-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayes_LM_Eigen.cpp
427 lines (336 loc) · 14.2 KB
/
Bayes_LM_Eigen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/* Bayesian linear model Gibbs sampler using Eigen library; see Hoff pages
* 154-155 for mathematical details.
*
* The main purpose of the program is as an exercise to use the Amadillo library
* in an MCMC sampler setting, and also to test the speed of the sampler under
* various options.
*
* In more detail, we are estimating p(\beta, \gamma | X, y) using a Gibbs
* sampler for the model y = X\beta + \epsilon. The values X, \beta, and y are
* sampled, and then the posterior distributions of \beta and \gamma are
* approximated through the Gibbs sampler. Summary statistics may be written to
* stdout, and the MCMC samples may be written to file.
*
* The model hyperparameters are specified with fixed values as follows:
*
* beta_0: zero vector
* sigma_0: identity matrix
* nu_0: 1
* sigma_0^2: 1
*/
/* The following command line arguments can be provided. The desired value of
* the argument should follow the argument specifier, either immediately after
* or separated by whitespace.
*
* @param -n An integer value no less than 1 specifying the number of
* observations in the model. Non-integer values are truncated to integer
* values.
*
* @param -p A numeric value no less than 1 specifying the number of predictor
* variables in the model. Non-integer values are truncated to integer
* values.
*
* @param -nsamp A numeric value no less than 1 specifying the number of scans
* to perform in the Gibbs sampler. Non-integer values are truncated to
* integer values.
*
* @param -prop_nonzero A numeric value in the range (0, 1] specifying the
* proportion of nonzero predictor coefficients in the model.
*
* @param -true_beta_sd A positive numeric value; each nonzero predictor
* coefficient in the true model is independently sampled from from a N(0,
* true_beta_sd^2) distribution.
*
* @param -true_sigma A positive numeric value; the model outcome vector y is
* sampled from a conditional distribution y | X\beta ~ N(0, true_sigma^2),
* where X is the matrix of predictor variables, and \beta is a vector of
* variable coefficients.
*
* @param -sd_x A positive numeric value; the model predictor variables are
* independently sampled from a N(0, sd_x^2) distribution.
*
* @param -print_stats One of either true or false, specifying whether a
* printout of the true (sampled) predictor coefficient values and
* approximations of the 2.5%, 50%, and 97.5% quantile levels is written to
* the console.
*
* @param -write_samples One of either true or false, specifying whether the
* samples generated from the Gibbs sampler should be written to file. The
* first row provides the values for the true beta vector and inverse of the
* true sigma^2, and the following rows provide the samples. The location
* of the file is specified by samples_file_loc.
*
* @param -samples_file_loc A character string specifying the location of the
* file to which the samples generated from the Gibbs sampler should be
* written (ignored if write_samples is false).
*
* @param -write_ctime One of either true or false, specifying whether the
* computation time taken to perform calculate a matrix inverse, sample from
* the normal distribution, and the overall time should by written to
* file. The location of the file is specified by ctime_file_loc.
*
* @param -ctime_file_loc A character string specifying the location of the file
* to which the computational time should be written (ignored if write_ctime
* is false).
*
* @param -decomp_method One of either "chol" or "eigen", specifying whether the
* multivariate normal sampling function should use the Cholesky
* decomposition or the eigen decomposition.
*
* @param -seed A nonnegative integer specifying a value that the RNG is to be
* seeded with.
*/
/* Compile using e.g.
*
* g++ Bayes_LM_Eigen.cpp Parse_Args.cpp Stats_Fcns_Eigen.cpp \
* -DMATHLIB_STANDALONE -I/usr/include/eigen3/ \
* -I/usr/share/R/include -Wall -g3 -O3 -lR -lRmath \
* -o bayes_lm_eigen
*
* This requires having the Eigen headers and Rmath library available.
*/
/* CAVEAT: this file may require a POSIX system to compile due to the use of
* clock_gettime() for the clock timer. Users of other systems may require a
* modification of that part of the code.
