-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcreate_feature_space.py
249 lines (211 loc) · 11.6 KB
/
create_feature_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
""" Compute the features (r2,mse,granger) for a given set of trials
INPUT:
time_window_size: time points considered in the regression;
time_lag: time lag from which the selection of time_windows_size time points starts, if None it takes points from (-1)*time_window_size to -1;
N: time points considered in the mapping, if None it takes the entire time serie;
n_folds: number of folds in the regression problem, default=5;
order_granger: order of the MAR model for computing granger features;
n_jobs: CPU cores;
filedata: source file- pwd_source + filedata_structure + i_file.
OUTPUT:
3 pickle files, one for each type of feature r2, mse and granger.
"""
import numpy as np
import pickle
from scipy.misc import comb
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sys import stdout
from joblib import Parallel, delayed
from score_function import compute_score_matrix, best_decision
from create_level2_dataset import regression_scores, granger_scores, feature_engineering, feature_normalisation
from create_trainset import configuration_to_class
causality_structures = [((0,),0), ((0,),1), ((0,),2),
((1,),0), ((1,),1), ((1,),2),
((2,),0), ((2,),1), ((2,),2),
((0,1),0), ((0,1),1), ((0,1),2),
((0,2),0), ((0,2),1), ((0,2),2),
((1,2),0), ((1,2),1), ((1,2),2),
((0,1,2),0), ((0,1,2),1), ((0,1,2),2)]
def compute_lev2_regression_general_case(filedata, time_window_size=10, time_lag=None, N=None, reg=None, cv=5, scoring='r2', n_jobs=-1):
"""Compute the portion of a second level dataset related to a set of trial.
"""
print "Computing regression-based features."
data = pickle.load(open(filedata))
data_timeseries = data['data']
[nTrial, nTime, nCh] = data_timeseries.shape
#for reducing the number of time points
if not(N is None):
data_timeseries = data_timeseries[:,:N,:]
nTime = N
ch = np.arange(nCh)
y_level2_conf = data['conf']
y_level2_conf = np.reshape(np.repeat(y_level2_conf[None,:,:], nTrial, axis=0),[nTrial,nCh,nCh])
gamma_test_level2 = data['gamma'] #None in case we don't know
print "Data set shape:", data_timeseries.shape
n_comb = comb(nCh,3,exact=1)
X_lev2_regression = np.zeros((nTrial, n_comb, len(causality_structures), 2), dtype=np.float64) #added 2 dimensions to compute r2 and mse
y_level2 = np.zeros((nTrial, n_comb), dtype=np.int32)
order_combinations = np.zeros((n_comb, 3), dtype=np.int32)
i_comb = 0
for i in range(0,nCh):
for j in range(i+1,nCh):
for z in range(j+1,nCh):
print "combination", i_comb
#conditionCh=np.delete(ch,[i,j,z])
result = Parallel(n_jobs=n_jobs)(delayed(regression_scores)(data_timeseries[trial_i,:,[i,j,z]].T, time_window_size=time_window_size, time_lag=time_lag, reg=reg, cv=n_folds, scoring=scoring, timeseriesZ=None) for trial_i in range(nTrial))#timeseriesZ=data_timeseries[trial_i,:,conditionCh].T
X_lev2_tmp = zip(*result) # See http://stackoverflow.com/questions/13635032/what-is-the-inverse-function-of-zip-in-python
#X_lev2_regression[:,i_comb,:] = np.vstack(X_lev2_tmp).T
X_lev2_regression[:,i_comb,:,0] = np.squeeze(np.array(X_lev2_tmp)[:,:,0]).T #r2score
X_lev2_regression[:,i_comb,:,1] = np.squeeze(np.array(X_lev2_tmp)[:,:,1]).T #mse
order_combinations[i_comb] = np.array([i,j,z], dtype=int)
tmp = []
tmp += [(y_level2_conf[i_trial][order_combinations[i_comb][:,None], order_combinations[i_comb]]) for i_trial in range(nTrial)]
tmp = np.array(tmp)
tmp_res = []
tmp_res += [(configuration_to_class(tmp[i_trial], verbose=False)) for i_trial in range(nTrial)]
y_level2[:,i_comb] = np.array(tmp_res)
i_comb += 1
y_level2_conf = np.array(y_level2_conf, dtype=np.int32)
gamma_test_level2 = np.array(gamma_test_level2, dtype=np.float32)
return X_lev2_regression, y_level2_conf, y_level2, gamma_test_level2, order_combinations
def compute_lev2_granger_general_case(filedata, order=10, N=None, n_jobs=-1):
"""Compute the granger causality coefficients for each triad in the entire set
"""
print "Computing Granger causality coefficients"
data = pickle.load(open(filedata))
data_timeseries = data['data']
[nTrial, nTime, nCh] = data_timeseries.shape
if not(N is None):
data_timeseries = data_timeseries[:,:N,:]
nTime = N
y_level2_conf = data['conf']
y_level2_conf = np.reshape(np.repeat(y_level2_conf[None,:,:], nTrial, axis=0),[nTrial,nCh,nCh])
gamma_test_level2 = data['gamma'] #data['synpaticEfficacies'] or None in case we don't know
print "Data set shape:", data_timeseries.shape
n_comb = comb(nCh,3,exact=1)
X_lev2_granger = np.zeros((nTrial, n_comb, 6))
order_combinations = np.zeros((n_comb, 3), dtype=int)
i_comb = 0
for i in range(0,nCh):
for j in range(i+1,nCh):
for z in range(j+1,nCh):
print "combination", i_comb
result = Parallel(n_jobs=n_jobs)(delayed(granger_scores)(data_timeseries[trial_i,:,[i,j,z]], order) for trial_i in range(nTrial))
