-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
301 lines (250 loc) · 12.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
"""yieldpredictionrandomforest.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1-bKSlitmr01NPLLG_ZrTBoZ-3hCHjwM6
"""
import gradio as gr
from PIL import Image
import pandas as pd
import numpy as np
import requests
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Load the dataset
crop_data = pd.read_csv('combined_data.csv')
# Convert district names to title case
crop_data['District'] = crop_data['District'].str.title()
# Function to fetch humidity and temperature from a weather API
def get_weather_data(district):
api_key = 'api_key'
base_url = 'http://api.openweathermap.org/data/2.5/weather?'
# Build API request URL
complete_url = base_url + 'q=' + district + '&appid=' + api_key
# Send GET request to the API
response = requests.get(complete_url)
# Parse response data
if response.status_code == 200:
data = response.json()
# Extract humidity and temperature
humidity = data['main']['humidity']
temperature = data['main']['temp'] - 273.15 # Convert from Kelvin to Celsius
return humidity, temperature
else:
print("Failed to fetch weather data. Please try again later.")
return None, None
# Function to calculate average rainfall for a given state
def calculate_average_rainfall(state):
# Define ranges for average rainfall for each state (in cm)
state_rainfall_ranges = {
'Rajasthan': (5, 20),
'Manipur': (100, 300),
'Madhya Pradesh': (70, 150),
'Puducherry': (80, 200),
'Bihar': (80, 180),
'Andhra Pradesh': (80, 150),
'Chhattisgarh': (100, 200),
'Uttar Pradesh': (70, 150),
'Andaman and Nicobar Islands': (150, 300),
'Telangana': (70, 150),
'Karnataka': (70, 150),
'Gujarat': (40, 100),
'Dadra and Nagar Haveli': (100, 200),
'Meghalaya': (200, 400),
'Tamil Nadu': (70, 150),
'Maharashtra': (70, 150),
'Kerala': (200, 400),
'Assam': (200, 400),
'Goa': (200, 400),
'Mizoram': (200, 400),
'West Bengal': (200, 400),
'Jammu and Kashmir': (30, 80),
'Himachal Pradesh': (50, 120),
'Haryana': (40, 100),
'Odisha': (100, 200),
'Delhi': (30, 80),
'Nagaland': (200, 400),
'Tripura': (200, 400),
'Punjab': (30, 80),
'Uttarakhand': (100, 200),
'Arunachal Pradesh': (200, 400),
'Jharkhand': (100, 200),
'Chandigarh': (30, 80),
'Sikkim': (200, 400),
'Daman and Diu': (100, 200)
}
# Get the range for the given state
rainfall_range = state_rainfall_ranges.get(state)
if rainfall_range:
# Calculate average rainfall within the range for the state
average_rainfall = np.random.uniform(rainfall_range[0], rainfall_range[1])
return average_rainfall
else:
print(f"Average rainfall data not available for {state}.")
