into container
+2023-11-09 11:21:31,050:INFO:Uploading model into container now
+2023-11-09 11:21:31,050:INFO:_master_model_container: 13
+2023-11-09 11:21:31,051:INFO:_display_container: 2
+2023-11-09 11:21:31,052:INFO:RandomForestRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:21:31,052:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:31,256:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:31,257:INFO:Creating metrics dataframe
+2023-11-09 11:21:31,273:INFO:Initializing Extra Trees Regressor
+2023-11-09 11:21:31,273:INFO:Total runtime is 0.10196697314580282 minutes
+2023-11-09 11:21:31,277:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:31,278:INFO:Initializing create_model()
+2023-11-09 11:21:31,278:INFO:create_model(self=, estimator=et, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:31,278:INFO:Checking exceptions
+2023-11-09 11:21:31,278:INFO:Importing libraries
+2023-11-09 11:21:31,278:INFO:Copying training dataset
+2023-11-09 11:21:31,282:INFO:Defining folds
+2023-11-09 11:21:31,282:INFO:Declaring metric variables
+2023-11-09 11:21:31,286:INFO:Importing untrained model
+2023-11-09 11:21:31,289:INFO:Extra Trees Regressor Imported successfully
+2023-11-09 11:21:31,296:INFO:Starting cross validation
+2023-11-09 11:21:31,297:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:31,637:INFO:Calculating mean and std
+2023-11-09 11:21:31,638:INFO:Creating metrics dataframe
+2023-11-09 11:21:31,642:INFO:Uploading results into container
+2023-11-09 11:21:31,643:INFO:Uploading model into container now
+2023-11-09 11:21:31,644:INFO:_master_model_container: 14
+2023-11-09 11:21:31,644:INFO:_display_container: 2
+2023-11-09 11:21:31,644:INFO:ExtraTreesRegressor(n_jobs=-1, random_state=123)
+2023-11-09 11:21:31,644:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:31,780:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:31,780:INFO:Creating metrics dataframe
+2023-11-09 11:21:31,790:INFO:Initializing AdaBoost Regressor
+2023-11-09 11:21:31,790:INFO:Total runtime is 0.11058982610702514 minutes
+2023-11-09 11:21:31,795:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:31,795:INFO:Initializing create_model()
+2023-11-09 11:21:31,795:INFO:create_model(self=, estimator=ada, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:31,796:INFO:Checking exceptions
+2023-11-09 11:21:31,796:INFO:Importing libraries
+2023-11-09 11:21:31,796:INFO:Copying training dataset
+2023-11-09 11:21:31,800:INFO:Defining folds
+2023-11-09 11:21:31,800:INFO:Declaring metric variables
+2023-11-09 11:21:31,804:INFO:Importing untrained model
+2023-11-09 11:21:31,807:INFO:AdaBoost Regressor Imported successfully
+2023-11-09 11:21:31,814:INFO:Starting cross validation
+2023-11-09 11:21:31,816:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:32,017:INFO:Calculating mean and std
+2023-11-09 11:21:32,018:INFO:Creating metrics dataframe
+2023-11-09 11:21:32,021:INFO:Uploading results into container
+2023-11-09 11:21:32,022:INFO:Uploading model into container now
+2023-11-09 11:21:32,022:INFO:_master_model_container: 15
+2023-11-09 11:21:32,023:INFO:_display_container: 2
+2023-11-09 11:21:32,023:INFO:AdaBoostRegressor(random_state=123)
+2023-11-09 11:21:32,023:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:32,156:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:32,156:INFO:Creating metrics dataframe
+2023-11-09 11:21:32,167:INFO:Initializing Gradient Boosting Regressor
+2023-11-09 11:21:32,168:INFO:Total runtime is 0.11687904198964437 minutes
+2023-11-09 11:21:32,171:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:32,172:INFO:Initializing create_model()
+2023-11-09 11:21:32,172:INFO:create_model(self=, estimator=gbr, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=, model_only=True, return_train_score=False, kwargs={})
+2023-11-09 11:21:32,172:INFO:Checking exceptions
+2023-11-09 11:21:32,172:INFO:Importing libraries
+2023-11-09 11:21:32,172:INFO:Copying training dataset
+2023-11-09 11:21:32,176:INFO:Defining folds
+2023-11-09 11:21:32,176:INFO:Declaring metric variables
+2023-11-09 11:21:32,180:INFO:Importing untrained model
+2023-11-09 11:21:32,183:INFO:Gradient Boosting Regressor Imported successfully
+2023-11-09 11:21:32,189:INFO:Starting cross validation
+2023-11-09 11:21:32,190:INFO:Cross validating with TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), n_jobs=-1
+2023-11-09 11:21:32,373:INFO:Calculating mean and std
+2023-11-09 11:21:32,374:INFO:Creating metrics dataframe
+2023-11-09 11:21:32,378:INFO:Uploading results into container
+2023-11-09 11:21:32,379:INFO:Uploading model into container now
+2023-11-09 11:21:32,379:INFO:_master_model_container: 16
+2023-11-09 11:21:32,379:INFO:_display_container: 2
+2023-11-09 11:21:32,379:INFO:GradientBoostingRegressor(random_state=123)
+2023-11-09 11:21:32,379:INFO:create_model() successfully completed......................................
+2023-11-09 11:21:32,511:INFO:SubProcess create_model() end ==================================
+2023-11-09 11:21:32,511:INFO:Creating metrics dataframe
+2023-11-09 11:21:32,522:INFO:Initializing Light Gradient Boosting Machine
+2023-11-09 11:21:32,522:INFO:Total runtime is 0.12278976440429687 minutes
+2023-11-09 11:21:32,526:INFO:SubProcess create_model() called ==================================
+2023-11-09 11:21:32,527:INFO:Initializing create_model()
+2023-11-09 11:21:32,527:INFO:create_model(self=, estimator=lightgbm, fold=TimeSeriesSplit(gap=0, max_train_size=None, n_splits=3, test_size=None), round=4, cross_validation=True, predict=True, fit_kwargs={}, groups=None, refit=False, probability_threshold=None, experiment_custom_tags=None, verbose=False, system=False, add_to_model_list=True, metrics=None, display=