-
Notifications
You must be signed in to change notification settings - Fork 1
/
ch6_4.tex
308 lines (248 loc) · 15.4 KB
/
ch6_4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
\section{Inverse Trigonometric Functions.}
The function $\sin$ does not have an inverse function. The reason is that it is perfectly possible to have $a \neq b$ and $\sin a = \sin b$. Another way to reach the same conclusion is to consider the equation $x = \sin y$. Its graph is the curve in Figure 14. It does not define a function of $x$ because it does not satisfy the condition in the definition of function (see page 14) which asserts that every vertical line intersects the graph of a function in at most one point.
%Figure 14
\putfig{2.25truein}{scanfig6_14}{}{fig 6.14}
However, on the interval $\Bigl[-\frac{\pi}{2}, \frac{\pi}{2}\Bigr]$ the function $\sin$ is a strictly increasing function. Hence, although $\sin$ does not have an inverse, it follows by Theorem (2.4), page 250,
that the function $\sin$ \textit{with domain restricted to} $\Bigl[-\frac{\pi}{2}, \frac{\pi}{2}\Bigr]$ does have an inverse. This inverse function is denoted by either $\sin^{-1}$ or $\arcsin$, and in this book we shall use the latter notation. Thus
$$
\begin{array}{c}
y = \arcsin x \;\;\;\mbox{if and only if}\;\;\; x = \sin y \\
\mbox{and}\;\;\; -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}.
\end{array}
$$
%312 TRIGONOMETRIC FUNCTIONS [CHAP. 6
The graph of the function $\arcsin$ is shown in Figure 15(b). It is that part of the graph of the
equation $x = \sin y$ for which $y$ satisfies the inequality $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. Note that the graph of $\arcsin$ is obtained from the graph of the restricted function $\sin$ by reflection across the diagonal line $y = x$. It follows both from the definition of $\arcsin$ and also from the illustration that \textit{the domain of $\arcsin$ is the closed interval $[ -1, 1]$ and the range is the closed interval $\Bigl[-\frac{\pi}{2}, \frac{\pi}{2}\Bigr]$.}
%Figure 1S
\putfig{4.5truein}{scanfig6_15}{}{fig 6.15}
It is a consequence of Theorem (3.4), page 261, that the function $\arcsin$ is differentiable at every point of its domain except at -1 and +1. [In applying (3.4), let $f$ be the function $\sin$ restricted to $\Bigl[-\frac{\pi}{2}, \frac{\pi}{2}\Bigr]$ and then $f^{-1} = \arcsin$.] We may compute the formula for the derivative either directly from (3.4) or by implicit differentiation. Choosing the latter method, we begin with $y = \arcsin x$ and seek to find $\frac{dy}{dx}$. If $y = \arcsin x$, then $x = \sin y$, and so
$$
\frac{d}{dx} x = \frac{d}{dx} \sin y, \;\;\; \mbox{or}\;\;\; 1 = \cos y \frac{dy}{dx}
$$
Hence
$$
\frac{dy}{dx} = \frac{1}{\cos y}.
$$
%SEC. 4] INVERSE TRIGONOMETRIC FUNCTIONS 313
\noindent To express $\cos y$ in terms of $x$, we use the identity $\cos^{2} y + \sin^{2} y = 1$
and the fact that $x = \sin y$. Hence $\cos^{2} y + x^{2} = 1$, and therefore
$$
\cos y = \pm \sqrt {1 - x^2} .
$$
However, $y$ is restricted by the inequality $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ and in this interval $\cos y$ is never negative. Hence the positive square root is the correct one, and we conclude that $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$. Thus
\begin{theorem} %(4.1 )
$$
\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}}.
$$
\end{theorem}
%EXAMPLE 1.
\begin{example}
Find the domain, range, and derivative of each of the composite functions
$$
\mbox{(a)}\;\;\; \arcsin \frac{1}{1 + x^2}, \;\;\; \mbox{(b)}\;\;\; \arcsin(\ln x).
