forked from sensorium/Mozzi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AudioDelayFeedback.h
409 lines (328 loc) · 14 KB
/
AudioDelayFeedback.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
* AudioDelayFeedback.h
*
* Copyright 2012 Tim Barrass.
*
* This file is part of Mozzi.
*
* Mozzi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
*
*/
#ifndef AUDIODELAY_FEEDBACK_H_
#define AUDIODELAY_FEEDBACK_H_
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "mozzi_utils.h"
#include "meta.h"
enum interpolation_types {LINEAR,ALLPASS};
/** Audio delay line with feedback for comb filter, flange, chorus and short echo effects.
@tparam NUM_BUFFER_SAMPLES is the length of the delay buffer in samples, and should be a
power of two. The maximum delay length which will fit in an atmega328 is half
that of a plain AudioDelay object, in this case 256 cells, or about 15
milliseconds. AudioDelayFeedback uses int16_t sized cells to accomodate the higher
amplitude of direct input to the delay as well as the feedback, without losing
precision. Output is only the delay line signal. If you want to mix the delay
with the input, do it in your sketch. AudioDelayFeedback uses more processing and memory
than a plain AudioDelay, but allows for more dramatic effects with feedback.
@tparam INTERP_TYPE a choice of LINEAR (default) or ALLPASS interpolation. LINEAR is better
for sweeping delay times, ALLPASS may be better for reverb-like effects.
*/
template <uint16_t NUM_BUFFER_SAMPLES, int8_t INTERP_TYPE = LINEAR>
class AudioDelayFeedback
{
public:
/** Constructor.
*/
AudioDelayFeedback(): write_pos(0), _feedback_level(0), _delaytime_cells(0)
{}
/** Constructor.
@param delaytime_cells delay time expressed in cells.
For example, 128 cells delay at AUDIO_RATE 16384 would produce a time delay of 128/16384 = 0.0078125 s = 7.8 ms
Put another way, num_cells = delay_seconds * AUDIO_RATE.
*/
AudioDelayFeedback(uint16_t delaytime_cells): write_pos(0), _feedback_level(0), _delaytime_cells(delaytime_cells)
{}
/** Constructor.
@param delaytime_cells delay time expressed in cells.
For example, 128 cells delay at AUDIO_RATE 16384 would produce a time delay of 128/16384 = 0.0078125 s = 7.8 ms
Put another way, num_cells = delay_seconds * AUDIO_RATE.
@param feedback_level is the feedback level from -128 to 127 (representing -1 to 1).
*/
AudioDelayFeedback(uint16_t delaytime_cells, int8_t feedback_level): write_pos(0), _feedback_level(feedback_level), _delaytime_cells(delaytime_cells)
{}
/** Input a value to the delay and retrieve the signal in the delay line at the position delaytime_cells.
@param input the signal input.
@note slower than next(int8_t input, uint16_t delaytime_cells)
*/
inline
int16_t next(int8_t input)
{
// chooses a different next() function depending on whether the
// the template parameter is LINEAR(default if none provided) or ALLPASS.
// See meta.h.
return next(input, Int2Type<INTERP_TYPE>());
}
/** Input a value to the delay, retrieve the signal in the delay line at the position delaytime_cells, and add feedback from the output to the input.
@param input the signal input.
@param delaytime_cells indicates the delay time in terms of cells in the delay buffer.
It doesn't change the stored internal value of _delaytime_cells.
@note Timing: 4us
*/
inline
int16_t next(int8_t input, uint16_t delaytime_cells)
{
//setPin13High();
++write_pos &= (NUM_BUFFER_SAMPLES - 1);
uint16_t read_pos = (write_pos - delaytime_cells) & (NUM_BUFFER_SAMPLES - 1);
// < 1us to here
int16_t delay_sig = delay_array[read_pos]; // read the delay buffer
// with this line, the method takes 18us
//int8_t feedback_sig = (int8_t) min(max(((delay_sig * _feedback_level)/128),-128),127); // feedback clipped
// this line, the whole method takes 4us... Compiler doesn't optimise pow2 divides. Why?
int8_t feedback_sig = (int8_t) min(max(((delay_sig * _feedback_level)>>7),-128),127); // feedback clipped
delay_array[write_pos] = (int16_t) input + feedback_sig; // write to buffer
//setPin13Low();
return delay_sig;
}
/** Input a value to the delay, retrieve the signal in the delay line at the interpolated fractional position delaytime_cells, and add feedback from the output to the input.
