-
Notifications
You must be signed in to change notification settings - Fork 1
/
ch7_1.tex
291 lines (238 loc) · 13.4 KB
/
ch7_1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
\chapter{Techniques of Integration} \label{chp 7}
We have found indefinite integrals for many functions. Nevertheless, there are many seemingly simple functions for which we have as yet no method of integration. Among these, for example, are $\ln x$ and $\sqrt{a^2 - x^2}$, since we have no way of finding $\int \ln x dx$ and $\int \sqrt{a^2 - x^2} dx$. In this chapter we shall develop a number of techniques, each of which will enlarge the set of functions which we can integrate.
\section{Integration by Parts.}\label{sec 7.1}
One of the most powerful methods of integration comes from the formula for finding the derivative of the product of two functions. If $u$ and $v$ are both differentiable functions of $x$, we recall that $\frac{d}{dx} uv = u\frac{dv}{dx}+ v\frac{du}{dx}$. As a consequence, of course, it is true that $u \frac{dv}{dx} = \frac{d}{dx}uv - v \frac{du}{dx}$. From this last equation it follows that
$$
\int u \frac{dv}{dx} dx = \int \Bigl(\frac{d}{dx} uv - v \frac{du}{dx} \Bigr) dx.
$$
\noindent Since the integral of a difference is equal to the difference of the integrals, the last equation is equivalent to
$$
\int u \frac{dv}{dx} dx = \int \frac{d}{dx} (uv) dx - \int v \frac{du}{dx} dx.
$$
\noindent But $\int \frac{d}{dx}(uv) dx = uv + c$. Hence, leaving the constant of integration as a by-product of the last integral, we obtain
\begin{theorem} %( 1.1 )
$$
\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx.
$$
\end{theorem}
This is the formula for the technique of integration by parts. To use it, the function to be integrated must be factored into a product of two functions,
%SEC 1] INTEGRATION BY PARTS 355
one to be labeled $u$ and the other $\frac{dv}{dx}$. If we can recover $v$ from $\frac{dv}{dx}$, then we hope that $\int v \frac{du}{dx} dx$ is easier to find than $\int u \frac{dv}{dx} dx$. As we shall see, the trick is to find the right factorization. Sometimes it is obvious, and sometimes it is not.
%EXAMPLE 1.
\begin{example} Integrate
$$
\mbox{(a)}\; \int \ln x dx, \;\;\; \mbox{(b)}\; \int x \sin x dx.
$$
\noindent For (a), consider the factorization $\ln x \cdot 1$, and let $u = \ln x$ and $\frac{dv}{dx} = 1$.
Then $\frac{du}{dx} = \frac{1}{x}$ and $v = x$ (we normally do not concern ourselves with a constant of integration at this point---we look for \textit{some} $v$, not the most general $v$). Integrating by parts, we have
$$
\begin{array}{ccccl}
\int \ln x \cdot 1 \cdot dx &=& (\ln x)(x) &-& \int x \cdot \frac{1}{x} \cdot dx,\\
\updownarrow \;\;\; \updownarrow & &\updownarrow \;\;\;\;\; \updownarrow & & \;\;\;\updownarrow \;\;\;\updownarrow\\
u \;\;\; \frac{dv}{dx} & & u\;\;\;\;\; v & & \;\;\; v \;\;\; \frac{du}{dx}
\end{array}
$$
\noindent or
\begin{eqnarray*}
\int \ln x dx &=& x \ln x - \int dx\\
&=& x \ln x - x + c.
\end{eqnarray*}
\noindent If this is the correct answer, its derivative will be the integrand. Checking, we get
\begin{eqnarray*}
\frac{d}{dx} (x \ln x - x + c) &=& 1 \cdot \ln x+ x \cdot \frac{1}{x} - 1 + 0 \\
&=& \ln x + 1 - 1 = \ln x.
\end{eqnarray*}
For (b) we have choices. We can try letting $u = x$ and $\frac{dv}{dx} = \sin x$,
or we can try $u = \sin x$ and $\frac{dv}{dx} = x$, or even $u = x \sin x$ and $\frac{dv}{dx} = 1$. Trial and error shows that the first suggestion works and the others do not. If $u = x$ and $\frac{dv}{dx} = \sin x$, then we have $\frac{du}{dx} = 1$ and $v = -\cos x$. The integration-by-parts formula implies that
$$
\int x \sin x dx = (x)(-\cos x) - \int (-\cos x)(1) dx,
$$
%356 TECHNIQUES OF INTEGRATION [CHAP. 7
\noindent or
\begin{eqnarray*}
\int x \sin x dx &=& - x \cos x + \int \cos x dx \\
&=& -x \cos x + \sin x + c.
