-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
280 lines (232 loc) · 9.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os, sys, time, random
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from torch import nn
def piecewise_clustering(var, gamma, beta):
var1=(var[var.ge(0)]-var[var.ge(0)].mean()).pow(2).sum()
var2=(var[var.le(0)]-var[var.le(0)].mean()).pow(2).sum()
val=gamma*var1 + beta*var2
return val
def clustering_loss(model, lambda_coeff):
pc_loss = 0
for m in model.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
pc_loss += piecewise_clustering(m.weight, lambda_coeff, lambda_coeff)
return pc_loss
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class RecorderMeterFlex(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_value = np.zeros((self.total_epoch, 4),
dtype=np.float32) # [epoch, train/val]
self.epoch_acc = np.zeros((self.total_epoch, 2),
dtype=np.float32) # [epoch, train/val]
def update(self, idx, train_loss, l_loss, u_loss, smoothness, train_acc, test_acc):
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(
self.total_epoch, idx)
self.epoch_value[idx, 0] = train_loss
self.epoch_value[idx, 1] = l_loss
self.epoch_value[idx, 2] = u_loss
self.epoch_value[idx, 3] = smoothness
self.epoch_acc[idx, 0] = train_acc
self.epoch_acc[idx, 1] = test_acc
self.current_epoch = idx + 1
# return self.max_accuracy(False) == val_acc
def max_accuracy(self, istrain):
if self.current_epoch <= 0: return 0
if istrain: return self.epoch_acc[:self.current_epoch, 0].max()
else: return self.epoch_acc[:self.current_epoch, 1].max()
def plot_curve(self, save_path):
title = 'the train_loss/l_loss/u_loss/acc curve of train/val'
dpi = 80
width, height = 1200, 800
legend_fontsize = 10
scale_distance = 48.8
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 1
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel('the training epoch', fontsize=16)
plt.ylabel('accuracy', fontsize=16)
y_axis[:] = self.epoch_acc[:, 0]
plt.plot(x_axis,
y_axis,
color='g',
linestyle='-',
label='train-accuracy',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_acc[:, 1]
plt.plot(x_axis,
y_axis,
color='cyan',
linestyle='-',
label='valid-accuracy',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_value[:, 0]
plt.plot(x_axis,
y_axis * 50,
color='g',
linestyle=':',
label='train-loss-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_value[:, 1]
plt.plot(x_axis,
y_axis * 50,
color='b',
linestyle=':',
label='l-loss-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_value[:, 2]
plt.plot(x_axis,
y_axis * 50,
color='r',
linestyle=':',
label='u-loss-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
print('---- save figure {} into {}'.format(title, save_path))
plt.figure()
y_axis[:] = self.epoch_value[:, 3]
plt.plot(x_axis,
y_axis * 50,
color='y',
linestyle=':',
label='smoothness-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
print('---- save figure {} into {}'.format(title, save_path))
plt.close(fig)
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros((self.total_epoch, 2),
dtype=np.float32) # [epoch, train/val]
self.epoch_losses = self.epoch_losses - 1
self.epoch_accuracy = np.zeros((self.total_epoch, 2),
dtype=np.float32) # [epoch, train/val]
self.epoch_accuracy = self.epoch_accuracy
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(
self.total_epoch, idx)
self.epoch_losses[idx, 0] = train_loss
self.epoch_losses[idx, 1] = val_loss
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
# return self.max_accuracy(False) == val_acc
def max_accuracy(self, istrain):
if self.current_epoch <= 0: return 0
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
def plot_curve(self, save_path):
title = 'the accuracy/loss/consistency curve of train/val'
dpi = 80
width, height = 1200, 800
legend_fontsize = 10
scale_distance = 48.8
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel('the training epoch', fontsize=16)
plt.ylabel('accuracy', fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis,
y_axis,
color='g',
linestyle='-',
label='train-accuracy',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis,
y_axis,
color='y',
linestyle='-',
label='valid-accuracy',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(x_axis,
y_axis * 50,
color='g',
linestyle=':',
label='train-loss-x50',
lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(x_axis,
y_axis * 50,
color='y',
linestyle=':',
label='valid-loss-x50',
lw=2)
plt.legend(fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path.split('.')[0]+'_sm.pdf', dpi=dpi, bbox_inches='tight')
print('---- save figure {} into {}'.format(title, save_path))
plt.close(fig)
def time_string():
ISOTIMEFORMAT = '%Y-%m-%d %X'
string = '[{}]'.format(
time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
return string
def convert_secs2time(epoch_time):
need_hour = int(epoch_time / 3600)
need_mins = int((epoch_time - 3600 * need_hour) / 60)
need_secs = int(epoch_time - 3600 * need_hour - 60 * need_mins)
return need_hour, need_mins, need_secs
def time_file_str():
ISOTIMEFORMAT = '%Y-%m-%d'
string = '{}'.format(time.strftime(ISOTIMEFORMAT,
time.gmtime(time.time())))
return string + '-{}'.format(random.randint(1, 10000))