forked from DocF/YOLOv3-Torch2TRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
executable file
·261 lines (214 loc) · 9.86 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from __future__ import division
from models import *
from utils.utils import *
from utils.datasets import *
import os
import sys
import time
import datetime
import argparse
from PIL import Image
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
from torchstat import stat
from torch2trt import torch2trt
def Speed(TensorRT, Half):
if Half:
test_data = torch.rand(size=(1000, 1, 3, opt.img_size, opt.img_size)).cuda().half()
else:
test_data = torch.rand(size=(1000, 1, 3, opt.img_size, opt.img_size)).cuda()
print("Start test speed")
# 模型推理
if TensorRT:
start = time.time()
for i in range(test_data.size()[0]):
detections = model_backbone(test_data[i])
end = time.time()
if Half is False:
print("Fp32 Backbone Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
else:
print("Fp16 Backbone Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
start = time.time()
for i in range(test_data.size()[0]):
detections = model_trt(test_data[i])
end = time.time()
if Half is False:
print("Fp32 TensorRT Backbone Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
else:
print("Fp16 TensorRT Backbone Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
start = time.time()
for i in range(test_data.size()[0]):
detections = yolo_head(model_trt(test_data[i]))
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres, method=1)
end = time.time()
if Half is False:
print("Fp32 TensorRT Model Detect Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
else:
print("Fp16 TensorRT Model Detect Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
else:
start = time.time()
for i in range(test_data.size()[0]):
detections = model(test_data[i])
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres, method=1)
end = time.time()
if Half is False:
print("Fp32 Original Model Detect Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
else:
print("Fp16 Original Model Detect Speed:", 1 / (end - start) * test_data.size()[0], "Hz")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_folder", type=str, default="data/samples/", help="path to dataset")
parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file")
parser.add_argument("--weights_path", type=str, default="weights/yolov3.weights", help="path to weights file")
parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file")
parser.add_argument("--conf_thres", type=float, default=0.8, help="object confidence threshold")
parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
parser.add_argument("--checkpoint_model", type=str, help="path to checkpoint model")
opt = parser.parse_args()
# print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("output", exist_ok=True)
# 模型选择
# TensorRT 只能加速 YOLO 的特征提取网络, YOLO Head 目前还不能应用
Speed_Test = True
TensorRT = True
Half = True # 半精度
if TensorRT is True:
if Half is True:
model_backbone = Darknet_Backbone(opt.model_def, img_size=opt.img_size).to(device).half()
else:
model_backbone = Darknet_Backbone(opt.model_def, img_size=opt.img_size).to(device)
# 权重加载
if opt.weights_path.endswith(".weights"):
# Load darknet weights
model_backbone.load_darknet_weights(opt.weights_path)
else:
# Load checkpoint weights
model_backbone.load_state_dict(torch.load(opt.weights_path))
# Set in evaluation mode 前向推理时候会忽略 BatchNormalization 和 Dropout
model_backbone.eval()
# 添加 Detection Head
yolo_head = YOLOHead(config_path=opt.model_def)
# DarknetBackbone 转换为 TensorRT 模型
if Half is True:
x = torch.rand(size=(1, 3, opt.img_size, opt.img_size)).cuda().half()
model_trt = torch2trt(model_backbone, [x], fp16_mode=True)
else:
x = torch.rand(size=(1, 3, opt.img_size, opt.img_size)).cuda()
model_trt = torch2trt(model_backbone, [x])
else:
if Half:
model = Darknet(opt.model_def, img_size=opt.img_size, TensorRT=False, Half=True).to(device).half()
else:
model = Darknet(opt.model_def, img_size=opt.img_size).to(device)
# 权重加载
if opt.weights_path.endswith(".weights"):
# Load darknet weights
model.load_darknet_weights(opt.weights_path)
else:
# Load checkpoint weights
model.load_state_dict(torch.load(opt.weights_path))
# Set in evaluation mode 前向推理时候会忽略 BatchNormalization 和 Dropout
model.eval()
# 速度测试
if Speed_Test:
Speed(TensorRT, Half)
dataloader = DataLoader(
ImageFolder(opt.image_folder, img_size=opt.img_size),
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.n_cpu,
)
classes = load_classes(opt.class_path) # Extracts class labels from file
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
imgs = [] # Stores image paths
img_detections = [] # Stores detections for each image index
# # YOLO 参数、运算量测试
# model.to("cpu")
# stat(model, input_size=(3, 416, 416))
print("\nPerforming object detection:")
prev_time = time.time()
for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
# Configure input
input_imgs = Variable(input_imgs.type(Tensor))
# # 半精度模型输入
# input_imgs = Variable(input_imgs.type(Tensor)).half()
# Get detections
with torch.no_grad():
# 注释说明
# YOLOv3 return tensor size [batch_size, 10647, 85]
# YOLOv3-tiny return tensor size [batch_size, 2535, 85]
# 10647 = 3×13×13 + 3×26×26 + 3×52×52
# 2535 = 3×13×13 + 3×26×26
# 85: 其中前4维度为坐标,第5个维度为bbox的置信度,后面80个维度为coco80类目标的对应概率
# TensorRT 加速
if TensorRT:
detections = yolo_head(model_trt(input_imgs))
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres, method=2)
else:
detections = model(input_imgs)
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres, method=2)
# # 保存模型
# torch.save(model, "YOLOv3.pth")
# # 打印模型
# print(model)
# Log progress
current_time = time.time()
inference_time = datetime.timedelta(seconds=current_time - prev_time)
prev_time = current_time
print("\t+ Batch %d, Inference Time: %s" % (batch_i, inference_time))
# Save image and detections
imgs.extend(img_paths)
img_detections.extend(detections)
# Bounding-box colors
cmap = plt.get_cmap("tab20b")
colors = [cmap(i) for i in np.linspace(0, 1, 20)]
print("\nSaving images:")
# Iterate through images and save plot of detections
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print("(%d) Image: '%s'" % (img_i, path))
# Create plot
img = np.array(Image.open(path))
plt.figure()
fig, ax = plt.subplots(1)
ax.imshow(img)
# Draw bounding boxes and labels of detections
if detections is not None:
# Rescale boxes to original image
detections = rescale_boxes(detections, opt.img_size, img.shape[:2])
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
bbox_colors = random.sample(colors, n_cls_preds)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item()))
box_w = x2 - x1
box_h = y2 - y1
color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
# Create a Rectangle patch
bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor="none")
# Add the bbox to the plot
ax.add_patch(bbox)
# Add label
plt.text(
x1,
y1,
s=classes[int(cls_pred)],
color="white",
verticalalignment="top",
bbox={"color": color, "pad": 0},
)
# Save generated image with detections
plt.axis("off")
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
filename = path.split("/")[-1].split(".")[0]
plt.savefig(f"output/{filename}.png", bbox_inches="tight", pad_inches=0.0)
plt.close()