$$
The quantity $\frac{1}{1 + x^2}$ is defined for every real number $x$ and also satisfies the inequalities $0 < \frac{1}{1 + x^{2}} \leq 1$. Hence, $\arcsin \frac{1}{1 + x^{2}}$ is defined for every $x$; i.e., its domain is the set of all real numbers. The range of the function $\frac{1}{1 + x^{2}}$, however, is the half-open interval (0, 1]. It can be seen from Figure 15(b) that the function $\arcsin$ maps the interval (0, 1] on the $x$-axis onto the interval $\Bigl(0, \frac{\pi}{2}\Bigr]$ on the $y$-axis. It follows that the range of the composition $\arcsin \frac{1}{1 + x^{2}}$ is the half-open interval $\Bigl(0, \frac{\pi}{2}\Bigr]$. The derivative is found using (4.1) and the Chain Rule:
\begin{eqnarray*}
\frac{d}{dx} \arcsin \frac{1}{1 + x^{2}}
&=& \frac{1}{\sqrt{1 - \Bigl(\frac{1}{1 + x^2}\Bigr)^2}} \frac{d}{dx} \Bigl(\frac{1}{1 + x^2}\Bigr) \\
&=& \frac{1}{\sqrt { \frac{(1 + x^2)^2 - 1}{(1 + x^2)^2} } } \frac{-2x}{(1 + x^2)^2} \\
&=& \frac{-2x}{(1 + x^2) \sqrt {2x^{2} + x^{4}}}= \frac{-2x}{(1 + x^2) |x| \sqrt {2 + x^2}}.
\end{eqnarray*}
\end{example}
% 314 TRlCONOME7-RlC FUNCTIONS [CHAP. 6
For any particular value of $x$, the quantity $\arcsin(\ln x)$ is defined if and only if $\ln x$ is defined and also lies in the domain of the function $\arcsin$, which is the interval [ - 1, 1]. Thus $x$ must be positive, and $\ln x$ must satisfy the inequalities $-1 \leq \ln x \leq 1$. Hence $x$ must satisfy $\frac{1}{e} \leq x \leq e$. The domain of $\arcsin (\ln x)$ is therefore the interval $\Bigl[\frac{1}{e}, e\Bigr]$, and the range is the same as that of $\arcsin$, i.e., the interval $\Bigl[ -\frac{\pi}{2}, \frac{\pi}{2} \Bigr]$. The derivative is given by
$$
\frac{d}{dx} \arcsin(\ln x) = \frac{1}{\sqrt {1 - (\ln x)^2}} \frac{d}{dx} \ln x
= \frac{1}{x \sqrt{1 - (\ln x)^2}} .
$$
The integral formula corresponding to (4.1) is
\begin{theorem} %( 4.2 )
$$
\int \frac{dx}{\sqrt {1 - x^2}} = \arcsin x + c.
$$
\end{theorem}
%EXAMPLE 2.
\begin{example}
Find $\int \frac{x dx}{\sqrt 4 - x^4}$. The first thing we do is to write the denominator, as closely as possible, in the form $\sqrt {1 - u^2}$.
$$
\frac{1}{\sqrt{4 - x^4}} = \frac{1}{\sqrt{4 \Bigl(1 - \frac{x^4}{4}\Bigr)}} = \frac{1}{2 \sqrt {1 - \Bigl(\frac{x^2}{2}\Bigr)^2}}
$$
Hence, letting $u = \frac{x^2}{2}$, we have $\frac{du}{dx} = x$ and
$$
\int \frac{x dx}{\sqrt{4 - x^4}}
= \frac{1}{2} \int \frac{x dx}{\sqrt {1 - \Bigl(\frac{x^2}{2}\Bigr)^2} }
= \frac{1}{2} \int \frac{1}{\sqrt{1 - u^2}} \frac {du}{dx} dx .
$$
By (4.2),
$$
\frac{1}{2} \int \frac{1}{\sqrt {1 - u^2}} \frac{du}{dx} dx = \frac{1}{2} \arcsin u + c.
$$
Finally, substituting $\frac{x^2}{2}$ for $u$, we obtain
$$
\int \frac{xdx}{\sqrt {4 - x^4}} = \frac{1}{2} \arcsin \frac{x^2}{2} + c.
