-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvector_add.py
66 lines (49 loc) · 1.88 KB
/
vector_add.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# MIT License
#
# Copyright (c) 2023 Daemyung Jang
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import triton
import triton.language as tl
@triton.jit
def add_kernel(x_ptr, y_ptr, z_ptr, size, block_size: tl.constexpr):
pid = tl.program_id(0)
offsets = tl.arange(0, block_size) + pid * block_size
mask = offsets < size
x = tl.load(x_ptr + offsets, mask)
y = tl.load(y_ptr + offsets, mask)
z = x + y
tl.store(z_ptr + offsets, z, mask)
def add(x, y):
z = torch.empty_like(x, device="cuda")
size = z.numel()
def grid(meta):
return (triton.cdiv(size, meta["block_size"]),)
add_kernel[grid](x, y, z, size, 1024)
return z
def main():
size = 2**16
x = torch.rand(size, device="cuda")
y = torch.rand(size, device="cuda")
a = add(x, y)
b = x + y
assert torch.allclose(a, b)
if __name__ == "__main__":
main()