Skip to content

Latest commit

 

History

History
41 lines (30 loc) · 1.45 KB

README.md

File metadata and controls

41 lines (30 loc) · 1.45 KB

SceneFormer: Indoor Scene Generation with Transformers

Examples of scenes generated by Sceneformer

Initial code release for the Sceneformer paper, contains models, train and test scripts for the shape conditioned model. Text conditioned model and detailed README coming soon.

Please also check the project website here

Setup

Install the requirements in requirements.txt and environment.yaml in a conda environment. Packages that are common can be installed either through pip or conda.

Prepare Data

The SUNCG dataset is currently not available, hence all related files have been removed. The dataset can be prepared with the scripts which were taken from deepsynth.

Train

Configure the experiment in configs/scene_shift_X_config.yaml where X is one of cat, dim, loc, ori

Then run

python scene_scripts/train_shift_X_lt.py configs/scene_shift_X_config.yaml

to train the model X.

Test

Configure the model paths in scene_scripts/test.py and then run

python scene_scripts/test.py

If you find our work useful, please consider citing us:

@article{wang2020sceneformer,
  title={SceneFormer: Indoor Scene Generation with Transformers},
  author={Wang, Xinpeng and Yeshwanth, Chandan and Nie{\ss}ner, Matthias},
  journal={arXiv preprint arXiv:2012.09793},
  year={2020}
}