-
Notifications
You must be signed in to change notification settings - Fork 11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Consider an alternative solution in marking @container
in context generator
#214
Comments
I think we can consider attaching metadata information to a type (indirectly to a field) for context generation or some other purpose. Do it that way, what information to be attached will be explicit. With Pydantic V2, metadata can be easily attached to a type. from typing import Type
from pydantic_core import CoreSchema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
class Metadata(BaseModel):
foo: str = 'metadata!'
bar: int = 100
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Type[BaseModel], handler: GetCoreSchemaHandler
) -> CoreSchema:
if cls is not source_type:
return handler(source_type)
return super().__get_pydantic_core_schema__(source_type, handler)
class Model(BaseModel):
state: Annotated[int, Metadata()]
m = Model.model_validate({'state': 2})
print(repr(m))
#> Model(state=2)
print(m.model_fields)
"""
{
'state': FieldInfo(
annotation=int,
required=True,
metadata=[Metadata(foo='metadata!', bar=100)],
)
}
""" As you can see, you can even have a Pydantic model to represent the metadata you want to attach to a type, and this metadata will not interfere with validation and serialization if you don't want it to. You can find out more about this example at https://docs.pydantic.dev/latest/concepts/json_schema/#modifying-the-schema. |
ooh that's nice - we could move all the jsonld related stuff into metadata instead of having |
Do you mean adding metadata to a field of a Pydantic model type? If that's your question, the answer is yes. Metadata can be attached to essentially any type using the from typing import Any
from enum import Enum
import json
from pprint import pprint
from pydantic_core import CoreSchema
from typing_extensions import Annotated
from pydantic import BaseModel, GetCoreSchemaHandler
class AccessType(Enum):
"""An enumeration of access status options"""
#: The dandiset is openly accessible
OpenAccess = "dandi:OpenAccess"
#: The dandiset is embargoed
EmbargoedAccess = "dandi:EmbargoedAccess"
class Metadata1(BaseModel):
foo: str = 'metadata!'
bar: int = 100
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
if cls is not source_type:
return handler(source_type)
return super().__get_pydantic_core_schema__(source_type, handler)
class Metadata2(BaseModel):
x: int = 0
y: int = 42
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
if cls is not source_type:
return handler(source_type)
return super().__get_pydantic_core_schema__(source_type, handler)
class SubModel(BaseModel):
a: int = 100
b: str = "Hello, world!"
class Model(BaseModel):
state: Annotated[int, Metadata1()] # metadata on int
access_type: Annotated[AccessType, Metadata2()] # metadata on enum
f: Annotated[SubModel, Metadata1(), Metadata2()] # multiple metadata objects
json_schema = Model.model_json_schema()
print(json.dumps(json_schema, indent=2))
"""
{
"$defs": {
"AccessType": {
"description": "An enumeration of access status options",
"enum": [
"dandi:OpenAccess",
"dandi:EmbargoedAccess"
],
"title": "AccessType",
"type": "string"
},
"SubModel": {
"properties": {
"a": {
"default": 100,
"title": "A",
"type": "integer"
},
"b": {
"default": "Hello, world!",
"title": "B",
"type": "string"
}
},
"title": "SubModel",
"type": "object"
}
},
"properties": {
"state": {
"title": "State",
"type": "integer"
},
"access_type": {
"$ref": "#/$defs/AccessType"
},
"f": {
"$ref": "#/$defs/SubModel"
}
},
"required": [
"state",
"access_type",
"f"
],
"title": "Model",
"type": "object"
}
"""
m = Model(state=42, access_type=AccessType.EmbargoedAccess, f=SubModel(a=1, b="hi"))
print(m.model_dump_json(indent=2))
"""
{
"state": 42,
"access_type": "dandi:EmbargoedAccess",
"f": {
"a": 1,
"b": "hi"
}
}
"""
pprint(m.model_fields, indent=2)
"""
{ 'access_type': FieldInfo(annotation=AccessType, required=True, metadata=[Metadata2(x=0, y=42)]),
'f': FieldInfo(annotation=SubModel, required=True, metadata=[Metadata1(foo='metadata!', bar=100), Metadata2(x=0, y=42)]),
'state': FieldInfo(annotation=int, required=True, metadata=[Metadata1(foo='metadata!', bar=100)])}
""" As you can see, the metadata can be attached to different types (or indirectly fields of different types), multiple metadata objects can be attached, and all the metadata do not affect JSON schema generation nor Pydantic model validation. If you choose to, you can attach metadata that affect the generation of JSON schema and validation of a type. You can see examples of those at #203 (comment) and dandi-schema/dandischema/types.py Lines 1 to 40 in 0c97b8e
All in all, I think we can benefit a lot in this project from some of the new features in Pydantic V2. |
This issue originates from this post and subsequent discussion. In short, the current way of marking
@container
, based on stringification, works for now but imprecise. It would be better if we have a more reliable solution.The text was updated successfully, but these errors were encountered: