-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoverage.py
96 lines (78 loc) · 3.38 KB
/
coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from sklearn.metrics import pairwise_distances
import numpy as np
import torch
from torch.utils.data import DataLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# def coreset_coverage(X, lb_idxes, log):
# """
# X: The whole dataset
# ib_idxes (Boolean array): The indexes of the selected labeled data
# output: max/average radius which cover the 100%/98% of the dataset
# """
# # print (lb_idxes)
# spare_room = int(0.002*len(X))
# print_log("spare room: {}".format(spare_room), log)
# embedding = X
# ub_idxes = list(set(range(len(X))) - set(lb_idxes))
# dist_ctr = pairwise_distances(embedding[ub_idxes], embedding[lb_idxes])
# # group unlabeled data to their nearest labeled data
# min_args = np.argmin(dist_ctr, axis=1)
# print_log("min args: {}".format(min_args), log)
# delta = []
# gains = []
# group_sizes = []
# for j in np.arange(len(lb_idxes)):
# # get the sample index for the jth center
# idxes = np.nonzero(min_args == j)[0]
# distances = dist_ctr[idxes, j]
# group_size = len(distances)
# # print_log('group size: {}'.format(group_size), log)
# delta_j = 0 if len(distances)==0 else distances.max()
# # how much delta reduction can be reached by using the spare room
# if group_size >= spare_room:
# gain_by_spare = distances.max() - np.sort(distances)[::-1][spare_room-1]
# else:
# gain_by_spare = distances.max() if len(distances) != 0 else 0
# # print_log("Gain by spare room: {}".format(gain_by_spare), log)
# delta.append(delta_j)
# gains.append(gain_by_spare)
# group_sizes.append(group_size)
# # full cover
# coverage_mean = np.array(delta).mean()
# coverage_max = np.array(delta).max()
# coverage_topmean = np.sort(delta)[::-1][:int(len(delta)*0.3)].mean()
# # relax cover
# # pick the group which has most gains
# group_idx = np.argmax(gains)
# # revise the corresponding delta
# delta[group_idx] -= gains[group_idx]
# coverage_mean98 = np.array(delta).mean()
# return coverage_max, coverage_mean, coverage_mean98, coverage_topmean
def coreset_coverage(X, lb_idxes, log):
"""
X: The whole dataset
ib_idxes (Boolean array): The indexes of the selected labeled data
output: max/average radius which cover the 100%/98% of the dataset
"""
embedding = X
ub_idxes = list(set(range(len(X))) - set(lb_idxes))
dist_ctr = pairwise_distances(embedding[ub_idxes], embedding[lb_idxes])
# group unlabeled data to their nearest labeled data
min_args = np.argmin(dist_ctr, axis=1)
print_log("min args: {}".format(min_args), log)
delta = []
for j in np.arange(len(lb_idxes)):
# get the sample index for the jth center
idxes = np.nonzero(min_args == j)[0]
distances = dist_ctr[idxes, j]
delta_j = 0 if len(distances)==0 else distances.max()
delta.append(delta_j)
# full cover
coverage_mean = np.array(delta).mean()
coverage_max = np.array(delta).max()
coverage_topmean = np.sort(delta)[::-1][:int(len(delta)*0.3)].mean()
return coverage_max, coverage_mean, -1, coverage_topmean
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()