-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathheuristics.py
83 lines (64 loc) · 2.56 KB
/
heuristics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# MIT License
#
# Copyright (c) 2024 Daemyung Jang
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import torch
import triton
import triton.language as tl
@triton.heuristics({'boundary_check': lambda args: args["x_size"] % args["block_size"] })
@triton.jit
def add_kernel(x_ptr, y_ptr, z_ptr, size, block_size: tl.constexpr, boundary_check: tl.constexpr):
offset = tl.program_id(0) * block_size
x_block_ptr = tl.make_block_ptr(
x_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)
)
y_block_ptr = tl.make_block_ptr(
y_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)
)
if boundary_check:
x = tl.load(x_block_ptr, boundary_check=(0,))
y = tl.load(y_block_ptr, boundary_check=(0,))
else:
x = tl.load(x_block_ptr)
y = tl.load(y_block_ptr)
z = x + y
z_block_ptr = tl.make_block_ptr(
z_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)
)
if boundary_check:
tl.store(z_block_ptr, z, boundary_check=(0,))
else:
tl.store(z_block_ptr, z)
def add(x, y):
z = torch.empty_like(x, device="cuda")
size = z.numel()
def grid(meta):
return (triton.cdiv(size, meta["block_size"]),)
add_kernel[grid](x, y, z, size, 1024)
return z
def main():
size = 2**16
x = torch.rand(size, device="cuda")
y = torch.rand(size, device="cuda")
a = add(x, y)
b = x + y
assert torch.allclose(a, b)
if __name__ == "__main__":
main()