diff --git a/docs/source/getting_started/end_to_end_test.rst b/docs/source/getting_started/end_to_end_test.rst index 89b6266..dc003a2 100644 --- a/docs/source/getting_started/end_to_end_test.rst +++ b/docs/source/getting_started/end_to_end_test.rst @@ -1,8 +1,8 @@ -End to End Test (non CEF input format) +End to End Test ================================================== How to test end-to-end ----------------------- +-------------------------- 1. Navigate to the AWS console and search for ``S3``. Select the S3 bucket that you created, and click on ``Create folder``. Set the name of the folder as ``input`` and create the folder. @@ -72,21 +72,34 @@ How to test end-to-end All fields are required unless mentioned otherwise. -3. Update the environment variables for the lambda functions: ``enrich_with_technique`` and ``process_flow``, and update variable ``map_cef_to_internal`` to value set as ``false``. +3. Upload input json file to the s3 bucket in path: ``s3://{bucket-name}/input/``. The name of the input file does not matter to the end-to-end flow. Note that if you upload a file with the same name, it will be overwritten in S3 bucket. - .. note:: - To access the environment variable for lambda functions, navigate to the AWS console and search for ``Lambda``. Select the lambda function that you want to edit. Click on the ``Configuration`` tab and select ``Environment variables`` - from the left panel under ``Configuration``. Click on ``Edit`` button to open the edit page and update the pertinent values. + 1. Once you upload the input file. Lets say ``input.json``. Then the control flow will be as follows: - .. note:: - If the node_feature are already in encoded format, skip the encoding of node features by updating environment variable to ``enrich_with_technique``. Update the value for ``encode_node_feature`` to ``false``. + - Enrich_with_technique: lambda function + - Transform-job-tech-{unique-id}: Batch transform job -3. Upload input json file to the s3 bucket in path: ``s3://{bucket-name}/input/``. The name of the input file does not matter to the end-to-end flow. Note that if you upload a file with the same name, it will be overwritten in S3 bucket. + - Reads input from: ``{bucket}/intermediate/{unique-id}/input_classification.json`` + - Output to: ``{bucket}/response/classification_out/{unique-id}/input_classification.json.out`` + + - Process_enriched_with_technique: lambda function + - Create_cluster: lambda function + - Transform-job-cluster-{unique-id}: Batch transform job + + - Reads input from: ``{bucket}/output/classification/{unique-id}/input.zip`` + - Output to: ``{bucket}/response/cluster_out/{unique-id}/input.zip.out`` + + - Process_cluster: lambda function + - Create_flow: lambda function + - Transform-job-flow-{unique-id}: Batch transform job + + - Reads input from: ``{bucket}/output/cluster/{unique-id}/input_flow.json`` + - Output to: ``{bucket}/response/flow_out/{unique-id}/input_flow.json.out`` - 1. Once you upload the input file. You can use the AWS step function to monitor the flow of your input. + - Process_flow: lambda function 2. You can use the Amazon SageMaker console and navigate to Inference → Batch transform jobs, to view the created jobs for your input. 3. You can monitor the progress on CloudWatch logs for each lambda function and transform job created. -4. Final output will be put on the S3 bucket with prefix ``s3://alert-detector/output/`` \ No newline at end of file +4. Wait for a complete output to show up on the S3 bucket. ``s3://alert-detector/output/flow/{unique-id}/`` \ No newline at end of file diff --git a/docs/source/index.rst b/docs/source/index.rst index ea6b01a..433140f 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -55,9 +55,3 @@ In this documentation, you will find detailed instructions for: vrl/transform vrl/ai - -.. toctree:: - :maxdepth: 1 - :caption: Test with custom input (non CEF input format) - - getting_started/end_to_end