-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmodel.py
541 lines (466 loc) · 24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import sys
sys.path.insert(0, 'carb')
import os
import ipdb
import random
import numpy as np
import pickle
import copy
from typing import Dict
from collections import OrderedDict
import logging
from tqdm import tqdm
import regex as re
import torch
import torch.nn.functional as F
from torchtext import data
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import LSTM, CrossEntropyLoss
from torch.optim import Adam
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
from transformers import AdamW, AutoModel
from oie_readers.extraction import Extraction
import data
import metric
from metric import Conjunction, Carb
import threading
from threading import Thread
sem = threading.Semaphore()
# prevents printing of model weights, etc
logging.getLogger('transformers.configuration_utils').setLevel(logging.ERROR)
logging.getLogger('transformers.modeling_utils').setLevel(logging.ERROR)
logging.getLogger().setLevel(logging.ERROR)
def set_seed(seed):
# Be warned that even with all these seeds, complete reproducibility cannot be guaranteed
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
return
class Model(pl.LightningModule):
def __init__(self, hparams, meta_data_vocab=None):
super(Model, self).__init__()
self.hparams = hparams
self._base_model = AutoModel.from_pretrained(
hparams.model_str, cache_dir='data/pretrained_cache')
self._hidden_size = self._base_model.config.hidden_size
if hparams.iterative_layers != 0:
self._iterative_transformer = self._base_model.encoder.layer[-hparams.iterative_layers:]
self._base_model.encoder.layer = self._base_model.encoder.layer[:-
hparams.iterative_layers]
else:
self._iterative_transformer = []
self._num_labels = 6
self._dropout = nn.Dropout(p=self.hparams.dropout)
self._label_embeddings = nn.Embedding(100, self._hidden_size)
self._labelling_dim = self.hparams.labelling_dim
self._labelling_layer = nn.Linear(self._labelling_dim, self._num_labels)
self._merge_layer = nn.Linear(self._hidden_size, self._labelling_dim)
self._loss = nn.CrossEntropyLoss()
self._metric = Carb(hparams) if hparams.task == 'oie' else Conjunction()
self._max_depth = 5 if hparams.task == 'oie' else 3
self._meta_data_vocab = meta_data_vocab
self._constD = dict()
self.all_predictions_conj = []
self.all_sentence_indices_conj = []
self.all_conjunct_words_conj = []
self.all_predictions_oie = []
def configure_optimizers(self):
all_params = list(self.named_parameters())
bert_params = []
other_params = []
no_decay = ["bias", "gamma", "beta"]
params = [{"params": [p for n, p in all_params if not any(nd in n for nd in no_decay) and 'base_model' in n],
"weight_decay_rate": 0.01, 'lr': self.hparams.lr},
{"params": [p for n, p in all_params if any(nd in n for nd in no_decay) and 'base_model' in n],
"weight_decay_rate": 0.0, 'lr': self.hparams.lr},
{"params": [p for n, p in all_params if 'base_model' not in n], 'lr': self.hparams.lr}]
if self.hparams.optimizer == 'adamW':
optimizer = AdamW(params, lr=1e-3)
elif self.hparams.optimizer == 'adam':
optimizer = Adam(params, lr=1e-3)
if self.hparams.multi_opt and self.hparams.constraints != None:
num_optimizers = len(self.hparams.constraints.split('_'))
return [optimizer]*num_optimizers
else:
return [optimizer]
def forward(self, batch, mode='train', batch_idx=-1, constraints=None, cweights=None):
if self.hparams.wreg != 0 and not hasattr(self, '_initial_parameters'):
self._initial_parameters = copy.deepcopy(
dict(self.named_parameters()))
batch_size, depth, labels_length = batch.labels.shape
if mode != 'train':
depth = self._max_depth
loss, lstm_loss = 0, 0
hidden_states, _ = self._base_model(batch.text)
output_dict = dict()
