-
Notifications
You must be signed in to change notification settings - Fork 0
/
avl.go
998 lines (835 loc) · 24.2 KB
/
avl.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
package avl
//
// This package is a GO implementation of AVL trees
//
// Credit to Eric Biggers for the "C" implementation I used as a base
//
//
// Differences from "C" implementation. To save memory, the "C"
// implementation used the lower 2 bits of the parent node pointer
// to store the balance factor. This worked because an AVL tree
// guarantees no 2 leaf nodes are ever more than 1 difference in
// depth in the tree, and any structure on a modern system will be
// aligned on at least a 4-byte boundary. We can't take that liberty
// with GO, without playing dangerous (e.g. 'unsafe' package) games
// with pointers. We also can't safely cast pointers back and forth
// to allow transparent embedding of the AVL head in the structure the
// intended application defines. What we do instead: the AVL node has
// a field called 'owner', which is an empty interface. The single
// function that provides a node pointer to the AVL system then has an
// additional parameter, which is also an empty interface. That parameter
// is a pointer to the beginning of the containing (owning) node. So a
// call to AvlTreeInsert might look like this:
//
// type struct myNode {
// avlHdr AvlNode
// id int64
// xxx float64
// }
//
// var exampleNode myNode
//
// exampleNode.id = 12345
// exampleNode.xxx = 3.14159
//
// AvlTreeInsert(root, &myNode.avlHdr, &myNode, cmp)
//
// The AVL code will stash the myNode pointer the owner interface field
// in the AVL node structure. Any exported AVL functions that return a
// structure to the caller (e.g. AvlTreeLookup), will pull the owner field
// out of the structure and return that interface. which the caller will
// then assign to a pointer. Like so:
//
// var nodep *myNode
//
// nodep = AvlTreeLookup(root, 12345, cmpint64)
//
// The client then has to use a type assertion to pull a usable structure
// pointer out of the interface. Like so:
//
// if nodep != nil {
// pp = nodep.(*myNode)
// (do something here)
// } else {
// (do something else)
// }
//
type AvlNode struct {
left *AvlNode
right *AvlNode
parent *AvlNode
owner interface{}
balance int8
pad [3]int8
}
type CmpFuncKey func(interface{}, interface{}) int
type CmpFuncNode func(interface{}, interface{}) int
// Internal functions - not visible outside this package
// Returns the left child (sign < 0) or the right child (sign > 0) of the
// specified AVL tree node
// Note: for all calls of this, 'sign' is constant at compilation time,
// so the compiler can remove the conditional
func avlGetChild(parent *AvlNode, sign int) *AvlNode {
if sign < 0 {
return parent.left
} else {
return parent.right
}
}
// Set the left child or right child of the specified node
func avlSetChild(parent *AvlNode, sign int, child *AvlNode) {
if sign < 0 {
parent.left = child
} else {
parent.right = child
}
}
func avlTreeFirstOrLastInOrder(root *AvlNode, sign int) *AvlNode {
first := root
if first != nil {
for avlGetChild(first, +sign) != nil {
first = avlGetChild(first, +sign)
}
}
return first
}
func avlGetParent(node *AvlNode) *AvlNode {
return node.parent
}
func avlTreeNodeSetUnlinked(node *AvlNode) {
node.parent = node
}
func avlTreeNodeIsUnlinked(node *AvlNode) bool {
return node.parent == node
}
// Set the parent and balance factor of the specified node
func avlSetParentBalance(node, parent *AvlNode, balance int) {
node.parent = parent
node.balance = int8(balance + 1)
}
// Set the parent of specified node
func avlSetParent(node, parent *AvlNode) {
node.parent = parent
}
// Returns the balance factor of the specified AVL tree node ---
// that is, the height of its right subtree minus the height of its
// left subtree
func avlGetBalanceFactor(node *AvlNode) int {
return int(node.balance) - 1
}
// Adjust the balance factor of the specified node
func avlAdjustBalanceFactor(node *AvlNode, amount int) {
node.balance += int8(amount)
}
// Replace a child
func avlReplaceChild(root **AvlNode, parent, oldChild, newChild *AvlNode) {
if parent != nil {
if oldChild == parent.left {
parent.left = newChild
} else {
parent.right = newChild
}
} else {
*root = newChild
}
}
//
// Template for performing a single rotation ---
//
// sign > 0: Rotate clockwise (right) rooted at A:
//
// P? P?
