-
Notifications
You must be signed in to change notification settings - Fork 0
/
NER_main.py
479 lines (364 loc) · 17.9 KB
/
NER_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# --data_dir
# ./input/data/ner_data
# --vob_file
# ./input/config/bert-base-chinese-vocab.txt
# --model_config
# ./input/config/bert-base-chinese-config.json
# --output
# ./output
# --pre_train_model
# ./input/config/bert-base-chinese-model.bin
# --max_seq_length
# 64
# --do_train
# --train_batch_size
# 32
# --eval_batch_size
# 256
# --gradient_accumulation_steps
# 4
# --num_train_epochs
# 15
import argparse
import logging
import codecs
import os
import random
import numpy as np
import torch
from tqdm import tqdm, trange
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from transformers import BertForSequenceClassification,BertTokenizer,BertConfig
from transformers.data.processors.utils import DataProcessor, InputExample
from BERT_CRF import BertCrf
from transformers import AdamW, WarmupLinearSchedule
from sklearn.metrics import classification_report
logger = logging.getLogger(__name__)
#
# CRF_LABELS = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "X", "[CLS]", "[SEP]"]
# 在这个项目中只需要识别三个类型的项目即可
# 这里做以下测试,第一 LABELS = ["O", "B-LOC", "I-LOC"] ,因为需要预测的就只有这三个。
# 第二 LABELS = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "X", "[CLS]", "[SEP]"]
CRF_LABELS = ["O", "B-LOC", "I-LOC"]
def statistical_real_sentences(input_ids:torch.Tensor,mask:torch.Tensor,predict:list)-> list:
# shape (batch_size,max_len)
assert input_ids.shape == mask.shape
# batch_size
assert input_ids.shape[0] == len(predict)
# 第0位是[CLS] 最后一位是<pad> 或者 [SEP]
new_ids = input_ids[:,1:-1]
new_mask = mask[:,2:]
real_ids = []
for i in range(new_ids.shape[0]):
seq_len = new_mask[i].sum()
assert seq_len == len(predict[i])
real_ids.append(new_ids[i][:seq_len].tolist())
return real_ids
def flatten(inputs:list) -> list:
result = []
[result.extend(line) for line in inputs]
return result
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
class CrfInputExample(object):
def __init__(self, guid, text, label=None):
self.guid = guid
self.text = text
self.label = label
class CrfInputFeatures(object):
def __init__(self, input_ids, attention_mask, token_type_ids, label):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.label = label
def crf_convert_examples_to_features(examples,tokenizer,
max_length=512,
label_list=None,
pad_token=0,
pad_token_segment_id = 0,
mask_padding_with_zero = True):
label_map = {label:i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
inputs = tokenizer.encode_plus(
example.text,
add_special_tokens=True,
max_length=max_length,
truncate_first_sequence=True # We're truncating the first sequence in priority if True
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
padding_length = max_length - len(input_ids)
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
# 第一个和第二个[0] 加的是[CLS]和[SEP]的位置, [0]*padding_length是[pad] ,把这些都暂时算作"O",后面用mask 来消除这些,不会影响
labels_ids = [0] + [label_map[l] for l in example.label] + [0] + [0]*padding_length
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask),max_length)
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids),max_length)
assert len(labels_ids) == max_length, "Error with input length {} vs {}".format(len(labels_ids),max_length)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("label: %s " % " ".join([str(x) for x in labels_ids]))
features.append(
CrfInputFeatures(input_ids,attention_mask,token_type_ids,labels_ids)
)
return features
class NerProcessor(DataProcessor):
def get_train_examples(self,data_dir):
return self._create_examples(
os.path.join(data_dir,"train.txt"))
def get_dev_examples(self, data_dir):
return self._create_examples(
os.path.join(data_dir, "dev.txt"))
def get_test_examples(self, data_dir):
return self._create_examples(
