-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pro.py
280 lines (219 loc) · 10.3 KB
/
test_pro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from BERT_CRF import BertCrf
from NER_main import NerProcessor, CRF_LABELS
from SIM_main import SimProcessor,SimInputFeatures
from transformers import BertTokenizer, BertConfig, BertForSequenceClassification
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
import torch
import pymysql
from tqdm import tqdm, trange
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_ner_model(config_file,pre_train_model,label_num = 2):
model = BertCrf(config_name=config_file,num_tags=label_num, batch_first=True)
model.load_state_dict(torch.load(pre_train_model))
return model.to(device)
def get_sim_model(config_file,pre_train_model,label_num = 2):
bert_config = BertConfig.from_pretrained(config_file)
bert_config.num_labels = label_num
model = BertForSequenceClassification(bert_config)
model.load_state_dict(torch.load(pre_train_model))
return model
def get_entity(model,tokenizer,sentence,max_len = 64):
pad_token = 0
sentence_list = list(sentence.strip().replace(' ',''))
text = " ".join(sentence_list)
inputs = tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=max_len,
truncate_first_sequence=True # We're truncating the first sequence in priority if True
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
attention_mask = [1] * len(input_ids)
padding_length = max_len - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0] * padding_length)
token_type_ids = token_type_ids + ([0] * padding_length)
labels_ids = None
assert len(input_ids) == max_len, "Error with input length {} vs {}".format(len(input_ids), max_len)
assert len(attention_mask) == max_len, "Error with input length {} vs {}".format(len(attention_mask), max_len)
assert len(token_type_ids) == max_len, "Error with input length {} vs {}".format(len(token_type_ids), max_len)
input_ids = torch.tensor(input_ids).reshape(1,-1).to(device)
attention_mask = torch.tensor(attention_mask).reshape(1,-1).to(device)
token_type_ids = torch.tensor(token_type_ids).reshape(1,-1).to(device)
labels_ids = labels_ids
model = model.to(device)
model.eval()
# 由于传入的tag为None,所以返回的loss 也是None
ret = model(input_ids = input_ids,
tags = labels_ids,
attention_mask = attention_mask,
token_type_ids = token_type_ids)
pre_tag = ret[1][0]
assert len(pre_tag) == len(sentence_list) or len(pre_tag) == max_len - 2
pre_tag_len = len(pre_tag)
b_loc_idx = CRF_LABELS.index('B-LOC')
i_loc_idx = CRF_LABELS.index('I-LOC')
o_idx = CRF_LABELS.index('O')
if b_loc_idx not in pre_tag and i_loc_idx not in pre_tag:
print("没有在句子[{}]中发现实体".format(sentence))
return ''
if b_loc_idx in pre_tag:
entity_start_idx = pre_tag.index(b_loc_idx)
else:
entity_start_idx = pre_tag.index(i_loc_idx)
entity_list = []
entity_list.append(sentence_list[entity_start_idx])
for i in range(entity_start_idx+1,pre_tag_len):
if pre_tag[i] == i_loc_idx:
entity_list.append(sentence_list[i])
else:
break
return "".join(entity_list)
def semantic_matching(model,tokenizer,question,attribute_list,answer_list,max_length):
assert len(attribute_list) == len(answer_list)
pad_token = 0
pad_token_segment_id = 1
features = []
for (ex_index, attribute) in enumerate(attribute_list):
inputs = tokenizer.encode_plus(
text = question,
text_pair = attribute,
add_special_tokens = True,
max_length = max_length,
truncate_first_sequence = True
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
attention_mask = [1] * len(input_ids)
padding_length = max_length - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask),
max_length)
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids),
max_length)
features.append(
SimInputFeatures(input_ids = input_ids,attention_mask = attention_mask,token_type_ids = token_type_ids)