return None
def recommend_top_n_crops(state, district, soil_type, season, area, n=3):
# Fetch average rainfall for the given state
avg_rainfall = calculate_average_rainfall(state)
if avg_rainfall is not None:
# Fetch humidity and temperature for the given district
humidity, temperature = get_weather_data(district)
if humidity is not None and temperature is not None:
# Define ranges for N, P, and K based on soil type
soil_type_ranges = {
'Alluvial': {'N': (0.1, 0.9), 'P': (0.01, 0.05), 'K': (0.1, 0.8)},
'Red': {'N': (0.1, 0.3), 'P': (0.02, 0.06), 'K': (0.2, 0.3)},
'Loam': {'N': (0.1, 0.5), 'P': (0.01, 0.04), 'K': (0.1, 0.5)},
'Black': {'N': (0.1, 0.3), 'P': (0.02, 0.03), 'K': (0.1, 0.3)}
}
# Select random values for N, P, and K based on soil type
np.random.seed(42) # for reproducibility
random_n_range = soil_type_ranges[soil_type]['N']
random_p_range = soil_type_ranges[soil_type]['P']
random_k_range = soil_type_ranges[soil_type]['K']
random_n = np.random.uniform(random_n_range[0], random_n_range[1])
random_p = np.random.uniform(random_p_range[0], random_p_range[1])
random_k = np.random.uniform(random_k_range[0], random_k_range[1])
# Map input strings to their encoded values
state_encoded = state_encodings[state]
district_encoded = district_encodings[district]
soil_type_encoded = soil_type_encodings[soil_type]
season_encoded = season_type_encodings[season]
# Prepare input features for classification
input_features_classification = np.array([[state_encoded, district_encoded, soil_type_encoded, avg_rainfall, temperature, humidity, random_n, random_p, random_k, season_encoded, 0, 0, area]])
# Make prediction using the trained classification model
predicted_probs = model.predict_proba(input_features_classification)[0]
# Sort predicted probabilities and get top N indices
top_n_indices = np.argsort(predicted_probs)[::-1][:n]
# Get top N crop recommendations
top_n_crops = [crop_encodings_inverse[idx] for idx in top_n_indices]
crop_yield_predictions = {}
# Predict yield for the top N crops using the regression model
predicted_yields = []
for crop in top_n_crops:
print(crop)
crop_encoded = crop_encodings[crop]
# Prepare input features for regression
input_features_regression = np.array([[state_encoded, district_encoded, soil_type_encoded, crop_encoded, avg_rainfall, temperature, humidity, random_n, random_p, random_k, season_encoded, 0, area]])
# Predict yield
predicted_yield = regressor.predict(input_features_regression)[0]
predicted_yields.append(predicted_yield)
# Print top N recommended crops with their predicted yields
for i in range(n):
print(f'{top_n_crops[i]}: Expected Yield - {predicted_yields[i]}')
return top_n_crops[0],predicted_yields[0],top_n_crops[1],predicted_yields[1],top_n_crops[2],predicted_yields[2]
else:
print("Failed to fetch weather data. Please try again later.")
return None
else:
print("Failed to fetch average rainfall data. Please try again later.")
return None
label_encoder = LabelEncoder()
crop_data['State_Encoded'] = label_encoder.fit_transform(crop_data['State'])
crop_data['District_Encoded'] = label_encoder.fit_transform(crop_data['District'])
crop_data['Soil_Type_Encoded'] = label_encoder.fit_transform(crop_data['Soil Type'])
crop_data['Crop_Type_Encoded'] = label_encoder.fit_transform(crop_data['Crop'])
crop_data['Season_Encoded'] = label_encoder.fit_transform(crop_data['Season'])
# Create dictionaries to map original names to encoded labels
state_encodings = dict(zip(crop_data['State'], crop_data['State_Encoded']))
district_encodings = dict(zip(crop_data['District'], crop_data['District_Encoded']))
soil_type_encodings = dict(zip(crop_data['Soil Type'], crop_data['Soil_Type_Encoded']))
season_type_encodings = dict(zip(crop_data['Season'], crop_data['Season_Encoded']))
crop_encodings = dict(zip(crop_data['Crop'], crop_data['Crop_Type_Encoded']))
crop_encodings_inverse = dict(zip(crop_data['Crop_Type_Encoded'], crop_data['Crop']))