// | |
// A B
// / \ / \
// B C? => D? A
// / \ / \
// D? E? E? C?
//
// (nodes marked with ? may not exist)
//
// sign < 0: Rotate counterclockwise (left) rooted at A:
//
// P? P?
// | |
// A B
// / \ / \
// C? B => A D?
// / \ / \
// E? D? C? E?
//
// This updates pointers but not balance factors!
//
func avlRotate(root **AvlNode, A *AvlNode, sign int) {
B := avlGetChild(A, -sign)
E := avlGetChild(B, +sign)
P := avlGetParent(A)
avlSetChild(A, -sign, E)
avlSetParent(A, B)
avlSetChild(B, +sign, A)
avlSetParent(B, P)
if E != nil {
avlSetParent(E, A)
}
avlReplaceChild(root, P, A, B)
}
//
// Template for performing a double rotation ---
//
// sign > 0: Rotate counterclockwise (left) rooted at B, then
// clockwise (right) rooted at A:
//
// P? P? P?
// | | |
// A A E
// / \ / \ / \
// B C? => E C? => B A
// / \ / \ / \ / \
// D? E B G? D? F?G? C?
// / \ / \
// F? G? D? F?
//
// (nodes marked with ? may not exist)
//
// sign < 0: Rotate clockwise (right) rooted at B, then
// counterclockwise (left) rooted at A:
//
// P? P? P?
// | | |
// A A E
// / \ / \ / \
// C? B => C? E => A B
// / \ / \ / \ / \
// E D? G? B C? G?F? D?
// / \ / \
// G? F? F? D?
//
// Returns a pointer to E and updates balance factors. Except for those
// two things, this function is equivalent to:
// avlRotate(root, B, -sign)
// avlRotate(root, A, +sign)
//
// See comment in avlHandleSubtreeGrowth() for explanation of balance
// factor updates.
func avlDoDoubleRotate(root **AvlNode, B, A *AvlNode, sign int) *AvlNode {
E := avlGetChild(B, +sign)
F := avlGetChild(E, -sign)
G := avlGetChild(E, +sign)
P := avlGetParent(A)
e := avlGetBalanceFactor(E)
avlSetChild(A, -sign, G)
if sign*e >= 0 {
avlSetParentBalance(A, E, 0)
} else {
avlSetParentBalance(A, E, -e)
}
avlSetChild(B, +sign, F)
if sign*e <= 0 {
avlSetParentBalance(B, E, 0)
} else {
avlSetParentBalance(B, E, -e)
}
avlSetChild(E, +sign, A)
avlSetChild(E, -sign, B)
avlSetParentBalance(E, P, 0)
if G != nil {
avlSetParent(G, A)
}
if F != nil {
avlSetParent(F, B)
}
avlReplaceChild(root, P, A, E)
return E
}
//
// This function handles the growth of a subtree due to an insertion.
//
// root
// Location of the tree's root pointer.
//
// node
// A subtree that has increased in height by 1 due to an insertion.
//
// parent
// Parent of node; must not be nil.
//
// sign
// -1 if node is the left child of parent
// +1 if node is the right child of parent
//
// This function will adjust parent's balance factor, then do a (single
// or double) rotation if necessary. The return value will be %true if
// the full AVL tree is now adequately balanced, or %false if the subtree
// rooted at parent is now adequately balanced but has increased in
// height by 1, so the caller should continue up the tree.