)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
assert all_input_ids.shape == all_attention_mask.shape
assert all_attention_mask.shape == all_token_type_ids.shape
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids)
sampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset, sampler=sampler,batch_size=128)
data_num = all_attention_mask.shape[0]
batch_size = 128
all_logits = None
for i in range(0,data_num,batch_size):
model.eval()
with torch.no_grad():
inputs = {'input_ids': all_input_ids[i:i+batch_size].to(device),
'attention_mask': all_attention_mask[i:i+batch_size].to(device),
'token_type_ids': all_token_type_ids[i:i+batch_size].to(device),
'labels': None
}
outputs = model(**inputs)
logits = outputs[0]
logits = logits.softmax(dim = -1)
if all_logits is None:
all_logits = logits.clone()
else:
all_logits = torch.cat([all_logits,logits],dim = 0)
pre_rest = all_logits.argmax(dim = -1)
if 0 == pre_rest.sum():
return torch.tensor(-1)
else:
return pre_rest.argmax(dim = -1)
def select_database(sql):
# connect database
connect = pymysql.connect(user="root",password="123456",host="127.0.0.1",port=3306,db="kb_qa",charset="utf8")
cursor = connect.cursor() # 创建操作游标
try:
# 执行SQL语句
cursor.execute(sql)
# 获取所有记录列表
results = cursor.fetchall()
except Exception as e:
print("Error: unable to fecth data: %s ,%s" % (repr(e), sql))
finally:
# 关闭数据库连接
cursor.close()
connect.close()
return results
# 文字直接匹配,看看属性的词语在不在句子之中
def text_match(attribute_list,answer_list,sentence):
assert len(attribute_list) == len(answer_list)
idx = -1
for i,attribute in enumerate(attribute_list):
if attribute in sentence:
idx = i
break
if -1 != idx:
return attribute_list[idx],answer_list[idx]
else:
return "",""
def main():
with torch.no_grad():
tokenizer_inputs = ()
tokenizer_kwards = {'do_lower_case': False,
'max_len': 64,
'vocab_file': './input/config/bert-base-chinese-vocab.txt'}
ner_processor = NerProcessor()
sim_processor = SimProcessor()
tokenizer = BertTokenizer(*tokenizer_inputs, **tokenizer_kwards)
ner_model = get_ner_model(config_file = './input/config/bert-base-chinese-config.json',
pre_train_model = './output/best_ner.bin',label_num = len(ner_processor.get_labels()))
ner_model = ner_model.to(device)
ner_model.eval()
sim_model = get_sim_model(config_file='./input/config/bert-base-chinese-config.json',
pre_train_model='./output/best_sim.bin',
label_num=len(sim_processor.get_labels()))
sim_model = sim_model.to(device)
sim_model.eval()
while True:
print("====="*10)
raw_text = input("问题:\n")
raw_text = raw_text.strip()
if ( "quit" == raw_text ):
print("quit")
return
entity = get_entity(model=ner_model, tokenizer=tokenizer, sentence=raw_text, max_len=64)
print("实体:", entity)
if '' == entity:
print("未发现实体")
continue
sql_str = "select * from nlpccqa where entity = '{}'".format(entity)
triple_list = select_database(sql_str)
triple_list = list(triple_list)
if 0 == len(triple_list):
print("未找到 {} 相关信息".format(entity))
continue
triple_list = list(zip(*triple_list))
# print(triple_list)
attribute_list = triple_list[1]
answer_list = triple_list[2]
attribute, answer = text_match(attribute_list, answer_list, raw_text)
if attribute != '' and answer != '':
ret = "{}的{}是{}".format(entity, attribute, answer)
else:
sim_model = get_sim_model(config_file='./input/config/bert-base-chinese-config.json',
pre_train_model='./output/best_sim.bin',
label_num=len(sim_processor.get_labels()))
sim_model = sim_model.to(device)
sim_model.eval()
attribute_idx = semantic_matching(sim_model, tokenizer, raw_text, attribute_list, answer_list, 64).item()
if -1 == attribute_idx:
ret = ''
else:
attribute = attribute_list[attribute_idx]
answer = answer_list[attribute_idx]
ret = "{}的{}是{}".format(entity, attribute, answer)
if '' == ret:
print("未找到{}相关信息".format(entity))
else:
print("回答:",ret)
if __name__ == '__main__':
main()