-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriplet_mask.py
52 lines (41 loc) · 1.83 KB
/
triplet_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
from typing import List
from config import args
from dict_hub import get_train_triplet_dict, get_entity_dict, EntityDict, TripletDict
entity_dict: EntityDict = get_entity_dict()
train_triplet_dict: TripletDict = get_train_triplet_dict() if not args.is_test else None
def construct_mask(row_exs: List, col_exs: List = None) -> torch.tensor:
positive_on_diagonal = col_exs is None
num_row = len(row_exs)
col_exs = row_exs if col_exs is None else col_exs
num_col = len(col_exs)
# exact match
row_entity_ids = torch.LongTensor([entity_dict.entity_to_idx(ex.tail_id) for ex in row_exs])
col_entity_ids = row_entity_ids if positive_on_diagonal else \
torch.LongTensor([entity_dict.entity_to_idx(ex.tail_id) for ex in col_exs])
# num_row x num_col
triplet_mask = (row_entity_ids.unsqueeze(1) != col_entity_ids.unsqueeze(0))
if positive_on_diagonal:
triplet_mask.fill_diagonal_(True)
# mask out other possible neighbors
for i in range(num_row):
head_id, relation = row_exs[i].head_id, row_exs[i].relation
neighbor_ids = train_triplet_dict.get_neighbors(head_id, relation)
# exact match is enough, no further check needed
if len(neighbor_ids) <= 1:
continue
for j in range(num_col):
if i == j and positive_on_diagonal:
continue
tail_id = col_exs[j].tail_id
if tail_id in neighbor_ids:
triplet_mask[i][j] = False
return triplet_mask
def construct_self_negative_mask(exs: List) -> torch.tensor:
mask = torch.ones(len(exs))
for idx, ex in enumerate(exs):
head_id, relation = ex.head_id, ex.relation
neighbor_ids = train_triplet_dict.get_neighbors(head_id, relation)
if head_id in neighbor_ids:
mask[idx] = 0
return mask.bool()