-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
31 lines (24 loc) · 1.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from data import get_movie_dict_from_df, get_user_data
from score import jaccard_user_score, cosine_user_score, cross_user_movies_dict_score, n_movies_in_common, scale_ratings
from graph import build_bipartite_graph, biased_random_walk
USERNAME = "danicrg"
if __name__ == "__main__":
my_data = get_user_data(USERNAME)
users = ["danicrg", "emmaelkmw", "carlotabravo", "jazze", "thomasflight", "kurstboy", "blazques"]
other_data = get_user_data("blazques")
my_movie_dict = get_movie_dict_from_df(my_data)
other_movie_dict = get_movie_dict_from_df(other_data)
print("n_movies_in_common", n_movies_in_common(my_movie_dict, other_movie_dict))
print("Cross_user_score", cross_user_movies_dict_score(my_movie_dict, other_movie_dict))
print("Jaccard_user_score", jaccard_user_score(my_movie_dict, other_movie_dict))
print("Cosine_user_score", cosine_user_score(my_movie_dict, other_movie_dict))
user_ratings = {
user: get_movie_dict_from_df(get_user_data(user))
for user in users
}
graph = build_bipartite_graph(user_ratings)
start_user = USERNAME
affinity_scores = biased_random_walk(graph, start_user)
print(f"Affinity Scores for Movies (Biased Random Walk from {start_user}):")
for movie, score in sorted(affinity_scores.items(), key=lambda x: x[1], reverse=True)[:10]:
print(f"{movie}: {score}")