Skip to content

Latest commit

 

History

History
85 lines (64 loc) · 2.75 KB

README.md

File metadata and controls

85 lines (64 loc) · 2.75 KB

RobinGas Mission Gazebo

GPS-IMU navigation pipeline with Traversability Estimation and OSM data usage for Path Planning tested in Gazebo simulator.

RobinGas pipeline in Gazebo simulator, video, currently including:

Installation

The navigation pipeline is currently tested in simulator with Husky robot only.

  • Install ROS navigation stack and Husky related packages:

    sudo apt-get install ros-$ROS_DISTRO-navigation

    Install husky simulation, reference:

    sudo apt-get install ros-$ROS_DISTRO-husky-*
    echo "export HUSKY_GAZEBO_DESCRIPTION=$(rospack find husky_gazebo)/urdf/description.gazebo.xacro" >> ~/.bashrc
    source ~/.bashrc
  • Configure ROS workspace. Download the package and its dependencies and build individual packages listed above.

    ws=~/catkin_ws/
    mkdir -p "${ws}/src"
    cd "${ws}/src"
    
    git clone https://github.com/ctu-vras/husky_nav -b robingas
    
    wstool init
    wstool merge husky_nav/dependencies.rosinstall
    wstool up -j 4
    
    cd "${ws}"
    catkin init
    catkin config --extend /opt/ros/$ROS_DISTRO/
    catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
    catkin build -c
  • Download relevant Gazebo models used in the virtual worlds and place them to $HOME/.gazebo/models/ folder.

RobinGas Navigation Pipeline

Start Gazebo simulator with Husky robot spawned:

roslaunch husky_nav husky_gazebo.launch

Launch navigation pipeline:

roslaunch husky_nav navigation.launch rviz:=true

Citation

The traversability estimation method is described in the following paper:

@ARTICLE{9699042,
  author={Agishev, Ruslan and Petříček, Tomáš and Zimmermann, Karel},
  journal={IEEE Robotics and Automation Letters},
  title={Trajectory Optimization Using Learned Robot-Terrain Interaction Model in Exploration of Large Subterranean Environments},
  year={2022},
  volume={7},
  number={2},
  pages={3365-3371},
  doi={10.1109/LRA.2022.3147332}
}