$$
\end{example}
%SEC. 4] INVERSE TRIGONOMETRIC FUNCTIONS 315
%Figure16
\putfig{4.5truein}{scanfig6_16}{}{fig 6.16}
The function $\cos$ does not have an inverse for the same reason that $\sin$ does not. However, a partial inverse can be obtained, just as before, by restricting the domain to an interval on which $\cos$ is either increasing or decreasing. Any such interval can be chosen. With the function $\sin$ it was natural to choose the largest possible interval containing the number 0---the closed interval $\Bigl[ -\frac{\pi}{2}, \frac{\pi}{2}\Bigr]$. With $\cos$ the choice is less obvious. However, we shall select the interval $[0, \pi]$, on which $\cos$ is strictly decreasing [see Figure 16(a)]. The function $\cos$ with domain restricted to $[0, \pi]$ then has an inverse, which is denoted $\cos^{-1}$ or $\arccos$. As before, we shall use the second notation. Thus
$$
\begin{array}{c}
y = \arccos x \;\;\; \mbox{if and only if}\;\;\; x = \cos y \\
\mbox{and}\;\;\; 0 \leq y \leq \pi.
\end{array}
$$
The graph of $\arccos$ is shown in Figure 16(b).
It should come as no surprise that the two functions $\arcsin$ and $\arccos$ are closely related. In fact,
\begin{theorem} %( 4.3 )
$$
\arcsin x = \frac{\pi}{2} - \arccos x.
$$
\end{theorem}
\begin{proof}
Let $y = \frac{\pi}{2} - \arccos x$. Then $\arccos x = \frac{\pi}{2} - y$, and so
$x = \cos \Bigl(\frac{\pi}{2} - y \Bigr)$.
Hence
$$
x = \cos \Bigl(\frac{\pi}{2} - y \Bigr) = \cos \frac{\pi}{2} \cos y + \sin \frac{\pi}{2} \sin y = \sin y.
$$
Since $0 \leq \arccos x \leq \pi$, it follows that $-\pi \leq - \arccos x \leq 0$ and hence
$- \frac{\pi}{2} \leq \frac{\pi}{2} -\arccos x \leq \frac{\pi}{2}$ or, equivalently, $- \frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ . This, together with $x = \sin y$, implies that $y = \arcsin x$, and the proof is complete.
\end{proof}
Note that the validity of (4.3) depends on our having chosen $\arccos$ so that its range is the interval $[0, \pi]$.
It follows from (4.3) that the derivative of $\arccos$ is the negative of the derivative of $\arcsin$. Thus
\begin{theorem} %(4.4)
$$
\frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}.
$$
\end{theorem}
From (4.4) we see that another indefinite integral of $\frac{1}{\sqrt{1 - x^2}}$ is $-\arccos x$.
Obviously, not one of the six trigonometric functions with unrestricted domain has an inverse.
The function $\tan$ with its domain restricted to the open interval $\Bigl( -\frac{\pi}{2}, \frac{\pi}{2} \Bigr)$ is strictly increasing and so has an inverse function, which we denote $\tan^{-1}$ or $\arctan$.
$$
\begin{array}{c}
y = \arctan x \;\;\; \mbox{if and only if} \;\;\; x = \tan y \\
\mbox{and}\;\;\; -\frac{\pi}{2} < y < \frac{\pi}{2}.
\end{array}
$$
The graph of $\arctan$ is obtained by reflecting the graph of $\tan$ with domain restricted to
$\Bigl( -\frac{\pi}{2}, \frac{\pi}{2}\Bigr)$ across the diagonal line $y = x$. It is shown in Figure 17(b).
As can be seen from Figure 17(a), the function $\tan$ maps the open interval $\Bigl( -\frac{\pi}{2}, \frac{\pi}{2}\Bigr )$ onto the entire set of real numbers. That is, for every real number $y$,
there exists a real number $x$ in $\Bigl( -\frac{\pi}{2}, \frac{\pi}{2} \Bigr)$ such that $y = \tan x$.
Hence \textit{the domain of arctun is the whole real line $( -\infty, \infty)$. The range is the interval
$\Bigl( -\frac{\pi}{2}, \frac{\pi}{2}\Bigr)$.}
%SEC. 4] INVERSE TRIGONOMETRIC FUNCTIONS 317
%Figure 17
\putfig{4.5truein}{scanfig6_17}{}{fig 6.17}
It is a corollary of Theorem (3.4), page 261, that $\arctan$ is a differentiable function.
