-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathsolver_psdCompConstrainedTrace.m
84 lines (76 loc) · 2.77 KB
/
solver_psdCompConstrainedTrace.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
function [ x, out, opts ] = solver_psdCompConstrainedTrace( Xinc, tr, opts )
% SOLVER_PSDCOMPCONSTRAINEDTRACE Matrix completion with constrained trace, for PSD matrices.
% [ x, out, opts ] = solver_psdCompConstrainedTrace( Xinc, tr, opts )
% Solves the PSD matrix completion problem
% minimize (1/2)*norm(X(ij)-vv).^2
% s.t. X p.s.d and trace(X) = tr
% where ij is a vector of indices corresponding to the known elements.
% The nonzero values of Xinc are assumed to be the known values; that
% is, all zero values are considered unknowns. In order to specify a
% known zero value, replace it with a very small value; e.g., 1e-100.
%
% Since X must be symmetric, the ij entries should have symmetry. If they
% are not specified symmetrically, then choose opts.symmetrize = true
% to force them to become symmetric. This will change the objective
% function.
%
% See also solver_psdComp
% Supply default values
error(nargchk(1,3,nargin));
if nargin < 3, opts = []; end
if ~isfield( opts, 'restart' ),
opts.restart = 50;
end
if isfield( opts, 'symmetrize' ),
symmetrize = opts.symmetrize;
opts = rmfield(opts,'symmetrize');
else
symmetrize = false;
end
if nargin < 2 || isempty(tr)
tr = 1;
end
[n,m] = size(Xinc);
if n ~= m, error( 'Input must be square.' ); end
% If not symmetric, then make it symmetric
if norm(Xinc-Xinc','fro') > 1e-8*norm(Xinc,'fro') && symmetrize
Xinc = symmetrizeSparseMatrix(Xinc);
disp('symmetrizing input');
end
% -- This doesn't work so well --
% Xinc = tril(Xinc);
% [ii,jj,vv] = find(Xinc);
% ij = sub2ind( [n,n], ii, jj );
% linop = @(varargin)samp_op( n, ii, jj, ij, varargin{:} );
%
% Xinc = Xinc + tril(Xinc,-1)';
% This is better:
linop = linop_subsample(Xinc);
vv = full( Xinc( find(Xinc) ) );
% Extract the linear operators
[x,out,opts] = tfocs( smooth_quad, { linop, -vv }, proj_psdUTrace(tr), Xinc, opts );
% we use a special sampling operator to tell it to make it symmetric
function y = samp_op( n, ii, jj, ij, X, mode )
switch mode
case 0,
y = { [n,n], [length(ii),1] };
case 1,
X = (X+X')/2;
y = full(X(ij)); %otherwise it is a sparse vector
case 2,
y = sparse( ii, jj, X, n, n );
y = y + tril(y,-1)';
end
function X = symmetrizeSparseMatrix( X )
% Some entries were only specified once, others were
% double-specified, so we don't know if we should
% divide by 1 or 2
ind1 = find( tril(X) );
ind2 = find( tril(X',-1) );
X = tril(X) + tril( X', -1);
ind = intersect(ind1,ind2);
X(ind) = X(ind)/2;
X = X + tril(X,-1)';
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.