-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathch9_5.tex
296 lines (258 loc) · 15.2 KB
/
ch9_5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
\section{Absolute and Conditional Convergence.}
An infinite series $\sum_{i=m}^{\infty} a_i$ is said to be \textbf{absolutely convergent} if the corresponding series of absolute values $\sum_{i=m}^{\infty} |a_i|$ is convergent. If a series $\sum_{i=m}^{\infty} a_i$ converges, but $\sum_{i=m}^{\infty} |a_i|$ does not, then we say that $\sum_{i=m}^{\infty} a_i$ is \textbf{conditionally convergent.} An example of a conditionally convergent series is the alternating harmonic series: We have shown that
$$
\sum_{i=1}^{\infty} a_i = \sum_{i=1}^{\infty} (- 1)^{i+1} \frac{1}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
$$
%SEC. 5] ABSOLUTE AND CONDITIONAL CONVERGENCE 503
\noindent converges, but that
$$
\sum_{i=1}^{\infty} |a_i| = \sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots
$$
\noindent diverges.
There are many examples of series for which both $\sum_{i=m}^{\infty} a_i$ and $\sum_{i=m}^{\infty} |a_i|$ converge, and also many where both diverge. (In particular, for nonnegative series, the two are the same.) There is the remaining possibility that $\sum_{i=m}^{\infty} |a_i|$ might converge, and $\sum_{i=m}^{\infty} |a_i|$ diverge. However, the following theorem shows that this cannot happen.
%(5.1)
\begin{theorem} If the infinite series $\sum_{i=m}^{\infty} a_i$ is absolutely convergent, then it is convergent.
\end{theorem}
\begin{proof}
Since $|a_i| \geq -a_i$, we have $a_i + |a_i| \geq 0$, for every integer $i \geq m$. Hence the series $\sum_{i=m}^{\infty} (a_i + |a_i|)$ is nonnegative. Since $a_i \leq |a_i|$, we also have
\begin{equation}
a_i + |a_i| \leq |a_i| + |a_i| = 2|a_i|,
\label{eq9.5.1}
\end{equation}
for every integer $i \geq m$. The assumption that $\sum_{i=m}^{\infty} a_i$ is absolutely convergent means that the series $\sum_{i=m}^{\infty} |a_i|$ converges, and, hence, so does the series $\sum_{i=m}^{\infty} 2|a_i|$. It therefore follows from (1) by the Comparison Test that the nonnegative series $\sum_{i=m}^{\infty} (a_i + |a_i|)$ is convergent. We conclude from Theorem (2.2), page 485, that
$$
\sum_{i=m}^{\infty} a_i = \sum_{i=m}^{\infty} (a_i + |a_i |) - \sum_{i=m}^{\infty} |a_i|
$$
and that $\sum_{i=m}^{\infty} a_i$ converges. This completes the proof.
\end{proof}
Thus the only possibilities for a given series are those illustrated. by the following scheme:
\begin{centering}
\begin{picture}(160,80)(0,0)
\put(0,30){\line(3,1){30}}
\put(0,30){\line(3,-1){30}}
\put(40,40){convergent}
\put(40,15){divergent}
\put(100,50){\line(3,1){30}}
\put(100,50){\line(3,-1){30}}
\put(140,35){conditionally convergent}
\put(140,60){absolutely convergent}
\end{picture}
\end{centering}
\medskip
% EXAMPLE 1.
\begin{example} Classify each of the following infinite series as absolutely convergent, conditionally convergent, or divergent.
$$
\mbox{(a)}\;\;\; \sum_{k=1}^\infty (-1)^k \frac{1}{\sqrt {k+1}} , \;\;\;
\mbox{(b)}\;\;\; \sum_{k=1}^\infty (-1)^k \frac{1}{2k^2 - 15} .
$$
%504 INFINITE SERIES [CEIAP. 9
If we let $a_k = (-1)^k \frac{1}{\sqrt {k+1}}$, the alternating series in (a) will converge if:
\begin{quote}
\begin{description}
\item[(i)] $|a_{k+1}| \leq |a_k|, \mathrm{for every integer} k \geq 1, \;\mathrm{and}$
\item[(ii)] $\lim_{k \rightarrow \infty} |a_k| = 0.$
\end{description}
\end{quote}
\noindent [See Theorem (4.1), page 498.] We have
$$
|a_k| = \frac{1}{\sqrt{k + 1}}\;\;\; \mbox{and}\;\;\; |a_{k+1}| = \frac{1}{\sqrt{k + 2}} .
