-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathre10k_256x256_depthsplat_large.sh
65 lines (58 loc) · 2.2 KB
/
re10k_256x256_depthsplat_large.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env bash
# large model
# train on 8x GPUs, batch size 4 on each gpu (>=53GB memory)
python -m src.main +experiment=re10k \
data_loader.train.batch_size=4 \
dataset.test_chunk_interval=10 \
trainer.val_check_interval=0.5 \
trainer.max_steps=150000 \
model.encoder.num_scales=2 \
model.encoder.upsample_factor=2 \
model.encoder.lowest_feature_resolution=4 \
model.encoder.monodepth_vit_type=vitl \
model.encoder.gaussian_regressor_channels=64 \
model.encoder.color_large_unet=true \
model.encoder.feature_upsampler_channels=128 \
model.encoder.return_depth=true \
checkpointing.pretrained_monodepth=pretrained/depth_anything_v2_vitl.pth \
checkpointing.pretrained_mvdepth=pretrained/gmflow-scale1-things-e9887eda.pth \
wandb.project=depthsplat \
output_dir=checkpoints/re10k-depthsplat-large
# evaluate on re10k
CUDA_VISIBLE_DEVICES=0 python -m src.main +experiment=re10k \
dataset.test_chunk_interval=1 \
model.encoder.num_scales=2 \
model.encoder.upsample_factor=2 \
model.encoder.lowest_feature_resolution=4 \
model.encoder.monodepth_vit_type=vitl \
model.encoder.gaussian_regressor_channels=64 \
model.encoder.color_large_unet=true \
model.encoder.feature_upsampler_channels=128 \
checkpointing.pretrained_model=pretrained/depthsplat-gs-large-re10k-256x256-288d9b26.pth \
mode=test \
dataset/view_sampler=evaluation \
test.compute_scores=true \
wandb.mode=disabled \
test.save_image=false \
test.save_gt_image=false \
output_dir=output/tmp
# render video on re10k (need to have ffmpeg installed)
CUDA_VISIBLE_DEVICES=0 python -m src.main +experiment=re10k \
dataset.test_chunk_interval=100 \
model.encoder.num_scales=2 \
model.encoder.upsample_factor=2 \
model.encoder.lowest_feature_resolution=4 \
model.encoder.monodepth_vit_type=vitl \
model.encoder.gaussian_regressor_channels=64 \
model.encoder.color_large_unet=true \
model.encoder.feature_upsampler_channels=128 \
checkpointing.pretrained_model=pretrained/depthsplat-gs-large-re10k-256x256-288d9b26.pth \
mode=test \
dataset/view_sampler=evaluation \
dataset.view_sampler.index_path=assets/evaluation_index_re10k_video.json \
test.save_video=true \
test.compute_scores=false \
wandb.mode=disabled \
test.save_image=false \
test.save_gt_image=false \
output_dir=output/tmp