//
// Note that if %false is returned, no rotation will have been done.
// Indeed, a single node insertion cannot require that more than one
// (single or double) rotation be done.
//
func avlHandleSubtreeGrowth(root **AvlNode, node, parent *AvlNode, sign int) bool {
oldBalanceFactor := avlGetBalanceFactor(parent)
if oldBalanceFactor == 0 {
avlAdjustBalanceFactor(parent, sign)
// parent is still sufficiently balanced (-1 or +1
// balance factor), but must have increased in height.
// Continue up the tree
return false
}
newBalanceFactor := oldBalanceFactor + sign
if newBalanceFactor == 0 {
avlAdjustBalanceFactor(parent, sign)
// parent is now perfectly balanced (0 balance factor).
// It cannot have increased in height, so there is
// nothing more to do
return true
}
// parent is too left-heavy (newBalanceFactor == -2) or
// too right-heavy (newBalanceFactor == +2)
// Test whether node is left-heavy (-1 balance factor) or
// right-heavy (+1 balance factor).
// Note that it cannot be perfectly balanced (0 balance factor)
// because here we are under the invariant that node has
// increased in height due to the insertion. */
if sign*avlGetBalanceFactor(node) > 0 {
// node (B below) is heavy in the same direction parent
// (A below) is heavy.
//
// ==============================================================
// The comment, diagram, and equations below assume sign < 0
// The other case is symmetric!
// =============================================================
//
// Do a clockwise rotation rooted at parent (A below):
//
// A B
// / \ / \
// B C? => D A
// / \ / \ / \
// D E? F? G?E? C?
// / \
// F? G?
//
// Before the rotation:
// balance(A) = -2
// balance(B) = -1
// Let x = height(C). Then:
// height(B) = x + 2
// height(D) = x + 1
// height(E) = x
// max(height(F), height(G)) = x.
//
// After the rotation:
// height(D) = max(height(F), height(G)) + 1
// = x + 1
// height(A) = max(height(E), height(C)) + 1
// = max(x, x) + 1 = x + 1
// balance(B) = 0
// balance(A) = 0
//
avlRotate(root, parent, -sign)
// Equivalent to setting parent's balance factor to 0.
avlAdjustBalanceFactor(parent, -sign) /* A */
// Equivalent to setting node's balance factor to 0.
avlAdjustBalanceFactor(node, -sign) /* B */
} else {
// node (B below) is heavy in the direction opposite
// from the direction parent (A below) is heavy.
//
// =============================================================
// The comment, diagram, and equations below assume sign < 0
// The other case is symmetric!
// ============================================================
//
// Do a counterblockwise rotation rooted at node (B below),
// then a clockwise rotation rooted at parent (A below):
//
// A A E
// / \ / \ / \
// B C? => E C? => B A
// / \ / \ / \ / \
// D? E B G? D? F?G? C?
// / \ / \
// F? G? D? F?
//
// Before the rotation:
// balance(A) = -2
// balance(B) = +1
// Let x = height(C). Then:
// height(B) = x + 2
// height(E) = x + 1
// height(D) = x
// max(height(F), height(G)) = x
//
// After both rotations:
// height(A) = max(height(G), height(C)) + 1
// = x + 1
// balance(A) = balance(E{orig}) >= 0 ? 0 : -balance(E{orig})
// height(B) = max(height(D), height(F)) + 1
// = x + 1
// balance(B) = balance(E{orig} <= 0) ? 0 : -balance(E{orig})
//
// height(E) = x + 2
// balance(E) = 0
//
avlDoDoubleRotate(root, node, parent, -sign)
}
// Height after rotation is unchanged; nothing more to do
return true
}
// Rebalance the tree after insertion of the specified node
func avlTreeRebalanceAfterInsert(root **AvlNode, inserted *AvlNode) {
inserted.left = nil
inserted.right = nil
node := inserted
// Adjust balance factor of new node's parent
// No rotation will need to be done at this level
parent := avlGetParent(node)
if parent == nil {
return
}
if node == parent.left {
avlAdjustBalanceFactor(parent, -1)
} else {
avlAdjustBalanceFactor(parent, +1)
}
if avlGetBalanceFactor(parent) == 0 {
// parent did not change in height - Nothing more to do
return
}
// The subtree rooted at parent increased in height by 1
for done := false; !done; {
// Adjust balance factor of next ancestor
node = parent
parent = avlGetParent(node)
if parent == nil {
return
}
// The subtree rooted at node has increased in height by 1
if node == parent.left {
done = avlHandleSubtreeGrowth(root, node, parent, -1)
} else {
done = avlHandleSubtreeGrowth(root, node, parent, +1)
}
}
}
//
// This function handles the shrinkage of a subtree due to a deletion.