$$
\noindent Hence condition (i) becomes
$$
\frac{1}{\sqrt{k + 2}} \leq \frac{1}{\sqrt{k + 1}}, \;\;\;\mbox{for every integer}\; k \geq 1,
$$
\noindent which is certainly true. Condition (ii) is also satisfied, since
$$
\lim_{k \rightarrow \infty} \frac{1}{\sqrt{k + 1}} = 0,
$$
\noindent and it follows that the series $\sum_{k=1}^\infty a_k$ converges. However, it is easy to show that $\sum_{k=1}^\infty |a_k|$ diverges by either the Comparison Test or the Integral Test. Using the latter, we consider the function $f$ defined by $f(x) = \frac{1}{\sqrt{x+1}}$, which is nonnegative and decreasing on the interval $[1, \infty)$. We have $f(k) = \frac{1}{\sqrt{k+1}} = |a_k|$ and
\begin{eqnarray*}
\int_1^\infty f(x) dx &=& \int_1^\infty \frac{1}{\sqrt{x + 1}} dx = \lim_{b \rightarrow \infty} [2 \sqrt{x + 1}|_1^b ] \\
&=& \lim_{b \rightarrow \infty} [2\sqrt{b + 1} - 2 \sqrt2] = \infty .
\end{eqnarray*}
\noindent The divergence of the integral implies the divergence of the corresponding series $\sum_{k=1}^\infty |a_k|$, and we conclude that the series (a) is conditionally convergent.
For the series in (b), we might apply the same technique: Test first for convergence and then for absolute convergence. However, if we suspect that the series is absolutely convergent, we may save a step by first testing for absolute convergence. In this particular case, the corresponding series of absolute values is $ \sum_{k = 1}^\infty \frac{1}{|2k^2 - 15|}$. The latter can be shown to be convergent
%SEC. 5] ABSOLUTE AND CONDITIONAL CONVERGENCE 505
by the CoMparison Test. For a test series we choose the convergent series $\sum_{k=1}^\infty \frac{2}{k^2}$. The condition of the test is that the inequality
$$
\frac{1}{|2k^2 - 15|} \leq \frac{2}{k^2}
$$
\noindent must be true eventually. We shall consider only integers $k \geq 3$, since, for these values, $2k^2 \geq18$ and hence $|2k^2 - 15| = 2k^2 - 15$. For those integers for which $k \geq 3$, the inequality
$$
\frac{1}{2k^2 - 15} \leq \frac{2}{k^2}
$$
\noindent is equivalent to $k^2 \leq 4k^2 - 30$, which in turn is equivalent to $k^2 \geq 10$. The last is true for every integer $k \geq 4$. Hence
$$
\frac{1}{|2k^2 - 15|} \leq \frac{2}{k^2}, \;\;\;\mbox{for every integer}\; k \geq 4.
$$
\noindent lt follows that $\sum_{k=1}^\infty \frac{1}{|2k^2 - 15|}$ converges, and therefore that the series (b) is absolutely convergent.
\end{example}
%(5.2)
\begin{theorem} RATIO TEST. Let $\sum_{i=m}^\infty a_i$ be an infinite series for which \linebreak
$\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q$ (or $\infty$).
\begin{quote}
\begin{description}
\item[(i)] If $q < 1$, then the series is absolutely convergent.
\item[(ii)] If $q > 1$ (including $q = \infty$ ), then the series is divergent.
\item[(iii)] If $q = 1$, then the series may either converge or diverge; i.e., the test fails.
\end{description}
\end{quote}
\end{theorem}
\begin{proof}
Suppose, first of all, that $\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = q < 1$. This implies that the ratio $\frac{|a_{n+1}|}{|a_n|}$ is arbitrarily close to $q$ if $n$ is sufficiently large. Hence if we pick an arbitrary number $r$ such that $q < r < 1$, then there exists an integer $N \geq m$ such that
\begin{equation}
\frac{|a_{n+1}|}{|a_n|} \leq r, \;\;\;\mbox{for every integer}\; n \geq N.
\label{eq9.5.2}
\end{equation}
We shall show by mathematical induction that (2) implies that
\begin{equation}
|a_{N+i}| \leq r^{i}|a_N|, \;\;\;\mbox{for every integer}\; i \geq 0. \label{eq9.5.3}
\end{equation}
If $i = 0$, then the inequality in (3) becomes $|a_{N+0}| \leq r^{0}|a_N|$, which is true. In the second part of an inductive proof we need to show that, if the inequality
(3) is true for $i = k$, then it is also true for $i = k + 1$. The assumption. then, is that
\begin{equation}
|a_{N+1}| \leq r^k |a_N|,
\label{eq9.5.4}
\end{equation}
and we want to prove that
$$
|a_{N+k+1}| \leq r^{k+1} |a_N| .
$$
If we multiply both sides of inequality (4) by the positive number $r$, we get
\begin{equation}
r |a_{N+k}| \leq r^{k+1} |a_N| .