\end{eqnarray*}
\end{example}
Although it is not true that every function can be written as a product of functions which will lead to a simplification of integrals---this technique is of little use if $\int v \frac{du}{dx} dx$ is not easier to integrate than $\int u \frac{dv}{dx} dx$---it is true that many can and that they can be integrated as were the two integrals in Example 1.
The problem is to find the best function to call $u$. Sometimes the technique of integration by parts must be used more than once in a problem.
%EXAMPLE 2.
\begin{example}
Integrate $\int (3x^2 - 4x + 7) e^{2x} dx$. If we let $u = 3x^2 - 4x + 7$ and
$\frac{dv}{dx} = e^{2x}$, then $\frac{du}{dx} = 6x - 4$ and $v = \frac{1}{2}e^{2x}$.
\begin{eqnarray*}
\int (3x^2 - 4x + 7)e^{2x} dx
&=& (3x^2 - 4x + 7)(\frac{1}{2}e^{2x}) - \int (\frac{1}{2} e^{2x})(6x - 4) dx\\
&=& \frac{1}{2}(3x^2 - 4x + 7)e^{2x} - \int (3x - 2)e^{2x}dx.
\end{eqnarray*}
\noindent This last integral again involves a product of a polynomial and $e^{2x}$, so we apply the technique again. Let $u_1 = 3x - 2$ and $\frac{dv_1}{dx} = e^{2x}$.
Then $\frac{du_1}{dx} = 3$ and $v_1 = \frac{1}{2}e^{2x}$. Thus
\begin{eqnarray*}
\int (3x - 2)e^{2x} dx
&=& (3x - 2)(\frac{1}{2}e^{2x}) - \int (\frac{1}{2}e^{2x})(3) dx \\
&=& \frac{1}{2} (3x - 2)e^{2x} - \frac{3}{2} \int e^{2x}dx \\
&=& \frac{1}{2} (3x - 2)e^{2x} - \frac{3}{4}e^{2x} + c_1.
\end{eqnarray*}
\noindent Substituting, we have
\begin{eqnarray*}
\int (3x^2 - 4x + 7)e^{2x}dx
&=& \frac{1}{2}(3x^2 - 4x + 7)e^{2x} - [\frac{1}{2}(3x - 2)e^{2x} - \frac{3}{4} e^{2x} + c_1] \\
&=& [(\frac{3}{2}x^2 - 2x + \frac{7}{2} - \frac{3}{2}x + 1 + \frac{3}{4})e^{2x} ] + c\\
&=& (\frac{3}{2} x^2 - \frac{7}{2} x + \frac{21}{4})e^{2x} + c.
\end{eqnarray*}
\end{example}
%SEC. 1] INTEGRATION BY PAETS 357
Generally, faced with the product of a polynomial and a trigonometric or exponential function, it is best to let the polynomial be u and the transcendental function be $\frac{dv}{dx}$. In this way, the degree of the polynomial is reduced by one each time the product is integrated by parts. However, faced with a product of transcendental functions, the choice may not be quite so obvious.
%EXAMPLE 3.
\begin{example}
Integrate $\int e^{2x} \cos 3xdx$. Let us select $e^{2x}$ as $u$ and $\cos 3x$ as $\frac{dv}{dx}$.
Then $\frac{du}{dx} = 2e^{2x}$ and $v = \frac{1}{3} \sin 3x$. Thus
\begin{eqnarray*}
\int e^{2x} \cos 3x dx = (e^{2x})(\frac{1}{3} \sin 3x) - \int (\frac{1}{3} \sin 3x)(2e^{2x}) dx \\
= \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x dx.
\end{eqnarray*}
\noindent At this point a second integration by parts is necessary. The reader should check that the choice of $\sin 3x$ for $u$ will lead back to an identity. We choose $e^{2x}$ for $u_1$ and $\sin 3x$ for $\frac{dv_1}{dx}$. Then $\frac{du_1}{dx} = 2e^{2x}$ and $v_1 = - \frac{1}{3} \cos 3x$.
Hence
\begin{eqnarray*}
\int e^{2x} \sin 3x dx
&=& (e^{2x})(-\frac{1}{3} \cos 3x) - \int (- \frac{1}{3} \cos 3x)(2e^{2x}) dx \\
&=& - \frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x dx.
\end{eqnarray*}
\noindent Substituting, we have
$$
\int e^{2x} \cos 3x dx
= \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \Bigl( -\frac{1}{3} e^{2x} \cos 3x
+ \frac{2}{3} \int e^{2x} \cos3x dx \Bigr)
$$
\noindent or
$$
\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x
- \frac{4}{9} \int e^{2x} \cos 3x dx.
$$
\noindent This does not look much simpler, since we have found an integral in terms of itself.
