-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathsolver_L1RLS.m
44 lines (38 loc) · 1.42 KB
/
solver_L1RLS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function [ x, odata, opts ] = solver_L1RLS( A, b, lambda, x0, opts )
% SOLVER_L1RLS l1-regularized least squares problem, sometimes called the LASSO.
% [ x, odata, opts ] = solver_L1RLS( A, b, lambda, x0, opts )
% Solves the l1-regularized least squares problem
% minimize (1/2)*norm( A * x - b )^2 + lambda * norm( x, 1 )
% using the Auslender/Teboulle variant with restart. A must be a matrix
% or a linear operator, b must be a vector, and lambda must be a real
% positive scalar. The initial point x0 and option structure opts are
% both optional.
%
% Note: this formulation is sometimes referred to as "The Lasso"
%
% If "nonneg" is a field in "opts" and opts.nonneg is true,
% then the constraint x >= 0 is also imposed
error(nargchk(3,5,nargin));
if nargin < 4, x0 = []; end
if nargin < 5, opts = []; end
if ~isfield( opts, 'restart' ),
opts.restart = 100;
end
nonneg = false;
if isfield(opts,'nonneg')
nonneg = opts.nonneg;
opts = rmfield(opts,'nonneg');
end
if isfield(opts,'nonNeg')
nonneg = opts.nonNeg;
opts = rmfield(opts,'nonNeg');
end
if nonneg
prox = prox_l1pos( lambda );
else
prox = prox_l1( lambda );
end
[x,odata,opts] = tfocs( smooth_quad, { A, -b }, prox, x0, opts );
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.