//
// root
// Location of the tree's root pointer.
//
// parent
// A node in the tree, exactly one of whose subtrees has decreased
// in height by 1 due to a deletion. (This includes the case where
// one of the child pointers has become nil, since we can consider
// the "nil" subtree to have a height of 0.)
//
// sign
// +1 if the left subtree of parent has decreased in height by 1
// -1 if the right subtree of parent has decreased in height by 1
//
// leftDeletedRet
// If the return value is not nil, this will be set to %true if the
// left subtree of the returned node has decreased in height by 1,
// or %false if the right subtree of the returned node has decreased
// in height by 1.
//
// This function will adjust parent's balance factor, then do a (single
// or double) rotation if necessary. The return value will be nil if
// the full AVL tree is now adequately balanced, or a pointer to the
// parent of parent if parent is now adequately balanced but has
// decreased in height by 1. Also in the latter case, leftDeletedRet
// will be set.
//
func avlHandleSubtreeShrink(root **AvlNode, parent *AvlNode, sign int, leftDeletedRet *bool) *AvlNode {
var node *AvlNode
oldBalanceFactor := avlGetBalanceFactor(parent)
if oldBalanceFactor == 0 {
// Prior to the deletion, the subtree rooted at
// parent was perfectly balanced. It's now
// unbalanced by 1, but that's okay and its height
// hasn't changed. Nothing more to do
avlAdjustBalanceFactor(parent, sign)
return nil
}
newBalanceFactor := oldBalanceFactor + sign
if newBalanceFactor == 0 {
// The subtree rooted at parent is now perfectly
// balanced, whereas before the deletion it was
// unbalanced by 1. Its height must have decreased
// by 1. No rotation is needed at this location,
// but continue up the tree
avlAdjustBalanceFactor(parent, sign)
node = parent
} else {
// parent is too left-heavy (newBalanceFactor == -2) or
// too right-heavy (newBalanceFactor == +2)
node = avlGetChild(parent, sign)
/* The rotations below are similar to those done during
* insertion (see avlHandleSubtreeGrowth()), so full
* comments are not provided. The only new case is the
* one where node has a balance factor of 0, and that is
* commented. */
if sign*avlGetBalanceFactor(node) >= 0 {
avlRotate(root, parent, -sign)
if avlGetBalanceFactor(node) == 0 {
//
// node (B below) is perfectly balanced.
//
// ================================================
// The comment, diagram, and equations
// below assume sign < 0. The other case
// is symmetric!
// ================================================
//
// Do a clockwise rotation rooted at
// parent (A below):
//
// A B
// / \ / \
// B C? => D A
// / \ / \ / \
// D E F? G?E C?
// / \
// F? G?
//
// Before the rotation:
// balance(A) = -2
// balance(B) = 0
// Let x = height(C). Then:
// height(B) = x + 2
// height(D) = x + 1
// height(E) = x + 1
// max(height(F), height(G)) = x.