# (batch_size, seq_length, max_depth, num_labels)
all_depth_scores = []
d = 0
while True:
for layer in self._iterative_transformer:
hidden_states = layer(hidden_states)[0]
hidden_states = self._dropout(hidden_states)
word_hidden_states = torch.gather(hidden_states, 1, batch.word_starts.unsqueeze(2).repeat(1, 1, hidden_states.shape[2]))
if d != 0:
greedy_labels = torch.argmax(word_scores, dim=-1)
label_embeddings = self._label_embeddings(greedy_labels)
word_hidden_states = word_hidden_states + label_embeddings
word_hidden_states = self._merge_layer(word_hidden_states)
word_scores = self._labelling_layer(word_hidden_states)
all_depth_scores.append(word_scores)
d += 1
if d >= depth:
break
if self.hparams.mode != 'train':
predictions = torch.max(word_scores, dim=2)[1]
valid_ext = False
for p in predictions:
if 1 in p and 2 in p:
valid_ext = True
break
if not valid_ext:
break
# (batch_size, seq_length, max_depth)
all_depth_predictions, all_depth_confidences = [], []
batch_size, num_words, _ = word_scores.shape
batch.labels = batch.labels.long()
for d, word_scores in enumerate(all_depth_scores):
if mode == 'train':
batch_labels_d = batch.labels[:, d, :]
mask = torch.ones(batch.word_starts.shape).int().type_as(hidden_states)
loss += self._loss(word_scores.reshape(batch_size*num_words, -1), batch.labels[:, d, :].reshape(-1))
else:
word_log_probs = torch.log_softmax(word_scores, dim=2)
max_log_probs, predictions = torch.max(word_log_probs, dim=2)
padding_labels = (batch.labels[:,0,:]!=-100).float()
sro_label_predictions = (predictions!=0).float() * padding_labels
log_probs_norm_ext_len = (max_log_probs * sro_label_predictions) / (sro_label_predictions.sum(dim=0)+1)
confidences = torch.exp(torch.sum(log_probs_norm_ext_len, dim=1))
all_depth_predictions.append(predictions.unsqueeze(1))
all_depth_confidences.append(confidences.unsqueeze(1))
if mode == 'train':
if constraints != '':
all_depth_scores = torch.cat([d.unsqueeze(1) for d in all_depth_scores], dim=1)
all_depth_scores = torch.softmax(all_depth_scores, dim=-1)
const_loss = self.constrained_loss(all_depth_scores, batch, constraints, cweights) / batch_size
loss = const_loss
if self.hparams.wreg != 0:
weight_diff = 0
current_parameters = dict(self.named_parameters())
for name in self._initial_parameters:
weight_diff += torch.norm(
current_parameters[name]-self._initial_parameters[name])
loss = loss + self.hparams.wreg*weight_diff
else:
all_depth_predictions = torch.cat(all_depth_predictions, dim=1)
all_depth_confidences = torch.cat(all_depth_confidences, dim=1)
output_dict['predictions'] = all_depth_predictions
output_dict['scores'] = all_depth_confidences
if constraints != '' and 'predict' not in self.hparams.mode and self.hparams.batch_size != 1:
all_depth_scores = torch.cat([d.unsqueeze(1) for d in all_depth_scores], dim=1)
all_depth_scores.fill_(0)
# labels = copy.copy(batch.labels) # for checking test set
# labels[labels == -100] = 0
labels = copy.copy(all_depth_predictions)
labels = labels.unsqueeze(-1)
labels_depth = labels.shape[1]
all_depth_scores = all_depth_scores[:, :labels_depth, :, :]
all_depth_scores.scatter_(3, labels.long(), 1)
constraints, cweights = 'posm_hvc_hvr_hve', '1_1_1_1'
constraints_list, cweights_list = constraints.split(
'_'), cweights.split('_')
if len(constraints_list) != len(cweights_list):
cweights_list = [cweights]*len(constraints_list)
for constraint, weight in zip(constraints_list, cweights_list):
const_loss = self.constrained_loss(all_depth_scores, batch, constraint, float(weight))
if constraint not in self._constD:
self._constD[constraint] = []
self._constD[constraint].append(const_loss)
output_dict['loss'] = loss
return output_dict
def constrained_loss(self, all_depth_scores, batch, constraints, cweights):