But, if we add $\frac{4}{9} \int e^{2x} \cos 3x dx$ to each side of the equation (supplying the constant of integration at the same time), we have
$$
\frac{13}{9} \int e^{2x} \cos 3x dx = \frac{e^{2x}}{9} (3 \sin 3x + 2 \cos 3x) + c_1.
$$
\noindent Finally, therefore,
$$
\int e^{2x} \cos 3x dx = \frac{e^{2x}}{13} (3 \sin 3x + 2 \cos 3x) + c.
$$
%358 TECHNIQU~ OF I~EGRATION [CHAP. 7
\noindent If we had chosen $\cos 3x$ as $u$ in the first integration by parts and $\sin 3x$ as $u_1$ in the second integration by parts, the integral could be found in the same way that we just found it.
\end{example}
The differential of a function was introduced in Section 6 of Chapter 2 and was shown to satisfy the equation $dF(x) = F'(x) dx$. As a result, the symbol $dx$ which occurs in an indefinite integral $\int f(x) dx$ may be legitimately regarded as a differential since, if $F'(x) = f(x)$, then $dF(x) = f(x)dx$. Moreover, if $u$ is a differentiable function of $x$, then
$$
dF(u) = F'(u) du = f (u) du,
$$
\noindent so we write
$$
F(u) + c = \int f (u) du.
$$
\noindent [see (6.7) on page 216]. Using differentials, we obtain a very compact form for the formula for integration by parts. Since $du = \frac{du}{dx}dx$ and $dv = \frac{dv}{dx} dx$, substitution in (1.1) yields
\medskip
\noindent \textbf{Theorem (7.1.1')} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
$$
\int udv = uv - \int v du.
$$
%\end{theorem}
\medskip
We have less to write when we use this form of the formula, but the result is the same.
%EXAMPLE4.
\begin{example}
Integrate $\int x \ln x dx$. lf we use (1.1'), we set $u= \ln x$ and $dv = x dx$.
Then $du = \frac{1}{x}dx$ and $v = \frac{1}{2} x^2$. Hence
\begin{eqnarray*}
\int x \ln x dx &=& (\ln x)(\frac{1}{2}x^2) - \int (\frac{1}{2}x^2 ) \Bigl( \frac{1}{x} dx \Bigr) \\
&=& \frac{1}{2} x^{2} \ln x - \frac{1}{2} \int x dx\\
&=& \frac{1}{2} x^{2} \ln x - \frac{1}{4} x^2 + c.
\end{eqnarray*}
\end{example}
In the remainder of this chapter we shall take full advantage of the streamlined notation offered by the differential and shall use it freely when making substitutions in indefinite integrals.
%SEC. 1] INTEGRATION BY PARTS 359
%EXAMPLE 5.
\begin{example}
Find $\int x \ln(x + 1) dx$. This example illustrates the fact that a judicious choice of a constant of integration ean sometimes simplify the computation. Set $u = \ln(x + 1)$ and $dv = xdx$. Then $du = \frac{1}{x + 1} dx$ and we may take $v = \frac{x^2}{2}$. If we do this, we have
\begin{eqnarray*}
\int x \ln(x + 1) dx
&=& \ln(x + 1 ) \frac{x^2}{2} - \int \frac{ x^2}{2} \frac{1}{x + 1} dx\\
&=& \frac{1}{2} x^{2} \ln(x + 1) - \frac{1}{2} \int \frac{x^2}{x + 1} dx.
\end{eqnarray*}
\noindent Dividing, we find that $\frac{x^2}{x + 1} = x - 1 + \frac{1}{x + 1}$, and hence
\begin{eqnarray*}
\int x \ln(x + 1) dx &=& \frac{1}{2} x^{2} \ln(x + 1) - \frac{1}{2} \int \Bigl(x - 1 + \frac{1}{x + 1} \Bigr) dx\\
&=& \frac{1}{2} x ^{2} \ln(x + 1) - \frac{1}{2} (\frac{1}{2} x^2 - x + \ln |x + 1|) + c\\
&=& \frac{1}{2}(x^2 - 1) \ln(x + 1) - \frac{1}{4} x^2 + \frac{1}{2} x + c.
