-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
388 lines (352 loc) · 16.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// A minimal but useful C++ example showing how to load an Imagenet-style object
// recognition TensorFlow model, prepare input images for it, run them through
// the graph, and interpret the results.
//
// It's designed to have as few dependencies and be as clear as possible, so
// it's more verbose than it could be in production code. In particular, using
// auto for the types of a lot of the returned values from TensorFlow calls can
// remove a lot of boilerplate, but I find the explicit types useful in sample
// code to make it simple to look up the classes involved.
//
// To use it, compile and then run in a working directory with the
// learning/brain/tutorials/label_image/data/ folder below it, and you should
// see the top five labels for the example Lena image output. You can then
// customize it to use your own models or images by changing the file names at
// the top of the main() function.
//
// The googlenet_graph.pb file included by default is created from Inception.
//
// Note that, for GIF inputs, to reuse existing code, only single-frame ones
// are supported.
#include <fstream>
#include <utility>
#include <vector>
#include "tensorflow/cc/ops/const_op.h"
#include "tensorflow/cc/ops/image_ops.h"
#include "tensorflow/cc/ops/standard_ops.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/graph/default_device.h"
#include "tensorflow/core/graph/graph_def_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/command_line_flags.h"
// These are all common classes it's handy to reference with no namespace.
using tensorflow::Flag;
using tensorflow::Tensor;
using tensorflow::Status;
using tensorflow::string;
using tensorflow::int32;
// Takes a file name, and loads a list of labels from it, one per line, and
// returns a vector of the strings. It pads with empty strings so the length
// of the result is a multiple of 16, because our model expects that.
Status ReadLabelsFile(const string &file_name, std::vector<string> *result,
size_t *found_label_count) {
std::ifstream file(file_name);
if (!file) {
return tensorflow::errors::NotFound("Labels file ", file_name,
" not found.");
}
result->clear();
string line;
while (std::getline(file, line)) {
result->push_back(line);
}
*found_label_count = result->size();
const int padding = 16;
while (result->size() % padding) {
result->emplace_back();
}
return Status::OK();
}
static Status ReadEntireFile(tensorflow::Env *env, const string &filename,
Tensor *output) {
tensorflow::uint64 file_size = 0;
TF_RETURN_IF_ERROR(env->GetFileSize(filename, &file_size));
string contents;
contents.resize(file_size);
std::unique_ptr<tensorflow::RandomAccessFile> file;
TF_RETURN_IF_ERROR(env->NewRandomAccessFile(filename, &file));
tensorflow::StringPiece data;
TF_RETURN_IF_ERROR(file->Read(0, file_size, &data, &(contents)[0]));
if (data.size() != file_size) {
return tensorflow::errors::DataLoss("Truncated read of '", filename,
"' expected ", file_size, " got ",
data.size());
}
output->scalar<string>()() = data.ToString();
return Status::OK();
}
bool EndsWith(const string &filename, const string &extension) {
string fNameExt;
size_t i = filename.rfind('.', filename.length());
if (i != string::npos) {
fNameExt = filename.substr(i + 1, filename.length() - i);
}
return fNameExt == extension;
}
// Given an image file name, read in the data, try to decode it as an image,
// resize it to the requested size, and then scale the values as desired.
Status ReadTensorFromImageFile(const string &file_name, const int input_height,
const int input_width, const float input_mean,
const float input_std,
std::vector<Tensor> *out_tensors) {
auto root = tensorflow::Scope::NewRootScope();
using namespace ::tensorflow::ops; // NOLINT(build/namespaces)
string input_name = "file_reader";
string output_name = "normalized";
// read file_name into a tensor named input
Tensor input(tensorflow::DT_STRING, tensorflow::TensorShape());
TF_RETURN_IF_ERROR(
ReadEntireFile(tensorflow::Env::Default(), file_name, &input));
// use a placeholder to read input data
auto file_reader =
Placeholder(root.WithOpName("input"), tensorflow::DataType::DT_STRING);
std::vector<std::pair<string, tensorflow::Tensor>> inputs = {
{"input", input},
};
// Now try to figure out what kind of file it is and decode it.
const int wanted_channels = 3;
tensorflow::Output image_reader;
if (EndsWith(file_name, ".png")) {
image_reader = DecodePng(root.WithOpName("png_reader"), file_reader,
DecodePng::Channels(wanted_channels));
} else if (EndsWith(file_name, ".gif")) {
// gif decoder returns 4-D tensor, remove the first dim
image_reader =
Squeeze(root.WithOpName("squeeze_first_dim"),
DecodeGif(root.WithOpName("gif_reader"), file_reader));
} else if (EndsWith(file_name, ".bmp")) {
image_reader = DecodeBmp(root.WithOpName("bmp_reader"), file_reader);
} else {
// Assume if it's neither a PNG nor a GIF then it must be a JPEG.