# Split data into features and target
X = crop_data[['State_Encoded', 'District_Encoded', 'Soil_Type_Encoded', 'Rainfall (cm)', 'Temperature (°C)', 'Humidity (%)', 'N', 'P', 'K', 'Season_Encoded', 'Production', 'Yield', 'Area']]
y = crop_data['Crop_Type_Encoded']
# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train Random Forest model with fine-tuned hyperparameters
model = RandomForestClassifier(max_depth=30, min_samples_split=5, n_estimators=200, random_state=42)
model.fit(X_train, y_train)
# Test the model
test_accuracy = model.score(X_test, y_test)
print("Test Accuracy:", test_accuracy)
# Evaluate the model with additional measures
y_pred = model.predict(X_test)
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)
print(classification_report(y_test, y_pred))
# Split data into features and target
a = crop_data[['State_Encoded', 'District_Encoded', 'Soil_Type_Encoded', 'Crop_Type_Encoded', 'Rainfall (cm)', 'Temperature (°C)', 'Humidity (%)', 'N', 'P', 'K', 'Season_Encoded', 'Production', 'Area']]
b = crop_data['Yield'] # Use 'Yield' as the target for regression
# Split data into train and test sets
a_train, a_test, b_train, b_test = train_test_split(a, b, test_size=0.2, random_state=42)
# Train Random Forest regressor with fine-tuned hyperparameters
regressor = RandomForestRegressor(max_depth=30, n_estimators=300, random_state=42)
regressor.fit(a_train, b_train)
# Test the regressor
test_score = regressor.score(a_test, b_test)
print("Test Score (R-squared):", test_score)
# Predict yield for the testing data
b_pred = regressor.predict(a_test)
# Evaluate the model
mse = mean_squared_error(b_test, b_pred)
print("Mean Squared Error:", mse)
# Example usage:
# state = 'Rajasthan'
# district = 'Kota'
# soil_type = 'Alluvial'
# season = 'Whole Year'
# Area=1
soilclassification = load_model('SoilModel.h5')
def preprocess_image(image):
# Convert Gradio Image object to numpy array
image_array = np.array(image)
# Resize the image to the required shape (256x256)
resized_image = np.array(Image.fromarray(image_array).resize((256, 256)))
# Normalize the image pixel values to be in the range [0, 1]
normalized_image = resized_image / 255.0
# Add batch dimension to the image (model expects input shape of (None, 256, 256, 3))
input_image = normalized_image[np.newaxis, ...]
return input_image
def finalfunc(soil_image, state_input, district_input, season_input, area_input):
preprocessed_image = preprocess_image(soil_image)
prediction = soilclassification.predict(preprocessed_image)
# Extracting the predicted soil type from the prediction result
predicted_soil_type = prediction.argmax(axis=1)[0]
finalsoiltype=""
if predicted_soil_type==0:
finalsoiltype="Alluvial"
elif predicted_soil_type==1:
finalsoiltype="Black"
elif predicted_soil_type==2:
finalsoiltype="Loam"
elif predicted_soil_type==3:
finalsoiltype= "Red"
return recommend_top_n_crops(state_input, district_input, finalsoiltype, season_input, area_input, n=3)
# top_3_crops = recommend_top_n_crops(state, district, soil_type, season,Area, n=3)
# print('Top 3 Recommended Crops:', top_3_crops)
# Input components
image_input = gr.Image(label="Image of Soil")
district_input = gr.Textbox(label="District")
state_input = gr.Textbox(label="State")
season_input = gr.Textbox(label="Season")
area_input = gr.Textbox(label="Area")
# # Output components
crop1_name = gr.Textbox(label="Crop 1 Name")
crop1_yield = gr.Textbox(label="Crop 1 Yield Percentage")
crop2_name = gr.Textbox(label="Crop 2 Name")
crop2_yield = gr.Textbox(label="Crop 2 Yield Percentage")
crop3_name = gr.Textbox(label="Crop 3 Name")
crop3_yield = gr.Textbox(label="Crop 3 Yield Percentage")
# Create Gradio interface
gr.Interface(
fn=finalfunc,
outputs=[crop1_name,crop1_yield,crop2_name,crop2_yield,crop3_name,crop3_yield],
inputs=[image_input,state_input,district_input ,season_input,area_input],
title="Crop Yield Prediction",
description="Predict crop yields based on an image of soil, district, state, and crop information."
).launch(share=True)