batch_size, depth, num_words, labels = all_depth_scores.shape
hinge_loss = 0
verb_scores = torch.gather(all_depth_scores, 2, batch.verb_index.unsqueeze(1).unsqueeze(3).repeat(1, depth, 1, labels))
verb_rel_scores = verb_scores[:, :, :, 2]
# (batch_size, depth, num_words)
verb_rel_scores = verb_rel_scores * (batch.verb_index != 0).unsqueeze(1).float()
# every head-verb must be included in a relation
if 'hvc' in constraints:
column_loss = torch.abs(1-torch.sum(verb_rel_scores, dim=1))
column_loss = column_loss[batch.verb_index != 0]
hinge_loss += cweights*column_loss.sum()
# extractions must have atleast k-relations with a head verb in them
if 'hvr' in constraints:
row_rel_loss = F.relu(batch.verb.sum(dim=1).float() - torch.max(verb_rel_scores, dim=2)[0].sum(dim=1))
hinge_loss += cweights*row_rel_loss.sum()
# one relation cannot contain more than one head verb
if 'hve' in constraints:
ex_loss = F.relu(torch.sum(verb_rel_scores, dim=2)-1)
hinge_loss += cweights*ex_loss.sum()
if 'posm' in constraints:
pos_scores = torch.gather(all_depth_scores, 2, batch.pos_index.unsqueeze(1).unsqueeze(3).repeat(1, depth, 1, labels))
pos_nnone_scores = torch.max(pos_scores[:, :, :, 1:], dim=-1)[0]
column_loss = (1-torch.max(pos_nnone_scores, dim=1)[0]) * (batch.pos_index != 0).float()
hinge_loss += cweights*column_loss.sum()
return hinge_loss
def get_progress_bar_dict(self):
running_train_loss = self.trainer.running_loss.mean()
avg_training_loss = running_train_loss.cpu().item() if running_train_loss is not None else float('NaN')
if type(self.trainer.checkpoint_callback.kth_value) != type(0.0):
best = self.trainer.checkpoint_callback.kth_value.item()
else:
best = self.trainer.checkpoint_callback.kth_value
tqdm = {'loss': '{:.3f}'.format(avg_training_loss), 'best': best}
return tqdm
def training_step(self, batch, batch_idx, optimizer_idx=-1):
batch = data.dotdict(batch)
if self.hparams.multi_opt:
constraints = self.hparams.constraints.split('_')[optimizer_idx]
cweights = float(self.hparams.cweights.split('_')[optimizer_idx])
else:
constraints = self.hparams.constraints
cweights = float(self.hparams.cweights)
output_dict = self.forward(batch, mode='train', batch_idx=batch_idx, constraints=constraints, cweights=cweights)
tqdm_dict = {"train_loss": output_dict['loss']}
output = OrderedDict({"loss": output_dict['loss'], "log": tqdm_dict})
return output
def validation_step(self, batch, batch_idx):
batch = data.dotdict(batch)
output_dict = self.forward(batch, mode='val', constraints=self.hparams.constraints, cweights=self.hparams.cweights)
outputD = {"predictions": output_dict['predictions'], "scores": output_dict['scores'],
"ground_truth": batch.labels, "meta_data": batch.meta_data}
output = OrderedDict(outputD)
if self.hparams.mode!='test':
if self.hparams.write_async:
t = Thread(target=self.write_to_file, args=(output, batch_idx, self.hparams.task))
t.start()
else:
self.write_to_file(output, batch_idx, self.hparams.task)
return output
def evaluation_end(self, outputs, mode):
result = None
if self.hparams.mode == 'test':
for output_index, output in enumerate(outputs):
output['predictions'] = output['predictions'].cpu()
output['scores'] = output['scores'].cpu()
output['scores'] = (output['scores'] * 100).round() / 100
output['ground_truth'] = output['ground_truth'].cpu()
output['meta_data'] = output['meta_data'].cpu()
if self.hparams.task == 'conj':
if 'predict' in self.hparams.mode:
metrics = {'P_exact': 0, 'R_exact': 0, 'F1_exact': 0}
else:
for output in outputs:
if type(output['meta_data'][0]) != type(""):
output['meta_data'] = [self._meta_data_vocab.itos[m] for m in output['meta_data']]
self._metric(output['predictions'], output['ground_truth'], meta_data=output['meta_data'])
metrics = self._metric.get_metric(reset=True, mode=mode)