os.path.join(data_dir, "test.txt"))
def get_labels(self):
return CRF_LABELS
@classmethod
def _create_examples(cls, path):
lines = []
max_len = 0
with codecs.open(path, 'r', encoding='utf-8') as f:
word_list = []
label_list = []
for line in f:
tokens = line.strip().split(' ')
if 2 == len(tokens):
word = tokens[0]
label = tokens[1]
word_list.append(word)
label_list.append(label)
elif 1 == len(tokens) and '' == tokens[0]:
if len(label_list) > max_len:
max_len = len(label_list)
lines.append((word_list,label_list))
word_list = []
label_list = []
examples = []
for i,(sentence,label) in enumerate(lines):
examples.append(
CrfInputExample(guid=i,text=" ".join(sentence),label=label)
)
return examples
def load_and_cache_example(args,tokenizer,processor,data_type):
type_list = ['train', 'dev', 'test']
if data_type not in type_list:
raise ValueError("data_type must be one of {}".format(" ".join(type_list)))
cached_features_file = "cached_{}_{}".format(data_type, str(args.max_seq_length))
cached_features_file = os.path.join(args.data_dir, cached_features_file)
if os.path.exists(cached_features_file):
features = torch.load(cached_features_file)
else:
label_list = processor.get_labels()
if type_list[0] == data_type:
examples = processor.get_train_examples(args.data_dir)
elif type_list[1] == data_type:
examples = processor.get_dev_examples(args.data_dir)
elif type_list[2] == data_type:
examples = processor.get_test_examples(args.data_dir)
else:
raise ValueError("UNKNOW ERROR")
features = crf_convert_examples_to_features(examples=examples,tokenizer=tokenizer,max_length=args.max_seq_length,label_list=label_list)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label)
return dataset
def trains(args,train_dataset,eval_dataset,model):
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
no_decay = ['bias', 'LayerNorm.weight','transitions']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,lr=args.learning_rate,eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
set_seed(args)
best_f1 = 0.
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step,batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids':batch[0],
'attention_mask':batch[1],
'token_type_ids':batch[2],
'tags':batch[3],
'decode':True
}
outputs = model(**inputs)
loss,pre_tag = outputs[0], outputs[1]
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),args.max_grad_norm)
logging_loss += loss.item()
tr_loss += loss.item()
if 0 == (step + 1) % args.gradient_accumulation_steps:
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
logger.info("EPOCH = [%d/%d] global_step = %d loss = %f",_+1,args.num_train_epochs,global_step,
logging_loss)
logging_loss = 0.0
# if (global_step < 100 and global_step % 10 == 0) or (global_step % 50 == 0):
# 每 相隔 100步,评估一次
if global_step % 100 == 0:
best_f1 = evaluate_and_save_model(args,model,eval_dataset,_,global_step,best_f1)
# 最后循环结束 再评估一次
best_f1 = evaluate_and_save_model(args, model, eval_dataset,_,global_step, best_f1)
def evaluate_and_save_model(args,model,eval_dataset,epoch,global_step,best_f1):
ret = evaluate(args, model, eval_dataset)
precision_b = ret['1']['precision']
recall_b = ret['1']['recall']
f1_b = ret['1']['f1-score']
support_b = ret['1']['support']
precision_i = ret['2']['precision']
recall_i = ret['2']['recall']
f1_i = ret['2']['f1-score']
support_i = ret['2']['support']
weight_b = support_b / (support_b + support_i)
weight_i = 1 - weight_b
avg_precision = precision_b * weight_b + precision_i * weight_i
avg_recall = recall_b * weight_b + recall_i * weight_i
avg_f1 = f1_b * weight_b + f1_i * weight_i
all_avg_precision = ret['micro avg']['precision']
all_avg_recall = ret['micro avg']['recall']
all_avg_f1 = ret['micro avg']['f1-score']
logger.info("Evaluating EPOCH = [%d/%d] global_step = %d", epoch+1,args.num_train_epochs,global_step)
logger.info("B-LOC precision = %f recall = %f f1 = %f support = %d", precision_b, recall_b, f1_b,