@param input the signal input.
@param delaytime_cells is a fractional number to set the delay time in terms of cells
or partial cells in the delay buffer. It doesn't change the stored internal
value of _delaytime_cells.
*/
inline
int16_t next(int8_t input, Q16n16 delaytime_cells)
{
//setPin13High();
++write_pos &= (NUM_BUFFER_SAMPLES - 1);
uint16_t index = Q16n16_to_Q16n0(delaytime_cells);
uint16_t fraction = (uint16_t) delaytime_cells; // keeps low word
uint16_t read_pos1 = (write_pos - index) & (NUM_BUFFER_SAMPLES - 1);
int16_t delay_sig1 = delay_array[read_pos1]; // read the delay buffer
uint16_t read_pos2 = (write_pos - (index+1)) & (NUM_BUFFER_SAMPLES - 1);
int16_t delay_sig2 = delay_array[read_pos2]; // read the delay buffer
int16_t difference = delay_sig2 - delay_sig1;
int16_t delay_sig_fraction = (int16_t)((int32_t)((int32_t) fraction * difference) >> 16);
int16_t delay_sig = delay_sig1+delay_sig_fraction;
//int16_t delay_sig = delay_sig1 + ((int32_t)delay_sig2*fraction)>>16;
int8_t feedback_sig = (int8_t) min(max((((int16_t)(delay_sig * _feedback_level))>>7),-128),127); // feedback clipped
delay_array[write_pos] = (int16_t) input + feedback_sig; // write to buffer
//setPin13Low();
return delay_sig;
}
/** Input a value to the delay but don't change the delay time or retrieve the output signal.
@param input the signal input.
*/
inline
void write(int8_t input)
{
++write_pos &= (NUM_BUFFER_SAMPLES - 1);
delay_array[write_pos] = input;
}
/** Input a value to the delay but don't advance the write position, change the delay time or retrieve the output signal.
This can be useful for manually adding feedback to the delay line, "behind" the advancing write head.
@param input the signal input.
*/
inline
void writeFeedback(int8_t input)
{
delay_array[write_pos] = input;
}
/** Input a value to the delay at an offset from the current write position. Don't advance the main
write position or change the stored delay time or retrieve the output signal.
@param input the signal input.
@param offset the number of cells behind the ordinary write position where the input will be written.
*/
inline
void write(int8_t input, uint16_t offset)
{
(write_pos + offset) &= (NUM_BUFFER_SAMPLES - 1);
delay_array[write_pos] = input;
}
/** Retrieve the signal in the delay line at the interpolated fractional position delaytime_cells.
It doesn't change the stored internal value of _delaytime_cells or feedback the output to the input.
@param delaytime_cells indicates the delay time in terms of cells in the delay buffer.
*/
inline
int16_t read(Q16n16 delaytime_cells)
{
return read(delaytime_cells, Int2Type<INTERP_TYPE>());
}
/** Retrieve the signal in the delay line at the current stored delaytime_cells.
It doesn't change the stored internal value of _delaytime_cells or feedback the output to the input.
*/
inline
int16_t read()
{
return read(Int2Type<INTERP_TYPE>());
}
/** Set delay time expressed in samples.
@param delaytime_cells delay time expressed in cells, with each cell played per tick of AUDIO_RATE.
For example, 128 cells delay at AUDIO_RATE would produce a time delay of 128/16384 = 0.0078125 s = 7.8 ms
Put another way, num_cells = delay_seconds * AUDIO_RATE.