image_reader = DecodeJpeg(root.WithOpName("jpeg_reader"), file_reader,
DecodeJpeg::Channels(wanted_channels));
}
// Now cast the image data to float so we can do normal math on it.
auto float_caster =
Cast(root.WithOpName("float_caster"), image_reader, tensorflow::DT_FLOAT);
// The convention for image ops in TensorFlow is that all images are expected
// to be in batches, so that they're four-dimensional arrays with indices of
// [batch, height, width, channel]. Because we only have a single image, we
// have to add a batch dimension of 1 to the start with ExpandDims().
auto dims_expander = ExpandDims(root, float_caster, 0);
// Bilinearly resize the image to fit the required dimensions.
auto resized = ResizeBilinear(
root, dims_expander,
Const(root.WithOpName("size"), {input_height, input_width}));
// Subtract the mean and divide by the scale.
auto output_tensor = Div(root.WithOpName(output_name), Sub(root, resized, {input_mean}),
{input_std});
// This runs the GraphDef network definition that we've just constructed, and
// returns the results in the output tensor.
tensorflow::GraphDef graph;
TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));
std::unique_ptr<tensorflow::Session> session(
tensorflow::NewSession(tensorflow::SessionOptions()));
TF_RETURN_IF_ERROR(session->Create(graph));
TF_RETURN_IF_ERROR(session->Run({inputs}, {output_name, "jpeg_reader"}, {}, out_tensors));
std::cout << "Image_reader: " << (*out_tensors)[1].DebugString() << "\n";
std::cout << "Input tensor: " << (*out_tensors)[0].DebugString() << "\n";
return Status::OK();
}
// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
Status LoadGraph(const string &graph_file_name,
std::unique_ptr<tensorflow::Session> *session) {
tensorflow::GraphDef graph_def;
Status load_graph_status =
ReadBinaryProto(tensorflow::Env::Default(), graph_file_name, &graph_def);
if (!load_graph_status.ok()) {
return tensorflow::errors::NotFound("Failed to load compute graph at '",
graph_file_name, "'");
}
session->reset(tensorflow::NewSession(tensorflow::SessionOptions()));
Status session_create_status = (*session)->Create(graph_def);
if (!session_create_status.ok()) {
return session_create_status;
}
return Status::OK();
}
// Analyzes the output of the Inception graph to retrieve the highest scores and
// their positions in the tensor, which correspond to categories.
Status GetTopLabels(const std::vector<Tensor> &outputs, int how_many_labels,
Tensor *indices, Tensor *scores) {
auto root = tensorflow::Scope::NewRootScope();
using namespace ::tensorflow::ops; // NOLINT(build/namespaces)
string output_name = "top_k";
TopK(root.WithOpName(output_name), outputs[0], how_many_labels);
// This runs the GraphDef network definition that we've just constructed, and
// returns the results in the output tensors.
tensorflow::GraphDef graph;
TF_RETURN_IF_ERROR(root.ToGraphDef(&graph));
std::unique_ptr<tensorflow::Session> session(
tensorflow::NewSession(tensorflow::SessionOptions()));
TF_RETURN_IF_ERROR(session->Create(graph));
// The TopK node returns two outputs, the scores and their original indices,
// so we have to append :0 and :1 to specify them both.
std::vector<Tensor> out_tensors;
TF_RETURN_IF_ERROR(session->Run({}, {output_name + ":0", output_name + ":1"},
{}, &out_tensors));
*scores = out_tensors[0];
*indices = out_tensors[1];
return Status::OK();
}
// Given the output of a model run, and the name of a file containing the labels
// this prints out the top five highest-scoring values.
Status PrintTopLabels(const std::vector<Tensor> &outputs,
const string &labels_file_name) {
std::vector<string> labels;
size_t label_count;
Status read_labels_status =
ReadLabelsFile(labels_file_name, &labels, &label_count);
if (!read_labels_status.ok()) {
LOG(ERROR) << read_labels_status;
return read_labels_status;
}
const int how_many_labels = std::min(5, static_cast<int>(label_count));
Tensor indices;
Tensor scores;
TF_RETURN_IF_ERROR(GetTopLabels(outputs, how_many_labels, &indices, &scores));
tensorflow::TTypes<float>::Flat scores_flat = scores.flat<float>();
tensorflow::TTypes<int32>::Flat indices_flat = indices.flat<int32>();
for (int pos = 0; pos < how_many_labels; ++pos) {
const int label_index = indices_flat(pos);
const float score = scores_flat(pos);
LOG(INFO) << labels[label_index] << " (" << label_index << "): " << score;
}
return Status::OK();
}
// This is a testing function that returns whether the top label index is the
// one that's expected.
