-
-
Notifications
You must be signed in to change notification settings - Fork 331
/
utils.py
388 lines (320 loc) · 15.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import re
import torch
import os
import folder_paths
from comfy.clip_vision import clip_preprocess, Output
import comfy.utils
import comfy.model_management as model_management
try:
import torchvision.transforms.v2 as T
except ImportError:
import torchvision.transforms as T
def get_clipvision_file(preset):
preset = preset.lower()
clipvision_list = folder_paths.get_filename_list("clip_vision")
if preset.startswith("vit-g"):
pattern = r'(ViT.bigG.14.*39B.b160k|ipadapter.*sdxl|sdxl.*model)\.(bin|safetensors)'
elif preset.startswith("kolors"):
pattern = r'clip.vit.large.patch14.336\.(bin|safetensors)'
else:
pattern = r'(ViT.H.14.*s32B.b79K|ipadapter.*sd15|sd1.?5.*model)\.(bin|safetensors)'
clipvision_file = [e for e in clipvision_list if re.search(pattern, e, re.IGNORECASE)]
clipvision_file = folder_paths.get_full_path("clip_vision", clipvision_file[0]) if clipvision_file else None
return clipvision_file
def get_ipadapter_file(preset, is_sdxl):
preset = preset.lower()
ipadapter_list = folder_paths.get_filename_list("ipadapter")
is_insightface = False
lora_pattern = None
if preset.startswith("light"):
if is_sdxl:
raise Exception("light model is not supported for SDXL")
pattern = r'sd15.light.v11\.(safetensors|bin)$'
# if v11 is not found, try with the old version
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]:
pattern = r'sd15.light\.(safetensors|bin)$'
elif preset.startswith("standard"):
if is_sdxl:
pattern = r'ip.adapter.sdxl.vit.h\.(safetensors|bin)$'
else:
pattern = r'ip.adapter.sd15\.(safetensors|bin)$'
elif preset.startswith("vit-g"):
if is_sdxl:
pattern = r'ip.adapter.sdxl\.(safetensors|bin)$'
else:
pattern = r'sd15.vit.g\.(safetensors|bin)$'
elif preset.startswith("plus ("):
if is_sdxl:
pattern = r'plus.sdxl.vit.h\.(safetensors|bin)$'
else:
pattern = r'ip.adapter.plus.sd15\.(safetensors|bin)$'
elif preset.startswith("plus face"):
if is_sdxl:
pattern = r'plus.face.sdxl.vit.h\.(safetensors|bin)$'
else:
pattern = r'plus.face.sd15\.(safetensors|bin)$'
elif preset.startswith("full"):
if is_sdxl:
raise Exception("full face model is not supported for SDXL")
pattern = r'full.face.sd15\.(safetensors|bin)$'
elif preset.startswith("faceid portrait ("):
if is_sdxl:
pattern = r'portrait.sdxl\.(safetensors|bin)$'
else:
pattern = r'portrait.v11.sd15\.(safetensors|bin)$'
# if v11 is not found, try with the old version
if not [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]:
pattern = r'portrait.sd15\.(safetensors|bin)$'
is_insightface = True
elif preset.startswith("faceid portrait unnorm"):
if is_sdxl:
pattern = r'portrait.sdxl.unnorm\.(safetensors|bin)$'
else:
raise Exception("portrait unnorm model is not supported for SD1.5")
is_insightface = True
elif preset == "faceid":
if is_sdxl:
pattern = r'faceid.sdxl\.(safetensors|bin)$'
lora_pattern = r'faceid.sdxl.lora\.safetensors$'
else:
pattern = r'faceid.sd15\.(safetensors|bin)$'
lora_pattern = r'faceid.sd15.lora\.safetensors$'
is_insightface = True
elif preset.startswith("faceid plus -"):
if is_sdxl:
raise Exception("faceid plus model is not supported for SDXL")
pattern = r'faceid.plus.sd15\.(safetensors|bin)$'
lora_pattern = r'faceid.plus.sd15.lora\.safetensors$'
is_insightface = True
elif preset.startswith("faceid plus v2"):
if is_sdxl:
pattern = r'faceid.plusv2.sdxl\.(safetensors|bin)$'
lora_pattern = r'faceid.plusv2.sdxl.lora\.safetensors$'
else:
pattern = r'faceid.plusv2.sd15\.(safetensors|bin)$'
lora_pattern = r'faceid.plusv2.sd15.lora\.safetensors$'
is_insightface = True
# Community's models
elif preset.startswith("composition"):
if is_sdxl:
pattern = r'plus.composition.sdxl\.safetensors$'
else:
pattern = r'plus.composition.sd15\.safetensors$'
elif preset.startswith("kolors"):
if is_sdxl:
pattern = r'(ip_adapter_plus_general|kolors.ip.adapter.plus)\.(safetensors|bin)$'
else:
raise Exception("Only supported for Kolors model")
else:
raise Exception(f"invalid type '{preset}'")
ipadapter_file = [e for e in ipadapter_list if re.search(pattern, e, re.IGNORECASE)]
ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file[0]) if ipadapter_file else None
return ipadapter_file, is_insightface, lora_pattern
def get_lora_file(pattern):
