forked from zhuhan1236/Tree_Deep_Model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_network.py
159 lines (145 loc) · 7.26 KB
/
deep_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import numpy as np
import tensorflow as tf
tf.enable_eager_execution()
MODEL_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_NAME = MODEL_DIR + '/models/network_model.ckpt'
SUMMARY_DIR = MODEL_DIR + '/logs'
class NeuralNet(object):
"""Deep network structure:
input_embedding+node_embedding >>
attention_block >>
union_embedding >>
MLP(128>64>24>2) >>
label_probabilities.
"""
def __init__(self, item_size, node_size, embedding_size):
self.item_size = item_size
self.embedding_size = embedding_size
self.item_embeddings = tf.get_variable("item_embeddings",
[self.item_size, self.embedding_size],
use_resource=True)
self.node_embeddings = tf.get_variable("node_embeddings",
[node_size, self.embedding_size],
use_resource=True)
self.saver = None
def _PRelu(self, x):
m, n = tf.shape(x)
value_init = 0.25 * tf.ones((1, n))
a = tf.Variable(initial_value=value_init, use_resource=True)
y = tf.maximum(x, 0) + a * tf.minimum(x, 0)
return y
def _activation_unit(self, item, node):
item, node = tf.reshape(item, [1, -1]), tf.reshape(node, [1, -1])
hybrid = item * node
feature = tf.concat([item, hybrid, node], axis=1)
layer1 = tf.layers.dense(feature, 36)
layer1_prelu = self._PRelu(layer1)
weight = tf.layers.dense(layer1_prelu, 1)
return weight
def _attention_feature(self, item, node, is_leafs, features):
item_clip = item[item != -2]
item_embedding = tf.nn.embedding_lookup(self.item_embeddings, item_clip)
if is_leafs[0] == 0:
node_embedding = tf.nn.embedding_lookup(self.node_embeddings, node)
else:
node_embedding = tf.nn.embedding_lookup(self.item_embeddings, node)
item_num, _ = tf.shape(item_embedding)
item_feature = None
for i in range(item_num):
item_weight = self._activation_unit(item_embedding[i], node_embedding[0])[0][0]
if item_feature is None:
item_feature = item_weight * item_embedding[i]
else:
item_feature = tf.add(item_feature, item_weight * item_embedding[i])
item_feature = tf.concat([tf.reshape(item_feature, [1, -1]), node_embedding], axis=1)
if features is None:
features = item_feature
else:
features = tf.concat([features, item_feature], axis=0)
return features
def _attention_block(self, items, nodes, is_leafs):
batch, _ = tf.shape(items)
features = None
for i in range(batch):
features = self._attention_feature(items[i], nodes[i], is_leafs[i], features)
return features
def _network_structure(self, items, nodes, is_leafs, is_training):
batch_features = self._attention_block(items, nodes, is_leafs)
layer1 = tf.layers.dense(batch_features, 128)
layer1_prelu = self._PRelu(layer1)
layer1_bn = tf.layers.batch_normalization(layer1_prelu, training=is_training)
layer2 = tf.layers.dense(layer1_bn, 64)
layer2_prelu = self._PRelu(layer2)
layer2_bn = tf.layers.batch_normalization(layer2_prelu, training=is_training)
layer3 = tf.layers.dense(layer2_bn, 24)
layer3_prelu = self._PRelu(layer3)
layer3_bn = tf.layers.batch_normalization(layer3_prelu, training=is_training)
logits = tf.layers.dense(layer3_bn, 2)
return logits
def _check_accuracy(self, iter_epoch, validate_data, is_training):
num_correct, num_samples = 0, 0
for items_val, nodes_val, is_leafs_val, labels_val in validate_data:
scores = self._network_structure(items_val, nodes_val, is_leafs_val, is_training)
scores = scores.numpy()
label_predict = scores.argmax(axis=1)
label_true = labels_val.argmax(axis=1)
label_predict = label_predict[label_predict == label_true]
label_predict = label_predict[label_predict == 0]
label_true = label_true[label_true == 0]
num_samples += label_true.shape[0]
num_correct += label_predict.shape[0]
accuracy = float(num_correct) / num_samples
print("Iteration {}, total positive samples: {}, "
"correct samples: {}, accuracy: {}".format(iter_epoch, num_samples, num_correct, accuracy))
def train(self, use_gpu=False, train_data=None, validate_data=None,
lr=0.001, b1=0.9, b2=0.999, eps=1e-08, num_epoch=10, check_epoch=200, save_epoch=1000):
device = '/device:GPU:0' if use_gpu else '/cpu:0'
with tf.device(device):
container = tf.contrib.eager.EagerVariableStore()
check_point = tf.contrib.eager.Checkpointable()
iter_epoch = 0
for epoch in range(num_epoch):
print("Start epoch %d" % epoch)
for items_tr, nodes_tr, is_leafs_tr, labels_tr in train_data:
with tf.GradientTape() as tape:
with container.as_default():
scores = self._network_structure(items_tr, nodes_tr, is_leafs_tr, 1)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels_tr, logits=scores)
loss = tf.reduce_sum(loss)
print("Epoch {}, Iteration {}, loss {}".format(epoch, iter_epoch, loss))
gradients = tape.gradient(loss, container.trainable_variables())
optimizer = tf.train.AdamOptimizer(learning_rate=lr, beta1=b1, beta2=b2, epsilon=eps)
optimizer.apply_gradients(zip(gradients, container.trainable_variables()))
if iter_epoch % check_epoch == 0:
self._check_accuracy(iter_epoch, validate_data, 0)
if iter_epoch % save_epoch == 0:
for k, v in container._store._vars.items():
setattr(check_point, k, v)
self.saver = tf.train.Checkpoint(checkpointable=check_point)
self.saver.save(MODEL_NAME)
iter_epoch += 1
print("It's completed to train the network.")
def get_embeddings(self, item_list, use_gpu=True):
"""
TODO: validate and optimize
"""
model_path = tf.train.latest_checkpoint(MODEL_DIR + '/models/')
self.saver.restore(model_path)
device = '/device:GPU:0' if use_gpu else '/cpu:0'
with tf.device(device):
item_embeddings = tf.nn.embedding_lookup(self.item_embeddings, np.array(item_list))
res = item_embeddings.numpy()
return res.tolist()
def predict(self, data, use_gpu=True):
"""
TODO: validate and optimize
"""
model_path = tf.train.latest_checkpoint(MODEL_DIR+'/models/')
self.saver.restore(model_path)
device = '/device:GPU:0' if use_gpu else '/cpu:0'
with tf.device(device):
items, nodes, is_leafs = data
scores = self._network_structure(items, nodes, is_leafs, 0)
scores = scores.numpy()
return scores[:, 0]