val_acc, val_auc = metrics['F1_exact'], 0
result = {"eval_f1": val_acc, "eval_p": metrics['P_exact'], "eval_r": metrics['R_exact']}
elif self.hparams.task == 'oie':
if 'predict' in self.hparams.mode:
metrics = {'carb_f1': 0, 'carb_auc': 0, 'carb_lastf1': 0}
else:
for output in outputs:
if type(output['meta_data'][0]) != type(""):
output['meta_data'] = [self._meta_data_vocab.itos[m] for m in output['meta_data']]
self._metric(output['predictions'], output['meta_data'], output['scores'])
metrics = self._metric.get_metric(reset=True, mode=mode)
result = {"eval_f1": metrics['carb_f1'], "eval_auc": metrics['carb_auc'], "eval_lastf1": metrics['carb_lastf1']}
print('\nResults: '+str(result))
# For computing the constraint violations
# if hasattr(self, '_constD') and self.hparams.constraints != '':
# for key in self._constD:
# self._constD[key] = sum(self._constD[key]).item()
# print('\nViolations: ', self._constD)
# self._constD = dict()
return result
def validation_epoch_end(self, outputs):
eval_results = self.evaluation_end(outputs, 'dev')
result = {}
if eval_results != None:
result = {"log": eval_results, "eval_acc": eval_results['eval_f1']}
return result
def test_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx)
def test_epoch_end(self, outputs):
eval_results = self.evaluation_end(outputs, 'test')
self.outputs = outputs
result = {"log": eval_results, "progress_bar": eval_results,
"test_acc": eval_results['eval_f1']}
self.results = eval_results
if self.hparams.write_async:
while not sem.acquire(blocking=True):
pass
sem.release()
return result
# obligatory definitions - pass actual through fit
def train_dataloader(self):
return None
def val_dataloader(self):
return None
def write_to_file(self, output, batch_idx,task):
if self.hparams.write_async:
while not sem.acquire(blocking=True):
# print("No Semaphore available")
pass
# print('Got semaphore')
output['predictions'] = output['predictions'].cpu()
output['scores'] = output['scores'].cpu()
output['ground_truth'] = output['ground_truth'].cpu()
output['meta_data'] = output['meta_data'].cpu()
def process_extraction(extraction, sentence, score):
# rel, arg1, arg2, loc, time = [], [], [], [], []
rel, arg1, arg2, loc_time, args = [], [], [], [], []
tag_mode = 'none'
rel_case = 0
for i, token in enumerate(sentence):
if '[unused' in token:
if extraction[i].item() == 2:
rel_case = int(re.search('\[unused(.*)\]', token).group(1))
continue
if extraction[i] == 1:
arg1.append(token)
if extraction[i] == 2:
rel.append(token)
if extraction[i] == 3:
arg2.append(token)
if extraction[i] == 4:
loc_time.append(token)
rel = ' '.join(rel).strip()
if rel_case == 1:
rel = 'is '+rel
elif rel_case == 2:
rel = 'is '+rel+' of'
elif rel_case == 3:
rel = 'is '+rel+' from'
arg1 = ' '.join(arg1).strip()
arg2 = ' '.join(arg2).strip()
args = ' '.join(args).strip()
loc_time = ' '.join(loc_time).strip()
if not self.hparams.no_lt:
arg2 = (arg2+' '+loc_time+' '+args).strip()
sentence_str = ' '.join(sentence).strip()
extraction = Extraction(pred=rel, head_pred_index=None, sent=sentence_str, confidence=score, index=0)
extraction.addArg(arg1)
extraction.addArg(arg2)
return extraction
def contains_extraction(extr, list_extr):
str = ' '.join(extr.args) + ' ' + extr.pred
for extraction in list_extr:
if str == ' '.join(extraction.args) + ' ' + extraction.pred:
return True
return False
output['meta_data'] = [self._meta_data_vocab.itos[m] for m in output['meta_data']]
if task == 'oie':
predictions = output['predictions']
sentences = output['meta_data']
scores = output['scores']
num_sentences, extractions, max_sentence_len = predictions.shape
assert num_sentences == len(sentences)
all_predictions = {}
for i, sentence_str in enumerate(sentences):
words = sentence_str.split() + \