//
// After the rotation:
// height(D) = max(height(F), height(G)) +
//
// = x + 1
// height(A) = max(height(E), height(C)) +
//
// = max(x + 1, x) + 1 = x + 2
// balance(A) = -1
// balance(B) = +1
//
// A: -2 => -1 (sign < 0)
// or +2 => +1 (sign > 0)
// No change needed --- that's the same as
// oldBalanceFactor. */
// B: 0 => +1 (sign < 0)
// or 0 => -1 (sign > 0) */
avlAdjustBalanceFactor(node, -sign)
/* Height is unchanged; nothing more to do */
return nil
} else {
avlAdjustBalanceFactor(parent, -sign)
avlAdjustBalanceFactor(node, -sign)
}
} else {
node = avlDoDoubleRotate(root, node, parent, -sign)
}
}
parent = avlGetParent(node)
if parent != nil {
*leftDeletedRet = (node == parent.left)
}
return parent
}
// Swaps node X, which must have 2 children, with its in-order successor,
// then unlinks node X. Returns the parent of X just before unlinking,
// without its balance factor having been updated to account for the unlink
func avlTreeSwapWithSuccessor(root **AvlNode, X *AvlNode, leftDeletedRet *bool) *AvlNode {
var Y, ret, Q *AvlNode
Y = X.right
if Y.left == nil {
//
// P? P? P?
// | | |
// X Y Y
// / \ / \ / \
// A Y => A X => A B?
// / \ / \
// (0) B? (0) B?
//
// [ X unlinked, Y returned ]
//
ret = Y
*leftDeletedRet = false
} else {
for {
Q = Y
Y = Y.left
if Y.left == nil {
break
}
}
//
// P? P? P?
// | | |
// X Y Y
// / \ / \ / \
// A ... => A ... => A ...
// | | |
// Q Q Q
// / / /
// Y X B?
// / \ / \
// (0) B? (0) B?
//
//
// [ X unlinked, Q returned ]
//
Q.left = Y.right
if Q.left != nil {
avlSetParent(Q.left, Q)
}
Y.right = X.right
avlSetParent(X.right, Y)
ret = Q
*leftDeletedRet = true
}
Y.left = X.left
avlSetParent(X.left, Y)
Y.parent = X.parent
Y.balance = X.balance
avlReplaceChild(root, avlGetParent(X), X, Y)
return ret
}
func avlTreeNextOrPrevInOrder(node *AvlNode, sign int) *AvlNode {
var next *AvlNode
if avlGetChild(node, +sign) != nil {
for next = avlGetChild(node, +sign); avlGetChild(next, -sign) != nil; {
next = avlGetChild(next, -sign)
}
} else {
for next = avlGetParent(node); next != nil && node == avlGetChild(next, +sign); {
node = next
next = avlGetParent(next)
}
}
return next
}
// Exported functions
// Look up a specified key. nil if not present
func AvlTreeLookup(root *AvlNode, key interface{}, cmp CmpFuncKey) interface{} {
cur := root
for cur != nil {
res := cmp(key, cur.owner)
if res < 0 {
cur = cur.left
} else if res > 0 {
cur = cur.right
} else {
break
}
}
if cur != nil {
return cur.owner
} else {
return nil
}
}
// Insert a node into the tree. Returns nil if not already present,
// and existing node address if already present
func AvlTreeInsert(root **AvlNode, item *AvlNode,
owner interface{}, cmp CmpFuncNode) interface{} {
curPtr := root
var cur *AvlNode = nil
for *curPtr != nil {
cur = *curPtr
res := cmp(owner, cur.owner)
if res < 0 {
curPtr = &cur.left
} else if res > 0 {
curPtr = &cur.right
} else {
return cur.owner
}
}
*curPtr = item
item.parent = cur
item.balance = 1
item.owner = owner
avlTreeRebalanceAfterInsert(root, item)
return nil
}
// Removes an item from the specified AVL tree.