support_b)
logger.info("I-LOC precision = %f recall = %f f1 = %f support = %d", precision_i, recall_i, f1_i,
support_i)
logger.info("attention AVG:precision = %f recall = %f f1 = %f ", avg_precision, avg_recall,
avg_f1)
logger.info("all AVG:precision = %f recall = %f f1 = %f ", all_avg_precision, all_avg_recall,
all_avg_f1)
if avg_f1 > best_f1:
best_f1 = avg_f1
torch.save(model.state_dict(), os.path.join(args.output_dir, "best_ner.bin"))
logging.info("save the best model %s,avg_f1= %f", os.path.join(args.output_dir, "best_bert.bin"),
best_f1)
# 返回出去,用于更新外面的 最佳值
return best_f1
def evaluate(args, model, eval_dataset):
eval_output_dirs = args.output_dir
if not os.path.exists(eval_output_dirs):
os.makedirs(eval_output_dirs)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler,
batch_size=args.eval_batch_size)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
loss = []
real_token_label = []
pred_token_label = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids':batch[0],
'attention_mask':batch[1],
'token_type_ids':batch[2],
'tags':batch[3],
'decode':True,
'reduction':'none'
}
outputs = model(**inputs)
# temp_eval_loss shape: (batch_size)
# temp_pred : list[list[int]] 长度不齐
temp_eval_loss, temp_pred = outputs[0], outputs[1]
loss.extend(temp_eval_loss.tolist())
pred_token_label.extend(temp_pred)
real_token_label.extend(statistical_real_sentences(batch[3],batch[1],temp_pred))
loss = np.array(loss).mean()
real_token_label = np.array(flatten(real_token_label))
pred_token_label = np.array(flatten(pred_token_label))
assert real_token_label.shape == pred_token_label.shape
ret = classification_report(y_true = real_token_label,y_pred = pred_token_label,output_dict = True)
model.train()
return ret
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="数据文件目录,因当有train.txt dev.txt")
parser.add_argument("--vob_file", default=None, type=str, required=True,
help="词表文件")
parser.add_argument("--model_config", default=None, type=str, required=True,
help="模型配置文件json文件")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="输出结果的文件")
# Other parameters
parser.add_argument("--pre_train_model", default=None, type=str, required=False,
help="预训练的模型文件,参数矩阵。如果存在就加载")
parser.add_argument("--max_seq_length", default=128, type=int,
help="输入到bert的最大长度,通常不应该超过512")
parser.add_argument("--do_train", action='store_true',
help="是否进行训练")
parser.add_argument("--train_batch_size", default=8, type=int,
help="训练集的batch_size")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="验证集的batch_size")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="梯度累计更新的步骤,用来弥补GPU过小的情况")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="学习率")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="权重衰减")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="最大的梯度更新")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="epoch 数目")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--warmup_steps", default=0, type=int,
help="让学习增加到1的步数,在warmup_steps后,再衰减到0")
args = parser.parse_args()
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
# filename='./output/bert-crf-ner.log',
processor = NerProcessor()
# 得到tokenizer
tokenizer_inputs = ()
tokenizer_kwards = {'do_lower_case': False,
'max_len': args.max_seq_length,
'vocab_file': args.vob_file}
tokenizer = BertTokenizer(*tokenizer_inputs,**tokenizer_kwards)
model = BertCrf(config_name= args.model_config,model_name=args.pre_train_model,num_tags = len(processor.get_labels()),batch_first=True)
model = model.to(args.device)
train_dataset = load_and_cache_example(args,tokenizer,processor,'train')
eval_dataset = load_and_cache_example(args,tokenizer,processor,'dev')
test_dataset = load_and_cache_example(args, tokenizer, processor, 'test')
if args.do_train:
trains(args,train_dataset,eval_dataset,model)
if __name__ == '__main__':
main()