forked from CMU-CBML/RDCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
45 lines (39 loc) · 1.48 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.nn as nn
import torch.nn.init as init
class rdcnn_2_larger(nn.Module):
def __init__(self, drop_rate):
super(rdcnn_2_larger, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(4, 84, 3, stride=2, padding=1), # b, 84, 11, 11
nn.BatchNorm2d(84),
nn.ReLU(True),
nn.Dropout(drop_rate) ,
nn.Conv2d(84, 168, 3, stride=2, padding=1), # b, 168, 6, 6
nn.BatchNorm2d(168),
nn.ReLU(True),
nn.Dropout(drop_rate) ,
nn.MaxPool2d(2, stride=1), # b, 168, 5, 5
nn.Conv2d(168, 336, 3, stride=2, padding=1), # b, 336, 3, 3
nn.BatchNorm2d(336),
nn.ReLU(True),
nn.Dropout(drop_rate) ,
nn.MaxPool2d(2, stride=1), # b, 336, 2, 2
nn.Dropout(drop_rate) ,
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(336, 672, 3, stride=2, padding=1), # b, 672, 3, 3
nn.BatchNorm2d(672),
nn.ReLU(True),
nn.ConvTranspose2d(672, 336, 2, stride=2), # b, 336, 6, 6
nn.BatchNorm2d(336),
nn.ReLU(True),
nn.ConvTranspose2d(336, 84, 2, stride=2), # b, 84, 12, 12
nn.BatchNorm2d(84),
nn.ReLU(True),
nn.ConvTranspose2d(84, 1, 3, stride=2,padding=2), # b, 1, 21, 21
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x