//
// root
// Location of the AVL tree's root pointer. Indirection is needed
// because the root node may change if the tree needed to be rebalanced
// because of the deletion or if node was the root node.
//
// node
// Pointer to the `AvlNode' embedded in the item to remove from the tree
//
// Note: This function *only* removes the node and rebalances the tree.
// It does not free any memory, nor does it do the equivalent of
// avl_TreeNodeSetUnlinked()
func AvlTreeRemove(root **AvlNode, node *AvlNode) {
var parent *AvlNode
leftDeleted := false
if node.left != nil && node.right != nil {
// node is fully internal, with two children. Swap it
// with its in-order successor (which must exist in the
// right subtree of node and can have, at most, a right
// child), then unlink node
parent = avlTreeSwapWithSuccessor(root, node, &leftDeleted)
// parent is now the parent of what was node's in-order
// successor. It cannot be NULL, since node itself was
// an ancestor of its in-order successor.
// leftDeleted has been set to %true if node's
// in-order successor was the left child of parent,
// otherwise %false
} else {
var child *AvlNode
// node is missing at least one child. Unlink it.
// Set parent to node's parent, and set leftDeleted
// to reflect which child of parent node was.
// Or if node was the root node, simply update the
// root node and return
if node.left != nil {
child = node.left
} else {
child = node.right
}
parent = avlGetParent(node)
if parent != nil {
if node == parent.left {
parent.left = child
leftDeleted = true
} else {
parent.right = child
leftDeleted = false
}
if child != nil {
avlSetParent(child, parent)
}
} else {
if child != nil {
avlSetParent(child, parent)
}
*root = child
return
}
}
// Rebalance the tree
for {
if leftDeleted {
parent = avlHandleSubtreeShrink(root, parent, +1, &leftDeleted)
} else {
parent = avlHandleSubtreeShrink(root, parent, -1, &leftDeleted)
}
if parent == nil {
break
}
}
}
// Starts an in-order traversal of the tree: returns the
// least-valued node, or nil if the tree is empty
func AvlTreeFirstInOrder(root *AvlNode) interface{} {
rp := avlTreeFirstOrLastInOrder(root, -1)
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Starts an reverse in-order traversal of the tree: returns the
// greatest-valued node, or nil if the tree is empty
func AvlTreeLastInOrder(root *AvlNode) interface{} {
rp := avlTreeFirstOrLastInOrder(root, 1)
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Continues an in-order traversal of the tree
func AvlTreeNextInOrder(node *AvlNode) interface{} {
rp := avlTreeNextOrPrevInOrder(node, 1)
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Continues a reverse in-order traversal of the tree
func AvlTreePrevInOrder(node *AvlNode) interface{} {
rp := avlTreeNextOrPrevInOrder(node, -1)
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Starts a postorder traversal of the tree
func AvlTreeFirstInPostOrder(root *AvlNode) interface{} {
var first *AvlNode
if root != nil {
for first = root; first.left != nil || first.right != nil; {
if first.left != nil {
first = first.left
} else {
first = first.right
}
}
}
rp := first
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Continues a postorder traversal of the tree
func AvlTreeNextInPostOrder(prev, prevParent *AvlNode) interface{} {
next := prevParent
if next != nil && prev == next.left && next.right != nil {
for next = next.right; next.left != nil || next.right != nil; {
if next.left != nil {
next = next.left
} else {
next = next.right
}
}
}
rp := next
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Return the parent of a node
func AvlGetParent(node *AvlNode) interface{} {
rp := avlGetParent(node)
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Return the left child of a node
func AvlLeftChild(node *AvlNode) interface{} {
rp := node.left
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Return the right child of a node
func AvlRightChild(node *AvlNode) interface{} {
rp := node.right
if rp != nil {
return rp.owner
} else {
return nil
}
}
// Return the balance factor of a node
func AvlGetBalanceFactor(node *AvlNode) int {
return avlGetBalanceFactor(node)
}