-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbackend.py
149 lines (113 loc) · 5.16 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import colorsys as cs
import numpy as np
from PIL import Image
from scipy.cluster.vq import kmeans, vq
def rgb_to_hsv(r, g, b):
"""Converts a rgb to a hsv tuple"""
r, g, b = r / 255.0, g / 255.0, b / 255.0
h, s, v = cs.rgb_to_hsv(r, g, b)
return h, s, v
def hsv_to_rgb(h, s, v):
r, g, b = cs.hsv_to_rgb(h, s, v)
return int(round(r * 255)), int(round(g * 255)), int(round(b * 255))
def bit_depth(array, bits=4):
"""Compresses an image's color palette by zeroing out significant bits"""
shift = 8 - bits
half = (1 << shift) >> 1
return ((array.astype(np.uint8) >> shift) << shift) + half
def rgb_packer(array, pack=True):
"""Converts rbg triples to single integers for comparison purposes, pack False unpacks the int"""
if pack:
orig_shape = array.shape[:-1]
array = array.astype(int).reshape((-1, 3))
array = (array[:, 0] << 16 | array[:, 1] << 8 | array[:, 2])
return array.reshape(orig_shape)
else:
orig_shape = array.shape
array = array.reshape((-1, 1))
rgb = ((array >> 16) & 0xff, (array >> 8) & 0xff, array & 0xff)
return np.hstack(rgb).reshape(orig_shape + (3,))
def sample(array, percent=10):
"""Samples the percent of the image specified, returns bg color"""
array = array.reshape((-1, 3))
amount = int(
float(array.shape[0]) * float(percent / 100)) # gets the length of the array, then takes the sample fraction
index = np.arange(array.shape[0]) # same as list(range(...)), but more condense
np.random.shuffle(index)
subset = array[index[:amount]]
return subset
class Notes:
def __init__(self, img_file, bg_rgb=None, v_thresh=30, s_thresh=20, bitdepth=6, colorcount=7, palette=None):
self.image_rgb = np.array(img_file, dtype=np.uint8)
self.image_hsv = self.image_rgb.astype(np.float32)
for x in range(0, self.image_rgb.shape[0]):
for y in range(0, self.image_rgb.shape[1]):
self.image_hsv[x, y] = rgb_to_hsv(*self.image_rgb[x, y])
self.image_rgb = np.array(img_file) # reassigns image_rgb, doesnt work without it
self.image_final = Image
self.bit_depth = bitdepth
self.color_count = colorcount
self.bg_color_rgb = self._get_bg_color(self.image_rgb)
self.bg_color_hsv = rgb_to_hsv(*self.bg_color_rgb)
if bg_rgb is not None:
self.custom_bg = bg_rgb
else:
self.custom_bg = None
self.v_threshold = v_thresh
self.s_threshold = s_thresh
self.color_palette = palette
self.sample_set = []
def _foreground(self, sample_size):
samp = sample_size
_, s_bg, v_bg = self.bg_color_hsv
s_pix = samp[:, 1]
v_pix = samp[:, 2]
s_diff = np.abs(s_bg - s_pix)
v_diff = np.abs(v_bg - v_pix)
return (v_diff >= self.v_threshold / 100) | (s_diff >= self.s_threshold / 100), samp
def _threshold(self):
"""Determines foreground and background colors, and applies color palette"""
foreground, samp = self._foreground(sample(self.image_hsv))
colors, _ = kmeans(samp[foreground].astype(np.float32),
self.color_count - 1, iter=40) # Thank you fancy SciPy clusters
# Convert colors back to rgb
for x in range(colors.shape[0]):
colors[x] = hsv_to_rgb(*colors[x])
self.color_palette = np.vstack((self.bg_color_rgb, colors)).astype(np.uint8)
mask, _ = self._foreground(self.image_hsv.reshape((-1, 3)))
pix = self.image_rgb.reshape((-1, 3))
mask = mask.flatten()
labs = np.zeros(pix.shape[0], dtype=np.uint8)
labs[mask], _ = vq(pix[mask], self.color_palette) # returns codes and distance, only need codes
palette = labs.reshape(self.image_hsv.shape[:-1])
return palette
def _get_bg_color(self, array, percent=None):
if percent is not None:
subset = sample(array, percent)
else:
subset = sample(array)
packed = rgb_packer(bit_depth(subset, self.bit_depth).astype(np.uint8))
unique, counts = np.unique(packed, return_counts=True)
return rgb_packer(unique[counts.argmax()], pack=False)
def process(self):
temp_image = self._threshold()
pal = self.color_palette.astype(np.float32)
# saturate palette, didn't work so depreciating
for x in range(1, pal.shape[0]):
pal[x] = rgb_to_hsv(*pal[x])
hue, sat, val = pal[x]
pal[x] = hue, 1, val
pal[x] = hsv_to_rgb(*pal[x])
# pal = 255 * (pal - pal.min()/(pal.max()-pal.min()))
self.color_palette = pal.astype(np.uint8)
if self.custom_bg is not None:
self.color_palette[0] = self.custom_bg
self.image_final = Image.fromarray(temp_image, 'P')
self.image_final.putpalette(self.color_palette.flatten())
return self.image_final
'''
f = Notes(np.array(Image.open("C:\\Users\\dalyn\\Documents\\Scanned Documents\\Image.jpg")), bitdepth=6, v_thresh=25,
s_thresh=15,
colorcount=8, bg_rgb=(254, 254, 254))
f.process().save("C:\\Users\\dalyn\\Documents\\testfile.png")
'''