*/
#include <iostream>
#include <fstream>
#include <Eigen/Dense>
#include <Rmath.h> // rgamma
#include <ctime> // time
#include <stdexcept> // runtime_error
#include <cstdlib> // qsort
#include "Parse_Args.h" // parse_args, FILENAME_MAXLEN
#include "Stats_Fcns_Eigen.h" // sample_beta, mvrnorm_chol, mvrnorm_eigen
#define TIME_MULTIPLIER 79 // arbitrary prime number to obtain second seed num
#define NANO_MULT 0.000000001 // nano multiplier, i.e. 1e-9
#define OVERALL 0 // index for overall time elapsed
#define INVERSE 1 // index for time elapsed calculating matrix inverse
#define SAMP_NORM 2 // index for time elapsed sampling from normal distribution
// Track time of inverse, sampling from normal, and overall
#ifndef NO_TIMER
#define CLOCK_START(idx) clock_gettime(CLOCK_MONOTONIC, &start[idx]);
#define CLOCK_STOP(idx) do { \
clock_gettime(CLOCK_MONOTONIC, &finish[idx]); \
elapsed[idx] += (finish[idx].tv_sec - start[idx].tv_sec); \
elapsed[idx] += (finish[idx].tv_nsec - start[idx].tv_nsec) * NANO_MULT; \
} while (0)
#else
#define CLOCK_START(idx) (void) start[idx]; // prevent unused variable warning
#define CLOCK_STOP(idx) (void) finish[idx]; // prevent unused variable warning
#endif
// Default parameter specifications --------------------------------------------
// Specify size of data
int n = 100; // number of observations
int p = 15; // number of predictor variables
// Specify proportion of nonzero elements in beta
double prop_nonzero = 0.2;
// Specify beta coefficient standard deviation
double true_beta_sd = 2;
// Specify sd of eps_i in y_i = t(X_i) * beta + eps_i
double true_sigma = 2;
// Specify st. dev. in sampling predictors coeffs from indep N(0, sd_x^2) dists
double sd_x = 2;
// Specify number of MCMC scans
int nsamp = 1e4;
// Print sample median statistics
bool print_stats = false;
// Write computational time to output file
bool write_ctime = false;
// Computational time output file location
char ctime_file_loc[FILENAME_MAXLEN] = "Comp_Time_Eigen.dat";
// Write samples to file
bool write_samples = false;
// MCMC samples output file location
char samples_file_loc[FILENAME_MAXLEN] = "Samples_Eigen.dat";
// Specify whether to use Cholesky or eigen decomposition for sampling normals
char decomp_method = 'c';
// Specify seed for RNG
unsigned int seed = time(NULL);
// Begin main -----------------------------------------------------------------
int main(int argc, char* argv[]) {
// Read command-line arguments
parse_args(argc, argv);
// Set seed for random draws
set_seed(seed, seed * TIME_MULTIPLIER);
// Declare model data structures -----------------------
Eigen::VectorXd true_beta; // true coefficient vector
Eigen::VectorXd y; // response values
Eigen::MatrixXd X; // predictor coefficient matrix
Eigen::VectorXd beta; // current value of beta sample
double gamma; // current value of gamma sample
Eigen::MatrixXd Sigma_inv_0; // inverse of beta variance hyperparam
double nu_0; // hyperparam 1 for inverse-gamma prior
double sigma_sq_0; // hyperparam 2 for inverse-gamma prior
Eigen::MatrixXd out_beta; // memory for beta samples
Eigen::VectorXd out_gamma; // memory for gamma samples
// Declare storage and timer data structures -----------
std::ofstream ctime_file; // sampler loop computational time file
std::ofstream samples_file; // samples file
struct timespec start[3]; // store event starting time information
struct timespec finish[3]; // store event ending time information
double elapsed[3] = { 0, 0, 0 }; // tracks event cumulative elapsed time
double* curr; // pointer steps through current val
double* end; // pointer to mark one past the last val
// Set values of model objects -------------------------
// Set values of beta
true_beta = sample_beta(p, prop_nonzero, true_beta_sd);
// Sample data
X = matr_randn(n, p, sd_x);
y = (X * true_beta) + matr_randn(n, 1, true_sigma);
/* Set the priors; see Hoff pgs. 154-155 for the meanings of the priors.
* Note: we are implicitely specifying the mean hyperparameter for beta to
* be 0 by ommitting the term in the Gibbs sampler conditional mean
* calculation.