*/
inline
void setDelayTimeCells(uint16_t delaytime_cells)
{
_delaytime_cells = (uint16_t) delaytime_cells;
}
/** Set delay time expressed in samples, fractional Q16n16 for an interpolating delay.
@param delaytime_cells delay time expressed in cells, with each cell played per tick of AUDIO_RATE.
For example, 128 cells delay at AUDIO_RATE would produce a time delay of 128/16384 = 0.0078125 s = 7.8 ms
Put another way, num_cells = delay_seconds * AUDIO_RATE.
*/
inline
void setDelayTimeCells(Q16n16 delaytime_cells)
{
return setDelayTimeCells(delaytime_cells, Int2Type<INTERP_TYPE>());
}
/** Set delay time expressed in samples, fractional float for an interpolating delay.
@param delaytime_cells delay time expressed in cells, with each cell played per tick of AUDIO_RATE.
For example, 128 cells delay at AUDIO_RATE would produce a time delay of 128/16384 = 0.0078125 s = 7.8 ms
Put another way, num_cells = delay_seconds * AUDIO_RATE.
*/
inline
void setDelayTimeCells(float delaytime_cells)
{
return setDelayTimeCells(delaytime_cells, Int2Type<INTERP_TYPE>());
}
/** Set the feedback gain.
@param feedback_level is the feedback level from -128 to 127 (representing -1 to 1).
*/
inline
void setFeedbackLevel(int8_t feedback_level)
{
_feedback_level = feedback_level;
}
private:
int16_t delay_array[NUM_BUFFER_SAMPLES];
uint16_t write_pos;
int8_t _feedback_level;
uint16_t _delaytime_cells;
Q15n16 _coeff; // for allpass interpolation
/** Input a value to the delay and retrieve the signal in the delay line at the position delaytime_cells.
@param in_value the signal input.
*/
inline
int16_t next(int8_t in_value, Int2Type<LINEAR>)
{
++write_pos &= (NUM_BUFFER_SAMPLES - 1);
uint16_t read_pos = (write_pos - _delaytime_cells) & (NUM_BUFFER_SAMPLES - 1);
int16_t delay_sig = delay_array[read_pos]; // read the delay buffer
int8_t feedback_sig = (int8_t) min(max(((delay_sig * _feedback_level)/128),-128),127); // feedback clipped
delay_array[write_pos] = (int16_t) in_value + feedback_sig; // write to buffer
return delay_sig;
}
/** The delaytime_cells has to be set seperately, because it's slowish
and in this implementation the allpass interpolation mode doesn't slide
nicely from one delay time to another.
@param input an audio signal in
@return the delayed signal, including feedback
@note Timing: 10us
*/
inline
int16_t next(int8_t input, Int2Type<ALLPASS>)
{
/*
http://www.scandalis.com/Jarrah/Documents/DelayLine.pdf
also https://ccrma.stanford.edu/~jos/Interpolation/Interpolation_4up.pdf
for desired fractional delay of d samples,
coeff = (1-d)/(1+d)
or
coeff = ((d-1)>1) + (((d-1)*(d-1))>>2) - (((d-1)*(d-1)*(d-1))>>3)
out = coeff * in + last_in - coeff * last_out
= coeff * (in-last_out) + last_in
*/
//setPin13High();
static int8_t last_in;
static int16_t last_out;
++write_pos &= (NUM_BUFFER_SAMPLES - 1);
uint16_t read_pos1 = (write_pos - _delaytime_cells) & (NUM_BUFFER_SAMPLES - 1);
int16_t delay_sig = delay_array[read_pos1]; // read the delay buffer
int16_t interp = (int16_t)(_coeff * ((int16_t)input - last_out)>>16) + last_in; // Q15n16*Q15n0 + Q15n0 = Q15n16 + Q15n0 = Q15n16
delay_sig += interp;
int8_t feedback_sig = (int8_t) min(max(((delay_sig * _feedback_level)>>7),-128),127); // feedback clipped