\label{eq9.5.5}
\end{equation}
But, inequality (2) tells us that
$$
\frac{|a_{N+k+1}|}{|a_{N+k}|} \leq r,
$$
and hence that
\begin{equation}
|a_{N+k+1}| \leq r|a_{N+k}|
\label{eq9.5.6}
\end{equation}
Combining inequalities (5) and (6) we have
$$
|a_{N+k+1}| \leq r^{k+1} |a_{N}|,
$$
completing the inductive proof. Since $|r|< 1$, the geometric series $\sum_{i=0}^\infty |a_N| r^i$ converges, and it follows from (3) by the Comparison Test that the series $\sum_{i=0}^\infty |a_{N+i}|$ converges. However,
$$
\sum_{i=0}^\infty |a_{N+i}| = \sum_{i=N}^\infty |a_i| ,
$$
and the convergence of $\sum_{i=N}^{\infty} |a_i|$ implies the convergence of $\sum_{i=m}^\infty |a_i|$. Hence the series $\sum_{i=m}^\infty a_i$ converges absolutely, and the proof of part (i) of the theorem is complete.
We next assume that $\lim_{n \rightarrow \infty} |\frac{a_{n+1}}{a_n} |= q > 1$, and let $r$ be an arbitrary number such that $1 < r < q$. Then there exists an integer $N \geq m$ such that
$$
\frac{|a_{n+1}|}{|a_n|} \geq r, \;\;\;\mbox{for every integer}\; n \geq N.
$$
In the same way in which we proved that (2) implies (3), it follows by induction from the preceding inequality that
$$
|a_{N+i}| \geq r^i |a_N|, \;\;\;\mbox{for every integer}\; i \geq 0.
$$
Since $r > 1$, we know that $\lim_{i \rightarrow \infty} r^i = \infty$ (see Problem 5, page 481), and therefore also that
$$
\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} |a_{N+i} | = \infty .
$$
However, if the series $\sum_{i=m}^\infty a_i$ converges, then it necessarily follows that $\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} a_n = 0$. [See Theorem (2.1), page 483, and Problem 2, page 502.] Hence $\sum_{i=m}^\infty a_i$ diverges, and part (ii) is proved.
Part (iii) is proved by giving an example of an absolutely convergent series and one of a divergent series such that $q = 1$ for each of them. Consider the convergent $p$-series $\sum_{i=1}^\infty \frac{1}{i^2}$, which, being nonnegative, is also absolutely convergent. Setting $a_n = \frac{1}{n^2}$, we obtain
$$
a_{n+1} = \frac{1}{(n+ 1)^2} = \frac{1}{n^2 + 2n + 1}
$$
and
$$
\frac{|a_{n+1}|}{|a_n|} = \frac{a_{n+1}}{a_n} = \frac{n^2}{n^2 + 2n + 1} = \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}} .
$$
Hence
$$
\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}} = 1.
$$
For the second example, we take the divergent harmonic series $\sum_{i=1}^\infty \frac{1}{i}$. If we let $a_n = \frac{1}{n}$, then $a_{n+1} = \frac{1}{n + 1}$ and
$$
\frac{|a_{n+1}|}{|a_n|} = \frac{a_{n+1}}{a_n} = \frac{n}{n + 1} = \frac{1}{1 + \frac{1}{n}} .
$$
For this series we also get
$$
\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} \frac{1}{1 + \frac{1}{n}} = 1.
$$
The Ratio Test is therefore inconclusive if`$q = 1$, and this completes the proof.
\end{proof}
If $n$ is an arbitrary positive integer, the product $n(n - 1) \cdots 3 \cdot 2 \cdot 1$ is called \textbf{$n$ factorial} and is denoted by $n!$ Thus $3! = 3 \cdot 2 \cdot 1 = 6$ and $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$. Although it may seem strange, $0!$ is also defined and has the value 1. A convenient recursive definition of the factorial is given by the formulas
\begin{eqnarray*}
0! &=& 1,\\
(n + 1)! &=& (n + 1)n!, \;\;\;\mbox{for every integer}\; n \geq 0.
\end{eqnarray*}
%EXAMPLE 2.
\begin{example}
Prove that the following series converges:
$$
\sum_{n=0}^\infty \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots .
$$
%508 INFINITE SERIES [CHAP. 9
\noindent We write the series as $\sum_{i=0}^{\infty} a_n $ by defining $a_n = \frac{1}{n!}$ for every integer $n \geq 0$. Then
\begin{eqnarray*}
\frac{|a_{n+1}|}{|a_n|}
&=& \frac{\frac{1}{(n+1)!} }{\frac{1}{n!}} = \frac{n!}{(n+1)!}\\
&=&\frac{n!}{(n+1)n!} = \frac{1}{n+1} .
\end{eqnarray*}
\noindent Hence
$$
q = \lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} \frac{1}{n + 1} = 0.
$$
\noindent Since $q < 1$, it follows from the Ratio Test that the series is absolutely convergent. But absolute convergence implies convergence [Theorem (5.1)], and we conclude that the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges.