X_lev2_tmp = zip(*result) # See http://stackoverflow.com/questions/13635032/what-is-the-inverse-function-of-zip-in-python
X_lev2_granger[:,i_comb,:] = np.vstack(X_lev2_tmp).T
order_combinations[i_comb] = np.array([i,j,z], dtype=int)
i_comb += 1
return X_lev2_granger, y_level2_conf, gamma_test_level2, order_combinations
if __name__ == '__main__':
time_window_size = 10 #time points considered in the regression
time_lag = None #time lag from which the selection of time_windows_size time points starts, if None it takes points from (-1)time_window_size to -1
N = None #time points to consider in the mapping, if None it takes the entire time serie
reg = LinearRegression(fit_intercept=True, normalize=True)
#reg = SVR(C=1.0, epsilon=0.2)
# reg = BayesianRidge()
n_folds = 5
#scoring = 'residual_tests'
scoring = 'r2'#'mean_squared_error'
order_granger = 10
n_jobs = -1 # '-1' = use all available CPU cores
## File in which features are saved, one file for each type of feature (r2, mse and granger)
pwd = 'data/'
filename_level2_r2 = '%sdataset_level2_tws%d_cv%d_r2_shift_window.pickle' % (pwd, time_window_size, n_folds)
filename_level2_mse = '%sdataset_level2_tws%d_cv%d_mse_shift_window.pickle' % (pwd, time_window_size, n_folds)
# Source file name
configurations = 64 #number of files to map, one file for each configuration
pwd_source = 'data/'
filedata_structure = 'simulated_data_class_'
#r2 and mse features
filename_level2 = filename_level2_r2
#filename_level2 = filename_level2_mse
try:
print "Loading", filename_level2
level2 = pickle.load(open(filename_level2))
X_test_level2 = level2['X_level2']
y_test_level2 = level2['y_level2']
gamma_test_level2 = level2['gamma_level2']
order_combinations = level2['order_combinations']
except IOError:
print "Not found!"
print
# The following is the parallel (multicore) loop over all classes calling compute_lev2_regression():
X_test_level2 = []
y_test_level2 = []
y_level2 = []
gamma_test_level2 = []
for i_file in range(configurations):
print "n. file:", i_file
filedata = '%s%s%d%s' % (pwd_source,filedata_structure,i_file,'.pickle')
print "Loading file data", filedata
tmp_X_test_level2, tmp_y_test_level2, tmp_y_level2, tmp_gamma_test_level2, order_combinations = compute_lev2_regression_general_case(filedata, time_window_size, time_lag, N, reg, cv=n_folds, scoring=scoring, n_jobs=n_jobs)
X_test_level2.append(tmp_X_test_level2)
y_test_level2.append(tmp_y_test_level2)
y_level2.append(tmp_y_level2)
gamma_test_level2.append(tmp_gamma_test_level2)
X_test_level2 = np.vstack(X_test_level2)
y_test_level2 = np.vstack(y_test_level2)
y_level2 = np.vstack(y_level2)
#gamma_test_level2 = np.hstack(gamma_test_level2)
print
print "Saving level2 dataset in", filename_level2
pickle.dump({'time_window_size': time_window_size,
'reg': reg,
'cv': n_folds,
'X_level2': np.squeeze(X_test_level2[:,:,:,0]),
'y_level2_conf': y_test_level2,
'y_level2': y_level2,
'gamma_level2': gamma_test_level2,
'order_combinations': order_combinations,
},
open(filename_level2, 'w'),
protocol = pickle.HIGHEST_PROTOCOL)
filename_level2 = filename_level2_mse
print
print "Saving level2 dataset in", filename_level2
pickle.dump({'time_window_size': time_window_size,
'reg': reg,
'cv': n_folds,
'X_level2': np.squeeze(X_test_level2[:,:,:,1]),
'y_level2_conf': y_test_level2,
'y_level2': y_level2,
'gamma_level2': gamma_test_level2,
'order_combinations': order_combinations,
},
open(filename_level2, 'w'),
protocol = pickle.HIGHEST_PROTOCOL)
#Granger features
filename_level2_granger = '%sdataset_level2_tws%d_cv%d_granger.pickle' % (pwd, order_granger, n_folds)
try:
print "Loading", filename_level2_granger
level2 = pickle.load(open(filename_level2_granger))
X_test_level2_granger = level2['X_level2']
except IOError:
print "Not found!"
print
# The following is the parallel (multicore) loop over all classes calling compute_lev2_granger_general_case():
X_test_level2_granger = []
y_test_level2 = []
gamma_test_level2 = []
for i_file in range(configurations):
print "n. file:", i_file
filedata = '%s%s%d%s' % (pwd_source,filedata_structure,i_file,'.pickle')
print "Loading file data", filedata
tmp_X_test_level2_granger, tmp_y_test_level2, tmp_gamma_test_level2, order_combinations = compute_lev2_granger_general_case(filedata, order_granger, N, n_jobs)
X_test_level2_granger.append(tmp_X_test_level2_granger)
y_test_level2.append(tmp_y_test_level2)
gamma_test_level2.append(tmp_gamma_test_level2)
X_test_level2_granger = np.vstack(X_test_level2_granger)
y_test_level2 = np.vstack(y_test_level2)
print
print "Saving level2 dataset in", filename_level2_granger
pickle.dump({'time_window_size': time_window_size,
'order_granger': order_granger,
'X_level2': np.squeeze(X_test_level2_granger),
'y_level2_conf': y_test_level2,
'gamma_level2': gamma_test_level2,
'order_combinations': order_combinations,
},
open(filename_level2_granger, 'w'),
protocol = pickle.HIGHEST_PROTOCOL)