delay_array[write_pos] = (int16_t) input + feedback_sig; // write to buffer
last_in = input;
last_out = delay_sig;
//setPin13Low();
return delay_sig;
}
// 20-25us
inline
void setDelayTimeCells(Q16n16 delaytime_cells, Int2Type<ALLPASS>)
{
/*
integer optimisation/approximation from
Van Duyne, Jaffe, Scandalis, Stilson 1997
http://www.scandalis.com/Jarrah/Documents/DelayLine.pdf
//coeff = -((d-1)>1) + (((d-1)*(d-1))>>2) - (((d-1)*(d-1)*(d-1))>>3) , d is fractional part
*/
_delaytime_cells = delaytime_cells>>16; // whole integer part
Q15n16 dminus1 = - Q15n16_FIX1 + (uint16_t) delaytime_cells;
Q15n16 dminus1squared = (dminus1)*(dminus1)>>16;
_coeff = -(dminus1>>1) + (dminus1squared>>2) - (((dminus1squared*dminus1)>>16)>>3);
}
// 100us
inline
void setDelayTimeCells(float delaytime_cells, Int2Type<ALLPASS>)
{
//coeff = (1-d)/(1+d)
_delaytime_cells = (uint16_t) delaytime_cells;
float fraction = delaytime_cells - _delaytime_cells;
// modified from stk DelayA.cpp
float alpha_ = 1.0f + fraction; // fractional part
if ( alpha_ < 0.5f ) {
// (stk): The optimal range for alpha is about 0.5 - 1.5 in order to
// achieve the flattest phase delay response.
// something's not right about how I use _delaytime_cells and
// NUM_BUFFER_SAMPLES etc. in my ringbuffer compared to stk
_delaytime_cells += 1;
if ( _delaytime_cells >= NUM_BUFFER_SAMPLES ) _delaytime_cells -= NUM_BUFFER_SAMPLES;
alpha_ += 1.0f;
}
// otherwise this would use fraction instead of alpha
_coeff = float_to_Q15n16((1.f-alpha_)/(1.f+alpha_));
}
// Retrieve the signal in the delay line at the position delaytime_cells.
// It doesn't change the stored internal value of _delaytime_cells or feedback the output to the input.
// param delaytime_cells indicates the delay time in terms of cells in the delay buffer.
//
// inline
// int16_t read(uint16_t delaytime_cells, Int2Type<LINEAR>)
// {
// uint16_t read_pos = (write_pos - delaytime_cells) & (NUM_BUFFER_SAMPLES - 1);
// int16_t delay_sig = delay_array[read_pos]; // read the delay buffer
//
// return delay_sig;
// }
/** Retrieve the signal in the delay line at the interpolated fractional position delaytime_cells.
It doesn't change the stored internal value of _delaytime_cells or feedback the output to the input.
@param delaytime_cells indicates the delay time in terms of cells in the delay buffer.
*/
inline
int16_t read(Q16n16 delaytime_cells, Int2Type<LINEAR>)
{
uint16_t index = (Q16n16)delaytime_cells >> 16;
uint16_t fraction = (uint16_t) delaytime_cells; // keeps low word
uint16_t read_pos1 = (write_pos - index) & (NUM_BUFFER_SAMPLES - 1);
int16_t delay_sig1 = delay_array[read_pos1]; // read the delay buffer
uint16_t read_pos2 = (write_pos - (index+1)) & (NUM_BUFFER_SAMPLES - 1);
int16_t delay_sig2 = delay_array[read_pos2]; // read the delay buffer
/*
int16_t difference = delay_sig2 - delay_sig1;
int16_t delay_sig_fraction = ((int32_t) fraction * difference) >> 16;
int16_t delay_sig = delay_sig1+delay_sig_fraction;
*/
int16_t delay_sig = delay_sig1 + ((int32_t)delay_sig2*fraction)>>16;
return delay_sig;
}
};
/**
@example 09.Delays/AudioDelayFeedback/AudioDelayFeedback.ino
This is an example of how to use the AudioDelayFeedback class.
*/
#endif // #ifndef AUDIODELAY_FEEDBACK_H_