Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error when loading yolov3-tiny.weights #11

Open
BG4WCE opened this issue Sep 28, 2020 · 8 comments
Open

Error when loading yolov3-tiny.weights #11

BG4WCE opened this issue Sep 28, 2020 · 8 comments

Comments

@BG4WCE
Copy link

BG4WCE commented Sep 28, 2020

Hi,

I got error when loading yolov3 weights after module No 17.

This module No: 1 [net] ,have #params:0 ,FLops:0 ,feature map size:(416416),channels in:- ,channels out:3
This module No: 2 [convolutional] ,have #params:512 ,FLops:88604672 ,feature map size:(416
416),channels in:3 ,channels out:16
This module No: 3 [maxpool] ,have #params:0 ,FLops:0 ,feature map size:(208208),channels in:16 ,channels out:16
This module No: 4 [convolutional] ,have #params:4768 ,FLops:206282752 ,feature map size:(208
208),channels in:16 ,channels out:32
This module No: 5 [maxpool] ,have #params:0 ,FLops:0 ,feature map size:(104104),channels in:32 ,channels out:32
This module No: 6 [convolutional] ,have #params:18752 ,FLops:202821632 ,feature map size:(104
104),channels in:32 ,channels out:64
This module No: 7 [maxpool] ,have #params:0 ,FLops:0 ,feature map size:(52 *52 ),channels in:64 ,channels out:64
This module No: 8 [convolutional] ,have #params:74368 ,FLops:201091072 ,feature map size:(52 *52 ),channels in:64 ,channels out:128
This module No: 9 [maxpool] ,have #params:0 ,FLops:0 ,feature map size:(26 *26 ),channels in:128 ,channels out:128
This module No:10 [convolutional] ,have #params:296192 ,FLops:200225792 ,feature map size:(26 *26 ),channels in:128 ,channels out:256
This module No:11 [maxpool] ,have #params:0 ,FLops:0 ,feature map size:(13 *13 ),channels in:256 ,channels out:256
This module No:12 [convolutional] ,have #params:1182208 ,FLops:199793152 ,feature map size:(13 *13 ),channels in:256 ,channels out:512
This module No:13 [maxpool] ,have #params:0 ,FLops:0 ,feature map size:(13 *13 ),channels in:512 ,channels out:512
This module No:14 [convolutional] ,have #params:4723712 ,FLops:798307328 ,feature map size:(13 *13 ),channels in:512 ,channels out:1024
This module No:15 [convolutional] ,have #params:263424 ,FLops:44518656 ,feature map size:(13 *13 ),channels in:1024 ,channels out:256
This module No:16 [convolutional] ,have #params:1182208 ,FLops:199793152 ,feature map size:(13 *13 ),channels in:256 ,channels out:512
This module No:17 [convolutional] ,have #params:130815 ,FLops:22107735 ,feature map size:(13 *13 ),channels in:512 ,channels out:255
Not enough input arguments.

Error in yolov3Layer (line 54)
', arc:',arc];

Error in importDarkNetLayers (line 372)
yolov3_layer = yolov3Layer(['yolo_v3_id',num2str(yoloIndex)],...

Error in importDarknetWeights (line 30)
moduleTypeList,moduleInfoList,layerToModuleIndex] = importDarkNetLayers(cfgfile);% only weights需要cutoff,layer都导入

Error in yolov3v4Predict (line 24)
[layerGraphYolo,hyperParams] = importDarknetWeights(cfg_file,weight_file);

Error in detect (line 26)
outFeatures = yolov3v4Predict(cfg_file,weight_file,im);% M*(5+nc) ,为[x,y,w,h,Pobj,p1,p2,...,pn]

@cuixing158
Copy link
Owner

Please try to remove the last parameter "arc" of the constructor in the yolov3Layer custom layer.

@BG4WCE
Copy link
Author

BG4WCE commented Oct 8, 2020

Thanks.
I modified your code to take arc = 'default' when arc is not defined.
BTW, where is this 'arc' coming from? Is it from YOLOv4?

@bikekowal
Copy link

Is there any mirror of baidu serwer providing weights and .cfg files?

@Hind-colla
Copy link

Thanks.
I modified your code to take arc = 'default' when arc is not defined.
BTW, where is this 'arc' coming from? Is it from YOLOv4?

Can you please tell me where do i need to put arc='default'.
I have tried to remove "arc" from here: function layer = yolov3Layer(name, mask,allAnchors,nClasses,yoloIndex,imageSize,arc)
and in the line 65: layer.arc = arc; they tell me that the 'arc' is not defined!
I don't know what i should do? pklease help me. And thank you very much

@ecardozog
Copy link

        if nargin == 6
            arc = 'default';
        end

@Gary-HUA
Copy link

methods
    function layer = yolov3Layer(name, mask,allAnchors,nClasses,yoloIndex,imageSize)  % %%% modeified 
        % 输入参数:
        % name: 字符向量或字符串,层名字
        % mask: 见上面properties说明
        % allAnchors:同上面properties之anchors说明
        % nClasses: 1*1 标量,检测的类别数量
        % imageSize:[imageHeight,imageWidth],输入网络的图像大小
        % yoloIndex:1*1标量,从1开始的索引,输出yolo检测层的序号
        % arc:字符向量或字符串,计算损失的方式
        %
        % [email protected]
        % 2020.4.20
        %
        assert(size(allAnchors,2)==2,'allAnchors must have n*2 shape!');% nAchors*2,形如[width,height]
        
        layer.mask = mask;
        layer.anchors = allAnchors;
        layer.num = numel(allAnchors)/2;
        layer.classes = nClasses;
        layer.ignore_thresh = .7;
        layer.truth_thresh = 1;
        layer.jitter = .3;
        layer.random = 1;
        
        anchorsUse = allAnchors(mask,:);% na*2, 注意matlab中mask是从1开始的索引 
        layer.Name = name;
        text = ['all number classes:', num2str(nClasses),...
            ',used anchor box:',mat2str(round(anchorsUse)),...
            ', yoloLayerID:',num2str(yoloIndex),...
            ];  %%% modeified 
        layer.Description = text;
        layer.Type = 'yoloV3Layer';
        
        layer.numY = 1;
        layer.numX = 1;
        layer.stride =1;
        [
        layer.anchorsUse = anchorsUse;](url)
        layer.nAnchors = size(anchorsUse,1);
        layer.imageSize = imageSize;
        %layer.arc = arc;  %%%% modeified 
    end

2022-08-22_181203

@Gary-HUA
Copy link

remove these arc parameters. my coding running well.............

@FenGk999
Copy link

你好,我删除arc之后,去跑预测,就会有误,,置信度很低的都显示上去了,这怎么解决呢??

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

7 participants