\end{eqnarray*}
\noindent [Since $\ln(x + 1)$ makes sense only if $x + 1 > 0$, we have replaced $\ln |x + 1|$
by $\ln(x + 1).]$ The same result is reached more quickly if we take $v = \frac{x^2}{2} + c =
\frac{x^2 + k}{2}$. Then integration by parts gives
$$
\int x \ln(x+ 1)dx = \ln(x+ 1)\frac{x^2 + k}{2} - \int \frac{x^2 + k}{2} \frac{1}{x+ 1} dx.
$$
\noindent Since we have a free choice for $k$, we shall choose $k = -1$ and then
$\frac{x^2 + k}{2} \frac{1}{ x + 1} = \frac{x^2 - 1}{2} \frac{1}{x + 1} = \frac{x - 1}{2}$.
The problem becomes
\begin{eqnarray*}
\int x \ln(x + 1)dx &=& \ln(x + 1) \frac{x^2 - 1}{2} - \int \frac{ x - 1}{2} dx\\
&=& \frac{1}{2} (x^2 - 1) \ln(x + 1) - \frac{1}{4} x^2 + \frac{1}{2} x + c.
\end{eqnarray*}
\end{example}
The method of integration by parts can frequently be used to obtain a recursion formula for one integral in terms of a simpler one. As an example, we derive the useful identity
\begin{theorem} %(1.2)
\label{thm 7.1.2}
For every integer $n \geq 2$,
$$
\int \cos^{n} x dx = \frac{\cos^{n - 1}x \sin x}{n} + \frac{n-1}{n} \int \cos ^{n-2} x dx.
$$
\end{theorem}
\begin{proof}
We write $\cos^{n} x$ as the product $\cos^{n - 1} x \cos x$, and let $u = \cos^{n - 1} x$
and $dv = \cos x dx$. Then $v = \sin x$ and $du = (n - 1) \cos^{n-2} x (-\sin x dx)
= - (n - 1) \cos^{n-2} x \sin x dx$. Hence
\begin{eqnarray*}
\int \cos^{n} x dx &=& \cos^{n-1} x \sin x - \int \sin x[ -(n - 1) \cos^{n-2}x \sin x dx]\\
&=& \cos^{n-1} x \sin x + (n - 1) \int \cos^{n-2}x \sin^{2}x dx.
\end{eqnarray*}
Replacing $\sin^{2}x$ by $1 - \cos^{2}x$, the equation becomes
\begin{eqnarray*}
\int \cos^{n}x dx
&=& \cos^{n-1} x \sin x + (n -1)\int \cos^{n-2} x (1 - \cos^{2}x) dx \\
&=& \cos^{n - 1} x \sin x + (n -1) \int \cos^{n - 2} x dx - (n -1) \int \cos^{n} x dx .
\end{eqnarray*}
Adding $(n-1) \int \cos^{n} x dx$ to both sides of the equation, we obtain
$$
n \int \cos^{n} x dx = \cos^{n - 1} x \sin x + (n - 1) \int \cos^{n -2} x dx,
$$
whence \thref{7.1.2} follows at once upon division by $n$.
\end{proof}
Thus by repeated applications of the recursion formula (1.2), the integral $\int \cos^{n} x dx$ can be reduced eventually to a polynomial in $\sin x$ and $\cos x$. If $n$ is even, the final integral is
$$
\int \cos^{0} x dx = \int dx = x + c,
$$
\noindent and, if $n$ is odd, it is
$$
\int \cos x dx = \sin x + c.
$$
%EXAMPLE 6.
\begin{example}
Use the recursion formula (1.2) to find $\int cos^{5}2x dx$. We first write $\int \cos^{5}2x dx = \frac{1}{2} \int \cos^{5} 2x d(2x)$ and then
$$
\int \cos^{5}2x d(2x) = \frac{\cos^{4} 2x \sin 2x}{5} + \frac{4}{5} \int \cos^{3}2x d(2x).
$$
\noindent A second application of the formula yields
$$
\int \cos^{3} 2x d(2x) = \frac{\cos^{2} 2x \sin 2x}{3} + \frac{2}{3} \int \cos 2x d(2x),
$$
\noindent and, of course,
$$
\int \cos 2x d(2x) = \sin 2x + c_1.
$$
% 58C. 1] INTEGRATION BY PARTS 361
\noindent Combining, we have
\begin{eqnarray*}
\int \cos^{5} 2x dx &=& \frac{1}{2} \Bigl[ \frac{\cos^{4} 2x\sin 2x}{5}
+ \frac{4}{5} \Big\{ \frac{ (\cos^{2} 2x \sin 2x}{3} + \frac{2}{3} ( \sin 2x + c_1) \Big\} \Bigr] \\
&=& \frac{1}{10} \cos^{4} 2x \sin 2x + \frac{2}{15} \cos^{2} 2x \sin 2x + \frac{4}{15} \sin 2x + c.
\end{eqnarray*}
\end{example}