\end{example}
%EXAMPLE 3.
\begin{example} Show that the infinite series
$$
\sum_{i=1}^{\infty} ir^{i-1} = 1 + 2r + 3r^2 + 4r^3 + \cdots
$$
\noindent converges absolutely if $|r| < 1$ and diverges if $|r| \geq 1$. This series is related to the geometric series $\sum_{i=0}^{\infty} r^i = 1 + r + r^2 + \cdots $, and in a later section we shall make use of the relationship. To settle the immediate question of convergence, however, we set $a_i = ir^{i-1}$ for every positive integer $i$, and write the series as $\sum_{i=1}^{\infty} a_i$. Observe, first of all, that if $|r| \geq 1$, then $|a_n| = n|r|^{n-1}$ and
$$
\lim_{n \rightarrow \infty} |a_n| = \lim_{n \rightarrow \infty} n|r|^{n-1} = \infty .
$$
\noindent Hence, if $|r| \geq 1$, the series must diverge, since convergence would imply $\lim_{n \rightarrow \infty} |a_n| = 0$. This proves the second part of what is asked, and we now assume that $|r| < 1$. lf $r = 0$, the series is absolutely convergent with value 1, so we further assume that $r \neq 0$. Then
$$
\frac{|a_{n+1}|}{|a_n|} = \frac{(n+1) |r|^n}{n |r|^{n-1}} = \frac{n+1}{n} |r| = (1 + \frac{1}{n}) |r|,
$$
\noindent and so
$$
\lim_{n \rightarrow \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \rightarrow \infty} (1 + \frac{1}{n}) |r| = |r|.
$$
%SEC. 5] ABSOLUTE AND CONDITIONAL CONVERGENCE 509
\noindent Thus $q = |r| < 1$, and the Ratio Test therefore implies that the series is absolutely convergent.
\end{example}
The next theorem, with which we conclude the section, establishes a ttseful inequality.
\begin{theorem} %(5.3)
If the series $\sum_{i=m}^{\infty} a_i$ converges, then $|\sum_{i=m}^{\infty} a_i| \leq \sum_{i=m}^{\infty} |a_i|$.
\end{theorem}
The result is true even if $\sum_{i=m}^{\infty} a_i$ is not absolutely convergent, for in that case $\sum_{i=m}^{\infty} |a_i| = \infty$, and the inequality becomes $\sum_{i=m}^{\infty} |a_i| \leq \infty$.
\begin{proof}
In view of the preceding remark, we shall assume throughout the proof that $\sum_{i=m}^{\infty} |a_i|$ converges. Let $\{s_n\}$ be the sequence of partial sums corresponding to the series $\sum_{i=m}^{\infty} a_i$. Then
$$
s_n = \sum_{i=m}^{\infty} a_i, \;\;\;\mbox{for every integer}\; n \geq m,
$$
\noindent and the assumption that $\sum_{i=m}^{\infty} a_i$ converges means that the sequence $\{ s_n \}$ converges and that
\begin{equation}
\lim_{n \rightarrow \infty} s_n = \sum_{i=m}^{\infty} a_i .
\label{eq9.5.7}
\end{equation}
The general fact that $|a + b| \leq |a| + |b|$, for any two real numbers $a$ and $b$, can be extended to any finite number of summands, and we therefore have
$$
|s_n| = |\sum_{i=m}^{n} a_i| \leq \sum_{i=m}^{n} |a_i| .
$$
Furthermore,
$$
\sum_{i=m}^{n} |a_i| \leq \sum_{i=m}^{\infty} |a_i|
$$
[see (3.2), page 490, and (1.3)1 page 478). Hence
\begin{equation}
|s_n| \leq \sum_{i=m}^{\infty} |a_i|, \;\;\;\mbox{for every integer}\; n \geq m.
\label{eq9.5.8}
\end{equation}
It follows from (8) that
\begin{equation}
|\lim_{n \rightarrow \infty} s_n | \leq \sum_{i=m}^{\infty} |a_i| .
\label{eq9.5.9}
\end{equation}
[It is easy to see that (8) implies (9) if we regard the numbers $s_n$ and $\sum_{i=m}^{\infty} |a_i|$ as points on the line. The geometric statement of (8) is that all the points $s_n$ lie in the closed interval whose endpoints are $-\sum_{i=m}^{\infty} |a_i|$ and $\sum_{i=m}^{\infty} |a_i|$. If
(9) were false, it would mean that $\lim_{n \rightarrow \infty} s_n$ lay outside this interval, a positive distance away from it. But this cannot happen, since Sn is arbitrarily close to $\lim_{n \rightarrow \infty} s_n$ for $n$ sufficiently large.] Combining (7) and (9), we obtain the in-equality which was to be proved.
\end{proof}