lora_list = folder_paths.get_filename_list("loras")
lora_file = [e for e in lora_list if re.search(pattern, e, re.IGNORECASE)]
lora_file = folder_paths.get_full_path("loras", lora_file[0]) if lora_file else None
return lora_file
def ipadapter_model_loader(file):
model = comfy.utils.load_torch_file(file, safe_load=True)
if file.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
elif key.startswith("adapter_modules."):
st_model["ip_adapter"][key.replace("adapter_modules.", "")] = model[key]
model = st_model
del st_model
elif "adapter_modules" in model.keys():
model["ip_adapter"] = model.pop("adapter_modules")
if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
raise Exception("invalid IPAdapter model {}".format(file))
if 'plusv2' in file.lower():
model["faceidplusv2"] = True
if 'unnorm' in file.lower():
model["portraitunnorm"] = True
return model
def insightface_loader(provider, model_name='buffalo_l'):
try:
from insightface.app import FaceAnalysis
except ImportError as e:
raise Exception(e)
path = os.path.join(folder_paths.models_dir, "insightface")
model = FaceAnalysis(name=model_name, root=path, providers=[provider + 'ExecutionProvider',])
model.prepare(ctx_id=0, det_size=(640, 640))
return model
def split_tiles(embeds, num_split):
_, H, W, _ = embeds.shape
out = []
for x in embeds:
x = x.unsqueeze(0)
h, w = H // num_split, W // num_split
x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0)
out.append(x_split)
x_split = torch.stack(out, dim=0)
return x_split
def merge_hiddenstates(x, tiles):
chunk_size = tiles*tiles
x = x.split(chunk_size)
out = []
for embeds in x:
num_tiles = embeds.shape[0]
tile_size = int((embeds.shape[1]-1) ** 0.5)
grid_size = int(num_tiles ** 0.5)
# Extract class tokens
class_tokens = embeds[:, 0, :] # Save class tokens: [num_tiles, embeds[-1]]
avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) # Average token, shape: [1, 1, embeds[-1]]
patch_embeds = embeds[:, 1:, :] # Shape: [num_tiles, tile_size^2, embeds[-1]]
reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1])
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1)
for i in range(grid_size)], dim=0)
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]]
# Pool to original size
pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1)
flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1])
# Add back the class token
with_class = torch.cat([avg_class_token, flattened], dim=1) # Shape: original shape
out.append(with_class)
out = torch.cat(out, dim=0)
return out
def merge_embeddings(x, tiles): # TODO: this needs so much testing that I don't even
chunk_size = tiles*tiles
x = x.split(chunk_size)
out = []
for embeds in x:
num_tiles = embeds.shape[0]
grid_size = int(num_tiles ** 0.5)
tile_size = int(embeds.shape[1] ** 0.5)
reshaped = embeds.reshape(grid_size, grid_size, tile_size, tile_size)
# Merge the tiles
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1)
for i in range(grid_size)], dim=0)
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size]
# Pool to original size
pooled = torch.nn.functional.adaptive_avg_pool2d(merged, (tile_size, tile_size)) # pool to [1, tile_size, tile_size]
pooled = pooled.flatten(1) # flatten to [1, tile_size^2]
out.append(pooled)
out = torch.cat(out, dim=0)
return out
def encode_image_masked(clip_vision, image, mask=None, batch_size=0, tiles=1, ratio=1.0, clipvision_size=224):
# full image embeds
embeds = encode_image_masked_(clip_vision, image, mask, batch_size, clipvision_size=clipvision_size)
tiles = min(tiles, 16)
if tiles > 1:
# split in tiles
image_split = split_tiles(image, tiles)
# get the embeds for each tile
embeds_split = Output()
for i in image_split:
encoded = encode_image_masked_(clip_vision, i, mask, batch_size, clipvision_size=clipvision_size)
if not hasattr(embeds_split, "image_embeds"):
#embeds_split["last_hidden_state"] = encoded["last_hidden_state"]
embeds_split["image_embeds"] = encoded["image_embeds"]
embeds_split["penultimate_hidden_states"] = encoded["penultimate_hidden_states"]
else:
#embeds_split["last_hidden_state"] = torch.cat((embeds_split["last_hidden_state"], encoded["last_hidden_state"]), dim=0)
embeds_split["image_embeds"] = torch.cat((embeds_split["image_embeds"], encoded["image_embeds"]), dim=0)
embeds_split["penultimate_hidden_states"] = torch.cat((embeds_split["penultimate_hidden_states"], encoded["penultimate_hidden_states"]), dim=0)
#embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state'])
embeds_split["image_embeds"] = merge_embeddings(embeds_split["image_embeds"], tiles)
embeds_split["penultimate_hidden_states"] = merge_hiddenstates(embeds_split["penultimate_hidden_states"], tiles)
#embeds['last_hidden_state'] = torch.cat([embeds_split['last_hidden_state'], embeds['last_hidden_state']])
if embeds['image_embeds'].shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency
embeds['image_embeds'] = embeds['image_embeds']*ratio + embeds_split['image_embeds']*(1-ratio)
embeds['penultimate_hidden_states'] = embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']*(1-ratio)
#embeds['image_embeds'] = (embeds['image_embeds']*ratio + embeds_split['image_embeds']) / 2
#embeds['penultimate_hidden_states'] = (embeds['penultimate_hidden_states']*ratio + embeds_split['penultimate_hidden_states']) / 2
else: # otherwise we can concatenate them, they can be averaged later
embeds['image_embeds'] = torch.cat([embeds['image_embeds']*ratio, embeds_split['image_embeds']])
embeds['penultimate_hidden_states'] = torch.cat([embeds['penultimate_hidden_states']*ratio, embeds_split['penultimate_hidden_states']])
#del embeds_split
return embeds
def encode_image_masked_(clip_vision, image, mask=None, batch_size=0, clipvision_size=224):
model_management.load_model_gpu(clip_vision.patcher)
outputs = Output()
if batch_size == 0:
batch_size = image.shape[0]
elif batch_size > image.shape[0]:
batch_size = image.shape[0]
image_batch = torch.split(image, batch_size, dim=0)
for img in image_batch:
img = img.to(clip_vision.load_device)
pixel_values = clip_preprocess(img, size=clipvision_size).float()
# TODO: support for multiple masks
if mask is not None:
pixel_values = pixel_values * mask.to(clip_vision.load_device)
out = clip_vision.model(pixel_values=pixel_values, intermediate_output=-2)
if not hasattr(outputs, "last_hidden_state"):
outputs["last_hidden_state"] = out[0].to(model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(model_management.intermediate_device())
else:
outputs["last_hidden_state"] = torch.cat((outputs["last_hidden_state"], out[0].to(model_management.intermediate_device())), dim=0)
outputs["image_embeds"] = torch.cat((outputs["image_embeds"], out[2].to(model_management.intermediate_device())), dim=0)
outputs["penultimate_hidden_states"] = torch.cat((outputs["penultimate_hidden_states"], out[1].to(model_management.intermediate_device())), dim=0)
del img, pixel_values, out
torch.cuda.empty_cache()
return outputs
def tensor_to_size(source, dest_size):
if isinstance(dest_size, torch.Tensor):
dest_size = dest_size.shape[0]
source_size = source.shape[0]
if source_size < dest_size:
shape = [dest_size - source_size] + [1]*(source.dim()-1)
source = torch.cat((source, source[-1:].repeat(shape)), dim=0)
elif source_size > dest_size:
source = source[:dest_size]
return source
def min_(tensor_list):
# return the element-wise min of the tensor list.
x = torch.stack(tensor_list)
mn = x.min(axis=0)[0]
return torch.clamp(mn, min=0)
def max_(tensor_list):
# return the element-wise max of the tensor list.
x = torch.stack(tensor_list)
mx = x.max(axis=0)[0]
return torch.clamp(mx, max=1)
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
def contrast_adaptive_sharpening(image, amount):
img = T.functional.pad(image, (1, 1, 1, 1)).cpu()
a = img[..., :-2, :-2]
b = img[..., :-2, 1:-1]
c = img[..., :-2, 2:]
d = img[..., 1:-1, :-2]
e = img[..., 1:-1, 1:-1]
f = img[..., 1:-1, 2:]
g = img[..., 2:, :-2]
h = img[..., 2:, 1:-1]
i = img[..., 2:, 2:]
# Computing contrast
cross = (b, d, e, f, h)
mn = min_(cross)
mx = max_(cross)
diag = (a, c, g, i)
mn2 = min_(diag)
mx2 = max_(diag)
mx = mx + mx2
mn = mn + mn2
# Computing local weight
inv_mx = torch.reciprocal(mx)
amp = inv_mx * torch.minimum(mn, (2 - mx))
# scaling
amp = torch.sqrt(amp)
w = - amp * (amount * (1/5 - 1/8) + 1/8)
div = torch.reciprocal(1 + 4*w)
output = ((b + d + f + h)*w + e) * div
output = torch.nan_to_num(output)
output = output.clamp(0, 1)
return output
def tensor_to_image(tensor):
image = tensor.mul(255).clamp(0, 255).byte().cpu()
image = image[..., [2, 1, 0]].numpy()
return image
def image_to_tensor(image):
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
tensor = tensor[..., [2, 1, 0]]
return tensor