We compute the derivative by implicit differentiation. Let $y = \arctan x$. Then $x = \tan y$, and
$$
\frac{d}{dx} x = \frac{d}{dx} \tan y \;\;\;\mbox{or}\;\;\; 1 = \sec^{2}y \frac{dy}{dx}.
$$
Hence
$$
\frac{dy}{dx} = \frac{1}{\sec^{2} y}.
$$
From the identity $\sec^{2} y = 1 + \tan^{2} y$, we get $\sec^{2} y = 1 + x^{2}$.
It follows that $\frac{d}{dx} = \frac{1}{1 + x^2}$. Thus
\begin{theorem} %(4.5)
$$
\frac{d}{dx} \arctan x = \frac{1}{1 + x^{2}}.
$$\end{theorem}
The corresponding integral formula is
\begin{theorem} %(4.6)
$$
\int \frac{dx}{1 + x^2} = \arctan x + c .
$$
\end{theorem}
% 318 TRIGONOMFIRIC FUNCTIONS [CHAP. 6
%EXAMPLE 3.
\begin{example} Compute the definite integral $\int_{0}^{1} \frac{dx}{1 + x^2}$. We get immediately
$$
\int_{0}^{1} \frac{dx}{1 + x^2} = \arctan x \big |_{0}^{1} = \arctan 1 - \arctan 0.
$$
Since $\tan 0 = 0$ and $\tan \frac{\pi}{4} = 1$, we know that $0 = \arctan 0$
and $\frac{\pi}{4} = \arctan 1$. Hence
$$
\int_{0}^{1} \frac{dx}{1 + x^2} = \frac{\pi}{4}.
$$
This is a fascinating result: The number $\pi$ is equal to four times the area bounded by the curve $y = \frac{1}{1 + x^2}$, the $x$-axis, and the lines $x= 0$ and $x = 1$.
\end{example}
The function $\cot$ is strictly decreasing on the open interval $(0, \pi)$. With its domain restricted to this interval, $\cot$ therefore has an inverse function, which we denote $\cot^{-1}$ or $\mathrm{arccot}$.
The relation between the two functions $\mathrm{arccot}$ and $\arctan$ is the same as that between $\arccos$ and $\arcsin$,
\begin{theorem} %(4.7 )
$$
\mbox{arccot} x = \frac{\pi}{2} - \arctan x.
$$
\end{theorem}
The proof is analogous to the proof of (4.3) and is left to the reader as an exercise. It is a corollary that the derivative of $\mathrm{arccot}$ is the negative of the derivative of $\arctan$. Hence
\begin{theorem} %(4.8 )
$$
\frac{d}{dx} \mathrm{arccot}\; x = - \frac{1}{1 + x^{2}}.
$$
\end{theorem}
Here again, we see another indefinite integral of $\frac{1}{1 + x^2}$, the function $-\mathrm{arccot}\; x$.
The union of the two half-open intervals $\Bigl[0, \frac{\pi}{2}\Bigr)$ and $(\frac{\pi}{2}, \pi]$ consists
of all real numbers $x$ such that $0 \leq x \leq \pi$ and $x \neq \frac{\pi}{2}$. It can be seen from
the graph of the equation $y = \sec x$ in Figure 13, page 308, that if $a$ and $b$ are two numbers
in the union $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$ and if $a \neq b$, then
%SEC. 4] INVERSE TRIGONOMETRIC FUNCTIONS 319
$\sec a \neq \sec b$. We omit $\frac{\pi}{2}$ because the secant of that number is not defined.
It follows that the function $\sec$ with domain restricted to $\Bigl[0, \frac{\pi}{2}\Bigr) \cup \Bigl(\frac{\pi}{2}, \pi\Bigr]$ has an inverse, which is denoted $\sec^{-1}$ or $\mathrm{arcsec}$. Thus
$$
\begin{array}{c}
y = \mathrm{arcsec}\; x \;\;\; \mbox{if and only if} \;\;\; x = \sec y \\
\mbox{and $y$ is in}\; [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi].
