forked from csingh27sewts/rlpyt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
max_q_eval_policy.py
63 lines (47 loc) · 1.91 KB
/
max_q_eval_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from os.path import join
import importlib
import argparse
import json
import torch
import numpy as np
from rlpyt.envs.dm_control_env import DMControlEnv
from rlpyt.samplers.serial.sampler import SerialSampler
def main():
parser = argparse.ArgumentParser()
parser.add_argument('snapshot_dir', type=str)
parser.add_argument('max_q_eval_mode', type=str)
parser.add_argument('--n_rollouts', type=int, default=10)
args = parser.parse_args()
snapshot_file = join(args.snapshot_dir, 'params.pkl')
config_file = join(args.snapshot_dir, 'params.json')
params = torch.load(snapshot_file, map_location='cpu')
with open(config_file, 'r') as f:
config = json.load(f)
config['sampler']['batch_B'] = 1
config['sampler']['eval_n_envs'] = 1
config['sampler']['eval_max_trajectories'] = args.n_rollouts
config['env']['task_kwargs']['maxq'] = True
itr, cum_steps = params['itr'], params['cum_steps']
print(f'Loading experiment at itr {itr}, cum_steps {cum_steps}')
agent_state_dict = params['agent_state_dict']
sac_agent_module = 'rlpyt.agents.qpg.{}'.format(config['sac_agent_module'])
sac_agent_module = importlib.import_module(sac_agent_module)
SacAgent = sac_agent_module.SacAgent
agent = SacAgent(max_q_eval_mode=args.max_q_eval_mode, **config["agent"])
sampler = SerialSampler(
EnvCls=DMControlEnv,
env_kwargs=config["env"],
eval_env_kwargs=config["env"],
**config["sampler"]
)
sampler.initialize(agent)
agent.load_state_dict(agent_state_dict)
agent.to_device(cuda_idx=0)
agent.eval_mode(0)
traj_infos = sampler.evaluate_agent(0)
returns = [traj_info.Return for traj_info in traj_infos]
lengths = [traj_info.Length for traj_info in traj_infos]
print('Returns', returns)
print(f'Average Return {np.mean(returns)}, Average Length {np.mean(lengths)}')
if __name__ == '__main__':
main()