*/
Sigma_inv_0.setIdentity(p, p);
nu_0 = 1;
sigma_sq_0 = 1;
// Write param vals to file ----------------------------
// Write true values of beta, sigma^{-2} to the first row of output file
if (write_samples) {
samples_file.open(samples_file_loc);
curr = true_beta.data();
end = curr + p;
for ( ; (curr != end); curr++) {
samples_file << *curr << " ";
}
samples_file << 1 / (true_sigma * true_sigma) << "\n";
samples_file.close();
}
// Preliminary calculations ----------------------------
Eigen::MatrixXd tXX; // value of X^{T} X
Eigen::VectorXd tXy; // value of X^{T} y
double shapeval; // shape parameter for gamma distribution samples
double nu_sigma_sq_0; // product of nu_0 and sigma^2_0
tXX = X.transpose() * X;
tXy = X.transpose() * y;
nu_sigma_sq_0 = nu_0 * sigma_sq_0;
shapeval = (nu_0 + n) / 2;
// Sampler object initialization -----------------------
Eigen::MatrixXd V; // variance of current beta sample
Eigen::VectorXd m; // mean of current beta sample
Eigen::VectorXd err; // model error, i.e. y - X \beta
Eigen::MatrixXd iden; // storing matrix identity
double SSR; // SSR (sum of squared errors)
double scaleval; // scale parameter for gamma distribution samples
// Set pointer to desired multivariate normal sampling function
Eigen::VectorXd (*samp_mvnorm)(Eigen::VectorXd&, Eigen::MatrixXd&);
switch (decomp_method) {
case 'c':
samp_mvnorm = &mvrnorm_chol;
break;
case 'e':
samp_mvnorm = &mvrnorm_eigen;
break;
default:
throw std::runtime_error("Illegal value of decomp_method");
}
// Conditionally allocate memory for samples
if (print_stats) {
out_beta.resize(p, nsamp);
out_gamma.resize(nsamp, 1);
}
// Conditionally open samples file stream
if (write_samples) {
samples_file.open(samples_file_loc, std::fstream::app);
}
// Initial value for gamma
gamma = 1;
// Initialize identity matrix
iden.setIdentity(p, p);
// Sampler loop ----------------------------------------
// Clock timer objects and initialization; requires POSIX system
CLOCK_START(OVERALL);
for (int s = 0; s < nsamp; s++) {
// Sample beta
CLOCK_START(INVERSE)
// Leverage the fact that we have a p.d. matrix to obtain inverse
V = (Sigma_inv_0 + (gamma * tXX)).llt().solve(iden);
CLOCK_STOP(INVERSE);
m = gamma * V * tXy;
CLOCK_START(SAMP_NORM)
beta = samp_mvnorm(m, V);
CLOCK_STOP(SAMP_NORM);
// Sample gamma
err = y - (X * beta);
// root_SSR = norm(err);
SSR = err.dot(err);
scaleval = 2 / (nu_sigma_sq_0 + SSR);
gamma = rgamma(shapeval, scaleval);
// Conditionally store data in memory / write to file
if (write_samples) {
curr = beta.data();
end = curr + p;
for (; curr < end; curr++) {
samples_file << *curr << " ";
}
samples_file << gamma << "\n";
}
if (print_stats) {
out_beta.col(s) = beta;
out_gamma(s) = gamma;
}
}
// Calculate elapsed time
CLOCK_STOP(OVERALL);
// Print summary statistics ----------------------------
if (print_stats) {
// Allocate memory for tables with cols true values and quantiles
Eigen::MatrixXd table_beta_quant;
Eigen::MatrixXd table_gamma_quant;
Eigen::VectorXd probs(3);
// Transpose to column-major format
out_beta.transposeInPlace();
// Calculate empirical quantiles
probs << 0.025, 0.500, 0.975;
table_beta_quant = quantile_table(true_beta, out_beta, probs);
table_gamma_quant = quantile_table(1 / (true_sigma * true_sigma), out_gamma, probs);
std::cout << "\n"
<< "Parameter specifications:\n"
<< "-------------------------\n"
<< "n: " << n << "\n"
<< "p: " << p << "\n"
<< "prop_nonzero: " << prop_nonzero << "\n"
<< "true_beta_sd: " << true_beta_sd << "\n"
<< "true_sigma: " << true_sigma << "\n"
<< "sd_x: " << sd_x << "\n"
<< "nsamp: " << nsamp << "\n"
<< "print_stats: " << print_stats << "\n"
<< "write_ctime: " << write_ctime << "\n"
<< "ctime_file_loc: " << ctime_file_loc << "\n"
<< "write_samples: " << write_samples << "\n"
<< "samples_file_loc: " << samples_file_loc << "\n"
<< "decomp_method: " << decomp_method << "\n"
<< "seed: " << seed << "\n";
// Set printing of fields to be a fixed format with precision 4
std::cout.setf(std::ios::fixed, std::ios::floatfield);
std::cout.precision(4);
std::cout << "\n"
<< "Elapsed time:\n"
<< "-------------\n"
<< "Inverse: " << elapsed[INVERSE] << "\n"
<< "Sampling normal: " << elapsed[SAMP_NORM] << "\n"
<< "Overall: " << elapsed[OVERALL] << "\n"
<< "\n";
// Set printing of matrices
Eigen::IOFormat matprint(4, 0, " ", "\n", " ", "", "", "");
Eigen::IOFormat gamprint(4, 0, " ", "\n", " ", "", "", "");
std::cout << "true beta 2.5% 50% 97.5%\n"
<< "------------------------------------\n"
<< table_beta_quant.format(matprint) << "\n"
<< "\n"
<< " true gam 2.5% 50% 97.5%\n"
<< "------------------------------------\n"
<< table_gamma_quant.format(gamprint) << "\n"
<< "\n";
}
// Write computational time to output ------------------
if (write_ctime) {
ctime_file.open(ctime_file_loc, std::fstream::app);
ctime_file << elapsed[INVERSE] << " "
<< elapsed[SAMP_NORM] << " "
<< elapsed[OVERALL] << "\n";
}
return 0;
}