\end{array}
$$
The graph of the function $\mathrm{arcsec}$ is shown in Figure 18(b). \textit{Its range is the union} $\Bigl[0,\frac{\pi}{2}\Bigr) \cup \Bigl(\frac{\pi}{2}, \pi \Bigr]$. As can be seen from Figure 18(a), the function sec maps the set $\Bigl[0, \frac{\pi}{2}\Bigr) \cup \Bigl(\frac{\pi}{2}, \pi \Bigr]$ onto the set of all real numbers with absolute value greater than or equal to 1. Hence \textit{the domain of $\mathrm{arcsec}$ is the set of all real numbers $x$ such that $|x| \geq 1$.}
%Figure 18
\putfig{4.5truein}{scanfig6_18}{}{fig 6.18}
The derivative can again be found by implicit differentiation. Let $y = \mathrm{arcsec}\; x$. Then $x = \sec y$ and
$$
\frac{d}{dx} x = \frac{d}{dx} \sec y, \;\;\;\mbox{which implies}\;\;\; 1 = \sec y \tan y \frac{dy}{dx}.
$$
Thus
$$
\frac{dy}{dx} = \frac{ 1} {\sec y \tan y}.
$$
%320 TR/GONOMETRIC FUNCTIONS [CHAP. 6
\noindent Using the identity $\sec^{2} y = 1 + \tan^{2} y$ and the equation $x = \sec y$, we obtain
$$
\sec y \tan y = \pm x \sqrt{x^{2} - 1}.
$$
If $x \geq 1$, then $0 \leq y < \frac{\pi}{2}$, and so $\sec y \tan y$ is nonnegative. Hence
$$
\sec y \tan y = x \sqrt{x^{2} - 1} \;\;\;\mbox{if}\; x \geq 1.
$$
On the other hand, if $x \leq -1$, then $\frac{\pi}{2} < y \leq \pi$, and in this case both $\sec y$ and $\tan y$ are nonpositive. Their product is therefore again nonnegative; i.e.,
$$
\sec y \tan y = -x \sqrt{x^{2} - 1}\;\;\; \mbox{if}\; x \leq -1.
$$
It follows that both cases are covered by the single equation $\sec y \tan y = |x| \sqrt{x^{2} -1}$. Hence $\frac{dy}{dx} = \frac{1}{|x| \sqrt{x^2 - 1}}$, and we have derived the formula
\begin{theorem} %( 4.9 )
$$
\frac{d}{dx} \mathrm{arcsec}\; x = \frac{1}{|x| \sqrt{x^{2} - 1}}.
$$
\end{theorem}
The final inverse trigonometric function is the inverse of the cosecant with domain restricted to the union $\Bigl[ -\frac{\pi}{2}, 0\Bigr) \cup \Bigl(0, \frac{\pi}{2}\Bigr]$. This function, denoted $\csc^{-1}$ or $\mathrm{arccsc}$, has range equal to $\Bigl[ - \frac{\pi}{2}, 0\Bigr) \cup \Bigl(0, \frac{\pi}{2}\Bigr]$ and domain equal to the set of all real numbers $x$ such that $|x| \geq 1$. The analogue of (4.3) and (4.7) is valid. That is,
\begin{theorem} %( 4.10 )
$$
\mathrm{arcsec}\; x = \frac{\pi}{2} - \mathrm{arccsc}\; x.
$$
\end{theorem}
\begin{proof}
The proof mimics that of (4.3). Let $y = -\frac{\pi}{2} - \mathrm{arccsc}\; x$.
Then $\mathrm{arccsc}\; x = \frac{\pi}{2} - y$, and so $x = \csc \Bigl(\frac{\pi}{2} - y \Bigr)$. Thus
$$
x = \csc \Bigl(\frac{\pi}{2} - y \Bigr) = \frac{1}{\sin \Bigl(\frac{\pi}{2} - y \Bigr)} = \frac{1}{\cos y} = \sec y.
$$
Since $-\frac{\pi}{2} \leq \mathrm{arccsc}\; x \leq \frac{\pi}{2}$ it follows that $0 \leq \frac{\pi}{2} - \mathrm{arccsc}\; x \leq \pi$, or, equivalently, that $0 \leq y \leq \pi$. This, together with $x = \sec y$, implies that $y = \mathrm{arcsec}\; x$, and the proof is complete.
\end{proof}
From this it follows at once that
\begin{theorem} %(4.11 )
$$
\frac{d}{dx} \mathrm{arccsc}\; x
= -\frac{1}{|x| \sqrt{x^{2} - 1}} .
$$
\end{theorem}