-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_approx.m
96 lines (84 loc) · 2.95 KB
/
plot_approx.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function [ ] = plot_approx( x, normals, SIGMA, coeffs, corners, varargin )
% plot approximated function given by coefficients coeffs given by points x
% and covariance matrices SIGMA
%
% PLOT_APPROX(x, normals, SIGMA, coeffs, corners)
%
% x is a n-by-d matrix where each of the n rows represents the
% (d-dimensional) position of a center
%
% normals is a n-by-d matrix where each of the n rows represents the
% (d-dimensional) directed normal of the zero-isosurface
% at a center
%
% SIGMA is a n-by-d-by-d array where SIGMA(i,:,:) is the d-by-d
% covariance matrix corresponding to the i-th point. A valid
% covariance matrix must be positive-semidefinite. There will
% be no warning when the passed matrices aren't.
%
% coeffs is a n-by-1 array contaning coefficients for weighting
% each basis function
%
% corners matrix indicating the boundary of the area to be plotted.
% Structure: [ <left edge> , <lower edge>;
% <right edge>, <upper edge> ]
%
% PLOT_APPROX takes the following optional arguments as
% 'name',value pairs, after the mandatory parameters:
%
% res height and width resolution of the plot; default: 100
%
% x_res width resolution of the plot, overrides res if given
%
% y_res height resolution of the plot, overrides res if given
%
% x_indices
% (For debugging purposes.) If given, leave away all basis
% functions whose index is not listed in this parameter,
% otherwise plot the complete reconstruction.
%
% See also: plot_gauss_mix, EM
%% Parse input arguments
ip = inputParser;
ip.addRequired('x');
ip.addRequired('normals');
ip.addRequired('SIGMA');
ip.addRequired('coeffs');
ip.addRequired('corners');
ip.addParamValue('res', 100);
ip.addParamValue('x_res', false);
ip.addParamValue('y_res', false);
ip.addParamValue('x_indices', false);
ip.parse(x, normals, SIGMA, coeffs, corners, varargin{:});
%% Post-process input arguments
if any(strcmpi('x_res', ip.UsingDefaults))
x_res = ip.Results.res;
else
x_res = ip.Results.x_res;
end
if any(strcmpi('y_res', ip.UsingDefaults))
y_res = ip.Results.res;
else
y_res = ip.Results.y_res;
end
if ~any(strcmpi('x_indices', ip.UsingDefaults))
x = x(ip.Results.x_indices, :);
SIGMA = SIGMA(ip.Results.x_indices, :, :);
end
%% Coordinates for each pixel
[X Y] = meshgrid( linspace(corners(1,1), corners(2,1), x_res), ...
linspace(corners(1,2), corners(2,2), y_res) );
%% Evaluate function for coordinates
A = measurement_matrix(x, normals, SIGMA, [X(:) Y(:)], ...
'compile', true ); % compile value generation code
Z = A * coeffs;
%% Deserialize function values
Z = reshape(Z, y_res, x_res);
%% Display
figure
imagesc([X(1,1) X(1,end)], [Y(1,1) Y(end,1)], Z)
set(gca,'YDir','normal')
c = caxis;
caxis(c - c([2 1]))
colormap(myjet)
end