Status CheckTopLabel(const std::vector<Tensor> &outputs, int expected,
bool *is_expected) {
*is_expected = false;
Tensor indices;
Tensor scores;
const int how_many_labels = 1;
TF_RETURN_IF_ERROR(GetTopLabels(outputs, how_many_labels, &indices, &scores));
tensorflow::TTypes<int32>::Flat indices_flat = indices.flat<int32>();
if (indices_flat(0) != expected) {
LOG(ERROR) << "Expected label #" << expected << " but got #"
<< indices_flat(0);
*is_expected = false;
} else {
*is_expected = true;
}
return Status::OK();
}
int main(int argc, char *argv[]) {
// These are the command-line flags the program can understand.
// They define where the graph and input data is located, and what kind of
// input the model expects. If you train your own model, or use something
// other than inception_v3, then you'll need to update these.
string image = "../data/grace_hopper.jpg";
string graph = "../data/inception_v3_2016_08_28_frozen.pb";
string labels = "../data/imagenet_slim_labels.txt";
int32 input_width = 299;
int32 input_height = 299;
float input_mean = 0;
float input_std = 255;
string input_layer = "input";
string output_layer = "InceptionV3/Predictions/Reshape_1";
bool self_test = false;
string root_dir;
std::vector<Flag> flag_list = {
Flag("image", &image, "image to be processed"),
Flag("graph", &graph, "graph to be executed"),
Flag("labels", &labels, "name of file containing labels"),
Flag("input_width", &input_width, "resize image to this width in pixels"),
Flag("input_height", &input_height,
"resize image to this height in pixels"),
Flag("input_mean", &input_mean, "scale pixel values to this mean"),
Flag("input_std", &input_std, "scale pixel values to this std deviation"),
Flag("input_layer", &input_layer, "name of input layer"),
Flag("output_layer", &output_layer, "name of output layer"),
Flag("self_test", &self_test, "run a self test"),
Flag("root_dir", &root_dir,
"interpret image and graph file names relative to this directory"),
};
string usage = tensorflow::Flags::Usage(argv[0], flag_list);
const bool parse_result = tensorflow::Flags::Parse(&argc, argv, flag_list);
if (!parse_result) {
LOG(ERROR) << usage;
return -1;
}
// We need to call this to set up global state for TensorFlow.
tensorflow::port::InitMain(argv[0], &argc, &argv);
if (argc > 1) {
LOG(ERROR) << "Unknown argument " << argv[1] << "\n" << usage;
return -1;
}
// First we load and initialize the model.
std::unique_ptr<tensorflow::Session> session;
string graph_path = tensorflow::io::JoinPath(root_dir, graph);
Status load_graph_status = LoadGraph(graph_path, &session);
if (!load_graph_status.ok()) {
LOG(ERROR) << load_graph_status;
return -1;
}
// Get the image from disk as a float array of numbers, resized and normalized
// to the specifications the main graph expects.
std::vector<Tensor> resized_tensors;
string image_path = tensorflow::io::JoinPath(root_dir, image);
Status read_tensor_status =
ReadTensorFromImageFile(image_path, input_height, input_width, input_mean,
input_std, &resized_tensors);
if (!read_tensor_status.ok()) {
LOG(ERROR) << read_tensor_status;
return -1;
}
const Tensor &resized_tensor = resized_tensors[0];
// Actually run the image through the model.
std::vector<Tensor> outputs;
Status run_status = session->Run({{input_layer, resized_tensor}},
{output_layer}, {}, &outputs);
if (!run_status.ok()) {
LOG(ERROR) << "Running model failed: " << run_status;
return -1;
}
// This is for automated testing to make sure we get the expected result with
// the default settings. We know that label 653 (military uniform) should be
// the top label for the Admiral Hopper image.
if (self_test) {
bool expected_matches;
Status check_status = CheckTopLabel(outputs, 653, &expected_matches);
if (!check_status.ok()) {
LOG(ERROR) << "Running check failed: " << check_status;
return -1;
}
if (!expected_matches) {
LOG(ERROR) << "Self-test failed!";
return -1;
}
}
// Do something interesting with the results we've generated.
Status print_status = PrintTopLabels(outputs, labels);
if (!print_status.ok()) {
LOG(ERROR) << "Running print failed: " << print_status;
return -1;
}
return 0;
}