['[unused1]', '[unused2]', '[unused3]']
orig_sentence = sentence_str.split('[unused1]')[0].strip()
if self._metric.mapping:
if self._metric.mapping[orig_sentence] not in all_predictions:
all_predictions[self._metric.mapping[orig_sentence]] = []
else:
if orig_sentence not in all_predictions:
all_predictions[orig_sentence] = []
for j in range(extractions):
extraction = predictions[i][j][:len(words)]
if sum(extraction) == 0: # extractions completed
break
pro_extraction = process_extraction(
extraction, words, scores[i][j].item())
if pro_extraction.args[0] != '' and pro_extraction.pred != '':
if self._metric.mapping:
if not contains_extraction(pro_extraction, all_predictions[self._metric.mapping[orig_sentence]]):
all_predictions[self._metric.mapping[orig_sentence]].append(
pro_extraction)
else:
if not contains_extraction(pro_extraction, all_predictions[orig_sentence]):
all_predictions[orig_sentence].append(pro_extraction)
all_pred = []
all_pred_allennlp = []
for example_id, sentence in enumerate(all_predictions):
predicted_extractions = all_predictions[sentence]
# if 'predict' in self.hparams.mode: # write only the results in text file
sentence_str = f'{sentence}\n'
for extraction in predicted_extractions:
if self.hparams.type == 'sentences':
ext_str = data.ext_to_sentence(extraction) + '\n'
else:
ext_str = data.ext_to_string(extraction) + '\n'
sentence_str += ext_str
all_pred.append(sentence_str)
sentence_str_allennlp = ''
for extraction in predicted_extractions:
args1 = ' '.join(extraction.args[1:])
ext_str = f'{sentence}\t<arg1> {extraction.args[0]} </arg1> <rel> {extraction.pred} </rel> <arg2> {args1} </arg2>\t{extraction.confidence}\n'
sentence_str_allennlp += ext_str
sentence_str_allennlp.strip('\n')
all_pred_allennlp.append(sentence_str_allennlp)
self.all_predictions_oie.extend(all_pred)
if task =='conj':
example_id, correct = 0, True
total1, total2 = 0, 0
predictions = output['predictions']
gt = output['ground_truth']
meta_data = output['meta_data']
total_depth = predictions.shape[1]
all_pred = []
all_conjunct_words = []
all_sentence_indices = []
for idx in range(len(meta_data)):
example_id += 1
sentence = meta_data[idx]
words = sentence.split()
sentence_predictions, sentence_gt = [], []
for depth in range(total_depth):
depth_predictions = predictions[idx][depth][:len(
words)].tolist()
sentence_predictions.append(depth_predictions)
pred_coords = metric.get_coords(sentence_predictions)
words = sentence.split()
sentence_str = sentence+'\n'
split_sentences, conj_words, sentences_indices = data.coords_to_sentences(
pred_coords, words)
all_sentence_indices.append(sentences_indices)
all_conjunct_words.append(conj_words)
total1 += len(split_sentences)
total2 += 1 if len(split_sentences) > 0 else 0
sentence_str += '\n'.join(split_sentences)+'\n'
all_pred.append(sentence_str)
self.all_conjunct_words_conj.extend(all_conjunct_words)
self.all_predictions_conj.extend(all_pred)
self.all_sentence_indices_conj.extend(all_sentence_indices)
if self.hparams.out != None:
directory = os.path.dirname(self.hparams.out)
if directory != '' and not os.path.exists(directory):
os.makedirs(directory)
out_fp = f'{self.hparams.out}.{self.hparams.task}'
# print('Predictions written to ', out_fp)
if batch_idx == 0:
predictions_f = open(out_fp,'w')
else:
predictions_f = open(out_fp,'a')
predictions_f.write('\n'.join(all_pred)+'\n')
predictions_f.close()
if task == 'oie' and self.hparams.write_allennlp:
if batch_idx == 0:
predictions_f_allennlp = open(f'{self.hparams.out}.allennlp', 'w')
self.predictions_f_allennlp = predictions_f_allennlp.name
else:
predictions_f_allennlp = open(f'{self.hparams.out}.allennlp', 'a')
predictions_f_allennlp.write(''.join(all_pred_allennlp))
predictions_f_allennlp.close()
if self.hparams.write_async:
sem.release()