-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_NER.py
84 lines (65 loc) · 3.05 KB
/
test_NER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from BERT_CRF import BertCrf
from transformers import BertTokenizer
from NER_main import NerProcessor,statistical_real_sentences,flatten,CrfInputFeatures
from torch.utils.data import DataLoader, RandomSampler,TensorDataset
from sklearn.metrics import classification_report
import torch
import numpy as np
from tqdm import tqdm, trange
processor = NerProcessor()
tokenizer_inputs = ()
tokenizer_kwards = {'do_lower_case': False,
'max_len': 64,
'vocab_file': './input/config/bert-base-chinese-vocab.txt'}
tokenizer = BertTokenizer(*tokenizer_inputs,**tokenizer_kwards)
model = BertCrf(config_name= './input/config/bert-base-chinese-config.json',
num_tags = len(processor.get_labels()),batch_first=True)
model.load_state_dict(torch.load('./output/best_ner.bin'))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# features = torch.load(cached_features_file)
features = torch.load('./input/data/ner_data/cached_dev_64')
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label)
sampler = RandomSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler, batch_size=256)
loss = []
real_token_label = []
pred_token_label = []
for batch in tqdm(data_loader, desc="test"):
model.eval()
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'tags': batch[3],
'decode': True,
'reduction': 'none'
}
outputs = model(**inputs)
# temp_eval_loss shape: (batch_size)
# temp_pred : list[list[int]] 长度不齐
temp_eval_loss, temp_pred = outputs[0], outputs[1]
loss.extend(temp_eval_loss.tolist())
pred_token_label.extend(temp_pred)
real_token_label.extend(statistical_real_sentences(batch[3], batch[1], temp_pred))
loss = np.array(loss).mean()
real_token_label = np.array(flatten(real_token_label))
pred_token_label = np.array(flatten(pred_token_label))
assert real_token_label.shape == pred_token_label.shape
ret = classification_report(y_true=real_token_label, y_pred=pred_token_label, digits = 6,output_dict=False)
print(ret)
# CRF_LABELS = ["O", "B-LOC", "I-LOC"]
# precision recall f1-score support
#
# 0 0.998345 0.996229 0.997286 89638
# 1 0.993100 0.989685 0.991389 9016
# 2 0.992506 0.997225 0.994860 46483
#
# micro avg 0.996142 0.996142 0.996142 145137
# macro avg 0.994650 0.994380 0.994512 145137
# weighted avg 0.996149 0.996142 0.996143 145137