-
Notifications
You must be signed in to change notification settings - Fork 17
/
inference.py
198 lines (148 loc) · 5.87 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import cv2
import torch
import torch.nn as nn
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
from segment_anything_kd.modeling.image_encoder import add_decomposed_rel_pos
import matplotlib.pyplot as plt
import torch_pruning as tp
def calculate_iou(mask1, mask2):
"""
Calculate Intersection over Union (IoU) for two binary masks.
Parameters:
mask1 (numpy.ndarray): The first binary mask.
mask2 (numpy.ndarray): The second binary mask.
Returns:
float: The IoU score.
"""
# Make sure the input masks have the same shape
assert mask1.shape == mask2.shape, "Both masks must have the same shape."
# Calculate the intersection and union of the masks
intersection = np.logical_and(mask1, mask2)
union = np.logical_or(mask1, mask2)
# Compute the IoU score
iou_score = np.sum(intersection) / np.sum(union)
return iou_score
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
ax.imshow(img)
def test_model():
device = torch.device("cuda")
print("CUDA visible devices: " + str(torch.cuda.device_count()))
print("CUDA Device Name: " + str(torch.cuda.get_device_name(device)))
# teacher_model_type = 'vit_b'
# checkpoint = 'checkpoints/sam_vit_b_qkv.pth'
# teacher_model = sam_model_registry[teacher_model_type](checkpoint=checkpoint)
# teacher_model.to(device)
# teacher_model.eval()
# teacher_model_type = 'vit_p77'
# checkpoint = 'checkpoints/SlimSAM-77-uniform.pth'
# SlimSAM_model = sam_model_registry[teacher_model_type](checkpoint=checkpoint)
# SlimSAM_model.to(device)
# SlimSAM_model.eval()
model_path = "checkpoints/SlimSAM-77.pth"
SlimSAM_model = torch.load(model_path)
SlimSAM_model.image_encoder = SlimSAM_model.image_encoder.module
SlimSAM_model.to(device)
SlimSAM_model.eval()
print("model_path:",model_path)
def forward(self, x):
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
for blk in self.blocks:
x,qkv_emb,mid_emb,x_emb = blk(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x
import types
funcType = types.MethodType
SlimSAM_model.image_encoder.forward = funcType(forward, SlimSAM_model.image_encoder)
example_inputs = torch.randn(1, 3, 1024, 1024).to(device)
ori_macs, ori_size = tp.utils.count_ops_and_params(SlimSAM_model.image_encoder, example_inputs)
print("MACs(G):",ori_macs/1e9,"Params(M):",ori_size/1e6)
#mask_generator = SamAutomaticMaskGenerator(teacher_model)
mask_generator = SamAutomaticMaskGenerator(
model=SlimSAM_model,
points_per_side=32,
pred_iou_thresh=0.88,
stability_score_thresh=0.90,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100, # Requires open-cv to run post-processing
)
predictor = SamPredictor(SlimSAM_model)
with torch.no_grad():
path = 'images/truck.jpg'
print(path)
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
################ Point Prompt ################
input_point = np.array([[750, 370]])
input_label = np.array([1])
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
box = None,
multimask_output=False,
)
plt.figure(figsize=(15,10))
plt.imshow(image)
show_mask(masks, plt.gca())
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.tight_layout()
plt.savefig("images/"+'demo_point' + ".png")
################ Box Prompt ################
input_box = np.array([75, 275, 1725, 850])
masks, scores, logits = predictor.predict(
point_coords=None,
point_labels=None,
box = input_box,
multimask_output=False,
)
plt.figure(figsize=(15,10))
plt.imshow(image)
show_mask(masks, plt.gca())
show_box(input_box, plt.gca())
plt.axis('off')
plt.tight_layout()
plt.savefig("images/"+'demo_box' + ".png")
################ Segment everything prompt ################
masks = mask_generator.generate(image)
plt.figure(figsize=(15,10))
plt.imshow(image)
show_anns(masks)
plt.axis('off')
plt.show()
plt.tight_layout()
plt.savefig("images/"+"demo_everything" + ".png")
if __name__ == '__main__':
test_model()