We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
不好意思 當我嘗試訓練時碰到以下錯誤 [1][6/6] BatchTime(s):0.93 , LR:0.00001, boxLoss:235.416 , objLoss:357.958 , clsLoss:0.000 , totalLoss:593.37390 , meanLoss:3704.30737 [1][7/6] BatchTime(s):0.47 , LR:0.00001, boxLoss:332.298 , objLoss:235.153 , clsLoss:0.000 , totalLoss:567.45081 , meanLoss:3259.88818 [2][1/6] BatchTime(s):1.04 , LR:0.50000, boxLoss:412.392 , objLoss:196.623 , clsLoss:0.000 , totalLoss:609.01556 , meanLoss:2923.33350 [2][2/6] BatchTime(s):0.88 , LR:0.50000, boxLoss:Inf , objLoss:71.741 , clsLoss:0.000 , totalLoss:Inf , meanLoss:2666.18701 [2][3/6] BatchTime(s):0.85 , LR:0.50000, boxLoss:459.970 , objLoss:70.744 , clsLoss:0.000 , totalLoss:530.71442 , meanLoss:Inf Error using nnet.internal.cnn.dlnetwork/forward (line 254) Layer 'bn_2': Invalid input data. The value of 'Variance' is invalid. Expected input to be positive.
Error in nnet.internal.cnn.dlnetwork/CodegenOptimizationStrategy/propagateWithFallback (line 103) [varargout{1:nargout}] = fcn(net, X, layerIndices, layerOutputIndices);
Error in nnet.internal.cnn.dlnetwork/CodegenOptimizationStrategy/forward (line 52) [varargout{1:nargout}] = propagateWithFallback(strategy, functionSlot, @forward, net, X, layerIndices, layerOutputIndices);
Error in dlnetwork/forward (line 347) [varargout{1:nargout}] = net.EvaluationStrategy.forward(net.PrivateNetwork, x, layerIndices, layerOutputIndices);
Error in train>modelGradients (line 169) [outFeatureMaps{:},state] = forward(net,XTrain,'Outputs',yolov3layerNames);
Error in deep.internal.dlfeval (line 18) [varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 41) [varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in train (line 119) [gradients,boxLoss,objLoss,clsLoss,totalLoss,state] = dlfeval(@modelGradients, model, XTrain, YTrain,yoloLayerNumber);
非常感謝您的工作,請問這個問題該如何解決,希望能得到您的解答
The text was updated successfully, but these errors were encountered:
您好,您找到解決方案了嗎?我也有同樣的問題
Sorry, something went wrong.
您好,请问您解决这个问题了吗,我这两天也解决不了这个问题
No branches or pull requests
不好意思 當我嘗試訓練時碰到以下錯誤
[1][6/6] BatchTime(s):0.93 , LR:0.00001, boxLoss:235.416 , objLoss:357.958 , clsLoss:0.000 , totalLoss:593.37390 , meanLoss:3704.30737
[1][7/6] BatchTime(s):0.47 , LR:0.00001, boxLoss:332.298 , objLoss:235.153 , clsLoss:0.000 , totalLoss:567.45081 , meanLoss:3259.88818
[2][1/6] BatchTime(s):1.04 , LR:0.50000, boxLoss:412.392 , objLoss:196.623 , clsLoss:0.000 , totalLoss:609.01556 , meanLoss:2923.33350
[2][2/6] BatchTime(s):0.88 , LR:0.50000, boxLoss:Inf , objLoss:71.741 , clsLoss:0.000 , totalLoss:Inf , meanLoss:2666.18701
[2][3/6] BatchTime(s):0.85 , LR:0.50000, boxLoss:459.970 , objLoss:70.744 , clsLoss:0.000 , totalLoss:530.71442 , meanLoss:Inf
Error using nnet.internal.cnn.dlnetwork/forward (line 254)
Layer 'bn_2': Invalid input data. The value of 'Variance' is invalid. Expected input to be positive.
Error in nnet.internal.cnn.dlnetwork/CodegenOptimizationStrategy/propagateWithFallback (line 103)
[varargout{1:nargout}] = fcn(net, X, layerIndices, layerOutputIndices);
Error in nnet.internal.cnn.dlnetwork/CodegenOptimizationStrategy/forward (line 52)
[varargout{1:nargout}] = propagateWithFallback(strategy, functionSlot, @forward, net, X, layerIndices, layerOutputIndices);
Error in dlnetwork/forward (line 347)
[varargout{1:nargout}] = net.EvaluationStrategy.forward(net.PrivateNetwork, x, layerIndices, layerOutputIndices);
Error in train>modelGradients (line 169)
[outFeatureMaps{:},state] = forward(net,XTrain,'Outputs',yolov3layerNames);
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 41)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in train (line 119)
[gradients,boxLoss,objLoss,clsLoss,totalLoss,state] = dlfeval(@modelGradients, model, XTrain, YTrain,yoloLayerNumber);
非常感謝您的工作,請問這個問題該如何解決,希望能得到您的解答
The text was updated successfully, but these errors were encountered: